fpu: Bound increment for scalbn
[qemu.git] / include / qemu / bswap.h
blob3f28f661b15ee0c0132fad11bc1a8e4b2fbd8a41
1 #ifndef BSWAP_H
2 #define BSWAP_H
4 #include "fpu/softfloat-types.h"
6 #ifdef CONFIG_MACHINE_BSWAP_H
7 # include <sys/endian.h>
8 # include <machine/bswap.h>
9 #elif defined(__FreeBSD__)
10 # include <sys/endian.h>
11 #elif defined(CONFIG_BYTESWAP_H)
12 # include <byteswap.h>
14 static inline uint16_t bswap16(uint16_t x)
16 return bswap_16(x);
19 static inline uint32_t bswap32(uint32_t x)
21 return bswap_32(x);
24 static inline uint64_t bswap64(uint64_t x)
26 return bswap_64(x);
28 # else
29 static inline uint16_t bswap16(uint16_t x)
31 return (((x & 0x00ff) << 8) |
32 ((x & 0xff00) >> 8));
35 static inline uint32_t bswap32(uint32_t x)
37 return (((x & 0x000000ffU) << 24) |
38 ((x & 0x0000ff00U) << 8) |
39 ((x & 0x00ff0000U) >> 8) |
40 ((x & 0xff000000U) >> 24));
43 static inline uint64_t bswap64(uint64_t x)
45 return (((x & 0x00000000000000ffULL) << 56) |
46 ((x & 0x000000000000ff00ULL) << 40) |
47 ((x & 0x0000000000ff0000ULL) << 24) |
48 ((x & 0x00000000ff000000ULL) << 8) |
49 ((x & 0x000000ff00000000ULL) >> 8) |
50 ((x & 0x0000ff0000000000ULL) >> 24) |
51 ((x & 0x00ff000000000000ULL) >> 40) |
52 ((x & 0xff00000000000000ULL) >> 56));
54 #endif /* ! CONFIG_MACHINE_BSWAP_H */
56 static inline void bswap16s(uint16_t *s)
58 *s = bswap16(*s);
61 static inline void bswap32s(uint32_t *s)
63 *s = bswap32(*s);
66 static inline void bswap64s(uint64_t *s)
68 *s = bswap64(*s);
71 #if defined(HOST_WORDS_BIGENDIAN)
72 #define be_bswap(v, size) (v)
73 #define le_bswap(v, size) glue(bswap, size)(v)
74 #define be_bswaps(v, size)
75 #define le_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
76 #else
77 #define le_bswap(v, size) (v)
78 #define be_bswap(v, size) glue(bswap, size)(v)
79 #define le_bswaps(v, size)
80 #define be_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
81 #endif
83 /**
84 * Endianness conversion functions between host cpu and specified endianness.
85 * (We list the complete set of prototypes produced by the macros below
86 * to assist people who search the headers to find their definitions.)
88 * uint16_t le16_to_cpu(uint16_t v);
89 * uint32_t le32_to_cpu(uint32_t v);
90 * uint64_t le64_to_cpu(uint64_t v);
91 * uint16_t be16_to_cpu(uint16_t v);
92 * uint32_t be32_to_cpu(uint32_t v);
93 * uint64_t be64_to_cpu(uint64_t v);
95 * Convert the value @v from the specified format to the native
96 * endianness of the host CPU by byteswapping if necessary, and
97 * return the converted value.
99 * uint16_t cpu_to_le16(uint16_t v);
100 * uint32_t cpu_to_le32(uint32_t v);
101 * uint64_t cpu_to_le64(uint64_t v);
102 * uint16_t cpu_to_be16(uint16_t v);
103 * uint32_t cpu_to_be32(uint32_t v);
104 * uint64_t cpu_to_be64(uint64_t v);
106 * Convert the value @v from the native endianness of the host CPU to
107 * the specified format by byteswapping if necessary, and return
108 * the converted value.
110 * void le16_to_cpus(uint16_t *v);
111 * void le32_to_cpus(uint32_t *v);
112 * void le64_to_cpus(uint64_t *v);
113 * void be16_to_cpus(uint16_t *v);
114 * void be32_to_cpus(uint32_t *v);
115 * void be64_to_cpus(uint64_t *v);
117 * Do an in-place conversion of the value pointed to by @v from the
118 * specified format to the native endianness of the host CPU.
120 * void cpu_to_le16s(uint16_t *v);
121 * void cpu_to_le32s(uint32_t *v);
122 * void cpu_to_le64s(uint64_t *v);
123 * void cpu_to_be16s(uint16_t *v);
124 * void cpu_to_be32s(uint32_t *v);
125 * void cpu_to_be64s(uint64_t *v);
127 * Do an in-place conversion of the value pointed to by @v from the
128 * native endianness of the host CPU to the specified format.
