Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
[qemu.git] / hw / ppc / spapr.c
blob2375cbee12084ef0e38957bc7f80481d5c3d7cff
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "cpu-models.h"
47 #include "qom/cpu.h"
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/ppc/xics.h"
58 #include "hw/pci/msi.h"
60 #include "hw/pci/pci.h"
61 #include "hw/scsi/scsi.h"
62 #include "hw/virtio/virtio-scsi.h"
63 #include "hw/virtio/vhost-scsi-common.h"
65 #include "exec/address-spaces.h"
66 #include "hw/usb.h"
67 #include "qemu/config-file.h"
68 #include "qemu/error-report.h"
69 #include "trace.h"
70 #include "hw/nmi.h"
71 #include "hw/intc/intc.h"
73 #include "hw/compat.h"
74 #include "qemu/cutils.h"
75 #include "hw/ppc/spapr_cpu_core.h"
76 #include "hw/mem/memory-device.h"
78 #include <libfdt.h>
80 /* SLOF memory layout:
82 * SLOF raw image loaded at 0, copies its romfs right below the flat
83 * device-tree, then position SLOF itself 31M below that
85 * So we set FW_OVERHEAD to 40MB which should account for all of that
86 * and more
88 * We load our kernel at 4M, leaving space for SLOF initial image
90 #define FDT_MAX_SIZE 0x100000
91 #define RTAS_MAX_SIZE 0x10000
92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE 0x400000
94 #define FW_FILE_NAME "slof.bin"
95 #define FW_OVERHEAD 0x2800000
96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
98 #define MIN_RMA_SLOF 128UL
100 #define PHANDLE_XICP 0x00001111
102 /* These two functions implement the VCPU id numbering: one to compute them
103 * all and one to identify thread 0 of a VCORE. Any change to the first one
104 * is likely to have an impact on the second one, so let's keep them close.
106 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
108 assert(spapr->vsmt);
109 return
110 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
112 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
113 PowerPCCPU *cpu)
115 assert(spapr->vsmt);
116 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
119 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
120 const char *type_ics,
121 int nr_irqs, Error **errp)
123 Error *local_err = NULL;
124 Object *obj;
126 obj = object_new(type_ics);
127 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
128 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
129 &error_abort);
130 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
131 if (local_err) {
132 goto error;
134 object_property_set_bool(obj, true, "realized", &local_err);
135 if (local_err) {
136 goto error;
139 return ICS_SIMPLE(obj);
141 error:
142 error_propagate(errp, local_err);
143 return NULL;
146 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
148 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
149 * and newer QEMUs don't even have them. In both cases, we don't want
150 * to send anything on the wire.
152 return false;
155 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
156 .name = "icp/server",
157 .version_id = 1,
158 .minimum_version_id = 1,
159 .needed = pre_2_10_vmstate_dummy_icp_needed,
160 .fields = (VMStateField[]) {
161 VMSTATE_UNUSED(4), /* uint32_t xirr */
162 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
163 VMSTATE_UNUSED(1), /* uint8_t mfrr */
164 VMSTATE_END_OF_LIST()
168 static void pre_2_10_vmstate_register_dummy_icp(int i)
170 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
171 (void *)(uintptr_t) i);
174 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
176 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
177 (void *)(uintptr_t) i);
180 static int xics_max_server_number(sPAPRMachineState *spapr)
182 assert(spapr->vsmt);
183 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
186 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
188 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
190 if (kvm_enabled()) {
191 if (machine_kernel_irqchip_allowed(machine) &&
192 !xics_kvm_init(spapr, errp)) {
193 spapr->icp_type = TYPE_KVM_ICP;
194 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
196 if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
197 error_prepend(errp, "kernel_irqchip requested but unavailable: ");
198 return;
202 if (!spapr->ics) {
203 xics_spapr_init(spapr);
204 spapr->icp_type = TYPE_ICP;
205 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
206 if (!spapr->ics) {
207 return;
212 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
213 int smt_threads)
215 int i, ret = 0;
216 uint32_t servers_prop[smt_threads];
217 uint32_t gservers_prop[smt_threads * 2];
218 int index = spapr_get_vcpu_id(cpu);
220 if (cpu->compat_pvr) {
221 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
222 if (ret < 0) {
223 return ret;
227 /* Build interrupt servers and gservers properties */
228 for (i = 0; i < smt_threads; i++) {
229 servers_prop[i] = cpu_to_be32(index + i);
230 /* Hack, direct the group queues back to cpu 0 */
231 gservers_prop[i*2] = cpu_to_be32(index + i);
232 gservers_prop[i*2 + 1] = 0;
234 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
235 servers_prop, sizeof(servers_prop));
236 if (ret < 0) {
237 return ret;
239 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
240 gservers_prop, sizeof(gservers_prop));
242 return ret;
245 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
247 int index = spapr_get_vcpu_id(cpu);
248 uint32_t associativity[] = {cpu_to_be32(0x5),
249 cpu_to_be32(0x0),
250 cpu_to_be32(0x0),
251 cpu_to_be32(0x0),
252 cpu_to_be32(cpu->node_id),
253 cpu_to_be32(index)};
255 /* Advertise NUMA via ibm,associativity */
256 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
257 sizeof(associativity));
260 /* Populate the "ibm,pa-features" property */
261 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
262 PowerPCCPU *cpu,
263 void *fdt, int offset,
264 bool legacy_guest)
266 uint8_t pa_features_206[] = { 6, 0,
267 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
268 uint8_t pa_features_207[] = { 24, 0,
269 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
270 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
271 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
272 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
273 uint8_t pa_features_300[] = { 66, 0,
274 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
275 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
276 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
277 /* 6: DS207 */
278 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
279 /* 16: Vector */
280 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
281 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
282 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
283 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
284 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
285 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
286 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
287 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
288 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
289 /* 42: PM, 44: PC RA, 46: SC vec'd */
290 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
291 /* 48: SIMD, 50: QP BFP, 52: String */
292 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
293 /* 54: DecFP, 56: DecI, 58: SHA */
294 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
295 /* 60: NM atomic, 62: RNG */
296 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
298 uint8_t *pa_features = NULL;
299 size_t pa_size;
301 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
302 pa_features = pa_features_206;
303 pa_size = sizeof(pa_features_206);
305 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
306 pa_features = pa_features_207;
307 pa_size = sizeof(pa_features_207);
309 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
310 pa_features = pa_features_300;
311 pa_size = sizeof(pa_features_300);
313 if (!pa_features) {
314 return;
317 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
319 * Note: we keep CI large pages off by default because a 64K capable
320 * guest provisioned with large pages might otherwise try to map a qemu
321 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
322 * even if that qemu runs on a 4k host.
323 * We dd this bit back here if we are confident this is not an issue
325 pa_features[3] |= 0x20;
327 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
328 pa_features[24] |= 0x80; /* Transactional memory support */
330 if (legacy_guest && pa_size > 40) {
331 /* Workaround for broken kernels that attempt (guest) radix
332 * mode when they can't handle it, if they see the radix bit set
333 * in pa-features. So hide it from them. */
334 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
337 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
340 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
342 int ret = 0, offset, cpus_offset;
343 CPUState *cs;
344 char cpu_model[32];
345 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
347 CPU_FOREACH(cs) {
348 PowerPCCPU *cpu = POWERPC_CPU(cs);
349 DeviceClass *dc = DEVICE_GET_CLASS(cs);
350 int index = spapr_get_vcpu_id(cpu);
351 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
353 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
354 continue;
357 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
359 cpus_offset = fdt_path_offset(fdt, "/cpus");
360 if (cpus_offset < 0) {
361 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
362 if (cpus_offset < 0) {
363 return cpus_offset;
366 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
367 if (offset < 0) {
368 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
369 if (offset < 0) {
370 return offset;
374 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
375 pft_size_prop, sizeof(pft_size_prop));
376 if (ret < 0) {
377 return ret;
380 if (nb_numa_nodes > 1) {
381 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
382 if (ret < 0) {
383 return ret;
387 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
388 if (ret < 0) {
389 return ret;
392 spapr_populate_pa_features(spapr, cpu, fdt, offset,
393 spapr->cas_legacy_guest_workaround);
395 return ret;
398 static hwaddr spapr_node0_size(MachineState *machine)
400 if (nb_numa_nodes) {
401 int i;
402 for (i = 0; i < nb_numa_nodes; ++i) {
403 if (numa_info[i].node_mem) {
404 return MIN(pow2floor(numa_info[i].node_mem),
405 machine->ram_size);
409 return machine->ram_size;
412 static void add_str(GString *s, const gchar *s1)
414 g_string_append_len(s, s1, strlen(s1) + 1);
417 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
418 hwaddr size)
420 uint32_t associativity[] = {
421 cpu_to_be32(0x4), /* length */
422 cpu_to_be32(0x0), cpu_to_be32(0x0),
423 cpu_to_be32(0x0), cpu_to_be32(nodeid)
425 char mem_name[32];
426 uint64_t mem_reg_property[2];
427 int off;
429 mem_reg_property[0] = cpu_to_be64(start);
430 mem_reg_property[1] = cpu_to_be64(size);
432 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
433 off = fdt_add_subnode(fdt, 0, mem_name);
434 _FDT(off);
435 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
436 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
437 sizeof(mem_reg_property))));
438 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
439 sizeof(associativity))));
440 return off;
443 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
445 MachineState *machine = MACHINE(spapr);
446 hwaddr mem_start, node_size;
447 int i, nb_nodes = nb_numa_nodes;
448 NodeInfo *nodes = numa_info;
449 NodeInfo ramnode;
451 /* No NUMA nodes, assume there is just one node with whole RAM */
452 if (!nb_numa_nodes) {
453 nb_nodes = 1;
454 ramnode.node_mem = machine->ram_size;
455 nodes = &ramnode;
458 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
459 if (!nodes[i].node_mem) {
460 continue;
462 if (mem_start >= machine->ram_size) {
463 node_size = 0;
464 } else {
465 node_size = nodes[i].node_mem;
466 if (node_size > machine->ram_size - mem_start) {
467 node_size = machine->ram_size - mem_start;
470 if (!mem_start) {
471 /* spapr_machine_init() checks for rma_size <= node0_size
472 * already */
473 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
474 mem_start += spapr->rma_size;
475 node_size -= spapr->rma_size;
477 for ( ; node_size; ) {
478 hwaddr sizetmp = pow2floor(node_size);
480 /* mem_start != 0 here */
481 if (ctzl(mem_start) < ctzl(sizetmp)) {
482 sizetmp = 1ULL << ctzl(mem_start);
485 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
486 node_size -= sizetmp;
487 mem_start += sizetmp;
491 return 0;
494 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
495 sPAPRMachineState *spapr)
497 PowerPCCPU *cpu = POWERPC_CPU(cs);
498 CPUPPCState *env = &cpu->env;
499 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
500 int index = spapr_get_vcpu_id(cpu);
501 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
502 0xffffffff, 0xffffffff};
503 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
504 : SPAPR_TIMEBASE_FREQ;
505 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
506 uint32_t page_sizes_prop[64];
507 size_t page_sizes_prop_size;
508 uint32_t vcpus_per_socket = smp_threads * smp_cores;
509 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
510 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
511 sPAPRDRConnector *drc;
512 int drc_index;
513 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
514 int i;
516 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
517 if (drc) {
518 drc_index = spapr_drc_index(drc);
519 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
522 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
523 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
525 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
526 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
527 env->dcache_line_size)));
528 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
529 env->dcache_line_size)));
530 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
531 env->icache_line_size)));
532 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
533 env->icache_line_size)));
535 if (pcc->l1_dcache_size) {
536 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
537 pcc->l1_dcache_size)));
538 } else {
539 warn_report("Unknown L1 dcache size for cpu");
541 if (pcc->l1_icache_size) {
542 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
543 pcc->l1_icache_size)));
544 } else {
545 warn_report("Unknown L1 icache size for cpu");
548 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
549 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
550 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
551 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
552 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
553 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
555 if (env->spr_cb[SPR_PURR].oea_read) {
556 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
559 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
560 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
561 segs, sizeof(segs))));
564 /* Advertise VSX (vector extensions) if available
565 * 1 == VMX / Altivec available
566 * 2 == VSX available
568 * Only CPUs for which we create core types in spapr_cpu_core.c
569 * are possible, and all of those have VMX */
570 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
571 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
572 } else {
573 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
576 /* Advertise DFP (Decimal Floating Point) if available
577 * 0 / no property == no DFP
578 * 1 == DFP available */
579 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
580 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
583 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
584 sizeof(page_sizes_prop));
585 if (page_sizes_prop_size) {
586 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
587 page_sizes_prop, page_sizes_prop_size)));
590 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
592 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
593 cs->cpu_index / vcpus_per_socket)));
595 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
596 pft_size_prop, sizeof(pft_size_prop))));
598 if (nb_numa_nodes > 1) {
599 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
602 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
604 if (pcc->radix_page_info) {
605 for (i = 0; i < pcc->radix_page_info->count; i++) {
606 radix_AP_encodings[i] =
607 cpu_to_be32(pcc->radix_page_info->entries[i]);
609 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
610 radix_AP_encodings,
611 pcc->radix_page_info->count *
612 sizeof(radix_AP_encodings[0]))));
616 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
618 CPUState *cs;
619 int cpus_offset;
620 char *nodename;
622 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
623 _FDT(cpus_offset);
624 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
625 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
628 * We walk the CPUs in reverse order to ensure that CPU DT nodes
629 * created by fdt_add_subnode() end up in the right order in FDT
630 * for the guest kernel the enumerate the CPUs correctly.
