Merge remote-tracking branch 'remotes/xanclic/tags/pull-block-2018-09-25' into staging
[qemu.git] / cpus.c
blob719788320f94c4df910400717df647db59865036
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qemu/config-file.h"
27 #include "cpu.h"
28 #include "monitor/monitor.h"
29 #include "qapi/error.h"
30 #include "qapi/qapi-commands-misc.h"
31 #include "qapi/qapi-events-run-state.h"
32 #include "qapi/qmp/qerror.h"
33 #include "qemu/error-report.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/block-backend.h"
36 #include "exec/gdbstub.h"
37 #include "sysemu/dma.h"
38 #include "sysemu/hw_accel.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/hax.h"
41 #include "sysemu/hvf.h"
42 #include "sysemu/whpx.h"
43 #include "exec/exec-all.h"
45 #include "qemu/thread.h"
46 #include "sysemu/cpus.h"
47 #include "sysemu/qtest.h"
48 #include "qemu/main-loop.h"
49 #include "qemu/option.h"
50 #include "qemu/bitmap.h"
51 #include "qemu/seqlock.h"
52 #include "tcg.h"
53 #include "hw/nmi.h"
54 #include "sysemu/replay.h"
55 #include "hw/boards.h"
57 #ifdef CONFIG_LINUX
59 #include <sys/prctl.h>
61 #ifndef PR_MCE_KILL
62 #define PR_MCE_KILL 33
63 #endif
65 #ifndef PR_MCE_KILL_SET
66 #define PR_MCE_KILL_SET 1
67 #endif
69 #ifndef PR_MCE_KILL_EARLY
70 #define PR_MCE_KILL_EARLY 1
71 #endif
73 #endif /* CONFIG_LINUX */
75 int64_t max_delay;
76 int64_t max_advance;
78 /* vcpu throttling controls */
79 static QEMUTimer *throttle_timer;
80 static unsigned int throttle_percentage;
82 #define CPU_THROTTLE_PCT_MIN 1
83 #define CPU_THROTTLE_PCT_MAX 99
84 #define CPU_THROTTLE_TIMESLICE_NS 10000000
86 bool cpu_is_stopped(CPUState *cpu)
88 return cpu->stopped || !runstate_is_running();
91 static bool cpu_thread_is_idle(CPUState *cpu)
93 if (cpu->stop || cpu->queued_work_first) {
94 return false;
96 if (cpu_is_stopped(cpu)) {
97 return true;
99 if (!cpu->halted || cpu_has_work(cpu) ||
100 kvm_halt_in_kernel()) {
101 return false;
103 return true;
106 static bool all_cpu_threads_idle(void)
108 CPUState *cpu;
110 CPU_FOREACH(cpu) {
111 if (!cpu_thread_is_idle(cpu)) {
112 return false;
115 return true;
118 /***********************************************************/
119 /* guest cycle counter */
121 /* Protected by TimersState seqlock */
123 static bool icount_sleep = true;
124 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
125 #define MAX_ICOUNT_SHIFT 10
127 typedef struct TimersState {
128 /* Protected by BQL. */
129 int64_t cpu_ticks_prev;
130 int64_t cpu_ticks_offset;
132 /* Protect fields that can be respectively read outside the
133 * BQL, and written from multiple threads.
135 QemuSeqLock vm_clock_seqlock;
136 QemuSpin vm_clock_lock;
138 int16_t cpu_ticks_enabled;
140 /* Conversion factor from emulated instructions to virtual clock ticks. */
141 int16_t icount_time_shift;
143 /* Compensate for varying guest execution speed. */
144 int64_t qemu_icount_bias;
146 int64_t vm_clock_warp_start;
147 int64_t cpu_clock_offset;
149 /* Only written by TCG thread */
150 int64_t qemu_icount;
152 /* for adjusting icount */
153 QEMUTimer *icount_rt_timer;
154 QEMUTimer *icount_vm_timer;
155 QEMUTimer *icount_warp_timer;
156 } TimersState;
158 static TimersState timers_state;
159 bool mttcg_enabled;
162 * We default to false if we know other options have been enabled
163 * which are currently incompatible with MTTCG. Otherwise when each
164 * guest (target) has been updated to support:
165 * - atomic instructions
166 * - memory ordering primitives (barriers)
167 * they can set the appropriate CONFIG flags in ${target}-softmmu.mak
169 * Once a guest architecture has been converted to the new primitives
170 * there are two remaining limitations to check.
172 * - The guest can't be oversized (e.g. 64 bit guest on 32 bit host)
173 * - The host must have a stronger memory order than the guest
175 * It may be possible in future to support strong guests on weak hosts
176 * but that will require tagging all load/stores in a guest with their
177 * implicit memory order requirements which would likely slow things
178 * down a lot.
181 static bool check_tcg_memory_orders_compatible(void)
183 #if defined(TCG_GUEST_DEFAULT_MO) && defined(TCG_TARGET_DEFAULT_MO)
184 return (TCG_GUEST_DEFAULT_MO & ~TCG_TARGET_DEFAULT_MO) == 0;
185 #else
186 return false;
187 #endif
190 static bool default_mttcg_enabled(void)
192 if (use_icount || TCG_OVERSIZED_GUEST) {
193 return false;
194 } else {
195 #ifdef TARGET_SUPPORTS_MTTCG
196 return check_tcg_memory_orders_compatible();
197 #else
198 return false;
199 #endif
203 void qemu_tcg_configure(QemuOpts *opts, Error **errp)
205 const char *t = qemu_opt_get(opts, "thread");
206 if (t) {
207 if (strcmp(t, "multi") == 0) {
208 if (TCG_OVERSIZED_GUEST) {
209 error_setg(errp, "No MTTCG when guest word size > hosts");
210 } else if (use_icount) {
211 error_setg(errp, "No MTTCG when icount is enabled");
212 } else {
213 #ifndef TARGET_SUPPORTS_MTTCG
214 error_report("Guest not yet converted to MTTCG - "
215 "you may get unexpected results");
216 #endif
217 if (!check_tcg_memory_orders_compatible()) {
218 error_report("Guest expects a stronger memory ordering "
219 "than the host provides");
220 error_printf("This may cause strange/hard to debug errors\n");
222 mttcg_enabled = true;
224 } else if (strcmp(t, "single") == 0) {
225 mttcg_enabled = false;
226 } else {
227 error_setg(errp, "Invalid 'thread' setting %s", t);
229 } else {
230 mttcg_enabled = default_mttcg_enabled();
234 /* The current number of executed instructions is based on what we
235 * originally budgeted minus the current state of the decrementing
236 * icount counters in extra/u16.low.
238 static int64_t cpu_get_icount_executed(CPUState *cpu)
240 return cpu->icount_budget - (cpu->icount_decr.u16.low + cpu->icount_extra);
244 * Update the global shared timer_state.qemu_icount to take into
245 * account executed instructions. This is done by the TCG vCPU
246 * thread so the main-loop can see time has moved forward.
248 void cpu_update_icount(CPUState *cpu)
250 int64_t executed = cpu_get_icount_executed(cpu);
251 cpu->icount_budget -= executed;
253 #ifndef CONFIG_ATOMIC64
254 seqlock_write_lock(&timers_state.vm_clock_seqlock,
255 &timers_state.vm_clock_lock);
256 #endif
257 atomic_set__nocheck(&timers_state.qemu_icount,
258 timers_state.qemu_icount + executed);
259 #ifndef CONFIG_ATOMIC64
260 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
261 &timers_state.vm_clock_lock);
262 #endif
265 static int64_t cpu_get_icount_raw_locked(void)
267 CPUState *cpu = current_cpu;
269 if (cpu && cpu->running) {
270 if (!cpu->can_do_io) {
271 error_report("Bad icount read");
272 exit(1);
274 /* Take into account what has run */
275 cpu_update_icount(cpu);
277 /* The read is protected by the seqlock, so __nocheck is okay. */
278 return atomic_read__nocheck(&timers_state.qemu_icount);
281 static int64_t cpu_get_icount_locked(void)
283 int64_t icount = cpu_get_icount_raw_locked();
284 return atomic_read__nocheck(&timers_state.qemu_icount_bias) + cpu_icount_to_ns(icount);
287 int64_t cpu_get_icount_raw(void)
289 int64_t icount;
290 unsigned start;
292 do {
293 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
294 icount = cpu_get_icount_raw_locked();
295 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
297 return icount;
300 /* Return the virtual CPU time, based on the instruction counter. */
301 int64_t cpu_get_icount(void)
303 int64_t icount;
304 unsigned start;
306 do {
307 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
308 icount = cpu_get_icount_locked();
309 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
311 return icount;
314 int64_t cpu_icount_to_ns(int64_t icount)
316 return icount << atomic_read(&timers_state.icount_time_shift);
319 static int64_t cpu_get_ticks_locked(void)
321 int64_t ticks = timers_state.cpu_ticks_offset;
322 if (timers_state.cpu_ticks_enabled) {
323 ticks += cpu_get_host_ticks();
326 if (timers_state.cpu_ticks_prev > ticks) {
327 /* Non increasing ticks may happen if the host uses software suspend. */
328 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
329 ticks = timers_state.cpu_ticks_prev;
332 timers_state.cpu_ticks_prev = ticks;
333 return ticks;
336 /* return the time elapsed in VM between vm_start and vm_stop. Unless
337 * icount is active, cpu_get_ticks() uses units of the host CPU cycle
338 * counter.