130 * Both X_to_cpu() and cpu_to_X() perform the same operation; you
131 * should use whichever one is better documenting of the function your
132 * code is performing.
134 * Do not use these functions for conversion of values which are in guest
135 * memory, since the data may not be sufficiently aligned for the host CPU's
136 * load and store instructions. Instead you should use the ld*_p() and
137 * st*_p() functions, which perform loads and stores of data of any
138 * required size and endianness and handle possible misalignment.
141 #define CPU_CONVERT(endian, size, type)\
142 static inline type endian ## size ## _to_cpu(type v)\
144 return glue(endian, _bswap)(v, size);\
147 static inline type cpu_to_ ## endian ## size(type v)\
149 return glue(endian, _bswap)(v, size);\
152 static inline void endian ## size ## _to_cpus(type *p)\
154 glue(endian, _bswaps)(p, size);\
157 static inline void cpu_to_ ## endian ## size ## s(type *p)\
159 glue(endian, _bswaps)(p, size);\
162 CPU_CONVERT(be, 16, uint16_t)
163 CPU_CONVERT(be, 32, uint32_t)
164 CPU_CONVERT(be, 64, uint64_t)
166 CPU_CONVERT(le, 16, uint16_t)
167 CPU_CONVERT(le, 32, uint32_t)
168 CPU_CONVERT(le, 64, uint64_t)
170 /* len must be one of 1, 2, 4 */
171 static inline uint32_t qemu_bswap_len(uint32_t value, int len)
173 return bswap32(value) >> (32 - 8 * len);
177 * Same as cpu_to_le{16,32}, except that gcc will figure the result is
178 * a compile-time constant if you pass in a constant. So this can be
179 * used to initialize static variables.
181 #if defined(HOST_WORDS_BIGENDIAN)
182 # define const_le32(_x) \
183 ((((_x) & 0x000000ffU) << 24) | \
184 (((_x) & 0x0000ff00U) << 8) | \
185 (((_x) & 0x00ff0000U) >> 8) | \
186 (((_x) & 0xff000000U) >> 24))
187 # define const_le16(_x) \
188 ((((_x) & 0x00ff) << 8) | \
189 (((_x) & 0xff00) >> 8))
190 #else
191 # define const_le32(_x) (_x)
192 # define const_le16(_x) (_x)
193 #endif
195 /* Unions for reinterpreting between floats and integers. */
197 typedef union {
198 float32 f;
199 uint32_t l;
200 } CPU_FloatU;
202 typedef union {
203 float64 d;
204 #if defined(HOST_WORDS_BIGENDIAN)
205 struct {
206 uint32_t upper;
207 uint32_t lower;
208 } l;
209 #else
210 struct {
211 uint32_t lower;
212 uint32_t upper;
213 } l;
214 #endif
215 uint64_t ll;
216 } CPU_DoubleU;
218 typedef union {
219 floatx80 d;
220 struct {
221 uint64_t lower;
222 uint16_t upper;
223 } l;
224 } CPU_LDoubleU;
226 typedef union {
227 float128 q;
228 #if defined(HOST_WORDS_BIGENDIAN)
229 struct {
230 uint32_t upmost;
231 uint32_t upper;
232 uint32_t lower;
233 uint32_t lowest;
234 } l;
235 struct {
236 uint64_t upper;
237 uint64_t lower;
238 } ll;
239 #else
240 struct {
241 uint32_t lowest;
242 uint32_t lower;
243 uint32_t upper;
244 uint32_t upmost;
245 } l;
246 struct {
247 uint64_t lower;
248 uint64_t upper;
249 } ll;
250 #endif
251 } CPU_QuadU;
253 /* unaligned/endian-independent pointer access */
256 * the generic syntax is:
258 * load: ld{type}{sign}{size}{endian}_p(ptr)
260 * store: st{type}{size}{endian}_p(ptr, val)
262 * Note there are small differences with the softmmu access API!
264 * type is:
265 * (empty): integer access
266 * f : float access
268 * sign is:
269 * (empty): for 32 or 64 bit sizes (including floats and doubles)
270 * u : unsigned
271 * s : signed
273 * size is:
274 * b: 8 bits
275 * w: 16 bits
276 * l: 32 bits
277 * q: 64 bits
279 * endian is:
280 * he : host endian
281 * be : big endian
282 * le : little endian
283 * te : target endian
284 * (except for byte accesses, which have no endian infix).
286 * The target endian accessors are obviously only available to source
287 * files which are built per-target; they are defined in cpu-all.h.
289 * In all cases these functions take a host pointer.
290 * For accessors that take a guest address rather than a
291 * host address, see the cpu_{ld,st}_* accessors defined in
292 * cpu_ldst.h.