632 CPU_FOREACH_REVERSE(cs) {
633 PowerPCCPU *cpu = POWERPC_CPU(cs);
634 int index = spapr_get_vcpu_id(cpu);
635 DeviceClass *dc = DEVICE_GET_CLASS(cs);
636 int offset;
638 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
639 continue;
642 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
643 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
644 g_free(nodename);
645 _FDT(offset);
646 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
651 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
653 MemoryDeviceInfoList *info;
655 for (info = list; info; info = info->next) {
656 MemoryDeviceInfo *value = info->value;
658 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
659 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
661 if (pcdimm_info->addr >= addr &&
662 addr < (pcdimm_info->addr + pcdimm_info->size)) {
663 return pcdimm_info->node;
668 return -1;
671 struct sPAPRDrconfCellV2 {
672 uint32_t seq_lmbs;
673 uint64_t base_addr;
674 uint32_t drc_index;
675 uint32_t aa_index;
676 uint32_t flags;
677 } QEMU_PACKED;
679 typedef struct DrconfCellQueue {
680 struct sPAPRDrconfCellV2 cell;
681 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
682 } DrconfCellQueue;
684 static DrconfCellQueue *
685 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
686 uint32_t drc_index, uint32_t aa_index,
687 uint32_t flags)
689 DrconfCellQueue *elem;
691 elem = g_malloc0(sizeof(*elem));
692 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
693 elem->cell.base_addr = cpu_to_be64(base_addr);
694 elem->cell.drc_index = cpu_to_be32(drc_index);
695 elem->cell.aa_index = cpu_to_be32(aa_index);
696 elem->cell.flags = cpu_to_be32(flags);
698 return elem;
701 /* ibm,dynamic-memory-v2 */
702 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt,
703 int offset, MemoryDeviceInfoList *dimms)
705 MachineState *machine = MACHINE(spapr);
706 uint8_t *int_buf, *cur_index, buf_len;
707 int ret;
708 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
709 uint64_t addr, cur_addr, size;
710 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
711 uint64_t mem_end = machine->device_memory->base +
712 memory_region_size(&machine->device_memory->mr);
713 uint32_t node, nr_entries = 0;
714 sPAPRDRConnector *drc;
715 DrconfCellQueue *elem, *next;
716 MemoryDeviceInfoList *info;
717 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
718 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
720 /* Entry to cover RAM and the gap area */
721 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
722 SPAPR_LMB_FLAGS_RESERVED |
723 SPAPR_LMB_FLAGS_DRC_INVALID);
724 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
725 nr_entries++;
727 cur_addr = machine->device_memory->base;
728 for (info = dimms; info; info = info->next) {
729 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
731 addr = di->addr;
732 size = di->size;
733 node = di->node;
735 /* Entry for hot-pluggable area */
736 if (cur_addr < addr) {
737 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
738 g_assert(drc);
739 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
740 cur_addr, spapr_drc_index(drc), -1, 0);
741 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
742 nr_entries++;
745 /* Entry for DIMM */
746 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
747 g_assert(drc);
748 elem = spapr_get_drconf_cell(size / lmb_size, addr,
749 spapr_drc_index(drc), node,
750 SPAPR_LMB_FLAGS_ASSIGNED);
751 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
752 nr_entries++;
753 cur_addr = addr + size;
756 /* Entry for remaining hotpluggable area */
757 if (cur_addr < mem_end) {
758 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
759 g_assert(drc);
760 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
761 cur_addr, spapr_drc_index(drc), -1, 0);
762 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
763 nr_entries++;
766 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
767 int_buf = cur_index = g_malloc0(buf_len);
768 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
769 cur_index += sizeof(nr_entries);
771 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
772 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
773 cur_index += sizeof(elem->cell);
774 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
775 g_free(elem);
778 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
779 g_free(int_buf);
780 if (ret < 0) {
781 return -1;
783 return 0;
786 /* ibm,dynamic-memory */
787 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt,
788 int offset, MemoryDeviceInfoList *dimms)
790 MachineState *machine = MACHINE(spapr);
791 int i, ret;
792 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
793 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
794 uint32_t nr_lmbs = (machine->device_memory->base +
795 memory_region_size(&machine->device_memory->mr)) /
796 lmb_size;
797 uint32_t *int_buf, *cur_index, buf_len;
800 * Allocate enough buffer size to fit in ibm,dynamic-memory
802 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
803 cur_index = int_buf = g_malloc0(buf_len);
804 int_buf[0] = cpu_to_be32(nr_lmbs);
805 cur_index++;
806 for (i = 0; i < nr_lmbs; i++) {
807 uint64_t addr = i * lmb_size;
808 uint32_t *dynamic_memory = cur_index;
810 if (i >= device_lmb_start) {
811 sPAPRDRConnector *drc;
813 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
814 g_assert(drc);
816 dynamic_memory[0] = cpu_to_be32(addr >> 32);
817 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
818 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
819 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
820 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
821 if (memory_region_present(get_system_memory(), addr)) {
822 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
823 } else {
824 dynamic_memory[5] = cpu_to_be32(0);
826 } else {
828 * LMB information for RMA, boot time RAM and gap b/n RAM and
829 * device memory region -- all these are marked as reserved
830 * and as having no valid DRC.
832 dynamic_memory[0] = cpu_to_be32(addr >> 32);
833 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
834 dynamic_memory[2] = cpu_to_be32(0);
835 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
836 dynamic_memory[4] = cpu_to_be32(-1);
837 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
838 SPAPR_LMB_FLAGS_DRC_INVALID);
841 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
843 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
844 g_free(int_buf);
845 if (ret < 0) {
846 return -1;
848 return 0;
852 * Adds ibm,dynamic-reconfiguration-memory node.
853 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
854 * of this device tree node.
856 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
858 MachineState *machine = MACHINE(spapr);
859 int ret, i, offset;
860 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
861 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
862 uint32_t *int_buf, *cur_index, buf_len;
863 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
864 MemoryDeviceInfoList *dimms = NULL;
867 * Don't create the node if there is no device memory
869 if (machine->ram_size == machine->maxram_size) {
870 return 0;
873 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
875 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
876 sizeof(prop_lmb_size));
877 if (ret < 0) {
878 return ret;
881 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
882 if (ret < 0) {
883 return ret;
886 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
887 if (ret < 0) {
888 return ret;
891 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
892 dimms = qmp_memory_device_list();
893 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
894 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
895 } else {
896 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
898 qapi_free_MemoryDeviceInfoList(dimms);
900 if (ret < 0) {
901 return ret;
904 /* ibm,associativity-lookup-arrays */
905 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
906 cur_index = int_buf = g_malloc0(buf_len);
908 cur_index = int_buf;
909 int_buf[0] = cpu_to_be32(nr_nodes);
910 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
911 cur_index += 2;
912 for (i = 0; i < nr_nodes; i++) {
913 uint32_t associativity[] = {
914 cpu_to_be32(0x0),
915 cpu_to_be32(0x0),
916 cpu_to_be32(0x0),
917 cpu_to_be32(i)
919 memcpy(cur_index, associativity, sizeof(associativity));
920 cur_index += 4;
922 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
923 (cur_index - int_buf) * sizeof(uint32_t));
924 g_free(int_buf);
926 return ret;
929 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
930 sPAPROptionVector *ov5_updates)
932 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
933 int ret = 0, offset;
935 /* Generate ibm,dynamic-reconfiguration-memory node if required */
936 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
937 g_assert(smc->dr_lmb_enabled);
938 ret = spapr_populate_drconf_memory(spapr, fdt);
939 if (ret) {
940 goto out;
944 offset = fdt_path_offset(fdt, "/chosen");
945 if (offset < 0) {
946 offset = fdt_add_subnode(fdt, 0, "chosen");
947 if (offset < 0) {
948 return offset;
951 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
952 "ibm,architecture-vec-5");
954 out:
955 return ret;
958 static bool spapr_hotplugged_dev_before_cas(void)
960 Object *drc_container, *obj;
961 ObjectProperty *prop;
962 ObjectPropertyIterator iter;
964 drc_container = container_get(object_get_root(), "/dr-connector");
965 object_property_iter_init(&iter, drc_container);
966 while ((prop = object_property_iter_next(&iter))) {
967 if (!strstart(prop->type, "link<", NULL)) {
968 continue;
970 obj = object_property_get_link(drc_container, prop->name, NULL);
971 if (spapr_drc_needed(obj)) {
972 return true;
975 return false;
978 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
979 target_ulong addr, target_ulong size,
980 sPAPROptionVector *ov5_updates)
982 void *fdt, *fdt_skel;
983 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
985 if (spapr_hotplugged_dev_before_cas()) {
986 return 1;
989 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
990 error_report("SLOF provided an unexpected CAS buffer size "
991 TARGET_FMT_lu " (min: %zu, max: %u)",
992 size, sizeof(hdr), FW_MAX_SIZE);
993 exit(EXIT_FAILURE);
996 size -= sizeof(hdr);
998 /* Create skeleton */
999 fdt_skel = g_malloc0(size);
1000 _FDT((fdt_create(fdt_skel, size)));
1001 _FDT((fdt_finish_reservemap(fdt_skel)));
1002 _FDT((fdt_begin_node(fdt_skel, "")));
1003 _FDT((fdt_end_node(fdt_skel)));
1004 _FDT((fdt_finish(fdt_skel)));
1005 fdt = g_malloc0(size);
1006 _FDT((fdt_open_into(fdt_skel, fdt, size)));
1007 g_free(fdt_skel);
1009 /* Fixup cpu nodes */
1010 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1012 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1013 return -1;
1016 /* Pack resulting tree */
1017 _FDT((fdt_pack(fdt)));
1019 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1020 trace_spapr_cas_failed(size);
1021 return -1;
1024 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1025 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1026 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1027 g_free(fdt);
1029 return 0;
1032 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
1034 int rtas;
1035 GString *hypertas = g_string_sized_new(256);
1036 GString *qemu_hypertas = g_string_sized_new(256);
1037 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1038 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1039 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1040 uint32_t lrdr_capacity[] = {
1041 cpu_to_be32(max_device_addr >> 32),
1042 cpu_to_be32(max_device_addr & 0xffffffff),
1043 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1044 cpu_to_be32(max_cpus / smp_threads),
1046 uint32_t maxdomains[] = {
1047 cpu_to_be32(4),
1048 cpu_to_be32(0),
1049 cpu_to_be32(0),
1050 cpu_to_be32(0),
1051 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes - 1 : 0),
1054 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1056 /* hypertas */
1057 add_str(hypertas, "hcall-pft");
1058 add_str(hypertas, "hcall-term");
1059 add_str(hypertas, "hcall-dabr");
1060 add_str(hypertas, "hcall-interrupt");
1061 add_str(hypertas, "hcall-tce");
1062 add_str(hypertas, "hcall-vio");
1063 add_str(hypertas, "hcall-splpar");
1064 add_str(hypertas, "hcall-bulk");
1065 add_str(hypertas, "hcall-set-mode");
1066 add_str(hypertas, "hcall-sprg0");
1067 add_str(hypertas, "hcall-copy");
1068 add_str(hypertas, "hcall-debug");
1069 add_str(qemu_hypertas, "hcall-memop1");
1071 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1072 add_str(hypertas, "hcall-multi-tce");
1075 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1076 add_str(hypertas, "hcall-hpt-resize");
1079 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1080 hypertas->str, hypertas->len));
1081 g_string_free(hypertas, TRUE);
1082 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1083 qemu_hypertas->str, qemu_hypertas->len));
1084 g_string_free(qemu_hypertas, TRUE);
1086 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1087 refpoints, sizeof(refpoints)));
1089 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1090 maxdomains, sizeof(maxdomains)));
1092 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1093 RTAS_ERROR_LOG_MAX));
1094 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1095 RTAS_EVENT_SCAN_RATE));
1097 g_assert(msi_nonbroken);
1098 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1101 * According to PAPR, rtas ibm,os-term does not guarantee a return
1102 * back to the guest cpu.
1104 * While an additional ibm,extended-os-term property indicates
1105 * that rtas call return will always occur. Set this property.
