atomics: emit an smp_read_barrier_depends() barrier only for Alpha and Thread Sanitizer
[qemu.git] / tests / rtc-test.c
blobfa7029aa8a742af0237899e988818b93ed96e1b1
1 /*
2 * QTest testcase for the MC146818 real-time clock
4 * Copyright IBM, Corp. 2012
6 * Authors:
7 * Anthony Liguori <aliguori@us.ibm.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include <glib.h>
17 #include "libqtest.h"
18 #include "hw/timer/mc146818rtc_regs.h"
20 static uint8_t base = 0x70;
22 static int bcd2dec(int value)
24 return (((value >> 4) & 0x0F) * 10) + (value & 0x0F);
27 static uint8_t cmos_read(uint8_t reg)
29 outb(base + 0, reg);
30 return inb(base + 1);
33 static void cmos_write(uint8_t reg, uint8_t val)
35 outb(base + 0, reg);
36 outb(base + 1, val);
39 static int tm_cmp(struct tm *lhs, struct tm *rhs)
41 time_t a, b;
42 struct tm d1, d2;
44 memcpy(&d1, lhs, sizeof(d1));
45 memcpy(&d2, rhs, sizeof(d2));
47 a = mktime(&d1);
48 b = mktime(&d2);
50 if (a < b) {
51 return -1;
52 } else if (a > b) {
53 return 1;
56 return 0;
59 #if 0
60 static void print_tm(struct tm *tm)
62 printf("%04d-%02d-%02d %02d:%02d:%02d\n",
63 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
64 tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff);
66 #endif
68 static void cmos_get_date_time(struct tm *date)
70 int base_year = 2000, hour_offset;
71 int sec, min, hour, mday, mon, year;
72 time_t ts;
73 struct tm dummy;
75 sec = cmos_read(RTC_SECONDS);
76 min = cmos_read(RTC_MINUTES);
77 hour = cmos_read(RTC_HOURS);
78 mday = cmos_read(RTC_DAY_OF_MONTH);
79 mon = cmos_read(RTC_MONTH);
80 year = cmos_read(RTC_YEAR);
82 if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) {
83 sec = bcd2dec(sec);
84 min = bcd2dec(min);
85 hour = bcd2dec(hour);
86 mday = bcd2dec(mday);
87 mon = bcd2dec(mon);
88 year = bcd2dec(year);
89 hour_offset = 80;
90 } else {
91 hour_offset = 0x80;
94 if ((cmos_read(0x0B) & REG_B_24H) == 0) {
95 if (hour >= hour_offset) {
96 hour -= hour_offset;
97 hour += 12;
101 ts = time(NULL);
102 localtime_r(&ts, &dummy);
104 date->tm_isdst = dummy.tm_isdst;
105 date->tm_sec = sec;
106 date->tm_min = min;
107 date->tm_hour = hour;
108 date->tm_mday = mday;
109 date->tm_mon = mon - 1;
110 date->tm_year = base_year + year - 1900;
111 #ifndef __sun__
112 date->tm_gmtoff = 0;
113 #endif
115 ts = mktime(date);
118 static void check_time(int wiggle)
120 struct tm start, date[4], end;
121 struct tm *datep;
122 time_t ts;
125 * This check assumes a few things. First, we cannot guarantee that we get
126 * a consistent reading from the wall clock because we may hit an edge of
127 * the clock while reading. To work around this, we read four clock readings
128 * such that at least two of them should match. We need to assume that one
129 * reading is corrupt so we need four readings to ensure that we have at
130 * least two consecutive identical readings
132 * It's also possible that we'll cross an edge reading the host clock so
133 * simply check to make sure that the clock reading is within the period of
134 * when we expect it to be.
