Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
[qemu.git] / exec.c
blobf3fa4e9117f3aafcbca1bc0637c9fdd2ff3ab519
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
22 #include "qemu/cutils.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
26 #include "tcg.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include "qemu.h"
40 #else /* !CONFIG_USER_ONLY */
41 #include "hw/hw.h"
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52 #include <linux/falloc.h>
53 #endif
55 #endif
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
65 #include "migration/vmstate.h"
67 #include "qemu/range.h"
68 #ifndef _WIN32
69 #include "qemu/mmap-alloc.h"
70 #endif
72 #include "monitor/monitor.h"
74 //#define DEBUG_SUBPAGE
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
80 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
82 static MemoryRegion *system_memory;
83 static MemoryRegion *system_io;
85 AddressSpace address_space_io;
86 AddressSpace address_space_memory;
88 MemoryRegion io_mem_rom, io_mem_notdirty;
89 static MemoryRegion io_mem_unassigned;
91 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92 #define RAM_PREALLOC (1 << 0)
94 /* RAM is mmap-ed with MAP_SHARED */
95 #define RAM_SHARED (1 << 1)
97 /* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
100 #define RAM_RESIZEABLE (1 << 2)
102 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
103 * zero the page and wake waiting processes.
104 * (Set during postcopy)
106 #define RAM_UF_ZEROPAGE (1 << 3)
107 #endif
109 #ifdef TARGET_PAGE_BITS_VARY
110 int target_page_bits;
111 bool target_page_bits_decided;
112 #endif
114 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
115 /* current CPU in the current thread. It is only valid inside
116 cpu_exec() */
117 __thread CPUState *current_cpu;
118 /* 0 = Do not count executed instructions.
119 1 = Precise instruction counting.
120 2 = Adaptive rate instruction counting. */
121 int use_icount;
123 uintptr_t qemu_host_page_size;
124 intptr_t qemu_host_page_mask;
126 bool set_preferred_target_page_bits(int bits)
128 /* The target page size is the lowest common denominator for all
129 * the CPUs in the system, so we can only make it smaller, never
130 * larger. And we can't make it smaller once we've committed to
131 * a particular size.
133 #ifdef TARGET_PAGE_BITS_VARY
134 assert(bits >= TARGET_PAGE_BITS_MIN);
135 if (target_page_bits == 0 || target_page_bits > bits) {
136 if (target_page_bits_decided) {
137 return false;
139 target_page_bits = bits;
141 #endif
142 return true;
145 #if !defined(CONFIG_USER_ONLY)
147 static void finalize_target_page_bits(void)
149 #ifdef TARGET_PAGE_BITS_VARY
150 if (target_page_bits == 0) {
151 target_page_bits = TARGET_PAGE_BITS_MIN;
153 target_page_bits_decided = true;
154 #endif
157 typedef struct PhysPageEntry PhysPageEntry;
159 struct PhysPageEntry {
160 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
161 uint32_t skip : 6;
162 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
163 uint32_t ptr : 26;
166 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
168 /* Size of the L2 (and L3, etc) page tables. */
169 #define ADDR_SPACE_BITS 64
171 #define P_L2_BITS 9
172 #define P_L2_SIZE (1 << P_L2_BITS)
174 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
176 typedef PhysPageEntry Node[P_L2_SIZE];
178 typedef struct PhysPageMap {
179 struct rcu_head rcu;
181 unsigned sections_nb;
182 unsigned sections_nb_alloc;
183 unsigned nodes_nb;
184 unsigned nodes_nb_alloc;
185 Node *nodes;
186 MemoryRegionSection *sections;
187 } PhysPageMap;
189 struct AddressSpaceDispatch {
190 MemoryRegionSection *mru_section;
191 /* This is a multi-level map on the physical address space.
192 * The bottom level has pointers to MemoryRegionSections.