1107 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1109 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1110 lrdr_capacity, sizeof(lrdr_capacity)));
1112 spapr_dt_rtas_tokens(fdt, rtas);
1115 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
1116 * that the guest may request and thus the valid values for bytes 24..26 of
1117 * option vector 5: */
1118 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
1120 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1122 char val[2 * 4] = {
1123 23, 0x00, /* Xive mode, filled in below. */
1124 24, 0x00, /* Hash/Radix, filled in below. */
1125 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1126 26, 0x40, /* Radix options: GTSE == yes. */
1129 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1130 first_ppc_cpu->compat_pvr)) {
1131 /* If we're in a pre POWER9 compat mode then the guest should do hash */
1132 val[3] = 0x00; /* Hash */
1133 } else if (kvm_enabled()) {
1134 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1135 val[3] = 0x80; /* OV5_MMU_BOTH */
1136 } else if (kvmppc_has_cap_mmu_radix()) {
1137 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1138 } else {
1139 val[3] = 0x00; /* Hash */
1141 } else {
1142 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1143 val[3] = 0xC0;
1145 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1146 val, sizeof(val)));
1149 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1151 MachineState *machine = MACHINE(spapr);
1152 int chosen;
1153 const char *boot_device = machine->boot_order;
1154 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1155 size_t cb = 0;
1156 char *bootlist = get_boot_devices_list(&cb, true);
1158 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1160 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1161 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1162 spapr->initrd_base));
1163 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1164 spapr->initrd_base + spapr->initrd_size));
1166 if (spapr->kernel_size) {
1167 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1168 cpu_to_be64(spapr->kernel_size) };
1170 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1171 &kprop, sizeof(kprop)));
1172 if (spapr->kernel_le) {
1173 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1176 if (boot_menu) {
1177 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1179 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1180 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1181 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1183 if (cb && bootlist) {
1184 int i;
1186 for (i = 0; i < cb; i++) {
1187 if (bootlist[i] == '\n') {
1188 bootlist[i] = ' ';
1191 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1194 if (boot_device && strlen(boot_device)) {
1195 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1198 if (!spapr->has_graphics && stdout_path) {
1200 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1201 * kernel. New platforms should only use the "stdout-path" property. Set
1202 * the new property and continue using older property to remain
1203 * compatible with the existing firmware.
1205 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1206 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1209 spapr_dt_ov5_platform_support(fdt, chosen);
1211 g_free(stdout_path);
1212 g_free(bootlist);
1215 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1217 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1218 * KVM to work under pHyp with some guest co-operation */
1219 int hypervisor;
1220 uint8_t hypercall[16];
1222 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1223 /* indicate KVM hypercall interface */
1224 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1225 if (kvmppc_has_cap_fixup_hcalls()) {
1227 * Older KVM versions with older guest kernels were broken
1228 * with the magic page, don't allow the guest to map it.
1230 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1231 sizeof(hypercall))) {
1232 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1233 hypercall, sizeof(hypercall)));
1238 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1239 hwaddr rtas_addr,
1240 hwaddr rtas_size)
1242 MachineState *machine = MACHINE(spapr);
1243 MachineClass *mc = MACHINE_GET_CLASS(machine);
1244 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1245 int ret;
1246 void *fdt;
1247 sPAPRPHBState *phb;
1248 char *buf;
1250 fdt = g_malloc0(FDT_MAX_SIZE);
1251 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1253 /* Root node */
1254 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1255 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1256 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1259 * Add info to guest to indentify which host is it being run on
1260 * and what is the uuid of the guest
1262 if (kvmppc_get_host_model(&buf)) {
1263 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1264 g_free(buf);
1266 if (kvmppc_get_host_serial(&buf)) {
1267 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1268 g_free(buf);
1271 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1273 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1274 if (qemu_uuid_set) {
1275 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1277 g_free(buf);
1279 if (qemu_get_vm_name()) {
1280 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1281 qemu_get_vm_name()));
1284 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1285 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1287 /* /interrupt controller */
1288 spapr_dt_xics(xics_max_server_number(spapr), fdt, PHANDLE_XICP);
1290 ret = spapr_populate_memory(spapr, fdt);
1291 if (ret < 0) {
1292 error_report("couldn't setup memory nodes in fdt");
1293 exit(1);
1296 /* /vdevice */
1297 spapr_dt_vdevice(spapr->vio_bus, fdt);
1299 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1300 ret = spapr_rng_populate_dt(fdt);
1301 if (ret < 0) {
1302 error_report("could not set up rng device in the fdt");
1303 exit(1);
1307 QLIST_FOREACH(phb, &spapr->phbs, list) {
1308 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1309 if (ret < 0) {
1310 error_report("couldn't setup PCI devices in fdt");
1311 exit(1);
1315 /* cpus */
1316 spapr_populate_cpus_dt_node(fdt, spapr);
1318 if (smc->dr_lmb_enabled) {
1319 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1322 if (mc->has_hotpluggable_cpus) {
1323 int offset = fdt_path_offset(fdt, "/cpus");
1324 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1325 SPAPR_DR_CONNECTOR_TYPE_CPU);
1326 if (ret < 0) {
1327 error_report("Couldn't set up CPU DR device tree properties");
1328 exit(1);
1332 /* /event-sources */
1333 spapr_dt_events(spapr, fdt);
1335 /* /rtas */
1336 spapr_dt_rtas(spapr, fdt);
1338 /* /chosen */
1339 spapr_dt_chosen(spapr, fdt);
1341 /* /hypervisor */
1342 if (kvm_enabled()) {
1343 spapr_dt_hypervisor(spapr, fdt);
1346 /* Build memory reserve map */
1347 if (spapr->kernel_size) {
1348 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1350 if (spapr->initrd_size) {
1351 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1354 /* ibm,client-architecture-support updates */
1355 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1356 if (ret < 0) {
1357 error_report("couldn't setup CAS properties fdt");
1358 exit(1);
1361 return fdt;
1364 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1366 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1369 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1370 PowerPCCPU *cpu)
1372 CPUPPCState *env = &cpu->env;
1374 /* The TCG path should also be holding the BQL at this point */
1375 g_assert(qemu_mutex_iothread_locked());
1377 if (msr_pr) {
1378 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1379 env->gpr[3] = H_PRIVILEGE;
1380 } else {
1381 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1385 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1387 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1389 return spapr->patb_entry;
1392 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1393 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1394 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1395 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1396 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1399 * Get the fd to access the kernel htab, re-opening it if necessary
1401 static int get_htab_fd(sPAPRMachineState *spapr)
1403 Error *local_err = NULL;
1405 if (spapr->htab_fd >= 0) {
1406 return spapr->htab_fd;
1409 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1410 if (spapr->htab_fd < 0) {
1411 error_report_err(local_err);
1414 return spapr->htab_fd;
1417 void close_htab_fd(sPAPRMachineState *spapr)
1419 if (spapr->htab_fd >= 0) {
1420 close(spapr->htab_fd);
1422 spapr->htab_fd = -1;
1425 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1427 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1429 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1432 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1434 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1436 assert(kvm_enabled());
1438 if (!spapr->htab) {
1439 return 0;
1442 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1445 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1446 hwaddr ptex, int n)
1448 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1449 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1451 if (!spapr->htab) {
1453 * HTAB is controlled by KVM. Fetch into temporary buffer
1455 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1456 kvmppc_read_hptes(hptes, ptex, n);
1457 return hptes;
1461 * HTAB is controlled by QEMU. Just point to the internally
1462 * accessible PTEG.
1464 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1467 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1468 const ppc_hash_pte64_t *hptes,
1469 hwaddr ptex, int n)
1471 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1473 if (!spapr->htab) {
1474 g_free((void *)hptes);
1477 /* Nothing to do for qemu managed HPT */
1480 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1481 uint64_t pte0, uint64_t pte1)
1483 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1484 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1486 if (!spapr->htab) {
1487 kvmppc_write_hpte(ptex, pte0, pte1);
1488 } else {
1489 stq_p(spapr->htab + offset, pte0);
1490 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1494 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1496 int shift;
1498 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1499 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1500 * that's much more than is needed for Linux guests */
1501 shift = ctz64(pow2ceil(ramsize)) - 7;
1502 shift = MAX(shift, 18); /* Minimum architected size */
1503 shift = MIN(shift, 46); /* Maximum architected size */
1504 return shift;
1507 void spapr_free_hpt(sPAPRMachineState *spapr)
1509 g_free(spapr->htab);
1510 spapr->htab = NULL;
1511 spapr->htab_shift = 0;
1512 close_htab_fd(spapr);
1515 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1516 Error **errp)
1518 long rc;
1520 /* Clean up any HPT info from a previous boot */
1521 spapr_free_hpt(spapr);
1523 rc = kvmppc_reset_htab(shift);
1524 if (rc < 0) {
1525 /* kernel-side HPT needed, but couldn't allocate one */
1526 error_setg_errno(errp, errno,
1527 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1528 shift);
1529 /* This is almost certainly fatal, but if the caller really
1530 * wants to carry on with shift == 0, it's welcome to try */
1531 } else if (rc > 0) {
1532 /* kernel-side HPT allocated */
1533 if (rc != shift) {
1534 error_setg(errp,
1535 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1536 shift, rc);
1539 spapr->htab_shift = shift;
1540 spapr->htab = NULL;
1541 } else {
1542 /* kernel-side HPT not needed, allocate in userspace instead */
1543 size_t size = 1ULL << shift;
1544 int i;
1546 spapr->htab = qemu_memalign(size, size);
1547 if (!spapr->htab) {
1548 error_setg_errno(errp, errno,
1549 "Could not allocate HPT of order %d", shift);
1550 return;
1553 memset(spapr->htab, 0, size);
1554 spapr->htab_shift = shift;
1556 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1557 DIRTY_HPTE(HPTE(spapr->htab, i));
1560 /* We're setting up a hash table, so that means we're not radix */
1561 spapr->patb_entry = 0;
1564 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1566 int hpt_shift;
1568 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1569 || (spapr->cas_reboot
1570 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1571 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1572 } else {
1573 uint64_t current_ram_size;
1575 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1576 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1578 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1580 if (spapr->vrma_adjust) {
1581 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1582 spapr->htab_shift);
1586 static int spapr_reset_drcs(Object *child, void *opaque)
1588 sPAPRDRConnector *drc =
1589 (sPAPRDRConnector *) object_dynamic_cast(child,
1590 TYPE_SPAPR_DR_CONNECTOR);
1592 if (drc) {
1593 spapr_drc_reset(drc);
1596 return 0;
1599 static void spapr_machine_reset(void)
1601 MachineState *machine = MACHINE(qdev_get_machine());
1602 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1603 PowerPCCPU *first_ppc_cpu;
1604 uint32_t rtas_limit;
1605 hwaddr rtas_addr, fdt_addr;
1606 void *fdt;
1607 int rc;
1609 spapr_caps_reset(spapr);
1611 first_ppc_cpu = POWERPC_CPU(first_cpu);
1612 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1613 ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1614 spapr->max_compat_pvr)) {
1615 /* If using KVM with radix mode available, VCPUs can be started
1616 * without a HPT because KVM will start them in radix mode.
1617 * Set the GR bit in PATB so that we know there is no HPT. */
1618 spapr->patb_entry = PATBE1_GR;
1619 } else {
1620 spapr_setup_hpt_and_vrma(spapr);
1623 /* if this reset wasn't generated by CAS, we should reset our
1624 * negotiated options and start from scratch */
1625 if (!spapr->cas_reboot) {
1626 spapr_ovec_cleanup(spapr->ov5_cas);
1627 spapr->ov5_cas = spapr_ovec_new();
1629 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1632 qemu_devices_reset();
1634 /* DRC reset may cause a device to be unplugged. This will cause troubles
1635 * if this device is used by another device (eg, a running vhost backend
1636 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1637 * situations, we reset DRCs after all devices have been reset.
1639 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1641 spapr_clear_pending_events(spapr);
1644 * We place the device tree and RTAS just below either the top of the RMA,
1645 * or just below 2GB, whichever is lowere, so that it can be
1646 * processed with 32-bit real mode code if necessary
1648 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1649 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1650 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1652 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1654 spapr_load_rtas(spapr, fdt, rtas_addr);
1656 rc = fdt_pack(fdt);
1658 /* Should only fail if we've built a corrupted tree */
1659 assert(rc == 0);
1661 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1662 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1663 fdt_totalsize(fdt), FDT_MAX_SIZE);
1664 exit(1);
1667 /* Load the fdt */
1668 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1669 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1670 g_free(fdt);
1672 /* Set up the entry state */
1673 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1674 first_ppc_cpu->env.gpr[5] = 0;
1676 spapr->cas_reboot = false;
1679 static void spapr_create_nvram(sPAPRMachineState *spapr)
1681 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1682 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1684 if (dinfo) {
1685 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1686 &error_fatal);
1689 qdev_init_nofail(dev);
1691 spapr->nvram = (struct sPAPRNVRAM *)dev;
1694 static void spapr_rtc_create(sPAPRMachineState *spapr)
1696 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1697 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1698 &error_fatal);
1699 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1700 &error_fatal);
1701 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1702 "date", &error_fatal);
1705 /* Returns whether we want to use VGA or not */
1706 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1708 switch (vga_interface_type) {
1709 case VGA_NONE:
1710 return false;
1711 case VGA_DEVICE:
1712 return true;
1713 case VGA_STD:
1714 case VGA_VIRTIO:
1715 return pci_vga_init(pci_bus) != NULL;
1716 default:
1717 error_setg(errp,
1718 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1719 return false;
1723 static int spapr_pre_load(void *opaque)
1725 int rc;
1727 rc = spapr_caps_pre_load(opaque);
1728 if (rc) {
1729 return rc;
1732 return 0;
1735 static int spapr_post_load(void *opaque, int version_id)
1737 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1738 int err = 0;
1740 err = spapr_caps_post_migration(spapr);
1741 if (err) {
1742 return err;
1745 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1746 CPUState *cs;
1747 CPU_FOREACH(cs) {
1748 PowerPCCPU *cpu = POWERPC_CPU(cs);
1749 icp_resend(ICP(cpu->intc));
1753 /* In earlier versions, there was no separate qdev for the PAPR
1754 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1755 * So when migrating from those versions, poke the incoming offset
1756 * value into the RTC device */
1757 if (version_id < 3) {
1758 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1761 if (kvm_enabled() && spapr->patb_entry) {
1762 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1763 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1764 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1766 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1767 if (err) {
1768 error_report("Process table config unsupported by the host");
1769 return -EINVAL;
1773 return err;
1776 static int spapr_pre_save(void *opaque)
1778 int rc;
1780 rc = spapr_caps_pre_save(opaque);
1781 if (rc) {
1782 return rc;
1785 return 0;
1788 static bool version_before_3(void *opaque, int version_id)
1790 return version_id < 3;
1793 static bool spapr_pending_events_needed(void *opaque)
1795 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1796 return !QTAILQ_EMPTY(&spapr->pending_events);
1799 static const VMStateDescription vmstate_spapr_event_entry = {
1800 .name = "spapr_event_log_entry",
1801 .version_id = 1,
1802 .minimum_version_id = 1,
1803 .fields = (VMStateField[]) {
1804 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1805 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1806 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1807 NULL, extended_length),
1808 VMSTATE_END_OF_LIST()
1812 static const VMStateDescription vmstate_spapr_pending_events = {
1813 .name = "spapr_pending_events",
1814 .version_id = 1,
1815 .minimum_version_id = 1,
1816 .needed = spapr_pending_events_needed,
1817 .fields = (VMStateField[]) {
1818 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1819 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1820 VMSTATE_END_OF_LIST()
1824 static bool spapr_ov5_cas_needed(void *opaque)
1826 sPAPRMachineState *spapr = opaque;
1827 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1828 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1829 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1830 bool cas_needed;
1832 /* Prior to the introduction of sPAPROptionVector, we had two option
1833 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1834 * Both of these options encode machine topology into the device-tree
1835 * in such a way that the now-booted OS should still be able to interact
1836 * appropriately with QEMU regardless of what options were actually
1837 * negotiatied on the source side.