340 int64_t cpu_get_ticks(void)
342 int64_t ticks;
344 if (use_icount) {
345 return cpu_get_icount();
348 qemu_spin_lock(&timers_state.vm_clock_lock);
349 ticks = cpu_get_ticks_locked();
350 qemu_spin_unlock(&timers_state.vm_clock_lock);
351 return ticks;
354 static int64_t cpu_get_clock_locked(void)
356 int64_t time;
358 time = timers_state.cpu_clock_offset;
359 if (timers_state.cpu_ticks_enabled) {
360 time += get_clock();
363 return time;
366 /* Return the monotonic time elapsed in VM, i.e.,
367 * the time between vm_start and vm_stop
369 int64_t cpu_get_clock(void)
371 int64_t ti;
372 unsigned start;
374 do {
375 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
376 ti = cpu_get_clock_locked();
377 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
379 return ti;
382 /* enable cpu_get_ticks()
383 * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
385 void cpu_enable_ticks(void)
387 seqlock_write_lock(&timers_state.vm_clock_seqlock,
388 &timers_state.vm_clock_lock);
389 if (!timers_state.cpu_ticks_enabled) {
390 timers_state.cpu_ticks_offset -= cpu_get_host_ticks();
391 timers_state.cpu_clock_offset -= get_clock();
392 timers_state.cpu_ticks_enabled = 1;
394 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
395 &timers_state.vm_clock_lock);
398 /* disable cpu_get_ticks() : the clock is stopped. You must not call
399 * cpu_get_ticks() after that.
400 * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
402 void cpu_disable_ticks(void)
404 seqlock_write_lock(&timers_state.vm_clock_seqlock,
405 &timers_state.vm_clock_lock);
406 if (timers_state.cpu_ticks_enabled) {
407 timers_state.cpu_ticks_offset += cpu_get_host_ticks();
408 timers_state.cpu_clock_offset = cpu_get_clock_locked();
409 timers_state.cpu_ticks_enabled = 0;
411 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
412 &timers_state.vm_clock_lock);
415 /* Correlation between real and virtual time is always going to be
416 fairly approximate, so ignore small variation.
417 When the guest is idle real and virtual time will be aligned in
418 the IO wait loop. */
419 #define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)
421 static void icount_adjust(void)
423 int64_t cur_time;
424 int64_t cur_icount;
425 int64_t delta;
427 /* Protected by TimersState mutex. */
428 static int64_t last_delta;
430 /* If the VM is not running, then do nothing. */
431 if (!runstate_is_running()) {
432 return;
435 seqlock_write_lock(&timers_state.vm_clock_seqlock,
436 &timers_state.vm_clock_lock);
437 cur_time = cpu_get_clock_locked();
438 cur_icount = cpu_get_icount_locked();
440 delta = cur_icount - cur_time;
441 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
442 if (delta > 0
443 && last_delta + ICOUNT_WOBBLE < delta * 2
444 && timers_state.icount_time_shift > 0) {
445 /* The guest is getting too far ahead. Slow time down. */
446 atomic_set(&timers_state.icount_time_shift,
447 timers_state.icount_time_shift - 1);
449 if (delta < 0
450 && last_delta - ICOUNT_WOBBLE > delta * 2
451 && timers_state.icount_time_shift < MAX_ICOUNT_SHIFT) {
452 /* The guest is getting too far behind. Speed time up. */
453 atomic_set(&timers_state.icount_time_shift,
454 timers_state.icount_time_shift + 1);
456 last_delta = delta;
457 atomic_set__nocheck(&timers_state.qemu_icount_bias,
458 cur_icount - (timers_state.qemu_icount
459 << timers_state.icount_time_shift));
460 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
461 &timers_state.vm_clock_lock);
464 static void icount_adjust_rt(void *opaque)
466 timer_mod(timers_state.icount_rt_timer,
467 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
468 icount_adjust();
471 static void icount_adjust_vm(void *opaque)
473 timer_mod(timers_state.icount_vm_timer,
474 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
475 NANOSECONDS_PER_SECOND / 10);
476 icount_adjust();
479 static int64_t qemu_icount_round(int64_t count)
481 int shift = atomic_read(&timers_state.icount_time_shift);
482 return (count + (1 << shift) - 1) >> shift;
485 static void icount_warp_rt(void)
487 unsigned seq;
488 int64_t warp_start;
490 /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start
491 * changes from -1 to another value, so the race here is okay.
493 do {
494 seq = seqlock_read_begin(&timers_state.vm_clock_seqlock);
495 warp_start = timers_state.vm_clock_warp_start;
496 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq));
498 if (warp_start == -1) {
499 return;
502 seqlock_write_lock(&timers_state.vm_clock_seqlock,
503 &timers_state.vm_clock_lock);
504 if (runstate_is_running()) {
505 int64_t clock = REPLAY_CLOCK(REPLAY_CLOCK_VIRTUAL_RT,
506 cpu_get_clock_locked());
507 int64_t warp_delta;
509 warp_delta = clock - timers_state.vm_clock_warp_start;
510 if (use_icount == 2) {
512 * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
513 * far ahead of real time.
515 int64_t cur_icount = cpu_get_icount_locked();
516 int64_t delta = clock - cur_icount;
517 warp_delta = MIN(warp_delta, delta);
519 atomic_set__nocheck(&timers_state.qemu_icount_bias,
520 timers_state.qemu_icount_bias + warp_delta);
522 timers_state.vm_clock_warp_start = -1;
523 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
524 &timers_state.vm_clock_lock);
526 if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
527 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
531 static void icount_timer_cb(void *opaque)
533 /* No need for a checkpoint because the timer already synchronizes
534 * with CHECKPOINT_CLOCK_VIRTUAL_RT.
536 icount_warp_rt();
539 void qtest_clock_warp(int64_t dest)
541 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
542 AioContext *aio_context;
543 assert(qtest_enabled());
544 aio_context = qemu_get_aio_context();
545 while (clock < dest) {
546 int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
547 int64_t warp = qemu_soonest_timeout(dest - clock, deadline);
549 seqlock_write_lock(&timers_state.vm_clock_seqlock,
550 &timers_state.vm_clock_lock);
551 atomic_set__nocheck(&timers_state.qemu_icount_bias,
552 timers_state.qemu_icount_bias + warp);
553 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
554 &timers_state.vm_clock_lock);
556 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
557 timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]);
558 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
560 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
563 void qemu_start_warp_timer(void)
565 int64_t clock;
566 int64_t deadline;
568 if (!use_icount) {
569 return;
572 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
573 * do not fire, so computing the deadline does not make sense.
575 if (!runstate_is_running()) {
576 return;
579 /* warp clock deterministically in record/replay mode */
580 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) {
581 return;
584 if (!all_cpu_threads_idle()) {
585 return;
588 if (qtest_enabled()) {
589 /* When testing, qtest commands advance icount. */
590 return;
593 /* We want to use the earliest deadline from ALL vm_clocks */
594 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
595 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
596 if (deadline < 0) {
597 static bool notified;
598 if (!icount_sleep && !notified) {
599 warn_report("icount sleep disabled and no active timers");
600 notified = true;
602 return;
605 if (deadline > 0) {
607 * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
608 * sleep. Otherwise, the CPU might be waiting for a future timer
609 * interrupt to wake it up, but the interrupt never comes because
610 * the vCPU isn't running any insns and thus doesn't advance the
611 * QEMU_CLOCK_VIRTUAL.
613 if (!icount_sleep) {
615 * We never let VCPUs sleep in no sleep icount mode.
616 * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
617 * to the next QEMU_CLOCK_VIRTUAL event and notify it.
618 * It is useful when we want a deterministic execution time,
619 * isolated from host latencies.
621 seqlock_write_lock(&timers_state.vm_clock_seqlock,
622 &timers_state.vm_clock_lock);
623 atomic_set__nocheck(&timers_state.qemu_icount_bias,
624 timers_state.qemu_icount_bias + deadline);
625 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
626 &timers_state.vm_clock_lock);
627 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
628 } else {
630 * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
631 * "real" time, (related to the time left until the next event) has
632 * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
633 * This avoids that the warps are visible externally; for example,
634 * you will not be sending network packets continuously instead of
635 * every 100ms.
637 seqlock_write_lock(&timers_state.vm_clock_seqlock,
638 &timers_state.vm_clock_lock);
639 if (timers_state.vm_clock_warp_start == -1
640 || timers_state.vm_clock_warp_start > clock) {
641 timers_state.vm_clock_warp_start = clock;
643 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
644 &timers_state.vm_clock_lock);
645 timer_mod_anticipate(timers_state.icount_warp_timer,
646 clock + deadline);
648 } else if (deadline == 0) {
649 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
653 static void qemu_account_warp_timer(void)
655 if (!use_icount || !icount_sleep) {
656 return;
659 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
660 * do not fire, so computing the deadline does not make sense.