295 static inline int ldub_p(const void *ptr)
297 return *(uint8_t *)ptr;
300 static inline int ldsb_p(const void *ptr)
302 return *(int8_t *)ptr;
305 static inline void stb_p(void *ptr, uint8_t v)
307 *(uint8_t *)ptr = v;
310 /* Any compiler worth its salt will turn these memcpy into native unaligned
311 operations. Thus we don't need to play games with packed attributes, or
312 inline byte-by-byte stores. */
314 static inline int lduw_he_p(const void *ptr)
316 uint16_t r;
317 memcpy(&r, ptr, sizeof(r));
318 return r;
321 static inline int ldsw_he_p(const void *ptr)
323 int16_t r;
324 memcpy(&r, ptr, sizeof(r));
325 return r;
328 static inline void stw_he_p(void *ptr, uint16_t v)
330 memcpy(ptr, &v, sizeof(v));
333 static inline int ldl_he_p(const void *ptr)
335 int32_t r;
336 memcpy(&r, ptr, sizeof(r));
337 return r;
340 static inline void stl_he_p(void *ptr, uint32_t v)
342 memcpy(ptr, &v, sizeof(v));
345 static inline uint64_t ldq_he_p(const void *ptr)
347 uint64_t r;
348 memcpy(&r, ptr, sizeof(r));
349 return r;
352 static inline void stq_he_p(void *ptr, uint64_t v)
354 memcpy(ptr, &v, sizeof(v));
357 static inline int lduw_le_p(const void *ptr)
359 return (uint16_t)le_bswap(lduw_he_p(ptr), 16);
362 static inline int ldsw_le_p(const void *ptr)
364 return (int16_t)le_bswap(lduw_he_p(ptr), 16);
367 static inline int ldl_le_p(const void *ptr)
369 return le_bswap(ldl_he_p(ptr), 32);
372 static inline uint64_t ldq_le_p(const void *ptr)
374 return le_bswap(ldq_he_p(ptr), 64);
377 static inline void stw_le_p(void *ptr, uint16_t v)
379 stw_he_p(ptr, le_bswap(v, 16));
382 static inline void stl_le_p(void *ptr, uint32_t v)
384 stl_he_p(ptr, le_bswap(v, 32));
387 static inline void stq_le_p(void *ptr, uint64_t v)
389 stq_he_p(ptr, le_bswap(v, 64));
392 /* float access */
394 static inline float32 ldfl_le_p(const void *ptr)
396 CPU_FloatU u;
397 u.l = ldl_le_p(ptr);
398 return u.f;
401 static inline void stfl_le_p(void *ptr, float32 v)
403 CPU_FloatU u;
404 u.f = v;
405 stl_le_p(ptr, u.l);
408 static inline float64 ldfq_le_p(const void *ptr)
410 CPU_DoubleU u;
411 u.ll = ldq_le_p(ptr);
412 return u.d;
415 static inline void stfq_le_p(void *ptr, float64 v)
417 CPU_DoubleU u;
418 u.d = v;
419 stq_le_p(ptr, u.ll);
422 static inline int lduw_be_p(const void *ptr)
424 return (uint16_t)be_bswap(lduw_he_p(ptr), 16);
427 static inline int ldsw_be_p(const void *ptr)
429 return (int16_t)be_bswap(lduw_he_p(ptr), 16);
432 static inline int ldl_be_p(const void *ptr)
434 return be_bswap(ldl_he_p(ptr), 32);
437 static inline uint64_t ldq_be_p(const void *ptr)
439 return be_bswap(ldq_he_p(ptr), 64);
442 static inline void stw_be_p(void *ptr, uint16_t v)
444 stw_he_p(ptr, be_bswap(v, 16));
447 static inline void stl_be_p(void *ptr, uint32_t v)
449 stl_he_p(ptr, be_bswap(v, 32));
452 static inline void stq_be_p(void *ptr, uint64_t v)
454 stq_he_p(ptr, be_bswap(v, 64));
457 /* float access */
459 static inline float32 ldfl_be_p(const void *ptr)
461 CPU_FloatU u;
462 u.l = ldl_be_p(ptr);
463 return u.f;
466 static inline void stfl_be_p(void *ptr, float32 v)
468 CPU_FloatU u;
469 u.f = v;
470 stl_be_p(ptr, u.l);
473 static inline float64 ldfq_be_p(const void *ptr)
475 CPU_DoubleU u;
476 u.ll = ldq_be_p(ptr);
477 return u.d;
480 static inline void stfq_be_p(void *ptr, float64 v)
482 CPU_DoubleU u;
483 u.d = v;
484 stq_be_p(ptr, u.ll);
487 static inline unsigned long leul_to_cpu(unsigned long v)
489 #if HOST_LONG_BITS == 32
490 return le_bswap(v, 32);
491 #elif HOST_LONG_BITS == 64
492 return le_bswap(v, 64);
493 #else
494 # error Unknown sizeof long
495 #endif
498 #undef le_bswap
499 #undef be_bswap
500 #undef le_bswaps
501 #undef be_bswaps
503 #endif /* BSWAP_H */