1839 * As such, we can avoid migrating the CAS-negotiated options if these
1840 * are the only options available on the current machine/platform.
1841 * Since these are the only options available for pseries-2.7 and
1842 * earlier, this allows us to maintain old->new/new->old migration
1843 * compatibility.
1845 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1846 * via default pseries-2.8 machines and explicit command-line parameters.
1847 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1848 * of the actual CAS-negotiated values to continue working properly. For
1849 * example, availability of memory unplug depends on knowing whether
1850 * OV5_HP_EVT was negotiated via CAS.
1852 * Thus, for any cases where the set of available CAS-negotiatable
1853 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1854 * include the CAS-negotiated options in the migration stream, unless
1855 * if they affect boot time behaviour only.
1857 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1858 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1859 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1861 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1862 * the mask itself since in the future it's possible "legacy" bits may be
1863 * removed via machine options, which could generate a false positive
1864 * that breaks migration.
1866 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1867 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1869 spapr_ovec_cleanup(ov5_mask);
1870 spapr_ovec_cleanup(ov5_legacy);
1871 spapr_ovec_cleanup(ov5_removed);
1873 return cas_needed;
1876 static const VMStateDescription vmstate_spapr_ov5_cas = {
1877 .name = "spapr_option_vector_ov5_cas",
1878 .version_id = 1,
1879 .minimum_version_id = 1,
1880 .needed = spapr_ov5_cas_needed,
1881 .fields = (VMStateField[]) {
1882 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1883 vmstate_spapr_ovec, sPAPROptionVector),
1884 VMSTATE_END_OF_LIST()
1888 static bool spapr_patb_entry_needed(void *opaque)
1890 sPAPRMachineState *spapr = opaque;
1892 return !!spapr->patb_entry;
1895 static const VMStateDescription vmstate_spapr_patb_entry = {
1896 .name = "spapr_patb_entry",
1897 .version_id = 1,
1898 .minimum_version_id = 1,
1899 .needed = spapr_patb_entry_needed,
1900 .fields = (VMStateField[]) {
1901 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1902 VMSTATE_END_OF_LIST()
1906 static const VMStateDescription vmstate_spapr = {
1907 .name = "spapr",
1908 .version_id = 3,
1909 .minimum_version_id = 1,
1910 .pre_load = spapr_pre_load,
1911 .post_load = spapr_post_load,
1912 .pre_save = spapr_pre_save,
1913 .fields = (VMStateField[]) {
1914 /* used to be @next_irq */
1915 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1917 /* RTC offset */
1918 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1920 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1921 VMSTATE_END_OF_LIST()
1923 .subsections = (const VMStateDescription*[]) {
1924 &vmstate_spapr_ov5_cas,
1925 &vmstate_spapr_patb_entry,
1926 &vmstate_spapr_pending_events,
1927 &vmstate_spapr_cap_htm,
1928 &vmstate_spapr_cap_vsx,
1929 &vmstate_spapr_cap_dfp,
1930 &vmstate_spapr_cap_cfpc,
1931 &vmstate_spapr_cap_sbbc,
1932 &vmstate_spapr_cap_ibs,
1933 NULL
1937 static int htab_save_setup(QEMUFile *f, void *opaque)
1939 sPAPRMachineState *spapr = opaque;
1941 /* "Iteration" header */
1942 if (!spapr->htab_shift) {
1943 qemu_put_be32(f, -1);
1944 } else {
1945 qemu_put_be32(f, spapr->htab_shift);
1948 if (spapr->htab) {
1949 spapr->htab_save_index = 0;
1950 spapr->htab_first_pass = true;
1951 } else {
1952 if (spapr->htab_shift) {
1953 assert(kvm_enabled());
1958 return 0;
1961 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1962 int chunkstart, int n_valid, int n_invalid)
1964 qemu_put_be32(f, chunkstart);
1965 qemu_put_be16(f, n_valid);
1966 qemu_put_be16(f, n_invalid);
1967 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1968 HASH_PTE_SIZE_64 * n_valid);
1971 static void htab_save_end_marker(QEMUFile *f)
1973 qemu_put_be32(f, 0);
1974 qemu_put_be16(f, 0);
1975 qemu_put_be16(f, 0);
1978 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1979 int64_t max_ns)
1981 bool has_timeout = max_ns != -1;
1982 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1983 int index = spapr->htab_save_index;
1984 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1986 assert(spapr->htab_first_pass);
1988 do {
1989 int chunkstart;
1991 /* Consume invalid HPTEs */
1992 while ((index < htabslots)
1993 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1994 CLEAN_HPTE(HPTE(spapr->htab, index));
1995 index++;
1998 /* Consume valid HPTEs */
1999 chunkstart = index;
2000 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2001 && HPTE_VALID(HPTE(spapr->htab, index))) {
2002 CLEAN_HPTE(HPTE(spapr->htab, index));
2003 index++;
2006 if (index > chunkstart) {
2007 int n_valid = index - chunkstart;
2009 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2011 if (has_timeout &&
2012 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2013 break;
2016 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2018 if (index >= htabslots) {
2019 assert(index == htabslots);
2020 index = 0;
2021 spapr->htab_first_pass = false;
2023 spapr->htab_save_index = index;
2026 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
2027 int64_t max_ns)
2029 bool final = max_ns < 0;
2030 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2031 int examined = 0, sent = 0;
2032 int index = spapr->htab_save_index;
2033 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2035 assert(!spapr->htab_first_pass);
2037 do {
2038 int chunkstart, invalidstart;
2040 /* Consume non-dirty HPTEs */
2041 while ((index < htabslots)
2042 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2043 index++;
2044 examined++;
2047 chunkstart = index;
2048 /* Consume valid dirty HPTEs */
2049 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2050 && HPTE_DIRTY(HPTE(spapr->htab, index))
2051 && HPTE_VALID(HPTE(spapr->htab, index))) {
2052 CLEAN_HPTE(HPTE(spapr->htab, index));
2053 index++;
2054 examined++;
2057 invalidstart = index;
2058 /* Consume invalid dirty HPTEs */
2059 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2060 && HPTE_DIRTY(HPTE(spapr->htab, index))
2061 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2062 CLEAN_HPTE(HPTE(spapr->htab, index));
2063 index++;
2064 examined++;
2067 if (index > chunkstart) {
2068 int n_valid = invalidstart - chunkstart;
2069 int n_invalid = index - invalidstart;
2071 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2072 sent += index - chunkstart;
2074 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2075 break;
2079 if (examined >= htabslots) {
2080 break;
2083 if (index >= htabslots) {
2084 assert(index == htabslots);
2085 index = 0;
2087 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2089 if (index >= htabslots) {
2090 assert(index == htabslots);
2091 index = 0;
2094 spapr->htab_save_index = index;
2096 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2099 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2100 #define MAX_KVM_BUF_SIZE 2048
2102 static int htab_save_iterate(QEMUFile *f, void *opaque)
2104 sPAPRMachineState *spapr = opaque;
2105 int fd;
2106 int rc = 0;
2108 /* Iteration header */
2109 if (!spapr->htab_shift) {
2110 qemu_put_be32(f, -1);
2111 return 1;
2112 } else {
2113 qemu_put_be32(f, 0);
2116 if (!spapr->htab) {
2117 assert(kvm_enabled());
2119 fd = get_htab_fd(spapr);
2120 if (fd < 0) {
2121 return fd;
2124 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2125 if (rc < 0) {
2126 return rc;
2128 } else if (spapr->htab_first_pass) {
2129 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2130 } else {
2131 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2134 htab_save_end_marker(f);
2136 return rc;
2139 static int htab_save_complete(QEMUFile *f, void *opaque)
2141 sPAPRMachineState *spapr = opaque;
2142 int fd;
2144 /* Iteration header */
2145 if (!spapr->htab_shift) {
2146 qemu_put_be32(f, -1);
2147 return 0;
2148 } else {
2149 qemu_put_be32(f, 0);
2152 if (!spapr->htab) {
2153 int rc;
2155 assert(kvm_enabled());
2157 fd = get_htab_fd(spapr);
2158 if (fd < 0) {
2159 return fd;
2162 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2163 if (rc < 0) {
2164 return rc;
2166 } else {
2167 if (spapr->htab_first_pass) {
2168 htab_save_first_pass(f, spapr, -1);
2170 htab_save_later_pass(f, spapr, -1);
2173 /* End marker */
2174 htab_save_end_marker(f);
2176 return 0;
2179 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2181 sPAPRMachineState *spapr = opaque;
2182 uint32_t section_hdr;
2183 int fd = -1;
2184 Error *local_err = NULL;
2186 if (version_id < 1 || version_id > 1) {
2187 error_report("htab_load() bad version");
2188 return -EINVAL;
2191 section_hdr = qemu_get_be32(f);
2193 if (section_hdr == -1) {
2194 spapr_free_hpt(spapr);
2195 return 0;
2198 if (section_hdr) {
2199 /* First section gives the htab size */
2200 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2201 if (local_err) {
2202 error_report_err(local_err);
2203 return -EINVAL;
2205 return 0;
2208 if (!spapr->htab) {
2209 assert(kvm_enabled());
2211 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2212 if (fd < 0) {
2213 error_report_err(local_err);
2214 return fd;
2218 while (true) {
2219 uint32_t index;
2220 uint16_t n_valid, n_invalid;
2222 index = qemu_get_be32(f);
2223 n_valid = qemu_get_be16(f);
2224 n_invalid = qemu_get_be16(f);
2226 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2227 /* End of Stream */
2228 break;
2231 if ((index + n_valid + n_invalid) >
2232 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2233 /* Bad index in stream */
2234 error_report(
2235 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2236 index, n_valid, n_invalid, spapr->htab_shift);
2237 return -EINVAL;
2240 if (spapr->htab) {
2241 if (n_valid) {
2242 qemu_get_buffer(f, HPTE(spapr->htab, index),
2243 HASH_PTE_SIZE_64 * n_valid);
2245 if (n_invalid) {
2246 memset(HPTE(spapr->htab, index + n_valid), 0,
2247 HASH_PTE_SIZE_64 * n_invalid);
2249 } else {
2250 int rc;
2252 assert(fd >= 0);
2254 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2255 if (rc < 0) {
2256 return rc;
2261 if (!spapr->htab) {
2262 assert(fd >= 0);
2263 close(fd);
2266 return 0;
2269 static void htab_save_cleanup(void *opaque)
2271 sPAPRMachineState *spapr = opaque;
2273 close_htab_fd(spapr);
2276 static SaveVMHandlers savevm_htab_handlers = {
2277 .save_setup = htab_save_setup,
2278 .save_live_iterate = htab_save_iterate,
2279 .save_live_complete_precopy = htab_save_complete,
2280 .save_cleanup = htab_save_cleanup,
2281 .load_state = htab_load,
2284 static void spapr_boot_set(void *opaque, const char *boot_device,
2285 Error **errp)
2287 MachineState *machine = MACHINE(opaque);
2288 machine->boot_order = g_strdup(boot_device);
2291 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2293 MachineState *machine = MACHINE(spapr);
2294 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2295 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2296 int i;
2298 for (i = 0; i < nr_lmbs; i++) {
2299 uint64_t addr;
2301 addr = i * lmb_size + machine->device_memory->base;
2302 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2303 addr / lmb_size);
2308 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2309 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2310 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2312 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2314 int i;
2316 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2317 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2318 " is not aligned to %llu MiB",
2319 machine->ram_size,
2320 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2321 return;
2324 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2325 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2326 " is not aligned to %llu MiB",
2327 machine->ram_size,
2328 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2329 return;
2332 for (i = 0; i < nb_numa_nodes; i++) {
2333 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2334 error_setg(errp,
2335 "Node %d memory size 0x%" PRIx64
2336 " is not aligned to %llu MiB",
2337 i, numa_info[i].node_mem,
2338 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2339 return;
2344 /* find cpu slot in machine->possible_cpus by core_id */
2345 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2347 int index = id / smp_threads;
2349 if (index >= ms->possible_cpus->len) {
2350 return NULL;
2352 if (idx) {
2353 *idx = index;
2355 return &ms->possible_cpus->cpus[index];
2358 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2360 Error *local_err = NULL;
2361 bool vsmt_user = !!spapr->vsmt;
2362 int kvm_smt = kvmppc_smt_threads();
2363 int ret;
2365 if (!kvm_enabled() && (smp_threads > 1)) {
2366 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2367 "on a pseries machine");
2368 goto out;
2370 if (!is_power_of_2(smp_threads)) {
2371 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2372 "machine because it must be a power of 2", smp_threads);
2373 goto out;
2376 /* Detemine the VSMT mode to use: */
2377 if (vsmt_user) {
2378 if (spapr->vsmt < smp_threads) {
2379 error_setg(&local_err, "Cannot support VSMT mode %d"
2380 " because it must be >= threads/core (%d)",
2381 spapr->vsmt, smp_threads);
2382 goto out;
2384 /* In this case, spapr->vsmt has been set by the command line */
2385 } else {
2387 * Default VSMT value is tricky, because we need it to be as
2388 * consistent as possible (for migration), but this requires
2389 * changing it for at least some existing cases. We pick 8 as
2390 * the value that we'd get with KVM on POWER8, the
2391 * overwhelmingly common case in production systems.