137 ts = time(NULL);
138 gmtime_r(&ts, &start);
140 cmos_get_date_time(&date[0]);
141 cmos_get_date_time(&date[1]);
142 cmos_get_date_time(&date[2]);
143 cmos_get_date_time(&date[3]);
145 ts = time(NULL);
146 gmtime_r(&ts, &end);
148 if (tm_cmp(&date[0], &date[1]) == 0) {
149 datep = &date[0];
150 } else if (tm_cmp(&date[1], &date[2]) == 0) {
151 datep = &date[1];
152 } else if (tm_cmp(&date[2], &date[3]) == 0) {
153 datep = &date[2];
154 } else {
155 g_assert_not_reached();
158 if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) {
159 long t, s;
161 start.tm_isdst = datep->tm_isdst;
163 t = (long)mktime(datep);
164 s = (long)mktime(&start);
165 if (t < s) {
166 g_test_message("RTC is %ld second(s) behind wall-clock\n", (s - t));
167 } else {
168 g_test_message("RTC is %ld second(s) ahead of wall-clock\n", (t - s));
171 g_assert_cmpint(ABS(t - s), <=, wiggle);
175 static int wiggle = 2;
177 static void set_year_20xx(void)
179 /* Set BCD mode */
180 cmos_write(RTC_REG_B, REG_B_24H);
181 cmos_write(RTC_REG_A, 0x76);
182 cmos_write(RTC_YEAR, 0x11);
183 cmos_write(RTC_CENTURY, 0x20);
184 cmos_write(RTC_MONTH, 0x02);
185 cmos_write(RTC_DAY_OF_MONTH, 0x02);
186 cmos_write(RTC_HOURS, 0x02);
187 cmos_write(RTC_MINUTES, 0x04);
188 cmos_write(RTC_SECONDS, 0x58);
189 cmos_write(RTC_REG_A, 0x26);
191 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
192 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
193 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
194 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
195 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
196 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
197 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
199 if (sizeof(time_t) == 4) {
200 return;
203 /* Set a date in 2080 to ensure there is no year-2038 overflow. */
204 cmos_write(RTC_REG_A, 0x76);
205 cmos_write(RTC_YEAR, 0x80);
206 cmos_write(RTC_REG_A, 0x26);
208 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
209 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
210 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
211 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
212 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
213 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
214 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
216 cmos_write(RTC_REG_A, 0x76);
217 cmos_write(RTC_YEAR, 0x11);
218 cmos_write(RTC_REG_A, 0x26);
220 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
221 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
222 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
223 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
224 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
225 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
226 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
229 static void set_year_1980(void)
231 /* Set BCD mode */
232 cmos_write(RTC_REG_B, REG_B_24H);
233 cmos_write(RTC_REG_A, 0x76);
234 cmos_write(RTC_YEAR, 0x80);
235 cmos_write(RTC_CENTURY, 0x19);
236 cmos_write(RTC_MONTH, 0x02);
237 cmos_write(RTC_DAY_OF_MONTH, 0x02);
238 cmos_write(RTC_HOURS, 0x02);
239 cmos_write(RTC_MINUTES, 0x04);
240 cmos_write(RTC_SECONDS, 0x58);
241 cmos_write(RTC_REG_A, 0x26);
243 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
244 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
245 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
246 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
247 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
248 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
249 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x19);
252 static void bcd_check_time(void)
254 /* Set BCD mode */
255 cmos_write(RTC_REG_B, REG_B_24H);
256 check_time(wiggle);
259 static void dec_check_time(void)
261 /* Set DEC mode */
262 cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
263 check_time(wiggle);
266 static void alarm_time(void)
268 struct tm now;
269 time_t ts;
270 int i;
272 ts = time(NULL);
273 gmtime_r(&ts, &now);
275 /* set DEC mode */
276 cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
278 g_assert(!get_irq(RTC_ISA_IRQ));
279 cmos_read(RTC_REG_C);
281 now.tm_sec = (now.tm_sec + 2) % 60;
282 cmos_write(RTC_SECONDS_ALARM, now.tm_sec);
283 cmos_write(RTC_MINUTES_ALARM, RTC_ALARM_DONT_CARE);
284 cmos_write(RTC_HOURS_ALARM, RTC_ALARM_DONT_CARE);
285 cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_AIE);