662 if (!runstate_is_running()) {
663 return;
666 /* warp clock deterministically in record/replay mode */
667 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) {
668 return;
671 timer_del(timers_state.icount_warp_timer);
672 icount_warp_rt();
675 static bool icount_state_needed(void *opaque)
677 return use_icount;
680 static bool warp_timer_state_needed(void *opaque)
682 TimersState *s = opaque;
683 return s->icount_warp_timer != NULL;
686 static bool adjust_timers_state_needed(void *opaque)
688 TimersState *s = opaque;
689 return s->icount_rt_timer != NULL;
693 * Subsection for warp timer migration is optional, because may not be created
695 static const VMStateDescription icount_vmstate_warp_timer = {
696 .name = "timer/icount/warp_timer",
697 .version_id = 1,
698 .minimum_version_id = 1,
699 .needed = warp_timer_state_needed,
700 .fields = (VMStateField[]) {
701 VMSTATE_INT64(vm_clock_warp_start, TimersState),
702 VMSTATE_TIMER_PTR(icount_warp_timer, TimersState),
703 VMSTATE_END_OF_LIST()
707 static const VMStateDescription icount_vmstate_adjust_timers = {
708 .name = "timer/icount/timers",
709 .version_id = 1,
710 .minimum_version_id = 1,
711 .needed = adjust_timers_state_needed,
712 .fields = (VMStateField[]) {
713 VMSTATE_TIMER_PTR(icount_rt_timer, TimersState),
714 VMSTATE_TIMER_PTR(icount_vm_timer, TimersState),
715 VMSTATE_END_OF_LIST()
720 * This is a subsection for icount migration.
722 static const VMStateDescription icount_vmstate_timers = {
723 .name = "timer/icount",
724 .version_id = 1,
725 .minimum_version_id = 1,
726 .needed = icount_state_needed,
727 .fields = (VMStateField[]) {
728 VMSTATE_INT64(qemu_icount_bias, TimersState),
729 VMSTATE_INT64(qemu_icount, TimersState),
730 VMSTATE_END_OF_LIST()
732 .subsections = (const VMStateDescription*[]) {
733 &icount_vmstate_warp_timer,
734 &icount_vmstate_adjust_timers,
735 NULL
739 static const VMStateDescription vmstate_timers = {
740 .name = "timer",
741 .version_id = 2,
742 .minimum_version_id = 1,
743 .fields = (VMStateField[]) {
744 VMSTATE_INT64(cpu_ticks_offset, TimersState),
745 VMSTATE_UNUSED(8),
746 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
747 VMSTATE_END_OF_LIST()
749 .subsections = (const VMStateDescription*[]) {
750 &icount_vmstate_timers,
751 NULL
755 static void cpu_throttle_thread(CPUState *cpu, run_on_cpu_data opaque)
757 double pct;
758 double throttle_ratio;
759 long sleeptime_ns;
761 if (!cpu_throttle_get_percentage()) {
762 return;
765 pct = (double)cpu_throttle_get_percentage()/100;
766 throttle_ratio = pct / (1 - pct);
767 sleeptime_ns = (long)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS);
769 qemu_mutex_unlock_iothread();
770 g_usleep(sleeptime_ns / 1000); /* Convert ns to us for usleep call */
771 qemu_mutex_lock_iothread();
772 atomic_set(&cpu->throttle_thread_scheduled, 0);
775 static void cpu_throttle_timer_tick(void *opaque)
777 CPUState *cpu;
778 double pct;
780 /* Stop the timer if needed */
781 if (!cpu_throttle_get_percentage()) {
782 return;
784 CPU_FOREACH(cpu) {
785 if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) {
786 async_run_on_cpu(cpu, cpu_throttle_thread,
787 RUN_ON_CPU_NULL);
791 pct = (double)cpu_throttle_get_percentage()/100;
792 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
793 CPU_THROTTLE_TIMESLICE_NS / (1-pct));
796 void cpu_throttle_set(int new_throttle_pct)
798 /* Ensure throttle percentage is within valid range */
799 new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX);
800 new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN);
802 atomic_set(&throttle_percentage, new_throttle_pct);
804 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
805 CPU_THROTTLE_TIMESLICE_NS);
808 void cpu_throttle_stop(void)
810 atomic_set(&throttle_percentage, 0);
813 bool cpu_throttle_active(void)
815 return (cpu_throttle_get_percentage() != 0);
818 int cpu_throttle_get_percentage(void)
820 return atomic_read(&throttle_percentage);
823 void cpu_ticks_init(void)
825 seqlock_init(&timers_state.vm_clock_seqlock);
826 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
827 throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
828 cpu_throttle_timer_tick, NULL);
831 void configure_icount(QemuOpts *opts, Error **errp)
833 const char *option;
834 char *rem_str = NULL;
836 option = qemu_opt_get(opts, "shift");
837 if (!option) {
838 if (qemu_opt_get(opts, "align") != NULL) {
839 error_setg(errp, "Please specify shift option when using align");
841 return;
844 icount_sleep = qemu_opt_get_bool(opts, "sleep", true);
845 if (icount_sleep) {
846 timers_state.icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
847 icount_timer_cb, NULL);
850 icount_align_option = qemu_opt_get_bool(opts, "align", false);
852 if (icount_align_option && !icount_sleep) {
853 error_setg(errp, "align=on and sleep=off are incompatible");
855 if (strcmp(option, "auto") != 0) {
856 errno = 0;
857 timers_state.icount_time_shift = strtol(option, &rem_str, 0);
858 if (errno != 0 || *rem_str != '\0' || !strlen(option)) {
859 error_setg(errp, "icount: Invalid shift value");
861 use_icount = 1;
862 return;
863 } else if (icount_align_option) {
864 error_setg(errp, "shift=auto and align=on are incompatible");
865 } else if (!icount_sleep) {
866 error_setg(errp, "shift=auto and sleep=off are incompatible");
869 use_icount = 2;
871 /* 125MIPS seems a reasonable initial guess at the guest speed.
872 It will be corrected fairly quickly anyway. */
873 timers_state.icount_time_shift = 3;
875 /* Have both realtime and virtual time triggers for speed adjustment.
876 The realtime trigger catches emulated time passing too slowly,
877 the virtual time trigger catches emulated time passing too fast.
878 Realtime triggers occur even when idle, so use them less frequently
879 than VM triggers. */
880 timers_state.vm_clock_warp_start = -1;
881 timers_state.icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
882 icount_adjust_rt, NULL);
883 timer_mod(timers_state.icount_rt_timer,
884 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
885 timers_state.icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
886 icount_adjust_vm, NULL);
887 timer_mod(timers_state.icount_vm_timer,
888 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
889 NANOSECONDS_PER_SECOND / 10);
892 /***********************************************************/
893 /* TCG vCPU kick timer
895 * The kick timer is responsible for moving single threaded vCPU
896 * emulation on to the next vCPU. If more than one vCPU is running a
897 * timer event with force a cpu->exit so the next vCPU can get
898 * scheduled.
900 * The timer is removed if all vCPUs are idle and restarted again once
901 * idleness is complete.
904 static QEMUTimer *tcg_kick_vcpu_timer;
905 static CPUState *tcg_current_rr_cpu;
907 #define TCG_KICK_PERIOD (NANOSECONDS_PER_SECOND / 10)
909 static inline int64_t qemu_tcg_next_kick(void)
911 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + TCG_KICK_PERIOD;
914 /* Kick the currently round-robin scheduled vCPU */
915 static void qemu_cpu_kick_rr_cpu(void)
917 CPUState *cpu;
918 do {
919 cpu = atomic_mb_read(&tcg_current_rr_cpu);
920 if (cpu) {
921 cpu_exit(cpu);
923 } while (cpu != atomic_mb_read(&tcg_current_rr_cpu));
926 static void do_nothing(CPUState *cpu, run_on_cpu_data unused)
930 void qemu_timer_notify_cb(void *opaque, QEMUClockType type)
932 if (!use_icount || type != QEMU_CLOCK_VIRTUAL) {
933 qemu_notify_event();
934 return;
937 if (qemu_in_vcpu_thread()) {
938 /* A CPU is currently running; kick it back out to the
939 * tcg_cpu_exec() loop so it will recalculate its
940 * icount deadline immediately.
942 qemu_cpu_kick(current_cpu);
943 } else if (first_cpu) {
944 /* qemu_cpu_kick is not enough to kick a halted CPU out of
945 * qemu_tcg_wait_io_event. async_run_on_cpu, instead,
946 * causes cpu_thread_is_idle to return false. This way,
947 * handle_icount_deadline can run.
948 * If we have no CPUs at all for some reason, we don't
949 * need to do anything.