194 PhysPageEntry phys_map;
195 PhysPageMap map;
198 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
199 typedef struct subpage_t {
200 MemoryRegion iomem;
201 FlatView *fv;
202 hwaddr base;
203 uint16_t sub_section[];
204 } subpage_t;
206 #define PHYS_SECTION_UNASSIGNED 0
207 #define PHYS_SECTION_NOTDIRTY 1
208 #define PHYS_SECTION_ROM 2
209 #define PHYS_SECTION_WATCH 3
211 static void io_mem_init(void);
212 static void memory_map_init(void);
213 static void tcg_commit(MemoryListener *listener);
215 static MemoryRegion io_mem_watch;
218 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
219 * @cpu: the CPU whose AddressSpace this is
220 * @as: the AddressSpace itself
221 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
222 * @tcg_as_listener: listener for tracking changes to the AddressSpace
224 struct CPUAddressSpace {
225 CPUState *cpu;
226 AddressSpace *as;
227 struct AddressSpaceDispatch *memory_dispatch;
228 MemoryListener tcg_as_listener;
231 struct DirtyBitmapSnapshot {
232 ram_addr_t start;
233 ram_addr_t end;
234 unsigned long dirty[];
237 #endif
239 #if !defined(CONFIG_USER_ONLY)
241 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
243 static unsigned alloc_hint = 16;
244 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
245 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
246 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
247 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
248 alloc_hint = map->nodes_nb_alloc;
252 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
254 unsigned i;
255 uint32_t ret;
256 PhysPageEntry e;
257 PhysPageEntry *p;
259 ret = map->nodes_nb++;
260 p = map->nodes[ret];
261 assert(ret != PHYS_MAP_NODE_NIL);
262 assert(ret != map->nodes_nb_alloc);
264 e.skip = leaf ? 0 : 1;
265 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
266 for (i = 0; i < P_L2_SIZE; ++i) {
267 memcpy(&p[i], &e, sizeof(e));
269 return ret;
272 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
273 hwaddr *index, hwaddr *nb, uint16_t leaf,
274 int level)
276 PhysPageEntry *p;
277 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
279 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
280 lp->ptr = phys_map_node_alloc(map, level == 0);
282 p = map->nodes[lp->ptr];
283 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
285 while (*nb && lp < &p[P_L2_SIZE]) {
286 if ((*index & (step - 1)) == 0 && *nb >= step) {
287 lp->skip = 0;
288 lp->ptr = leaf;
289 *index += step;
290 *nb -= step;
291 } else {
292 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
294 ++lp;
298 static void phys_page_set(AddressSpaceDispatch *d,
299 hwaddr index, hwaddr nb,
300 uint16_t leaf)
302 /* Wildly overreserve - it doesn't matter much. */
303 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
305 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
308 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
309 * and update our entry so we can skip it and go directly to the destination.
311 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
313 unsigned valid_ptr = P_L2_SIZE;
314 int valid = 0;
315 PhysPageEntry *p;
316 int i;
318 if (lp->ptr == PHYS_MAP_NODE_NIL) {
319 return;
322 p = nodes[lp->ptr];
323 for (i = 0; i < P_L2_SIZE; i++) {
324 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
325 continue;
328 valid_ptr = i;
329 valid++;
330 if (p[i].skip) {
331 phys_page_compact(&p[i], nodes);
335 /* We can only compress if there's only one child. */
336 if (valid != 1) {
337 return;
340 assert(valid_ptr < P_L2_SIZE);
342 /* Don't compress if it won't fit in the # of bits we have. */
343 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
344 return;
347 lp->ptr = p[valid_ptr].ptr;
348 if (!p[valid_ptr].skip) {
349 /* If our only child is a leaf, make this a leaf. */
350 /* By design, we should have made this node a leaf to begin with so we
351 * should never reach here.
352 * But since it's so simple to handle this, let's do it just in case we
353 * change this rule.
355 lp->skip = 0;
356 } else {
357 lp->skip += p[valid_ptr].skip;
361 void address_space_dispatch_compact(AddressSpaceDispatch *d)
363 if (d->phys_map.skip) {
364 phys_page_compact(&d->phys_map, d->map.nodes);
368 static inline bool section_covers_addr(const MemoryRegionSection *section,
369 hwaddr addr)
371 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
372 * the section must cover the entire address space.