287 for (i = 0; i < 2 + wiggle; i++) {
288 if (get_irq(RTC_ISA_IRQ)) {
289 break;
292 clock_step(1000000000);
295 g_assert(get_irq(RTC_ISA_IRQ));
296 g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
297 g_assert(cmos_read(RTC_REG_C) == 0);
300 static void set_time(int mode, int h, int m, int s)
302 /* set BCD 12 hour mode */
303 cmos_write(RTC_REG_B, mode);
305 cmos_write(RTC_REG_A, 0x76);
306 cmos_write(RTC_HOURS, h);
307 cmos_write(RTC_MINUTES, m);
308 cmos_write(RTC_SECONDS, s);
309 cmos_write(RTC_REG_A, 0x26);
312 #define assert_time(h, m, s) \
313 do { \
314 g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
315 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, m); \
316 g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
317 } while(0)
319 static void basic_12h_bcd(void)
321 /* set BCD 12 hour mode */
322 set_time(0, 0x81, 0x59, 0x00);
323 clock_step(1000000000LL);
324 assert_time(0x81, 0x59, 0x01);
325 clock_step(59000000000LL);
326 assert_time(0x82, 0x00, 0x00);
328 /* test BCD wraparound */
329 set_time(0, 0x09, 0x59, 0x59);
330 clock_step(60000000000LL);
331 assert_time(0x10, 0x00, 0x59);
333 /* 12 AM -> 1 AM */
334 set_time(0, 0x12, 0x59, 0x59);
335 clock_step(1000000000LL);
336 assert_time(0x01, 0x00, 0x00);
338 /* 12 PM -> 1 PM */
339 set_time(0, 0x92, 0x59, 0x59);
340 clock_step(1000000000LL);
341 assert_time(0x81, 0x00, 0x00);
343 /* 11 AM -> 12 PM */
344 set_time(0, 0x11, 0x59, 0x59);
345 clock_step(1000000000LL);
346 assert_time(0x92, 0x00, 0x00);
347 /* TODO: test day wraparound */
349 /* 11 PM -> 12 AM */
350 set_time(0, 0x91, 0x59, 0x59);
351 clock_step(1000000000LL);
352 assert_time(0x12, 0x00, 0x00);
353 /* TODO: test day wraparound */
356 static void basic_12h_dec(void)
358 /* set decimal 12 hour mode */
359 set_time(REG_B_DM, 0x81, 59, 0);
360 clock_step(1000000000LL);
361 assert_time(0x81, 59, 1);
362 clock_step(59000000000LL);
363 assert_time(0x82, 0, 0);
365 /* 12 PM -> 1 PM */
366 set_time(REG_B_DM, 0x8c, 59, 59);
367 clock_step(1000000000LL);
368 assert_time(0x81, 0, 0);
370 /* 12 AM -> 1 AM */
371 set_time(REG_B_DM, 0x0c, 59, 59);
372 clock_step(1000000000LL);
373 assert_time(0x01, 0, 0);
375 /* 11 AM -> 12 PM */
376 set_time(REG_B_DM, 0x0b, 59, 59);
377 clock_step(1000000000LL);
378 assert_time(0x8c, 0, 0);
380 /* 11 PM -> 12 AM */
381 set_time(REG_B_DM, 0x8b, 59, 59);
382 clock_step(1000000000LL);
383 assert_time(0x0c, 0, 0);
384 /* TODO: test day wraparound */
387 static void basic_24h_bcd(void)
389 /* set BCD 24 hour mode */
390 set_time(REG_B_24H, 0x09, 0x59, 0x00);
391 clock_step(1000000000LL);
392 assert_time(0x09, 0x59, 0x01);
393 clock_step(59000000000LL);
394 assert_time(0x10, 0x00, 0x00);
396 /* test BCD wraparound */
397 set_time(REG_B_24H, 0x09, 0x59, 0x00);
398 clock_step(60000000000LL);
399 assert_time(0x10, 0x00, 0x00);
401 /* TODO: test day wraparound */
402 set_time(REG_B_24H, 0x23, 0x59, 0x00);
403 clock_step(60000000000LL);
404 assert_time(0x00, 0x00, 0x00);
407 static void basic_24h_dec(void)
409 /* set decimal 24 hour mode */
410 set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
411 clock_step(1000000000LL);
412 assert_time(9, 59, 1);
413 clock_step(59000000000LL);
414 assert_time(10, 0, 0);
416 /* test BCD wraparound */
417 set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
418 clock_step(60000000000LL);
419 assert_time(10, 0, 0);
421 /* TODO: test day wraparound */
422 set_time(REG_B_24H | REG_B_DM, 23, 59, 0);
423 clock_step(60000000000LL);
424 assert_time(0, 0, 0);
427 static void am_pm_alarm(void)
429 cmos_write(RTC_MINUTES_ALARM, 0xC0);
430 cmos_write(RTC_SECONDS_ALARM, 0xC0);
432 /* set BCD 12 hour mode */
433 cmos_write(RTC_REG_B, 0);
435 /* Set time and alarm hour. */
436 cmos_write(RTC_REG_A, 0x76);
437 cmos_write(RTC_HOURS_ALARM, 0x82);
438 cmos_write(RTC_HOURS, 0x81);
439 cmos_write(RTC_MINUTES, 0x59);
440 cmos_write(RTC_SECONDS, 0x00);
441 cmos_read(RTC_REG_C);
442 cmos_write(RTC_REG_A, 0x26);
444 /* Check that alarm triggers when AM/PM is set. */
445 clock_step(60000000000LL);
446 g_assert(cmos_read(RTC_HOURS) == 0x82);
447 g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
450 * Each of the following two tests takes over 60 seconds due to the time
451 * needed to report the PIT interrupts. Unfortunately, our PIT device
452 * model keeps counting even when GATE=0, so we cannot simply disable
453 * it in main().