951 async_run_on_cpu(first_cpu, do_nothing, RUN_ON_CPU_NULL);
955 static void kick_tcg_thread(void *opaque)
957 timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
958 qemu_cpu_kick_rr_cpu();
961 static void start_tcg_kick_timer(void)
963 assert(!mttcg_enabled);
964 if (!tcg_kick_vcpu_timer && CPU_NEXT(first_cpu)) {
965 tcg_kick_vcpu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
966 kick_tcg_thread, NULL);
967 timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
971 static void stop_tcg_kick_timer(void)
973 assert(!mttcg_enabled);
974 if (tcg_kick_vcpu_timer) {
975 timer_del(tcg_kick_vcpu_timer);
976 tcg_kick_vcpu_timer = NULL;
980 /***********************************************************/
981 void hw_error(const char *fmt, ...)
983 va_list ap;
984 CPUState *cpu;
986 va_start(ap, fmt);
987 fprintf(stderr, "qemu: hardware error: ");
988 vfprintf(stderr, fmt, ap);
989 fprintf(stderr, "\n");
990 CPU_FOREACH(cpu) {
991 fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
992 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU);
994 va_end(ap);
995 abort();
998 void cpu_synchronize_all_states(void)
1000 CPUState *cpu;
1002 CPU_FOREACH(cpu) {
1003 cpu_synchronize_state(cpu);
1004 /* TODO: move to cpu_synchronize_state() */
1005 if (hvf_enabled()) {
1006 hvf_cpu_synchronize_state(cpu);
1011 void cpu_synchronize_all_post_reset(void)
1013 CPUState *cpu;
1015 CPU_FOREACH(cpu) {
1016 cpu_synchronize_post_reset(cpu);
1017 /* TODO: move to cpu_synchronize_post_reset() */
1018 if (hvf_enabled()) {
1019 hvf_cpu_synchronize_post_reset(cpu);
1024 void cpu_synchronize_all_post_init(void)
1026 CPUState *cpu;
1028 CPU_FOREACH(cpu) {
1029 cpu_synchronize_post_init(cpu);
1030 /* TODO: move to cpu_synchronize_post_init() */
1031 if (hvf_enabled()) {
1032 hvf_cpu_synchronize_post_init(cpu);
1037 void cpu_synchronize_all_pre_loadvm(void)
1039 CPUState *cpu;
1041 CPU_FOREACH(cpu) {
1042 cpu_synchronize_pre_loadvm(cpu);
1046 static int do_vm_stop(RunState state, bool send_stop)
1048 int ret = 0;
1050 if (runstate_is_running()) {
1051 cpu_disable_ticks();
1052 pause_all_vcpus();
1053 runstate_set(state);
1054 vm_state_notify(0, state);
1055 if (send_stop) {
1056 qapi_event_send_stop();
1060 bdrv_drain_all();
1061 replay_disable_events();
1062 ret = bdrv_flush_all();
1064 return ret;
1067 /* Special vm_stop() variant for terminating the process. Historically clients
1068 * did not expect a QMP STOP event and so we need to retain compatibility.
1070 int vm_shutdown(void)
1072 return do_vm_stop(RUN_STATE_SHUTDOWN, false);
1075 static bool cpu_can_run(CPUState *cpu)
1077 if (cpu->stop) {
1078 return false;
1080 if (cpu_is_stopped(cpu)) {
1081 return false;
1083 return true;
1086 static void cpu_handle_guest_debug(CPUState *cpu)
1088 gdb_set_stop_cpu(cpu);
1089 qemu_system_debug_request();
1090 cpu->stopped = true;
1093 #ifdef CONFIG_LINUX
1094 static void sigbus_reraise(void)
1096 sigset_t set;
1097 struct sigaction action;
1099 memset(&action, 0, sizeof(action));
1100 action.sa_handler = SIG_DFL;
1101 if (!sigaction(SIGBUS, &action, NULL)) {
1102 raise(SIGBUS);
1103 sigemptyset(&set);
1104 sigaddset(&set, SIGBUS);
1105 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
1107 perror("Failed to re-raise SIGBUS!\n");
1108 abort();
1111 static void sigbus_handler(int n, siginfo_t *siginfo, void *ctx)
1113 if (siginfo->si_code != BUS_MCEERR_AO && siginfo->si_code != BUS_MCEERR_AR) {
1114 sigbus_reraise();
1117 if (current_cpu) {
1118 /* Called asynchronously in VCPU thread. */
1119 if (kvm_on_sigbus_vcpu(current_cpu, siginfo->si_code, siginfo->si_addr)) {
1120 sigbus_reraise();
1122 } else {
1123 /* Called synchronously (via signalfd) in main thread. */
1124 if (kvm_on_sigbus(siginfo->si_code, siginfo->si_addr)) {
1125 sigbus_reraise();
1130 static void qemu_init_sigbus(void)
1132 struct sigaction action;
1134 memset(&action, 0, sizeof(action));
1135 action.sa_flags = SA_SIGINFO;
1136 action.sa_sigaction = sigbus_handler;
1137 sigaction(SIGBUS, &action, NULL);
1139 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
1141 #else /* !CONFIG_LINUX */
1142 static void qemu_init_sigbus(void)
1145 #endif /* !CONFIG_LINUX */
1147 static QemuMutex qemu_global_mutex;
1149 static QemuThread io_thread;
1151 /* cpu creation */
1152 static QemuCond qemu_cpu_cond;
1153 /* system init */
1154 static QemuCond qemu_pause_cond;
1156 void qemu_init_cpu_loop(void)
1158 qemu_init_sigbus();
1159 qemu_cond_init(&qemu_cpu_cond);
1160 qemu_cond_init(&qemu_pause_cond);
1161 qemu_mutex_init(&qemu_global_mutex);
1163 qemu_thread_get_self(&io_thread);
1166 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
1168 do_run_on_cpu(cpu, func, data, &qemu_global_mutex);
1171 static void qemu_kvm_destroy_vcpu(CPUState *cpu)
1173 if (kvm_destroy_vcpu(cpu) < 0) {
1174 error_report("kvm_destroy_vcpu failed");
1175 exit(EXIT_FAILURE);
1179 static void qemu_tcg_destroy_vcpu(CPUState *cpu)
1183 static void qemu_cpu_stop(CPUState *cpu, bool exit)
1185 g_assert(qemu_cpu_is_self(cpu));
1186 cpu->stop = false;
1187 cpu->stopped = true;
1188 if (exit) {
1189 cpu_exit(cpu);
1191 qemu_cond_broadcast(&qemu_pause_cond);
1194 static void qemu_wait_io_event_common(CPUState *cpu)
1196 atomic_mb_set(&cpu->thread_kicked, false);
1197 if (cpu->stop) {
1198 qemu_cpu_stop(cpu, false);
1200 process_queued_cpu_work(cpu);
1203 static void qemu_tcg_rr_wait_io_event(CPUState *cpu)
1205 while (all_cpu_threads_idle()) {
1206 stop_tcg_kick_timer();
1207 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1210 start_tcg_kick_timer();
1212 qemu_wait_io_event_common(cpu);
1215 static void qemu_wait_io_event(CPUState *cpu)
1217 while (cpu_thread_is_idle(cpu)) {
1218 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1221 #ifdef _WIN32
1222 /* Eat dummy APC queued by qemu_cpu_kick_thread. */
1223 if (!tcg_enabled()) {
1224 SleepEx(0, TRUE);
1226 #endif
1227 qemu_wait_io_event_common(cpu);
1230 static void *qemu_kvm_cpu_thread_fn(void *arg)
1232 CPUState *cpu = arg;
1233 int r;
1235 rcu_register_thread();
1237 qemu_mutex_lock_iothread();
1238 qemu_thread_get_self(cpu->thread);
1239 cpu->thread_id = qemu_get_thread_id();
1240 cpu->can_do_io = 1;
1241 current_cpu = cpu;
1243 r = kvm_init_vcpu(cpu);
1244 if (r < 0) {
1245 error_report("kvm_init_vcpu failed: %s", strerror(-r));
1246 exit(1);
1249 kvm_init_cpu_signals(cpu);
1251 /* signal CPU creation */
1252 cpu->created = true;
1253 qemu_cond_signal(&qemu_cpu_cond);
1255 do {
1256 if (cpu_can_run(cpu)) {
1257 r = kvm_cpu_exec(cpu);
1258 if (r == EXCP_DEBUG) {
1259 cpu_handle_guest_debug(cpu);
1262 qemu_wait_io_event(cpu);
1263 } while (!cpu->unplug || cpu_can_run(cpu));
1265 qemu_kvm_destroy_vcpu(cpu);
1266 cpu->created = false;
1267 qemu_cond_signal(&qemu_cpu_cond);
1268 qemu_mutex_unlock_iothread();
1269 rcu_unregister_thread();
1270 return NULL;
1273 static void *qemu_dummy_cpu_thread_fn(void *arg)
1275 #ifdef _WIN32
1276 error_report("qtest is not supported under Windows");
1277 exit(1);
1278 #else
1279 CPUState *cpu = arg;
1280 sigset_t waitset;
1281 int r;
1283 rcu_register_thread();
1285 qemu_mutex_lock_iothread();
1286 qemu_thread_get_self(cpu->thread);
1287 cpu->thread_id = qemu_get_thread_id();
1288 cpu->can_do_io = 1;
1289 current_cpu = cpu;
1291 sigemptyset(&waitset);
1292 sigaddset(&waitset, SIG_IPI);
1294 /* signal CPU creation */
1295 cpu->created = true;
1296 qemu_cond_signal(&qemu_cpu_cond);
1298 do {
1299 qemu_mutex_unlock_iothread();
1300 do {
1301 int sig;
1302 r = sigwait(&waitset, &sig);
1303 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
1304 if (r == -1) {
1305 perror("sigwait");
1306 exit(1);
1308 qemu_mutex_lock_iothread();
1309 qemu_wait_io_event(cpu);
1310 } while (!cpu->unplug);
1312 rcu_unregister_thread();
1313 return NULL;
1314 #endif
1317 static int64_t tcg_get_icount_limit(void)
1319 int64_t deadline;
1321 if (replay_mode != REPLAY_MODE_PLAY) {
1322 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1324 /* Maintain prior (possibly buggy) behaviour where if no deadline
1325 * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
1326 * INT32_MAX nanoseconds ahead, we still use INT32_MAX
1327 * nanoseconds.