374 return int128_gethi(section->size) ||
375 range_covers_byte(section->offset_within_address_space,
376 int128_getlo(section->size), addr);
379 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
381 PhysPageEntry lp = d->phys_map, *p;
382 Node *nodes = d->map.nodes;
383 MemoryRegionSection *sections = d->map.sections;
384 hwaddr index = addr >> TARGET_PAGE_BITS;
385 int i;
387 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
388 if (lp.ptr == PHYS_MAP_NODE_NIL) {
389 return &sections[PHYS_SECTION_UNASSIGNED];
391 p = nodes[lp.ptr];
392 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
395 if (section_covers_addr(&sections[lp.ptr], addr)) {
396 return &sections[lp.ptr];
397 } else {
398 return &sections[PHYS_SECTION_UNASSIGNED];
402 bool memory_region_is_unassigned(MemoryRegion *mr)
404 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
405 && mr != &io_mem_watch;
408 /* Called from RCU critical section */
409 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
410 hwaddr addr,
411 bool resolve_subpage)
413 MemoryRegionSection *section = atomic_read(&d->mru_section);
414 subpage_t *subpage;
416 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
417 !section_covers_addr(section, addr)) {
418 section = phys_page_find(d, addr);
419 atomic_set(&d->mru_section, section);
421 if (resolve_subpage && section->mr->subpage) {
422 subpage = container_of(section->mr, subpage_t, iomem);
423 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
425 return section;
428 /* Called from RCU critical section */
429 static MemoryRegionSection *
430 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
431 hwaddr *plen, bool resolve_subpage)
433 MemoryRegionSection *section;
434 MemoryRegion *mr;
435 Int128 diff;
437 section = address_space_lookup_region(d, addr, resolve_subpage);
438 /* Compute offset within MemoryRegionSection */
439 addr -= section->offset_within_address_space;
441 /* Compute offset within MemoryRegion */
442 *xlat = addr + section->offset_within_region;
444 mr = section->mr;
446 /* MMIO registers can be expected to perform full-width accesses based only
447 * on their address, without considering adjacent registers that could
448 * decode to completely different MemoryRegions. When such registers
449 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
450 * regions overlap wildly. For this reason we cannot clamp the accesses
451 * here.
453 * If the length is small (as is the case for address_space_ldl/stl),
454 * everything works fine. If the incoming length is large, however,
455 * the caller really has to do the clamping through memory_access_size.
457 if (memory_region_is_ram(mr)) {
458 diff = int128_sub(section->size, int128_make64(addr));
459 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
461 return section;
465 * address_space_translate_iommu - translate an address through an IOMMU
466 * memory region and then through the target address space.
468 * @iommu_mr: the IOMMU memory region that we start the translation from
469 * @addr: the address to be translated through the MMU
470 * @xlat: the translated address offset within the destination memory region.
471 * It cannot be %NULL.
472 * @plen_out: valid read/write length of the translated address. It
473 * cannot be %NULL.
474 * @page_mask_out: page mask for the translated address. This
475 * should only be meaningful for IOMMU translated
476 * addresses, since there may be huge pages that this bit
477 * would tell. It can be %NULL if we don't care about it.
478 * @is_write: whether the translation operation is for write
479 * @is_mmio: whether this can be MMIO, set true if it can
480 * @target_as: the address space targeted by the IOMMU
481 * @attrs: transaction attributes
483 * This function is called from RCU critical section. It is the common
484 * part of flatview_do_translate and address_space_translate_cached.
486 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
487 hwaddr *xlat,
488 hwaddr *plen_out,
489 hwaddr *page_mask_out,
490 bool is_write,
491 bool is_mmio,
492 AddressSpace **target_as,
493 MemTxAttrs attrs)
495 MemoryRegionSection *section;
496 hwaddr page_mask = (hwaddr)-1;
498 do {
499 hwaddr addr = *xlat;
500 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
501 IOMMUTLBEntry iotlb = imrc->translate(iommu_mr, addr, is_write ?
502 IOMMU_WO : IOMMU_RO);
504 if (!(iotlb.perm & (1 << is_write))) {
505 goto unassigned;
508 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
509 | (addr & iotlb.addr_mask));
510 page_mask &= iotlb.addr_mask;
511 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
512 *target_as = iotlb.target_as;
514 section = address_space_translate_internal(
515 address_space_to_dispatch(iotlb.target_as), addr, xlat,
516 plen_out, is_mmio);
518 iommu_mr = memory_region_get_iommu(section->mr);
519 } while (unlikely(iommu_mr));
521 if (page_mask_out) {
522 *page_mask_out = page_mask;
524 return *section;
526 unassigned:
527 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
531 * flatview_do_translate - translate an address in FlatView
533 * @fv: the flat view that we want to translate on
534 * @addr: the address to be translated in above address space
535 * @xlat: the translated address offset within memory region. It
536 * cannot be @NULL.