455 if (g_test_quick()) {
456 return;
459 /* set DEC 12 hour mode */
460 cmos_write(RTC_REG_B, REG_B_DM);
462 /* Set time and alarm hour. */
463 cmos_write(RTC_REG_A, 0x76);
464 cmos_write(RTC_HOURS_ALARM, 0x82);
465 cmos_write(RTC_HOURS, 3);
466 cmos_write(RTC_MINUTES, 0);
467 cmos_write(RTC_SECONDS, 0);
468 cmos_read(RTC_REG_C);
469 cmos_write(RTC_REG_A, 0x26);
471 /* Check that alarm triggers. */
472 clock_step(3600 * 11 * 1000000000LL);
473 g_assert(cmos_read(RTC_HOURS) == 0x82);
474 g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
476 /* Same as above, with inverted HOURS and HOURS_ALARM. */
477 cmos_write(RTC_REG_A, 0x76);
478 cmos_write(RTC_HOURS_ALARM, 2);
479 cmos_write(RTC_HOURS, 3);
480 cmos_write(RTC_MINUTES, 0);
481 cmos_write(RTC_SECONDS, 0);
482 cmos_read(RTC_REG_C);
483 cmos_write(RTC_REG_A, 0x26);
485 /* Check that alarm does not trigger if hours differ only by AM/PM. */
486 clock_step(3600 * 11 * 1000000000LL);
487 g_assert(cmos_read(RTC_HOURS) == 0x82);
488 g_assert((cmos_read(RTC_REG_C) & REG_C_AF) == 0);
491 /* success if no crash or abort */
492 static void fuzz_registers(void)
494 unsigned int i;
496 for (i = 0; i < 1000; i++) {
497 uint8_t reg, val;
499 reg = (uint8_t)g_test_rand_int_range(0, 16);
500 val = (uint8_t)g_test_rand_int_range(0, 256);
502 cmos_write(reg, val);
503 cmos_read(reg);
507 static void register_b_set_flag(void)
509 /* Enable binary-coded decimal (BCD) mode and SET flag in Register B*/
510 cmos_write(RTC_REG_B, REG_B_24H | REG_B_SET);
512 cmos_write(RTC_REG_A, 0x76);
513 cmos_write(RTC_YEAR, 0x11);
514 cmos_write(RTC_CENTURY, 0x20);
515 cmos_write(RTC_MONTH, 0x02);
516 cmos_write(RTC_DAY_OF_MONTH, 0x02);
517 cmos_write(RTC_HOURS, 0x02);
518 cmos_write(RTC_MINUTES, 0x04);
519 cmos_write(RTC_SECONDS, 0x58);
520 cmos_write(RTC_REG_A, 0x26);
522 /* Since SET flag is still enabled, these are equality checks. */
523 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
524 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
525 g_assert_cmpint(cmos_read(RTC_SECONDS), ==, 0x58);
526 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
527 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
528 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
529 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
531 /* Disable SET flag in Register B */
532 cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_SET);
534 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
535 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
537 /* Since SET flag is disabled, this is an inequality check.
538 * We (reasonably) assume that no (sexagesimal) overflow occurs. */
539 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
540 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
541 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
542 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
543 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
546 int main(int argc, char **argv)
548 QTestState *s = NULL;
549 int ret;
551 g_test_init(&argc, &argv, NULL);
553 s = qtest_start("-rtc clock=vm");
554 qtest_irq_intercept_in(s, "ioapic");
556 qtest_add_func("/rtc/check-time/bcd", bcd_check_time);
557 qtest_add_func("/rtc/check-time/dec", dec_check_time);
558 qtest_add_func("/rtc/alarm/interrupt", alarm_time);
559 qtest_add_func("/rtc/alarm/am-pm", am_pm_alarm);
560 qtest_add_func("/rtc/basic/dec-24h", basic_24h_dec);
561 qtest_add_func("/rtc/basic/bcd-24h", basic_24h_bcd);
562 qtest_add_func("/rtc/basic/dec-12h", basic_12h_dec);
563 qtest_add_func("/rtc/basic/bcd-12h", basic_12h_bcd);
564 qtest_add_func("/rtc/set-year/20xx", set_year_20xx);
565 qtest_add_func("/rtc/set-year/1980", set_year_1980);
566 qtest_add_func("/rtc/misc/register_b_set_flag", register_b_set_flag);
567 qtest_add_func("/rtc/misc/fuzz-registers", fuzz_registers);
568 ret = g_test_run();
570 if (s) {
571 qtest_quit(s);
574 return ret;