1329 if ((deadline < 0) || (deadline > INT32_MAX)) {
1330 deadline = INT32_MAX;
1333 return qemu_icount_round(deadline);
1334 } else {
1335 return replay_get_instructions();
1339 static void handle_icount_deadline(void)
1341 assert(qemu_in_vcpu_thread());
1342 if (use_icount) {
1343 int64_t deadline =
1344 qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1346 if (deadline == 0) {
1347 /* Wake up other AioContexts. */
1348 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
1349 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
1354 static void prepare_icount_for_run(CPUState *cpu)
1356 if (use_icount) {
1357 int insns_left;
1359 /* These should always be cleared by process_icount_data after
1360 * each vCPU execution. However u16.high can be raised
1361 * asynchronously by cpu_exit/cpu_interrupt/tcg_handle_interrupt
1363 g_assert(cpu->icount_decr.u16.low == 0);
1364 g_assert(cpu->icount_extra == 0);
1366 cpu->icount_budget = tcg_get_icount_limit();
1367 insns_left = MIN(0xffff, cpu->icount_budget);
1368 cpu->icount_decr.u16.low = insns_left;
1369 cpu->icount_extra = cpu->icount_budget - insns_left;
1371 replay_mutex_lock();
1375 static void process_icount_data(CPUState *cpu)
1377 if (use_icount) {
1378 /* Account for executed instructions */
1379 cpu_update_icount(cpu);
1381 /* Reset the counters */
1382 cpu->icount_decr.u16.low = 0;
1383 cpu->icount_extra = 0;
1384 cpu->icount_budget = 0;
1386 replay_account_executed_instructions();
1388 replay_mutex_unlock();
1393 static int tcg_cpu_exec(CPUState *cpu)
1395 int ret;
1396 #ifdef CONFIG_PROFILER
1397 int64_t ti;
1398 #endif
1400 assert(tcg_enabled());
1401 #ifdef CONFIG_PROFILER
1402 ti = profile_getclock();
1403 #endif
1404 cpu_exec_start(cpu);
1405 ret = cpu_exec(cpu);
1406 cpu_exec_end(cpu);
1407 #ifdef CONFIG_PROFILER
1408 tcg_time += profile_getclock() - ti;
1409 #endif
1410 return ret;
1413 /* Destroy any remaining vCPUs which have been unplugged and have
1414 * finished running
1416 static void deal_with_unplugged_cpus(void)
1418 CPUState *cpu;
1420 CPU_FOREACH(cpu) {
1421 if (cpu->unplug && !cpu_can_run(cpu)) {
1422 qemu_tcg_destroy_vcpu(cpu);
1423 cpu->created = false;
1424 qemu_cond_signal(&qemu_cpu_cond);
1425 break;
1430 /* Single-threaded TCG
1432 * In the single-threaded case each vCPU is simulated in turn. If
1433 * there is more than a single vCPU we create a simple timer to kick
1434 * the vCPU and ensure we don't get stuck in a tight loop in one vCPU.
1435 * This is done explicitly rather than relying on side-effects
1436 * elsewhere.
1439 static void *qemu_tcg_rr_cpu_thread_fn(void *arg)
1441 CPUState *cpu = arg;
1443 assert(tcg_enabled());
1444 rcu_register_thread();
1445 tcg_register_thread();
1447 qemu_mutex_lock_iothread();
1448 qemu_thread_get_self(cpu->thread);
1450 cpu->thread_id = qemu_get_thread_id();
1451 cpu->created = true;
1452 cpu->can_do_io = 1;
1453 qemu_cond_signal(&qemu_cpu_cond);
1455 /* wait for initial kick-off after machine start */
1456 while (first_cpu->stopped) {
1457 qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
1459 /* process any pending work */
1460 CPU_FOREACH(cpu) {
1461 current_cpu = cpu;
1462 qemu_wait_io_event_common(cpu);
1466 start_tcg_kick_timer();
1468 cpu = first_cpu;
1470 /* process any pending work */
1471 cpu->exit_request = 1;
1473 while (1) {
1474 qemu_mutex_unlock_iothread();
1475 replay_mutex_lock();
1476 qemu_mutex_lock_iothread();
1477 /* Account partial waits to QEMU_CLOCK_VIRTUAL. */
1478 qemu_account_warp_timer();
1480 /* Run the timers here. This is much more efficient than
1481 * waking up the I/O thread and waiting for completion.
1483 handle_icount_deadline();
1485 replay_mutex_unlock();
1487 if (!cpu) {
1488 cpu = first_cpu;
1491 while (cpu && !cpu->queued_work_first && !cpu->exit_request) {
1493 atomic_mb_set(&tcg_current_rr_cpu, cpu);
1494 current_cpu = cpu;
1496 qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
1497 (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
1499 if (cpu_can_run(cpu)) {
1500 int r;
1502 qemu_mutex_unlock_iothread();
1503 prepare_icount_for_run(cpu);
1505 r = tcg_cpu_exec(cpu);
1507 process_icount_data(cpu);
1508 qemu_mutex_lock_iothread();
1510 if (r == EXCP_DEBUG) {
1511 cpu_handle_guest_debug(cpu);
1512 break;
1513 } else if (r == EXCP_ATOMIC) {
1514 qemu_mutex_unlock_iothread();
1515 cpu_exec_step_atomic(cpu);
1516 qemu_mutex_lock_iothread();
1517 break;
1519 } else if (cpu->stop) {
1520 if (cpu->unplug) {
1521 cpu = CPU_NEXT(cpu);
1523 break;
1526 cpu = CPU_NEXT(cpu);
1527 } /* while (cpu && !cpu->exit_request).. */
1529 /* Does not need atomic_mb_set because a spurious wakeup is okay. */
1530 atomic_set(&tcg_current_rr_cpu, NULL);
1532 if (cpu && cpu->exit_request) {
1533 atomic_mb_set(&cpu->exit_request, 0);
1536 qemu_tcg_rr_wait_io_event(cpu ? cpu : first_cpu);
1537 deal_with_unplugged_cpus();
1540 rcu_unregister_thread();
1541 return NULL;
1544 static void *qemu_hax_cpu_thread_fn(void *arg)
1546 CPUState *cpu = arg;
1547 int r;
1549 rcu_register_thread();
1550 qemu_mutex_lock_iothread();
1551 qemu_thread_get_self(cpu->thread);
1553 cpu->thread_id = qemu_get_thread_id();
1554 cpu->created = true;
1555 cpu->halted = 0;
1556 current_cpu = cpu;
1558 hax_init_vcpu(cpu);
1559 qemu_cond_signal(&qemu_cpu_cond);
1561 do {
1562 if (cpu_can_run(cpu)) {
1563 r = hax_smp_cpu_exec(cpu);
1564 if (r == EXCP_DEBUG) {
1565 cpu_handle_guest_debug(cpu);
1569 qemu_wait_io_event(cpu);
1570 } while (!cpu->unplug || cpu_can_run(cpu));
1571 rcu_unregister_thread();
1572 return NULL;
1575 /* The HVF-specific vCPU thread function. This one should only run when the host
1576 * CPU supports the VMX "unrestricted guest" feature. */
1577 static void *qemu_hvf_cpu_thread_fn(void *arg)
1579 CPUState *cpu = arg;
1581 int r;
1583 assert(hvf_enabled());
1585 rcu_register_thread();
1587 qemu_mutex_lock_iothread();
1588 qemu_thread_get_self(cpu->thread);
1590 cpu->thread_id = qemu_get_thread_id();
1591 cpu->can_do_io = 1;
1592 current_cpu = cpu;
1594 hvf_init_vcpu(cpu);
1596 /* signal CPU creation */
1597 cpu->created = true;
1598 qemu_cond_signal(&qemu_cpu_cond);
1600 do {
1601 if (cpu_can_run(cpu)) {
1602 r = hvf_vcpu_exec(cpu);
1603 if (r == EXCP_DEBUG) {
1604 cpu_handle_guest_debug(cpu);
1607 qemu_wait_io_event(cpu);
1608 } while (!cpu->unplug || cpu_can_run(cpu));
1610 hvf_vcpu_destroy(cpu);
1611 cpu->created = false;
1612 qemu_cond_signal(&qemu_cpu_cond);
1613 qemu_mutex_unlock_iothread();
1614 rcu_unregister_thread();
1615 return NULL;
1618 static void *qemu_whpx_cpu_thread_fn(void *arg)
1620 CPUState *cpu = arg;
1621 int r;
1623 rcu_register_thread();
1625 qemu_mutex_lock_iothread();
1626 qemu_thread_get_self(cpu->thread);
1627 cpu->thread_id = qemu_get_thread_id();
1628 current_cpu = cpu;
1630 r = whpx_init_vcpu(cpu);
1631 if (r < 0) {
1632 fprintf(stderr, "whpx_init_vcpu failed: %s\n", strerror(-r));
1633 exit(1);
1636 /* signal CPU creation */
1637 cpu->created = true;
1638 qemu_cond_signal(&qemu_cpu_cond);
1640 do {
1641 if (cpu_can_run(cpu)) {
1642 r = whpx_vcpu_exec(cpu);
1643 if (r == EXCP_DEBUG) {
1644 cpu_handle_guest_debug(cpu);
1647 while (cpu_thread_is_idle(cpu)) {
1648 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1650 qemu_wait_io_event_common(cpu);
1651 } while (!cpu->unplug || cpu_can_run(cpu));
1653 whpx_destroy_vcpu(cpu);
1654 cpu->created = false;
1655 qemu_cond_signal(&qemu_cpu_cond);
1656 qemu_mutex_unlock_iothread();
1657 rcu_unregister_thread();
1658 return NULL;
1661 #ifdef _WIN32
1662 static void CALLBACK dummy_apc_func(ULONG_PTR unused)
1665 #endif
1667 /* Multi-threaded TCG
1669 * In the multi-threaded case each vCPU has its own thread. The TLS
1670 * variable current_cpu can be used deep in the code to find the
1671 * current CPUState for a given thread.