537 * @plen_out: valid read/write length of the translated address. It
538 * can be @NULL when we don't care about it.
539 * @page_mask_out: page mask for the translated address. This
540 * should only be meaningful for IOMMU translated
541 * addresses, since there may be huge pages that this bit
542 * would tell. It can be @NULL if we don't care about it.
543 * @is_write: whether the translation operation is for write
544 * @is_mmio: whether this can be MMIO, set true if it can
545 * @target_as: the address space targeted by the IOMMU
546 * @attrs: memory transaction attributes
548 * This function is called from RCU critical section
550 static MemoryRegionSection flatview_do_translate(FlatView *fv,
551 hwaddr addr,
552 hwaddr *xlat,
553 hwaddr *plen_out,
554 hwaddr *page_mask_out,
555 bool is_write,
556 bool is_mmio,
557 AddressSpace **target_as,
558 MemTxAttrs attrs)
560 MemoryRegionSection *section;
561 IOMMUMemoryRegion *iommu_mr;
562 hwaddr plen = (hwaddr)(-1);
564 if (!plen_out) {
565 plen_out = &plen;
568 section = address_space_translate_internal(
569 flatview_to_dispatch(fv), addr, xlat,
570 plen_out, is_mmio);
572 iommu_mr = memory_region_get_iommu(section->mr);
573 if (unlikely(iommu_mr)) {
574 return address_space_translate_iommu(iommu_mr, xlat,
575 plen_out, page_mask_out,
576 is_write, is_mmio,
577 target_as, attrs);
579 if (page_mask_out) {
580 /* Not behind an IOMMU, use default page size. */
581 *page_mask_out = ~TARGET_PAGE_MASK;
584 return *section;
587 /* Called from RCU critical section */
588 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
589 bool is_write, MemTxAttrs attrs)
591 MemoryRegionSection section;
592 hwaddr xlat, page_mask;
595 * This can never be MMIO, and we don't really care about plen,
596 * but page mask.
598 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
599 NULL, &page_mask, is_write, false, &as,
600 attrs);
602 /* Illegal translation */
603 if (section.mr == &io_mem_unassigned) {
604 goto iotlb_fail;
607 /* Convert memory region offset into address space offset */
608 xlat += section.offset_within_address_space -
609 section.offset_within_region;
611 return (IOMMUTLBEntry) {
612 .target_as = as,
613 .iova = addr & ~page_mask,
614 .translated_addr = xlat & ~page_mask,
615 .addr_mask = page_mask,
616 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
617 .perm = IOMMU_RW,
620 iotlb_fail:
621 return (IOMMUTLBEntry) {0};
624 /* Called from RCU critical section */
625 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
626 hwaddr *plen, bool is_write,
627 MemTxAttrs attrs)
629 MemoryRegion *mr;
630 MemoryRegionSection section;
631 AddressSpace *as = NULL;
633 /* This can be MMIO, so setup MMIO bit. */
634 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
635 is_write, true, &as, attrs);
636 mr = section.mr;
638 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
639 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
640 *plen = MIN(page, *plen);
643 return mr;
646 /* Called from RCU critical section */
647 MemoryRegionSection *
648 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
649 hwaddr *xlat, hwaddr *plen)
651 MemoryRegionSection *section;
652 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
654 section = address_space_translate_internal(d, addr, xlat, plen, false);
656 assert(!memory_region_is_iommu(section->mr));
657 return section;
659 #endif
661 #if !defined(CONFIG_USER_ONLY)
663 static int cpu_common_post_load(void *opaque, int version_id)
665 CPUState *cpu = opaque;
667 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
668 version_id is increased. */
669 cpu->interrupt_request &= ~0x01;
670 tlb_flush(cpu);
672 /* loadvm has just updated the content of RAM, bypassing the
673 * usual mechanisms that ensure we flush TBs for writes to
674 * memory we've translated code from. So we must flush all TBs,
675 * which will now be stale.