2393 spapr->vsmt = MAX(8, smp_threads);
2396 /* KVM: If necessary, set the SMT mode: */
2397 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2398 ret = kvmppc_set_smt_threads(spapr->vsmt);
2399 if (ret) {
2400 /* Looks like KVM isn't able to change VSMT mode */
2401 error_setg(&local_err,
2402 "Failed to set KVM's VSMT mode to %d (errno %d)",
2403 spapr->vsmt, ret);
2404 /* We can live with that if the default one is big enough
2405 * for the number of threads, and a submultiple of the one
2406 * we want. In this case we'll waste some vcpu ids, but
2407 * behaviour will be correct */
2408 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2409 warn_report_err(local_err);
2410 local_err = NULL;
2411 goto out;
2412 } else {
2413 if (!vsmt_user) {
2414 error_append_hint(&local_err,
2415 "On PPC, a VM with %d threads/core"
2416 " on a host with %d threads/core"
2417 " requires the use of VSMT mode %d.\n",
2418 smp_threads, kvm_smt, spapr->vsmt);
2420 kvmppc_hint_smt_possible(&local_err);
2421 goto out;
2425 /* else TCG: nothing to do currently */
2426 out:
2427 error_propagate(errp, local_err);
2430 static void spapr_init_cpus(sPAPRMachineState *spapr)
2432 MachineState *machine = MACHINE(spapr);
2433 MachineClass *mc = MACHINE_GET_CLASS(machine);
2434 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2435 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2436 const CPUArchIdList *possible_cpus;
2437 int boot_cores_nr = smp_cpus / smp_threads;
2438 int i;
2440 possible_cpus = mc->possible_cpu_arch_ids(machine);
2441 if (mc->has_hotpluggable_cpus) {
2442 if (smp_cpus % smp_threads) {
2443 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2444 smp_cpus, smp_threads);
2445 exit(1);
2447 if (max_cpus % smp_threads) {
2448 error_report("max_cpus (%u) must be multiple of threads (%u)",
2449 max_cpus, smp_threads);
2450 exit(1);
2452 } else {
2453 if (max_cpus != smp_cpus) {
2454 error_report("This machine version does not support CPU hotplug");
2455 exit(1);
2457 boot_cores_nr = possible_cpus->len;
2460 /* VSMT must be set in order to be able to compute VCPU ids, ie to
2461 * call xics_max_server_number() or spapr_vcpu_id().
2463 spapr_set_vsmt_mode(spapr, &error_fatal);
2465 if (smc->pre_2_10_has_unused_icps) {
2466 int i;
2468 for (i = 0; i < xics_max_server_number(spapr); i++) {
2469 /* Dummy entries get deregistered when real ICPState objects
2470 * are registered during CPU core hotplug.
2472 pre_2_10_vmstate_register_dummy_icp(i);
2476 for (i = 0; i < possible_cpus->len; i++) {
2477 int core_id = i * smp_threads;
2479 if (mc->has_hotpluggable_cpus) {
2480 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2481 spapr_vcpu_id(spapr, core_id));
2484 if (i < boot_cores_nr) {
2485 Object *core = object_new(type);
2486 int nr_threads = smp_threads;
2488 /* Handle the partially filled core for older machine types */
2489 if ((i + 1) * smp_threads >= smp_cpus) {
2490 nr_threads = smp_cpus - i * smp_threads;
2493 object_property_set_int(core, nr_threads, "nr-threads",
2494 &error_fatal);
2495 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2496 &error_fatal);
2497 object_property_set_bool(core, true, "realized", &error_fatal);
2502 /* pSeries LPAR / sPAPR hardware init */
2503 static void spapr_machine_init(MachineState *machine)
2505 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2506 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2507 const char *kernel_filename = machine->kernel_filename;
2508 const char *initrd_filename = machine->initrd_filename;
2509 PCIHostState *phb;
2510 int i;
2511 MemoryRegion *sysmem = get_system_memory();
2512 MemoryRegion *ram = g_new(MemoryRegion, 1);
2513 hwaddr node0_size = spapr_node0_size(machine);
2514 long load_limit, fw_size;
2515 char *filename;
2516 Error *resize_hpt_err = NULL;
2517 PowerPCCPU *first_ppc_cpu;
2519 msi_nonbroken = true;
2521 QLIST_INIT(&spapr->phbs);
2522 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2524 /* Check HPT resizing availability */
2525 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2526 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2528 * If the user explicitly requested a mode we should either
2529 * supply it, or fail completely (which we do below). But if
2530 * it's not set explicitly, we reset our mode to something
2531 * that works
2533 if (resize_hpt_err) {
2534 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2535 error_free(resize_hpt_err);
2536 resize_hpt_err = NULL;
2537 } else {
2538 spapr->resize_hpt = smc->resize_hpt_default;
2542 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2544 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2546 * User requested HPT resize, but this host can't supply it. Bail out
2548 error_report_err(resize_hpt_err);
2549 exit(1);
2552 spapr->rma_size = node0_size;
2554 /* With KVM, we don't actually know whether KVM supports an
2555 * unbounded RMA (PR KVM) or is limited by the hash table size
2556 * (HV KVM using VRMA), so we always assume the latter
2558 * In that case, we also limit the initial allocations for RTAS
2559 * etc... to 256M since we have no way to know what the VRMA size
2560 * is going to be as it depends on the size of the hash table
2561 * which isn't determined yet.
2563 if (kvm_enabled()) {
2564 spapr->vrma_adjust = 1;
2565 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2568 /* Actually we don't support unbounded RMA anymore since we added
2569 * proper emulation of HV mode. The max we can get is 16G which
2570 * also happens to be what we configure for PAPR mode so make sure
2571 * we don't do anything bigger than that
2573 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2575 if (spapr->rma_size > node0_size) {
2576 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2577 spapr->rma_size);
2578 exit(1);
2581 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2582 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2584 /* Set up Interrupt Controller before we create the VCPUs */
2585 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2587 /* Set up containers for ibm,client-architecture-support negotiated options
2589 spapr->ov5 = spapr_ovec_new();
2590 spapr->ov5_cas = spapr_ovec_new();
2592 if (smc->dr_lmb_enabled) {
2593 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2594 spapr_validate_node_memory(machine, &error_fatal);
2597 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2599 /* advertise support for dedicated HP event source to guests */
2600 if (spapr->use_hotplug_event_source) {
2601 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2604 /* advertise support for HPT resizing */
2605 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2606 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2609 /* advertise support for ibm,dyamic-memory-v2 */
2610 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2612 /* init CPUs */
2613 spapr_init_cpus(spapr);
2615 first_ppc_cpu = POWERPC_CPU(first_cpu);
2616 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2617 ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
2618 spapr->max_compat_pvr)) {
2619 /* KVM and TCG always allow GTSE with radix... */
2620 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2622 /* ... but not with hash (currently). */
2624 if (kvm_enabled()) {
2625 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2626 kvmppc_enable_logical_ci_hcalls();
2627 kvmppc_enable_set_mode_hcall();
2629 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2630 kvmppc_enable_clear_ref_mod_hcalls();
2633 /* allocate RAM */
2634 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2635 machine->ram_size);
2636 memory_region_add_subregion(sysmem, 0, ram);
2638 /* always allocate the device memory information */
2639 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2641 /* initialize hotplug memory address space */
2642 if (machine->ram_size < machine->maxram_size) {
2643 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2645 * Limit the number of hotpluggable memory slots to half the number
2646 * slots that KVM supports, leaving the other half for PCI and other
2647 * devices. However ensure that number of slots doesn't drop below 32.
2649 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2650 SPAPR_MAX_RAM_SLOTS;
2652 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2653 max_memslots = SPAPR_MAX_RAM_SLOTS;
2655 if (machine->ram_slots > max_memslots) {
2656 error_report("Specified number of memory slots %"
2657 PRIu64" exceeds max supported %d",
2658 machine->ram_slots, max_memslots);
2659 exit(1);
2662 machine->device_memory->base = ROUND_UP(machine->ram_size,
2663 SPAPR_DEVICE_MEM_ALIGN);
2664 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2665 "device-memory", device_mem_size);
2666 memory_region_add_subregion(sysmem, machine->device_memory->base,
2667 &machine->device_memory->mr);
2670 if (smc->dr_lmb_enabled) {
2671 spapr_create_lmb_dr_connectors(spapr);
2674 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2675 if (!filename) {
2676 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2677 exit(1);
2679 spapr->rtas_size = get_image_size(filename);
2680 if (spapr->rtas_size < 0) {
2681 error_report("Could not get size of LPAR rtas '%s'", filename);
2682 exit(1);
2684 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2685 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2686 error_report("Could not load LPAR rtas '%s'", filename);
2687 exit(1);
2689 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2690 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2691 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2692 exit(1);
2694 g_free(filename);
2696 /* Set up RTAS event infrastructure */
2697 spapr_events_init(spapr);
2699 /* Set up the RTC RTAS interfaces */
2700 spapr_rtc_create(spapr);
2702 /* Set up VIO bus */
2703 spapr->vio_bus = spapr_vio_bus_init();
2705 for (i = 0; i < serial_max_hds(); i++) {
2706 if (serial_hd(i)) {
2707 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2711 /* We always have at least the nvram device on VIO */
2712 spapr_create_nvram(spapr);
2714 /* Set up PCI */
2715 spapr_pci_rtas_init();
2717 phb = spapr_create_phb(spapr, 0);
2719 for (i = 0; i < nb_nics; i++) {
2720 NICInfo *nd = &nd_table[i];
2722 if (!nd->model) {
2723 nd->model = g_strdup("spapr-vlan");
2726 if (g_str_equal(nd->model, "spapr-vlan") ||
2727 g_str_equal(nd->model, "ibmveth")) {
2728 spapr_vlan_create(spapr->vio_bus, nd);
2729 } else {
2730 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2734 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2735 spapr_vscsi_create(spapr->vio_bus);
2738 /* Graphics */
2739 if (spapr_vga_init(phb->bus, &error_fatal)) {
2740 spapr->has_graphics = true;
2741 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2744 if (machine->usb) {
2745 if (smc->use_ohci_by_default) {
2746 pci_create_simple(phb->bus, -1, "pci-ohci");
2747 } else {
2748 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2751 if (spapr->has_graphics) {
2752 USBBus *usb_bus = usb_bus_find(-1);
2754 usb_create_simple(usb_bus, "usb-kbd");
2755 usb_create_simple(usb_bus, "usb-mouse");
2759 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2760 error_report(
2761 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2762 MIN_RMA_SLOF);
2763 exit(1);
2766 if (kernel_filename) {
2767 uint64_t lowaddr = 0;
2769 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2770 NULL, NULL, &lowaddr, NULL, 1,
2771 PPC_ELF_MACHINE, 0, 0);
2772 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2773 spapr->kernel_size = load_elf(kernel_filename,
2774 translate_kernel_address, NULL, NULL,
2775 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2776 0, 0);
2777 spapr->kernel_le = spapr->kernel_size > 0;
2779 if (spapr->kernel_size < 0) {
2780 error_report("error loading %s: %s", kernel_filename,
2781 load_elf_strerror(spapr->kernel_size));
2782 exit(1);
2785 /* load initrd */
2786 if (initrd_filename) {
2787 /* Try to locate the initrd in the gap between the kernel
2788 * and the firmware. Add a bit of space just in case
2790 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2791 + 0x1ffff) & ~0xffff;
2792 spapr->initrd_size = load_image_targphys(initrd_filename,
2793 spapr->initrd_base,
2794 load_limit
2795 - spapr->initrd_base);
2796 if (spapr->initrd_size < 0) {
2797 error_report("could not load initial ram disk '%s'",
2798 initrd_filename);
2799 exit(1);
2804 if (bios_name == NULL) {
2805 bios_name = FW_FILE_NAME;
2807 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2808 if (!filename) {
2809 error_report("Could not find LPAR firmware '%s'", bios_name);
2810 exit(1);
2812 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2813 if (fw_size <= 0) {
2814 error_report("Could not load LPAR firmware '%s'", filename);
2815 exit(1);
2817 g_free(filename);
2819 /* FIXME: Should register things through the MachineState's qdev
2820 * interface, this is a legacy from the sPAPREnvironment structure
2821 * which predated MachineState but had a similar function */
2822 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2823 register_savevm_live(NULL, "spapr/htab", -1, 1,
2824 &savevm_htab_handlers, spapr);
2826 qemu_register_boot_set(spapr_boot_set, spapr);
2828 if (kvm_enabled()) {
2829 /* to stop and start vmclock */
2830 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2831 &spapr->tb);
2833 kvmppc_spapr_enable_inkernel_multitce();
2837 static int spapr_kvm_type(const char *vm_type)
2839 if (!vm_type) {
2840 return 0;
2843 if (!strcmp(vm_type, "HV")) {
2844 return 1;
2847 if (!strcmp(vm_type, "PR")) {
2848 return 2;
2851 error_report("Unknown kvm-type specified '%s'", vm_type);
2852 exit(1);
2856 * Implementation of an interface to adjust firmware path
2857 * for the bootindex property handling.