1674 static void *qemu_tcg_cpu_thread_fn(void *arg)
1676 CPUState *cpu = arg;
1678 assert(tcg_enabled());
1679 g_assert(!use_icount);
1681 rcu_register_thread();
1682 tcg_register_thread();
1684 qemu_mutex_lock_iothread();
1685 qemu_thread_get_self(cpu->thread);
1687 cpu->thread_id = qemu_get_thread_id();
1688 cpu->created = true;
1689 cpu->can_do_io = 1;
1690 current_cpu = cpu;
1691 qemu_cond_signal(&qemu_cpu_cond);
1693 /* process any pending work */
1694 cpu->exit_request = 1;
1696 do {
1697 if (cpu_can_run(cpu)) {
1698 int r;
1699 qemu_mutex_unlock_iothread();
1700 r = tcg_cpu_exec(cpu);
1701 qemu_mutex_lock_iothread();
1702 switch (r) {
1703 case EXCP_DEBUG:
1704 cpu_handle_guest_debug(cpu);
1705 break;
1706 case EXCP_HALTED:
1707 /* during start-up the vCPU is reset and the thread is
1708 * kicked several times. If we don't ensure we go back
1709 * to sleep in the halted state we won't cleanly
1710 * start-up when the vCPU is enabled.
1712 * cpu->halted should ensure we sleep in wait_io_event
1714 g_assert(cpu->halted);
1715 break;
1716 case EXCP_ATOMIC:
1717 qemu_mutex_unlock_iothread();
1718 cpu_exec_step_atomic(cpu);
1719 qemu_mutex_lock_iothread();
1720 default:
1721 /* Ignore everything else? */
1722 break;
1726 atomic_mb_set(&cpu->exit_request, 0);
1727 qemu_wait_io_event(cpu);
1728 } while (!cpu->unplug || cpu_can_run(cpu));
1730 qemu_tcg_destroy_vcpu(cpu);
1731 cpu->created = false;
1732 qemu_cond_signal(&qemu_cpu_cond);
1733 qemu_mutex_unlock_iothread();
1734 rcu_unregister_thread();
1735 return NULL;
1738 static void qemu_cpu_kick_thread(CPUState *cpu)
1740 #ifndef _WIN32
1741 int err;
1743 if (cpu->thread_kicked) {
1744 return;
1746 cpu->thread_kicked = true;
1747 err = pthread_kill(cpu->thread->thread, SIG_IPI);
1748 if (err) {
1749 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
1750 exit(1);
1752 #else /* _WIN32 */
1753 if (!qemu_cpu_is_self(cpu)) {
1754 if (whpx_enabled()) {
1755 whpx_vcpu_kick(cpu);
1756 } else if (!QueueUserAPC(dummy_apc_func, cpu->hThread, 0)) {
1757 fprintf(stderr, "%s: QueueUserAPC failed with error %lu\n",
1758 __func__, GetLastError());
1759 exit(1);
1762 #endif
1765 void qemu_cpu_kick(CPUState *cpu)
1767 qemu_cond_broadcast(cpu->halt_cond);
1768 if (tcg_enabled()) {
1769 cpu_exit(cpu);
1770 /* NOP unless doing single-thread RR */
1771 qemu_cpu_kick_rr_cpu();
1772 } else {
1773 if (hax_enabled()) {
1775 * FIXME: race condition with the exit_request check in
1776 * hax_vcpu_hax_exec
1778 cpu->exit_request = 1;
1780 qemu_cpu_kick_thread(cpu);
1784 void qemu_cpu_kick_self(void)
1786 assert(current_cpu);
1787 qemu_cpu_kick_thread(current_cpu);
1790 bool qemu_cpu_is_self(CPUState *cpu)
1792 return qemu_thread_is_self(cpu->thread);
1795 bool qemu_in_vcpu_thread(void)
1797 return current_cpu && qemu_cpu_is_self(current_cpu);
1800 static __thread bool iothread_locked = false;
1802 bool qemu_mutex_iothread_locked(void)
1804 return iothread_locked;
1808 * The BQL is taken from so many places that it is worth profiling the
1809 * callers directly, instead of funneling them all through a single function.
1811 void qemu_mutex_lock_iothread_impl(const char *file, int line)
1813 QemuMutexLockFunc bql_lock = atomic_read(&qemu_bql_mutex_lock_func);
1815 g_assert(!qemu_mutex_iothread_locked());
1816 bql_lock(&qemu_global_mutex, file, line);
1817 iothread_locked = true;
1820 void qemu_mutex_unlock_iothread(void)
1822 g_assert(qemu_mutex_iothread_locked());
1823 iothread_locked = false;
1824 qemu_mutex_unlock(&qemu_global_mutex);
1827 static bool all_vcpus_paused(void)
1829 CPUState *cpu;
1831 CPU_FOREACH(cpu) {
1832 if (!cpu->stopped) {
1833 return false;
1837 return true;
1840 void pause_all_vcpus(void)
1842 CPUState *cpu;
1844 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
1845 CPU_FOREACH(cpu) {
1846 if (qemu_cpu_is_self(cpu)) {
1847 qemu_cpu_stop(cpu, true);
1848 } else {
1849 cpu->stop = true;
1850 qemu_cpu_kick(cpu);
1854 /* We need to drop the replay_lock so any vCPU threads woken up
1855 * can finish their replay tasks
1857 replay_mutex_unlock();
1859 while (!all_vcpus_paused()) {
1860 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
1861 CPU_FOREACH(cpu) {
1862 qemu_cpu_kick(cpu);
1866 qemu_mutex_unlock_iothread();
1867 replay_mutex_lock();
1868 qemu_mutex_lock_iothread();
1871 void cpu_resume(CPUState *cpu)
1873 cpu->stop = false;
1874 cpu->stopped = false;
1875 qemu_cpu_kick(cpu);
1878 void resume_all_vcpus(void)
1880 CPUState *cpu;
1882 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
1883 CPU_FOREACH(cpu) {
1884 cpu_resume(cpu);
1888 void cpu_remove_sync(CPUState *cpu)
1890 cpu->stop = true;
1891 cpu->unplug = true;
1892 qemu_cpu_kick(cpu);
1893 qemu_mutex_unlock_iothread();
1894 qemu_thread_join(cpu->thread);
1895 qemu_mutex_lock_iothread();
1898 /* For temporary buffers for forming a name */
1899 #define VCPU_THREAD_NAME_SIZE 16
1901 static void qemu_tcg_init_vcpu(CPUState *cpu)
1903 char thread_name[VCPU_THREAD_NAME_SIZE];
1904 static QemuCond *single_tcg_halt_cond;
1905 static QemuThread *single_tcg_cpu_thread;
1906 static int tcg_region_inited;
1908 assert(tcg_enabled());
1910 * Initialize TCG regions--once. Now is a good time, because:
1911 * (1) TCG's init context, prologue and target globals have been set up.