677 tb_flush(cpu);
679 return 0;
682 static int cpu_common_pre_load(void *opaque)
684 CPUState *cpu = opaque;
686 cpu->exception_index = -1;
688 return 0;
691 static bool cpu_common_exception_index_needed(void *opaque)
693 CPUState *cpu = opaque;
695 return tcg_enabled() && cpu->exception_index != -1;
698 static const VMStateDescription vmstate_cpu_common_exception_index = {
699 .name = "cpu_common/exception_index",
700 .version_id = 1,
701 .minimum_version_id = 1,
702 .needed = cpu_common_exception_index_needed,
703 .fields = (VMStateField[]) {
704 VMSTATE_INT32(exception_index, CPUState),
705 VMSTATE_END_OF_LIST()
709 static bool cpu_common_crash_occurred_needed(void *opaque)
711 CPUState *cpu = opaque;
713 return cpu->crash_occurred;
716 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
717 .name = "cpu_common/crash_occurred",
718 .version_id = 1,
719 .minimum_version_id = 1,
720 .needed = cpu_common_crash_occurred_needed,
721 .fields = (VMStateField[]) {
722 VMSTATE_BOOL(crash_occurred, CPUState),
723 VMSTATE_END_OF_LIST()
727 const VMStateDescription vmstate_cpu_common = {
728 .name = "cpu_common",
729 .version_id = 1,
730 .minimum_version_id = 1,
731 .pre_load = cpu_common_pre_load,
732 .post_load = cpu_common_post_load,
733 .fields = (VMStateField[]) {
734 VMSTATE_UINT32(halted, CPUState),
735 VMSTATE_UINT32(interrupt_request, CPUState),
736 VMSTATE_END_OF_LIST()
738 .subsections = (const VMStateDescription*[]) {
739 &vmstate_cpu_common_exception_index,
740 &vmstate_cpu_common_crash_occurred,
741 NULL
745 #endif
747 CPUState *qemu_get_cpu(int index)
749 CPUState *cpu;
751 CPU_FOREACH(cpu) {
752 if (cpu->cpu_index == index) {
753 return cpu;
757 return NULL;
760 #if !defined(CONFIG_USER_ONLY)
761 void cpu_address_space_init(CPUState *cpu, int asidx,
762 const char *prefix, MemoryRegion *mr)
764 CPUAddressSpace *newas;
765 AddressSpace *as = g_new0(AddressSpace, 1);
766 char *as_name;
768 assert(mr);
769 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
770 address_space_init(as, mr, as_name);
771 g_free(as_name);
773 /* Target code should have set num_ases before calling us */
774 assert(asidx < cpu->num_ases);
776 if (asidx == 0) {
777 /* address space 0 gets the convenience alias */
778 cpu->as = as;
781 /* KVM cannot currently support multiple address spaces. */
782 assert(asidx == 0 || !kvm_enabled());
784 if (!cpu->cpu_ases) {
785 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
788 newas = &cpu->cpu_ases[asidx];
789 newas->cpu = cpu;
790 newas->as = as;
791 if (tcg_enabled()) {
792 newas->tcg_as_listener.commit = tcg_commit;
793 memory_listener_register(&newas->tcg_as_listener, as);
797 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
799 /* Return the AddressSpace corresponding to the specified index */
800 return cpu->cpu_ases[asidx].as;
802 #endif
804 void cpu_exec_unrealizefn(CPUState *cpu)
806 CPUClass *cc = CPU_GET_CLASS(cpu);
808 cpu_list_remove(cpu);
810 if (cc->vmsd != NULL) {
811 vmstate_unregister(NULL, cc->vmsd, cpu);
813 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
814 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
818 Property cpu_common_props[] = {
819 #ifndef CONFIG_USER_ONLY
820 /* Create a memory property for softmmu CPU object,
821 * so users can wire up its memory. (This can't go in qom/cpu.c
822 * because that file is compiled only once for both user-mode
823 * and system builds.) The default if no link is set up is to use
824 * the system address space.