2859 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2860 DeviceState *dev)
2862 #define CAST(type, obj, name) \
2863 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2864 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2865 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2866 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2868 if (d) {
2869 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2870 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2871 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2873 if (spapr) {
2875 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2876 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2877 * in the top 16 bits of the 64-bit LUN
2879 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2880 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2881 (uint64_t)id << 48);
2882 } else if (virtio) {
2884 * We use SRP luns of the form 01000000 | (target << 8) | lun
2885 * in the top 32 bits of the 64-bit LUN
2886 * Note: the quote above is from SLOF and it is wrong,
2887 * the actual binding is:
2888 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2890 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2891 if (d->lun >= 256) {
2892 /* Use the LUN "flat space addressing method" */
2893 id |= 0x4000;
2895 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2896 (uint64_t)id << 32);
2897 } else if (usb) {
2899 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2900 * in the top 32 bits of the 64-bit LUN
2902 unsigned usb_port = atoi(usb->port->path);
2903 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2904 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2905 (uint64_t)id << 32);
2910 * SLOF probes the USB devices, and if it recognizes that the device is a
2911 * storage device, it changes its name to "storage" instead of "usb-host",
2912 * and additionally adds a child node for the SCSI LUN, so the correct
2913 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2915 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2916 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2917 if (usb_host_dev_is_scsi_storage(usbdev)) {
2918 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2922 if (phb) {
2923 /* Replace "pci" with "pci@800000020000000" */
2924 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2927 if (vsc) {
2928 /* Same logic as virtio above */
2929 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2930 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2933 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2934 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2935 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2936 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2939 return NULL;
2942 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2944 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2946 return g_strdup(spapr->kvm_type);
2949 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2951 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2953 g_free(spapr->kvm_type);
2954 spapr->kvm_type = g_strdup(value);
2957 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2959 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2961 return spapr->use_hotplug_event_source;
2964 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2965 Error **errp)
2967 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2969 spapr->use_hotplug_event_source = value;
2972 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
2974 return true;
2977 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2979 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2981 switch (spapr->resize_hpt) {
2982 case SPAPR_RESIZE_HPT_DEFAULT:
2983 return g_strdup("default");
2984 case SPAPR_RESIZE_HPT_DISABLED:
2985 return g_strdup("disabled");
2986 case SPAPR_RESIZE_HPT_ENABLED:
2987 return g_strdup("enabled");
2988 case SPAPR_RESIZE_HPT_REQUIRED:
2989 return g_strdup("required");
2991 g_assert_not_reached();
2994 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
2996 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2998 if (strcmp(value, "default") == 0) {
2999 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3000 } else if (strcmp(value, "disabled") == 0) {
3001 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3002 } else if (strcmp(value, "enabled") == 0) {
3003 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3004 } else if (strcmp(value, "required") == 0) {
3005 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3006 } else {
3007 error_setg(errp, "Bad value for \"resize-hpt\" property");
3011 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3012 void *opaque, Error **errp)
3014 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3017 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3018 void *opaque, Error **errp)
3020 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3023 static void spapr_instance_init(Object *obj)
3025 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3027 spapr->htab_fd = -1;
3028 spapr->use_hotplug_event_source = true;
3029 object_property_add_str(obj, "kvm-type",
3030 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3031 object_property_set_description(obj, "kvm-type",
3032 "Specifies the KVM virtualization mode (HV, PR)",
3033 NULL);
3034 object_property_add_bool(obj, "modern-hotplug-events",
3035 spapr_get_modern_hotplug_events,
3036 spapr_set_modern_hotplug_events,
3037 NULL);
3038 object_property_set_description(obj, "modern-hotplug-events",
3039 "Use dedicated hotplug event mechanism in"
3040 " place of standard EPOW events when possible"
3041 " (required for memory hot-unplug support)",
3042 NULL);
3043 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3044 "Maximum permitted CPU compatibility mode",
3045 &error_fatal);
3047 object_property_add_str(obj, "resize-hpt",
3048 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3049 object_property_set_description(obj, "resize-hpt",
3050 "Resizing of the Hash Page Table (enabled, disabled, required)",
3051 NULL);
3052 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3053 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3054 object_property_set_description(obj, "vsmt",
3055 "Virtual SMT: KVM behaves as if this were"
3056 " the host's SMT mode", &error_abort);
3057 object_property_add_bool(obj, "vfio-no-msix-emulation",
3058 spapr_get_msix_emulation, NULL, NULL);
3061 static void spapr_machine_finalizefn(Object *obj)
3063 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3065 g_free(spapr->kvm_type);
3068 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3070 cpu_synchronize_state(cs);
3071 ppc_cpu_do_system_reset(cs);
3074 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3076 CPUState *cs;
3078 CPU_FOREACH(cs) {
3079 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3083 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3084 uint32_t node, bool dedicated_hp_event_source,
3085 Error **errp)
3087 sPAPRDRConnector *drc;
3088 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3089 int i, fdt_offset, fdt_size;
3090 void *fdt;
3091 uint64_t addr = addr_start;
3092 bool hotplugged = spapr_drc_hotplugged(dev);
3093 Error *local_err = NULL;
3095 for (i = 0; i < nr_lmbs; i++) {
3096 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3097 addr / SPAPR_MEMORY_BLOCK_SIZE);
3098 g_assert(drc);
3100 fdt = create_device_tree(&fdt_size);
3101 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
3102 SPAPR_MEMORY_BLOCK_SIZE);
3104 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3105 if (local_err) {
3106 while (addr > addr_start) {
3107 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3108 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3109 addr / SPAPR_MEMORY_BLOCK_SIZE);
3110 spapr_drc_detach(drc);
3112 g_free(fdt);
3113 error_propagate(errp, local_err);
3114 return;
3116 if (!hotplugged) {
3117 spapr_drc_reset(drc);
3119 addr += SPAPR_MEMORY_BLOCK_SIZE;
3121 /* send hotplug notification to the
3122 * guest only in case of hotplugged memory
3124 if (hotplugged) {
3125 if (dedicated_hp_event_source) {
3126 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3127 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3128 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3129 nr_lmbs,
3130 spapr_drc_index(drc));
3131 } else {
3132 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3133 nr_lmbs);
3138 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3139 uint32_t node, Error **errp)
3141 Error *local_err = NULL;
3142 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3143 PCDIMMDevice *dimm = PC_DIMM(dev);
3144 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3145 MemoryRegion *mr;
3146 uint64_t align, size, addr;
3148 mr = ddc->get_memory_region(dimm, &local_err);
3149 if (local_err) {
3150 goto out;
3152 align = memory_region_get_alignment(mr);
3153 size = memory_region_size(mr);
3155 pc_dimm_memory_plug(dev, MACHINE(ms), align, &local_err);
3156 if (local_err) {
3157 goto out;
3160 addr = object_property_get_uint(OBJECT(dimm),
3161 PC_DIMM_ADDR_PROP, &local_err);
3162 if (local_err) {
3163 goto out_unplug;
3166 spapr_add_lmbs(dev, addr, size, node,
3167 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3168 &local_err);
3169 if (local_err) {
3170 goto out_unplug;
3173 return;
3175 out_unplug:
3176 pc_dimm_memory_unplug(dev, MACHINE(ms));
3177 out:
3178 error_propagate(errp, local_err);
3181 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3182 Error **errp)
3184 PCDIMMDevice *dimm = PC_DIMM(dev);
3185 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3186 MemoryRegion *mr;
3187 uint64_t size;
3188 char *mem_dev;
3190 mr = ddc->get_memory_region(dimm, errp);
3191 if (!mr) {
3192 return;
3194 size = memory_region_size(mr);
3196 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3197 error_setg(errp, "Hotplugged memory size must be a multiple of "
3198 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
3199 return;
3202 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
3203 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
3204 error_setg(errp, "Memory backend has bad page size. "
3205 "Use 'memory-backend-file' with correct mem-path.");
3206 goto out;
3209 out:
3210 g_free(mem_dev);
3213 struct sPAPRDIMMState {
3214 PCDIMMDevice *dimm;
3215 uint32_t nr_lmbs;
3216 QTAILQ_ENTRY(sPAPRDIMMState) next;
3219 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3220 PCDIMMDevice *dimm)
3222 sPAPRDIMMState *dimm_state = NULL;
3224 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3225 if (dimm_state->dimm == dimm) {
3226 break;
3229 return dimm_state;
3232 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3233 uint32_t nr_lmbs,
3234 PCDIMMDevice *dimm)
3236 sPAPRDIMMState *ds = NULL;
3239 * If this request is for a DIMM whose removal had failed earlier
3240 * (due to guest's refusal to remove the LMBs), we would have this
3241 * dimm already in the pending_dimm_unplugs list. In that
3242 * case don't add again.
3244 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3245 if (!ds) {
3246 ds = g_malloc0(sizeof(sPAPRDIMMState));
3247 ds->nr_lmbs = nr_lmbs;
3248 ds->dimm = dimm;
3249 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3251 return ds;
3254 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3255 sPAPRDIMMState *dimm_state)
3257 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3258 g_free(dimm_state);
3261 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3262 PCDIMMDevice *dimm)
3264 sPAPRDRConnector *drc;
3265 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3266 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3267 uint64_t size = memory_region_size(mr);
3268 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3269 uint32_t avail_lmbs = 0;
3270 uint64_t addr_start, addr;
3271 int i;
3273 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3274 &error_abort);
3276 addr = addr_start;
3277 for (i = 0; i < nr_lmbs; i++) {
3278 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3279 addr / SPAPR_MEMORY_BLOCK_SIZE);
3280 g_assert(drc);
3281 if (drc->dev) {
3282 avail_lmbs++;
3284 addr += SPAPR_MEMORY_BLOCK_SIZE;
3287 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3290 /* Callback to be called during DRC release. */
3291 void spapr_lmb_release(DeviceState *dev)
3293 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
3294 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3296 /* This information will get lost if a migration occurs
3297 * during the unplug process. In this case recover it. */
3298 if (ds == NULL) {
3299 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3300 g_assert(ds);
3301 /* The DRC being examined by the caller at least must be counted */
3302 g_assert(ds->nr_lmbs);
3305 if (--ds->nr_lmbs) {
3306 return;
3310 * Now that all the LMBs have been removed by the guest, call the
3311 * pc-dimm unplug handler to cleanup up the pc-dimm device.
3313 pc_dimm_memory_unplug(dev, MACHINE(spapr));
3314 object_unparent(OBJECT(dev));
3315 spapr_pending_dimm_unplugs_remove(spapr, ds);
3318 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3319 DeviceState *dev, Error **errp)
3321 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3322 Error *local_err = NULL;
3323 PCDIMMDevice *dimm = PC_DIMM(dev);
3324 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3325 MemoryRegion *mr;
3326 uint32_t nr_lmbs;
3327 uint64_t size, addr_start, addr;
3328 int i;
3329 sPAPRDRConnector *drc;
3331 mr = ddc->get_memory_region(dimm, &local_err);
3332 if (local_err) {
3333 goto out;
3335 size = memory_region_size(mr);
3336 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3338 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3339 &local_err);
3340 if (local_err) {
3341 goto out;
3345 * An existing pending dimm state for this DIMM means that there is an
3346 * unplug operation in progress, waiting for the spapr_lmb_release
3347 * callback to complete the job (BQL can't cover that far). In this case,
3348 * bail out to avoid detaching DRCs that were already released.