1912 * (2) qemu_tcg_mttcg_enabled() works now (TCG init code runs before the
1913 * -accel flag is processed, so the check doesn't work then).
1915 if (!tcg_region_inited) {
1916 tcg_region_inited = 1;
1917 tcg_region_init();
1920 if (qemu_tcg_mttcg_enabled() || !single_tcg_cpu_thread) {
1921 cpu->thread = g_malloc0(sizeof(QemuThread));
1922 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1923 qemu_cond_init(cpu->halt_cond);
1925 if (qemu_tcg_mttcg_enabled()) {
1926 /* create a thread per vCPU with TCG (MTTCG) */
1927 parallel_cpus = true;
1928 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG",
1929 cpu->cpu_index);
1931 qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn,
1932 cpu, QEMU_THREAD_JOINABLE);
1934 } else {
1935 /* share a single thread for all cpus with TCG */
1936 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "ALL CPUs/TCG");
1937 qemu_thread_create(cpu->thread, thread_name,
1938 qemu_tcg_rr_cpu_thread_fn,
1939 cpu, QEMU_THREAD_JOINABLE);
1941 single_tcg_halt_cond = cpu->halt_cond;
1942 single_tcg_cpu_thread = cpu->thread;
1944 #ifdef _WIN32
1945 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1946 #endif
1947 } else {
1948 /* For non-MTTCG cases we share the thread */
1949 cpu->thread = single_tcg_cpu_thread;
1950 cpu->halt_cond = single_tcg_halt_cond;
1951 cpu->thread_id = first_cpu->thread_id;
1952 cpu->can_do_io = 1;
1953 cpu->created = true;
1957 static void qemu_hax_start_vcpu(CPUState *cpu)
1959 char thread_name[VCPU_THREAD_NAME_SIZE];
1961 cpu->thread = g_malloc0(sizeof(QemuThread));
1962 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1963 qemu_cond_init(cpu->halt_cond);
1965 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HAX",
1966 cpu->cpu_index);
1967 qemu_thread_create(cpu->thread, thread_name, qemu_hax_cpu_thread_fn,
1968 cpu, QEMU_THREAD_JOINABLE);
1969 #ifdef _WIN32
1970 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1971 #endif
1974 static void qemu_kvm_start_vcpu(CPUState *cpu)
1976 char thread_name[VCPU_THREAD_NAME_SIZE];
1978 cpu->thread = g_malloc0(sizeof(QemuThread));
1979 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1980 qemu_cond_init(cpu->halt_cond);
1981 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM",
1982 cpu->cpu_index);
1983 qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn,
1984 cpu, QEMU_THREAD_JOINABLE);
1987 static void qemu_hvf_start_vcpu(CPUState *cpu)
1989 char thread_name[VCPU_THREAD_NAME_SIZE];
1991 /* HVF currently does not support TCG, and only runs in
1992 * unrestricted-guest mode. */
1993 assert(hvf_enabled());
1995 cpu->thread = g_malloc0(sizeof(QemuThread));
1996 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1997 qemu_cond_init(cpu->halt_cond);
1999 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF",
2000 cpu->cpu_index);
2001 qemu_thread_create(cpu->thread, thread_name, qemu_hvf_cpu_thread_fn,
2002 cpu, QEMU_THREAD_JOINABLE);
2005 static void qemu_whpx_start_vcpu(CPUState *cpu)
2007 char thread_name[VCPU_THREAD_NAME_SIZE];
2009 cpu->thread = g_malloc0(sizeof(QemuThread));
2010 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
2011 qemu_cond_init(cpu->halt_cond);
2012 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/WHPX",
2013 cpu->cpu_index);
2014 qemu_thread_create(cpu->thread, thread_name, qemu_whpx_cpu_thread_fn,
2015 cpu, QEMU_THREAD_JOINABLE);
2016 #ifdef _WIN32
2017 cpu->hThread = qemu_thread_get_handle(cpu->thread);
2018 #endif
2021 static void qemu_dummy_start_vcpu(CPUState *cpu)
2023 char thread_name[VCPU_THREAD_NAME_SIZE];
2025 cpu->thread = g_malloc0(sizeof(QemuThread));
2026 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
2027 qemu_cond_init(cpu->halt_cond);
2028 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY",
2029 cpu->cpu_index);
2030 qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu,
2031 QEMU_THREAD_JOINABLE);
2034 void qemu_init_vcpu(CPUState *cpu)
2036 cpu->nr_cores = smp_cores;
2037 cpu->nr_threads = smp_threads;
2038 cpu->stopped = true;
2040 if (!cpu->as) {
2041 /* If the target cpu hasn't set up any address spaces itself,
2042 * give it the default one.
2044 cpu->num_ases = 1;
2045 cpu_address_space_init(cpu, 0, "cpu-memory", cpu->memory);
2048 if (kvm_enabled()) {
2049 qemu_kvm_start_vcpu(cpu);
2050 } else if (hax_enabled()) {
2051 qemu_hax_start_vcpu(cpu);
2052 } else if (hvf_enabled()) {
2053 qemu_hvf_start_vcpu(cpu);
2054 } else if (tcg_enabled()) {
2055 qemu_tcg_init_vcpu(cpu);
2056 } else if (whpx_enabled()) {
2057 qemu_whpx_start_vcpu(cpu);
2058 } else {
2059 qemu_dummy_start_vcpu(cpu);
2062 while (!cpu->created) {
2063 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
2067 void cpu_stop_current(void)
2069 if (current_cpu) {
2070 qemu_cpu_stop(current_cpu, true);
2074 int vm_stop(RunState state)
2076 if (qemu_in_vcpu_thread()) {
2077 qemu_system_vmstop_request_prepare();
2078 qemu_system_vmstop_request(state);
2080 * FIXME: should not return to device code in case
2081 * vm_stop() has been requested.
2083 cpu_stop_current();
2084 return 0;
2087 return do_vm_stop(state, true);
2091 * Prepare for (re)starting the VM.
2092 * Returns -1 if the vCPUs are not to be restarted (e.g. if they are already
2093 * running or in case of an error condition), 0 otherwise.
2095 int vm_prepare_start(void)
2097 RunState requested;
2099 qemu_vmstop_requested(&requested);
2100 if (runstate_is_running() && requested == RUN_STATE__MAX) {
2101 return -1;
2104 /* Ensure that a STOP/RESUME pair of events is emitted if a
2105 * vmstop request was pending. The BLOCK_IO_ERROR event, for
2106 * example, according to documentation is always followed by
2107 * the STOP event.
2109 if (runstate_is_running()) {
2110 qapi_event_send_stop();
2111 qapi_event_send_resume();
2112 return -1;
2115 /* We are sending this now, but the CPUs will be resumed shortly later */
2116 qapi_event_send_resume();
2118 replay_enable_events();
2119 cpu_enable_ticks();
2120 runstate_set(RUN_STATE_RUNNING);
2121 vm_state_notify(1, RUN_STATE_RUNNING);
2122 return 0;
2125 void vm_start(void)
2127 if (!vm_prepare_start()) {
2128 resume_all_vcpus();
2132 /* does a state transition even if the VM is already stopped,
2133 current state is forgotten forever */
2134 int vm_stop_force_state(RunState state)
2136 if (runstate_is_running()) {
2137 return vm_stop(state);
2138 } else {
2139 runstate_set(state);
2141 bdrv_drain_all();
2142 /* Make sure to return an error if the flush in a previous vm_stop()
2143 * failed. */
2144 return bdrv_flush_all();
2148 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
2150 /* XXX: implement xxx_cpu_list for targets that still miss it */
2151 #if defined(cpu_list)
2152 cpu_list(f, cpu_fprintf);
2153 #endif
2156 CpuInfoList *qmp_query_cpus(Error **errp)
2158 MachineState *ms = MACHINE(qdev_get_machine());
2159 MachineClass *mc = MACHINE_GET_CLASS(ms);
2160 CpuInfoList *head = NULL, *cur_item = NULL;
2161 CPUState *cpu;
2163 CPU_FOREACH(cpu) {
2164 CpuInfoList *info;
2165 #if defined(TARGET_I386)
2166 X86CPU *x86_cpu = X86_CPU(cpu);
2167 CPUX86State *env = &x86_cpu->env;
2168 #elif defined(TARGET_PPC)
2169 PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu);
2170 CPUPPCState *env = &ppc_cpu->env;
2171 #elif defined(TARGET_SPARC)
2172 SPARCCPU *sparc_cpu = SPARC_CPU(cpu);
2173 CPUSPARCState *env = &sparc_cpu->env;
2174 #elif defined(TARGET_RISCV)
2175 RISCVCPU *riscv_cpu = RISCV_CPU(cpu);
2176 CPURISCVState *env = &riscv_cpu->env;
2177 #elif defined(TARGET_MIPS)
2178 MIPSCPU *mips_cpu = MIPS_CPU(cpu);
2179 CPUMIPSState *env = &mips_cpu->env;
2180 #elif defined(TARGET_TRICORE)
2181 TriCoreCPU *tricore_cpu = TRICORE_CPU(cpu);
2182 CPUTriCoreState *env = &tricore_cpu->env;
2183 #elif defined(TARGET_S390X)
2184 S390CPU *s390_cpu = S390_CPU(cpu);
2185 CPUS390XState *env = &s390_cpu->env;
2186 #endif
2188 cpu_synchronize_state(cpu);
2190 info = g_malloc0(sizeof(*info));
2191 info->value = g_malloc0(sizeof(*info->value));
2192 info->value->CPU = cpu->cpu_index;
2193 info->value->current = (cpu == first_cpu);
2194 info->value->halted = cpu->halted;
2195 info->value->qom_path = object_get_canonical_path(OBJECT(cpu));
2196 info->value->thread_id = cpu->thread_id;
2197 #if defined(TARGET_I386)
2198 info->value->arch = CPU_INFO_ARCH_X86;
2199 info->value->u.x86.pc = env->eip + env->segs[R_CS].base;
2200 #elif defined(TARGET_PPC)
2201 info->value->arch = CPU_INFO_ARCH_PPC;
2202 info->value->u.ppc.nip = env->nip;
2203 #elif defined(TARGET_SPARC)
2204 info->value->arch = CPU_INFO_ARCH_SPARC;
2205 info->value->u.q_sparc.pc = env->pc;
2206 info->value->u.q_sparc.npc = env->npc;
2207 #elif defined(TARGET_MIPS)
2208 info->value->arch = CPU_INFO_ARCH_MIPS;
2209 info->value->u.q_mips.PC = env->active_tc.PC;
2210 #elif defined(TARGET_TRICORE)
2211 info->value->arch = CPU_INFO_ARCH_TRICORE;
2212 info->value->u.tricore.PC = env->PC;
2213 #elif defined(TARGET_S390X)
2214 info->value->arch = CPU_INFO_ARCH_S390;
2215 info->value->u.s390.cpu_state = env->cpu_state;
2216 #elif defined(TARGET_RISCV)
2217 info->value->arch = CPU_INFO_ARCH_RISCV;
2218 info->value->u.riscv.pc = env->pc;
2219 #else
2220 info->value->arch = CPU_INFO_ARCH_OTHER;
2221 #endif
2222 info->value->has_props = !!mc->cpu_index_to_instance_props;
2223 if (info->value->has_props) {
2224 CpuInstanceProperties *props;
2225 props = g_malloc0(sizeof(*props));
2226 *props = mc->cpu_index_to_instance_props(ms, cpu->cpu_index);
2227 info->value->props = props;
2230 /* XXX: waiting for the qapi to support GSList */
2231 if (!cur_item) {
2232 head = cur_item = info;
2233 } else {
2234 cur_item->next = info;
2235 cur_item = info;
2239 return head;
2242 static CpuInfoArch sysemu_target_to_cpuinfo_arch(SysEmuTarget target)
2245 * The @SysEmuTarget -> @CpuInfoArch mapping below is based on the
2246 * TARGET_ARCH -> TARGET_BASE_ARCH mapping in the "configure" script.
2248 switch (target) {
2249 case SYS_EMU_TARGET_I386:
2250 case SYS_EMU_TARGET_X86_64:
2251 return CPU_INFO_ARCH_X86;
2253 case SYS_EMU_TARGET_PPC:
2254 case SYS_EMU_TARGET_PPC64:
2255 return CPU_INFO_ARCH_PPC;
2257 case SYS_EMU_TARGET_SPARC:
2258 case SYS_EMU_TARGET_SPARC64:
2259 return CPU_INFO_ARCH_SPARC;
2261 case SYS_EMU_TARGET_MIPS:
2262 case SYS_EMU_TARGET_MIPSEL:
2263 case SYS_EMU_TARGET_MIPS64:
2264 case SYS_EMU_TARGET_MIPS64EL:
2265 return CPU_INFO_ARCH_MIPS;
2267 case SYS_EMU_TARGET_TRICORE:
2268 return CPU_INFO_ARCH_TRICORE;
2270 case SYS_EMU_TARGET_S390X:
2271 return CPU_INFO_ARCH_S390;
2273 case SYS_EMU_TARGET_RISCV32:
2274 case SYS_EMU_TARGET_RISCV64:
2275 return CPU_INFO_ARCH_RISCV;
2277 default:
2278 return CPU_INFO_ARCH_OTHER;
2282 static void cpustate_to_cpuinfo_s390(CpuInfoS390 *info, const CPUState *cpu)
2284 #ifdef TARGET_S390X
2285 S390CPU *s390_cpu = S390_CPU(cpu);
2286 CPUS390XState *env = &s390_cpu->env;
2288 info->cpu_state = env->cpu_state;
2289 #else
2290 abort();
2291 #endif
2295 * fast means: we NEVER interrupt vCPU threads to retrieve
2296 * information from KVM.
2298 CpuInfoFastList *qmp_query_cpus_fast(Error **errp)
2300 MachineState *ms = MACHINE(qdev_get_machine());
2301 MachineClass *mc = MACHINE_GET_CLASS(ms);
2302 CpuInfoFastList *head = NULL, *cur_item = NULL;
2303 SysEmuTarget target = qapi_enum_parse(&SysEmuTarget_lookup, TARGET_NAME,
2304 -1, &error_abort);
2305 CPUState *cpu;
2307 CPU_FOREACH(cpu) {
2308 CpuInfoFastList *info = g_malloc0(sizeof(*info));
2309 info->value = g_malloc0(sizeof(*info->value));
2311 info->value->cpu_index = cpu->cpu_index;
2312 info->value->qom_path = object_get_canonical_path(OBJECT(cpu));
2313 info->value->thread_id = cpu->thread_id;
2315 info->value->has_props = !!mc->cpu_index_to_instance_props;
2316 if (info->value->has_props) {
2317 CpuInstanceProperties *props;
2318 props = g_malloc0(sizeof(*props));
2319 *props = mc->cpu_index_to_instance_props(ms, cpu->cpu_index);
2320 info->value->props = props;
2323 info->value->arch = sysemu_target_to_cpuinfo_arch(target);
2324 info->value->target = target;
2325 if (target == SYS_EMU_TARGET_S390X) {
2326 cpustate_to_cpuinfo_s390(&info->value->u.s390x, cpu);
2329 if (!cur_item) {
2330 head = cur_item = info;
2331 } else {
2332 cur_item->next = info;
2333 cur_item = info;
2337 return head;
2340 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
2341 bool has_cpu, int64_t cpu_index, Error **errp)
2343 FILE *f;
2344 uint32_t l;
2345 CPUState *cpu;
2346 uint8_t buf[1024];
2347 int64_t orig_addr = addr, orig_size = size;
2349 if (!has_cpu) {
2350 cpu_index = 0;
2353 cpu = qemu_get_cpu(cpu_index);
2354 if (cpu == NULL) {
2355 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
2356 "a CPU number");
2357 return;
2360 f = fopen(filename, "wb");
2361 if (!f) {
2362 error_setg_file_open(errp, errno, filename);
2363 return;
2366 while (size != 0) {
2367 l = sizeof(buf);
2368 if (l > size)
2369 l = size;
2370 if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) {
2371 error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64
2372 " specified", orig_addr, orig_size);
2373 goto exit;
2375 if (fwrite(buf, 1, l, f) != l) {
2376 error_setg(errp, QERR_IO_ERROR);
2377 goto exit;
2379 addr += l;
2380 size -= l;
2383 exit:
2384 fclose(f);
2387 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
2388 Error **errp)
2390 FILE *f;
2391 uint32_t l;
2392 uint8_t buf[1024];
2394 f = fopen(filename, "wb");
2395 if (!f) {
2396 error_setg_file_open(errp, errno, filename);
2397 return;
2400 while (size != 0) {
2401 l = sizeof(buf);
2402 if (l > size)
2403 l = size;
2404 cpu_physical_memory_read(addr, buf, l);
2405 if (fwrite(buf, 1, l, f) != l) {
2406 error_setg(errp, QERR_IO_ERROR);
2407 goto exit;
2409 addr += l;
2410 size -= l;
2413 exit:
2414 fclose(f);
2417 void qmp_inject_nmi(Error **errp)
2419 nmi_monitor_handle(monitor_get_cpu_index(), errp);
2422 void dump_drift_info(FILE *f, fprintf_function cpu_fprintf)
2424 if (!use_icount) {
2425 return;
2428 cpu_fprintf(f, "Host - Guest clock %"PRIi64" ms\n",
2429 (cpu_get_clock() - cpu_get_icount())/SCALE_MS);
2430 if (icount_align_option) {
2431 cpu_fprintf(f, "Max guest delay %"PRIi64" ms\n", -max_delay/SCALE_MS);
2432 cpu_fprintf(f, "Max guest advance %"PRIi64" ms\n", max_advance/SCALE_MS);
2433 } else {
2434 cpu_fprintf(f, "Max guest delay NA\n");
2435 cpu_fprintf(f, "Max guest advance NA\n");