3350 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3351 error_setg(&local_err,
3352 "Memory unplug already in progress for device %s",
3353 dev->id);
3354 goto out;
3357 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3359 addr = addr_start;
3360 for (i = 0; i < nr_lmbs; i++) {
3361 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3362 addr / SPAPR_MEMORY_BLOCK_SIZE);
3363 g_assert(drc);
3365 spapr_drc_detach(drc);
3366 addr += SPAPR_MEMORY_BLOCK_SIZE;
3369 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3370 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3371 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3372 nr_lmbs, spapr_drc_index(drc));
3373 out:
3374 error_propagate(errp, local_err);
3377 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3378 sPAPRMachineState *spapr)
3380 PowerPCCPU *cpu = POWERPC_CPU(cs);
3381 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3382 int id = spapr_get_vcpu_id(cpu);
3383 void *fdt;
3384 int offset, fdt_size;
3385 char *nodename;
3387 fdt = create_device_tree(&fdt_size);
3388 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3389 offset = fdt_add_subnode(fdt, 0, nodename);
3391 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3392 g_free(nodename);
3394 *fdt_offset = offset;
3395 return fdt;
3398 /* Callback to be called during DRC release. */
3399 void spapr_core_release(DeviceState *dev)
3401 MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
3402 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3403 CPUCore *cc = CPU_CORE(dev);
3404 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3406 if (smc->pre_2_10_has_unused_icps) {
3407 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3408 int i;
3410 for (i = 0; i < cc->nr_threads; i++) {
3411 CPUState *cs = CPU(sc->threads[i]);
3413 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3417 assert(core_slot);
3418 core_slot->cpu = NULL;
3419 object_unparent(OBJECT(dev));
3422 static
3423 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3424 Error **errp)
3426 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3427 int index;
3428 sPAPRDRConnector *drc;
3429 CPUCore *cc = CPU_CORE(dev);
3431 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3432 error_setg(errp, "Unable to find CPU core with core-id: %d",
3433 cc->core_id);
3434 return;
3436 if (index == 0) {
3437 error_setg(errp, "Boot CPU core may not be unplugged");
3438 return;
3441 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3442 spapr_vcpu_id(spapr, cc->core_id));
3443 g_assert(drc);
3445 spapr_drc_detach(drc);
3447 spapr_hotplug_req_remove_by_index(drc);
3450 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3451 Error **errp)
3453 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3454 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3455 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3456 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3457 CPUCore *cc = CPU_CORE(dev);
3458 CPUState *cs = CPU(core->threads[0]);
3459 sPAPRDRConnector *drc;
3460 Error *local_err = NULL;
3461 CPUArchId *core_slot;
3462 int index;
3463 bool hotplugged = spapr_drc_hotplugged(dev);
3465 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3466 if (!core_slot) {
3467 error_setg(errp, "Unable to find CPU core with core-id: %d",
3468 cc->core_id);
3469 return;
3471 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3472 spapr_vcpu_id(spapr, cc->core_id));
3474 g_assert(drc || !mc->has_hotpluggable_cpus);
3476 if (drc) {
3477 void *fdt;
3478 int fdt_offset;
3480 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3482 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3483 if (local_err) {
3484 g_free(fdt);
3485 error_propagate(errp, local_err);
3486 return;
3489 if (hotplugged) {
3491 * Send hotplug notification interrupt to the guest only
3492 * in case of hotplugged CPUs.
3494 spapr_hotplug_req_add_by_index(drc);
3495 } else {
3496 spapr_drc_reset(drc);
3500 core_slot->cpu = OBJECT(dev);
3502 if (smc->pre_2_10_has_unused_icps) {
3503 int i;
3505 for (i = 0; i < cc->nr_threads; i++) {
3506 cs = CPU(core->threads[i]);
3507 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3512 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3513 Error **errp)
3515 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3516 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3517 Error *local_err = NULL;
3518 CPUCore *cc = CPU_CORE(dev);
3519 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3520 const char *type = object_get_typename(OBJECT(dev));
3521 CPUArchId *core_slot;
3522 int index;
3524 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3525 error_setg(&local_err, "CPU hotplug not supported for this machine");
3526 goto out;
3529 if (strcmp(base_core_type, type)) {
3530 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3531 goto out;
3534 if (cc->core_id % smp_threads) {
3535 error_setg(&local_err, "invalid core id %d", cc->core_id);
3536 goto out;
3540 * In general we should have homogeneous threads-per-core, but old
3541 * (pre hotplug support) machine types allow the last core to have
3542 * reduced threads as a compatibility hack for when we allowed
3543 * total vcpus not a multiple of threads-per-core.
3545 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3546 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3547 cc->nr_threads, smp_threads);
3548 goto out;
3551 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3552 if (!core_slot) {
3553 error_setg(&local_err, "core id %d out of range", cc->core_id);
3554 goto out;
3557 if (core_slot->cpu) {
3558 error_setg(&local_err, "core %d already populated", cc->core_id);
3559 goto out;
3562 numa_cpu_pre_plug(core_slot, dev, &local_err);
3564 out:
3565 error_propagate(errp, local_err);
3568 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3569 DeviceState *dev, Error **errp)
3571 MachineState *ms = MACHINE(hotplug_dev);
3572 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3574 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3575 int node;
3577 if (!smc->dr_lmb_enabled) {
3578 error_setg(errp, "Memory hotplug not supported for this machine");
3579 return;
3581 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3582 if (*errp) {
3583 return;
3585 if (node < 0 || node >= MAX_NODES) {
3586 error_setg(errp, "Invaild node %d", node);
3587 return;
3590 spapr_memory_plug(hotplug_dev, dev, node, errp);
3591 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3592 spapr_core_plug(hotplug_dev, dev, errp);
3596 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3597 DeviceState *dev, Error **errp)
3599 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3600 MachineClass *mc = MACHINE_GET_CLASS(sms);
3602 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3603 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3604 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3605 } else {
3606 /* NOTE: this means there is a window after guest reset, prior to
3607 * CAS negotiation, where unplug requests will fail due to the
3608 * capability not being detected yet. This is a bit different than
3609 * the case with PCI unplug, where the events will be queued and
3610 * eventually handled by the guest after boot
3612 error_setg(errp, "Memory hot unplug not supported for this guest");
3614 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3615 if (!mc->has_hotpluggable_cpus) {
3616 error_setg(errp, "CPU hot unplug not supported on this machine");
3617 return;
3619 spapr_core_unplug_request(hotplug_dev, dev, errp);
3623 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3624 DeviceState *dev, Error **errp)
3626 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3627 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3628 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3629 spapr_core_pre_plug(hotplug_dev, dev, errp);
3633 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3634 DeviceState *dev)
3636 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3637 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3638 return HOTPLUG_HANDLER(machine);
3640 return NULL;
3643 static CpuInstanceProperties
3644 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3646 CPUArchId *core_slot;
3647 MachineClass *mc = MACHINE_GET_CLASS(machine);
3649 /* make sure possible_cpu are intialized */
3650 mc->possible_cpu_arch_ids(machine);
3651 /* get CPU core slot containing thread that matches cpu_index */
3652 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3653 assert(core_slot);
3654 return core_slot->props;
3657 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3659 return idx / smp_cores % nb_numa_nodes;
3662 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3664 int i;
3665 const char *core_type;
3666 int spapr_max_cores = max_cpus / smp_threads;
3667 MachineClass *mc = MACHINE_GET_CLASS(machine);
3669 if (!mc->has_hotpluggable_cpus) {
3670 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3672 if (machine->possible_cpus) {
3673 assert(machine->possible_cpus->len == spapr_max_cores);
3674 return machine->possible_cpus;
3677 core_type = spapr_get_cpu_core_type(machine->cpu_type);
3678 if (!core_type) {
3679 error_report("Unable to find sPAPR CPU Core definition");
3680 exit(1);
3683 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3684 sizeof(CPUArchId) * spapr_max_cores);
3685 machine->possible_cpus->len = spapr_max_cores;
3686 for (i = 0; i < machine->possible_cpus->len; i++) {
3687 int core_id = i * smp_threads;
3689 machine->possible_cpus->cpus[i].type = core_type;
3690 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3691 machine->possible_cpus->cpus[i].arch_id = core_id;
3692 machine->possible_cpus->cpus[i].props.has_core_id = true;
3693 machine->possible_cpus->cpus[i].props.core_id = core_id;
3695 return machine->possible_cpus;
3698 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3699 uint64_t *buid, hwaddr *pio,
3700 hwaddr *mmio32, hwaddr *mmio64,
3701 unsigned n_dma, uint32_t *liobns, Error **errp)
3704 * New-style PHB window placement.
3706 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3707 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3708 * windows.
3710 * Some guest kernels can't work with MMIO windows above 1<<46
3711 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3713 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3714 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3715 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3716 * 1TiB 64-bit MMIO windows for each PHB.
3718 const uint64_t base_buid = 0x800000020000000ULL;
3719 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3720 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3721 int i;
3723 /* Sanity check natural alignments */
3724 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3725 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3726 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3727 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3728 /* Sanity check bounds */
3729 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3730 SPAPR_PCI_MEM32_WIN_SIZE);
3731 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3732 SPAPR_PCI_MEM64_WIN_SIZE);
3734 if (index >= SPAPR_MAX_PHBS) {
3735 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3736 SPAPR_MAX_PHBS - 1);
3737 return;
3740 *buid = base_buid + index;
3741 for (i = 0; i < n_dma; ++i) {
3742 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3745 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3746 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3747 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3750 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3752 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3754 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3757 static void spapr_ics_resend(XICSFabric *dev)
3759 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3761 ics_resend(spapr->ics);
3764 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3766 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3768 return cpu ? ICP(cpu->intc) : NULL;
3771 #define ICS_IRQ_FREE(ics, srcno) \
3772 (!((ics)->irqs[(srcno)].flags & (XICS_FLAGS_IRQ_MASK)))
3774 static int ics_find_free_block(ICSState *ics, int num, int alignnum)
3776 int first, i;
3778 for (first = 0; first < ics->nr_irqs; first += alignnum) {
3779 if (num > (ics->nr_irqs - first)) {
3780 return -1;
3782 for (i = first; i < first + num; ++i) {
3783 if (!ICS_IRQ_FREE(ics, i)) {
3784 break;
3787 if (i == (first + num)) {
3788 return first;
3792 return -1;
3796 * Allocate the IRQ number and set the IRQ type, LSI or MSI
3798 static void spapr_irq_set_lsi(sPAPRMachineState *spapr, int irq, bool lsi)
3800 ics_set_irq_type(spapr->ics, irq - spapr->ics->offset, lsi);
3803 int spapr_irq_alloc(sPAPRMachineState *spapr, int irq_hint, bool lsi,
3804 Error **errp)
3806 ICSState *ics = spapr->ics;
3807 int irq;
3809 assert(ics);
3811 if (irq_hint) {
3812 if (!ICS_IRQ_FREE(ics, irq_hint - ics->offset)) {
3813 error_setg(errp, "can't allocate IRQ %d: already in use", irq_hint);
3814 return -1;
3816 irq = irq_hint;
3817 } else {
3818 irq = ics_find_free_block(ics, 1, 1);
3819 if (irq < 0) {
3820 error_setg(errp, "can't allocate IRQ: no IRQ left");
3821 return -1;
3823 irq += ics->offset;
3826 spapr_irq_set_lsi(spapr, irq, lsi);
3827 trace_spapr_irq_alloc(irq);
3829 return irq;
3833 * Allocate block of consecutive IRQs, and return the number of the first IRQ in
3834 * the block. If align==true, aligns the first IRQ number to num.
3836 int spapr_irq_alloc_block(sPAPRMachineState *spapr, int num, bool lsi,
3837 bool align, Error **errp)
3839 ICSState *ics = spapr->ics;
3840 int i, first = -1;
3842 assert(ics);
3845 * MSIMesage::data is used for storing VIRQ so
3846 * it has to be aligned to num to support multiple
3847 * MSI vectors. MSI-X is not affected by this.
3848 * The hint is used for the first IRQ, the rest should
3849 * be allocated continuously.
3851 if (align) {
3852 assert((num == 1) || (num == 2) || (num == 4) ||
3853 (num == 8) || (num == 16) || (num == 32));
3854 first = ics_find_free_block(ics, num, num);
3855 } else {
3856 first = ics_find_free_block(ics, num, 1);
3858 if (first < 0) {
3859 error_setg(errp, "can't find a free %d-IRQ block", num);
3860 return -1;
3863 first += ics->offset;
3864 for (i = first; i < first + num; ++i) {
3865 spapr_irq_set_lsi(spapr, i, lsi);
3868 trace_spapr_irq_alloc_block(first, num, lsi, align);
3870 return first;
3873 void spapr_irq_free(sPAPRMachineState *spapr, int irq, int num)
3875 ICSState *ics = spapr->ics;
3876 int srcno = irq - ics->offset;
3877 int i;
3879 if (ics_valid_irq(ics, irq)) {
3880 trace_spapr_irq_free(0, irq, num);
3881 for (i = srcno; i < srcno + num; ++i) {
3882 if (ICS_IRQ_FREE(ics, i)) {
3883 trace_spapr_irq_free_warn(0, i + ics->offset);
3885 memset(&ics->irqs[i], 0, sizeof(ICSIRQState));
3890 qemu_irq spapr_qirq(sPAPRMachineState *spapr, int irq)
3892 ICSState *ics = spapr->ics;
3894 if (ics_valid_irq(ics, irq)) {
3895 return ics->qirqs[irq - ics->offset];
3898 return NULL;
3901 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3902 Monitor *mon)
3904 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3905 CPUState *cs;
3907 CPU_FOREACH(cs) {
3908 PowerPCCPU *cpu = POWERPC_CPU(cs);
3910 icp_pic_print_info(ICP(cpu->intc), mon);
3913 ics_pic_print_info(spapr->ics, mon);
3916 int spapr_get_vcpu_id(PowerPCCPU *cpu)
3918 return cpu->vcpu_id;
3921 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
3923 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3924 int vcpu_id;
3926 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
3928 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
3929 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
3930 error_append_hint(errp, "Adjust the number of cpus to %d "
3931 "or try to raise the number of threads per core\n",
3932 vcpu_id * smp_threads / spapr->vsmt);
3933 return;
3936 cpu->vcpu_id = vcpu_id;
3939 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3941 CPUState *cs;
3943 CPU_FOREACH(cs) {
3944 PowerPCCPU *cpu = POWERPC_CPU(cs);
3946 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
3947 return cpu;
3951 return NULL;
3954 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3956 MachineClass *mc = MACHINE_CLASS(oc);
3957 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3958 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3959 NMIClass *nc = NMI_CLASS(oc);
3960 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3961 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3962 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3963 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3965 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3968 * We set up the default / latest behaviour here. The class_init
3969 * functions for the specific versioned machine types can override
3970 * these details for backwards compatibility
3972 mc->init = spapr_machine_init;
3973 mc->reset = spapr_machine_reset;
3974 mc->block_default_type = IF_SCSI;
3975 mc->max_cpus = 1024;
3976 mc->no_parallel = 1;
3977 mc->default_boot_order = "";
3978 mc->default_ram_size = 512 * M_BYTE;
3979 mc->kvm_type = spapr_kvm_type;
3980 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
3981 mc->pci_allow_0_address = true;
3982 assert(!mc->get_hotplug_handler);
3983 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3984 hc->pre_plug = spapr_machine_device_pre_plug;
3985 hc->plug = spapr_machine_device_plug;
3986 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3987 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3988 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3989 hc->unplug_request = spapr_machine_device_unplug_request;
3991 smc->dr_lmb_enabled = true;
3992 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
3993 mc->has_hotpluggable_cpus = true;
3994 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3995 fwc->get_dev_path = spapr_get_fw_dev_path;
3996 nc->nmi_monitor_handler = spapr_nmi;
3997 smc->phb_placement = spapr_phb_placement;
3998 vhc->hypercall = emulate_spapr_hypercall;
3999 vhc->hpt_mask = spapr_hpt_mask;
4000 vhc->map_hptes = spapr_map_hptes;
4001 vhc->unmap_hptes = spapr_unmap_hptes;
4002 vhc->store_hpte = spapr_store_hpte;
4003 vhc->get_patbe = spapr_get_patbe;
4004 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4005 xic->ics_get = spapr_ics_get;
4006 xic->ics_resend = spapr_ics_resend;
4007 xic->icp_get = spapr_icp_get;
4008 ispc->print_info = spapr_pic_print_info;
4009 /* Force NUMA node memory size to be a multiple of
4010 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4011 * in which LMBs are represented and hot-added
4013 mc->numa_mem_align_shift = 28;
4015 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4016 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4017 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4018 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4019 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4020 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4021 spapr_caps_add_properties(smc, &error_abort);
4024 static const TypeInfo spapr_machine_info = {
4025 .name = TYPE_SPAPR_MACHINE,
4026 .parent = TYPE_MACHINE,
4027 .abstract = true,
4028 .instance_size = sizeof(sPAPRMachineState),
4029 .instance_init = spapr_instance_init,
4030 .instance_finalize = spapr_machine_finalizefn,
4031 .class_size = sizeof(sPAPRMachineClass),
4032 .class_init = spapr_machine_class_init,
4033 .interfaces = (InterfaceInfo[]) {
4034 { TYPE_FW_PATH_PROVIDER },
4035 { TYPE_NMI },
4036 { TYPE_HOTPLUG_HANDLER },
4037 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4038 { TYPE_XICS_FABRIC },
4039 { TYPE_INTERRUPT_STATS_PROVIDER },
4044 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4045 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4046 void *data) \
4048 MachineClass *mc = MACHINE_CLASS(oc); \
4049 spapr_machine_##suffix##_class_options(mc); \
4050 if (latest) { \
4051 mc->alias = "pseries"; \
4052 mc->is_default = 1; \
4055 static void spapr_machine_##suffix##_instance_init(Object *obj) \
4057 MachineState *machine = MACHINE(obj); \
4058 spapr_machine_##suffix##_instance_options(machine); \
4060 static const TypeInfo spapr_machine_##suffix##_info = { \
4061 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4062 .parent = TYPE_SPAPR_MACHINE, \
4063 .class_init = spapr_machine_##suffix##_class_init, \
4064 .instance_init = spapr_machine_##suffix##_instance_init, \
4065 }; \
4066 static void spapr_machine_register_##suffix(void) \
4068 type_register(&spapr_machine_##suffix##_info); \
4070 type_init(spapr_machine_register_##suffix)
4073 * pseries-3.0
4075 static void spapr_machine_3_0_instance_options(MachineState *machine)
4079 static void spapr_machine_3_0_class_options(MachineClass *mc)
4081 /* Defaults for the latest behaviour inherited from the base class */
4084 DEFINE_SPAPR_MACHINE(3_0, "3.0", true);
4087 * pseries-2.12
4089 #define SPAPR_COMPAT_2_12 \
4090 HW_COMPAT_2_12 \
4092 .driver = TYPE_POWERPC_CPU, \
4093 .property = "pre-3.0-migration", \
4094 .value = "on", \
4097 static void spapr_machine_2_12_instance_options(MachineState *machine)
4099 spapr_machine_3_0_instance_options(machine);
4102 static void spapr_machine_2_12_class_options(MachineClass *mc)
4104 spapr_machine_3_0_class_options(mc);
4105 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_12);
4108 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4110 static void spapr_machine_2_12_sxxm_instance_options(MachineState *machine)
4112 spapr_machine_2_12_instance_options(machine);
4115 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4117 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4119 spapr_machine_2_12_class_options(mc);
4120 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4121 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4122 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4125 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4128 * pseries-2.11
4130 #define SPAPR_COMPAT_2_11 \
4131 HW_COMPAT_2_11
4133 static void spapr_machine_2_11_instance_options(MachineState *machine)
4135 spapr_machine_2_12_instance_options(machine);
4138 static void spapr_machine_2_11_class_options(MachineClass *mc)
4140 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4142 spapr_machine_2_12_class_options(mc);
4143 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4144 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11);
4147 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4150 * pseries-2.10
4152 #define SPAPR_COMPAT_2_10 \
4153 HW_COMPAT_2_10
4155 static void spapr_machine_2_10_instance_options(MachineState *machine)
4157 spapr_machine_2_11_instance_options(machine);
4160 static void spapr_machine_2_10_class_options(MachineClass *mc)
4162 spapr_machine_2_11_class_options(mc);
4163 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
4166 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4169 * pseries-2.9
4171 #define SPAPR_COMPAT_2_9 \
4172 HW_COMPAT_2_9 \
4174 .driver = TYPE_POWERPC_CPU, \
4175 .property = "pre-2.10-migration", \
4176 .value = "on", \
4177 }, \
4179 static void spapr_machine_2_9_instance_options(MachineState *machine)
4181 spapr_machine_2_10_instance_options(machine);
4184 static void spapr_machine_2_9_class_options(MachineClass *mc)
4186 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4188 spapr_machine_2_10_class_options(mc);
4189 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
4190 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4191 smc->pre_2_10_has_unused_icps = true;
4192 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4195 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4198 * pseries-2.8
4200 #define SPAPR_COMPAT_2_8 \
4201 HW_COMPAT_2_8 \
4203 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4204 .property = "pcie-extended-configuration-space", \
4205 .value = "off", \
4208 static void spapr_machine_2_8_instance_options(MachineState *machine)
4210 spapr_machine_2_9_instance_options(machine);
4213 static void spapr_machine_2_8_class_options(MachineClass *mc)
4215 spapr_machine_2_9_class_options(mc);
4216 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
4217 mc->numa_mem_align_shift = 23;
4220 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4223 * pseries-2.7
4225 #define SPAPR_COMPAT_2_7 \
4226 HW_COMPAT_2_7 \
4228 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4229 .property = "mem_win_size", \
4230 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
4231 }, \
4233 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4234 .property = "mem64_win_size", \
4235 .value = "0", \
4236 }, \
4238 .driver = TYPE_POWERPC_CPU, \
4239 .property = "pre-2.8-migration", \
4240 .value = "on", \
4241 }, \
4243 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4244 .property = "pre-2.8-migration", \
4245 .value = "on", \
4248 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4249 uint64_t *buid, hwaddr *pio,
4250 hwaddr *mmio32, hwaddr *mmio64,
4251 unsigned n_dma, uint32_t *liobns, Error **errp)
4253 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4254 const uint64_t base_buid = 0x800000020000000ULL;
4255 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4256 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4257 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4258 const uint32_t max_index = 255;
4259 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4261 uint64_t ram_top = MACHINE(spapr)->ram_size;
4262 hwaddr phb0_base, phb_base;
4263 int i;
4265 /* Do we have device memory? */
4266 if (MACHINE(spapr)->maxram_size > ram_top) {
4267 /* Can't just use maxram_size, because there may be an
4268 * alignment gap between normal and device memory regions
4270 ram_top = MACHINE(spapr)->device_memory->base +
4271 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4274 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4276 if (index > max_index) {
4277 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4278 max_index);
4279 return;
4282 *buid = base_buid + index;
4283 for (i = 0; i < n_dma; ++i) {
4284 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4287 phb_base = phb0_base + index * phb_spacing;
4288 *pio = phb_base + pio_offset;
4289 *mmio32 = phb_base + mmio_offset;
4291 * We don't set the 64-bit MMIO window, relying on the PHB's
4292 * fallback behaviour of automatically splitting a large "32-bit"
4293 * window into contiguous 32-bit and 64-bit windows
4297 static void spapr_machine_2_7_instance_options(MachineState *machine)
4299 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
4301 spapr_machine_2_8_instance_options(machine);
4302 spapr->use_hotplug_event_source = false;
4305 static void spapr_machine_2_7_class_options(MachineClass *mc)
4307 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4309 spapr_machine_2_8_class_options(mc);
4310 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4311 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
4312 smc->phb_placement = phb_placement_2_7;
4315 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4318 * pseries-2.6
4320 #define SPAPR_COMPAT_2_6 \
4321 HW_COMPAT_2_6 \
4323 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4324 .property = "ddw",\
4325 .value = stringify(off),\
4328 static void spapr_machine_2_6_instance_options(MachineState *machine)
4330 spapr_machine_2_7_instance_options(machine);
4333 static void spapr_machine_2_6_class_options(MachineClass *mc)
4335 spapr_machine_2_7_class_options(mc);
4336 mc->has_hotpluggable_cpus = false;
4337 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4340 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4343 * pseries-2.5
4345 #define SPAPR_COMPAT_2_5 \
4346 HW_COMPAT_2_5 \
4348 .driver = "spapr-vlan", \
4349 .property = "use-rx-buffer-pools", \
4350 .value = "off", \
4353 static void spapr_machine_2_5_instance_options(MachineState *machine)
4355 spapr_machine_2_6_instance_options(machine);
4358 static void spapr_machine_2_5_class_options(MachineClass *mc)
4360 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4362 spapr_machine_2_6_class_options(mc);
4363 smc->use_ohci_by_default = true;
4364 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
4367 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4370 * pseries-2.4
4372 #define SPAPR_COMPAT_2_4 \
4373 HW_COMPAT_2_4
4375 static void spapr_machine_2_4_instance_options(MachineState *machine)
4377 spapr_machine_2_5_instance_options(machine);
4380 static void spapr_machine_2_4_class_options(MachineClass *mc)
4382 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4384 spapr_machine_2_5_class_options(mc);
4385 smc->dr_lmb_enabled = false;
4386 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
4389 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4392 * pseries-2.3
4394 #define SPAPR_COMPAT_2_3 \
4395 HW_COMPAT_2_3 \
4397 .driver = "spapr-pci-host-bridge",\
4398 .property = "dynamic-reconfiguration",\
4399 .value = "off",\
4402 static void spapr_machine_2_3_instance_options(MachineState *machine)
4404 spapr_machine_2_4_instance_options(machine);
4407 static void spapr_machine_2_3_class_options(MachineClass *mc)
4409 spapr_machine_2_4_class_options(mc);
4410 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
4412 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4415 * pseries-2.2
4418 #define SPAPR_COMPAT_2_2 \
4419 HW_COMPAT_2_2 \
4421 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4422 .property = "mem_win_size",\
4423 .value = "0x20000000",\
4426 static void spapr_machine_2_2_instance_options(MachineState *machine)
4428 spapr_machine_2_3_instance_options(machine);
4429 machine->suppress_vmdesc = true;
4432 static void spapr_machine_2_2_class_options(MachineClass *mc)
4434 spapr_machine_2_3_class_options(mc);
4435 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4437 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4440 * pseries-2.1
4442 #define SPAPR_COMPAT_2_1 \
4443 HW_COMPAT_2_1
4445 static void spapr_machine_2_1_instance_options(MachineState *machine)
4447 spapr_machine_2_2_instance_options(machine);
4450 static void spapr_machine_2_1_class_options(MachineClass *mc)
4452 spapr_machine_2_2_class_options(mc);
4453 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4455 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4457 static void spapr_machine_register_types(void)
4459 type_register_static(&spapr_machine_info);
4462 type_init(spapr_machine_register_types)