826 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
827 MemoryRegion *),
828 #endif
829 DEFINE_PROP_END_OF_LIST(),
832 void cpu_exec_initfn(CPUState *cpu)
834 cpu->as = NULL;
835 cpu->num_ases = 0;
837 #ifndef CONFIG_USER_ONLY
838 cpu->thread_id = qemu_get_thread_id();
839 cpu->memory = system_memory;
840 object_ref(OBJECT(cpu->memory));
841 #endif
844 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
846 CPUClass *cc = CPU_GET_CLASS(cpu);
847 static bool tcg_target_initialized;
849 cpu_list_add(cpu);
851 if (tcg_enabled() && !tcg_target_initialized) {
852 tcg_target_initialized = true;
853 cc->tcg_initialize();
856 #ifndef CONFIG_USER_ONLY
857 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
858 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
860 if (cc->vmsd != NULL) {
861 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
863 #endif
866 const char *parse_cpu_model(const char *cpu_model)
868 ObjectClass *oc;
869 CPUClass *cc;
870 gchar **model_pieces;
871 const char *cpu_type;
873 model_pieces = g_strsplit(cpu_model, ",", 2);
875 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
876 if (oc == NULL) {
877 error_report("unable to find CPU model '%s'", model_pieces[0]);
878 g_strfreev(model_pieces);
879 exit(EXIT_FAILURE);
882 cpu_type = object_class_get_name(oc);
883 cc = CPU_CLASS(oc);
884 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
885 g_strfreev(model_pieces);
886 return cpu_type;
889 #if defined(CONFIG_USER_ONLY)
890 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
892 mmap_lock();
893 tb_lock();
894 tb_invalidate_phys_page_range(pc, pc + 1, 0);
895 tb_unlock();
896 mmap_unlock();
898 #else
899 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
901 MemTxAttrs attrs;
902 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
903 int asidx = cpu_asidx_from_attrs(cpu, attrs);
904 if (phys != -1) {
905 /* Locks grabbed by tb_invalidate_phys_addr */
906 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
907 phys | (pc & ~TARGET_PAGE_MASK), attrs);
910 #endif
912 #if defined(CONFIG_USER_ONLY)
913 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
918 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
919 int flags)
921 return -ENOSYS;
924 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
928 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
929 int flags, CPUWatchpoint **watchpoint)
931 return -ENOSYS;
933 #else
934 /* Add a watchpoint. */
935 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
936 int flags, CPUWatchpoint **watchpoint)
938 CPUWatchpoint *wp;
940 /* forbid ranges which are empty or run off the end of the address space */
941 if (len == 0 || (addr + len - 1) < addr) {
942 error_report("tried to set invalid watchpoint at %"
943 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
944 return -EINVAL;
946 wp = g_malloc(sizeof(*wp));
948 wp->vaddr = addr;
949 wp->len = len;
950 wp->flags = flags;
952 /* keep all GDB-injected watchpoints in front */
953 if (flags & BP_GDB) {
954 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
955 } else {
956 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
959 tlb_flush_page(cpu, addr);
961 if (watchpoint)
962 *watchpoint = wp;
963 return 0;
966 /* Remove a specific watchpoint. */
967 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
968 int flags)
970 CPUWatchpoint *wp;
972 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
973 if (addr == wp->vaddr && len == wp->len
974 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
975 cpu_watchpoint_remove_by_ref(cpu, wp);
976 return 0;
979 return -ENOENT;
982 /* Remove a specific watchpoint by reference. */
983 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
985 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
987 tlb_flush_page(cpu, watchpoint->vaddr);
989 g_free(watchpoint);
992 /* Remove all matching watchpoints. */
993 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
995 CPUWatchpoint *wp, *next;
997 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
998 if (wp->flags & mask) {
999 cpu_watchpoint_remove_by_ref(cpu, wp);
1004 /* Return true if this watchpoint address matches the specified
1005 * access (ie the address range covered by the watchpoint overlaps
1006 * partially or completely with the address range covered by the
1007 * access).
1009 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1010 vaddr addr,
1011 vaddr len)
1013 /* We know the lengths are non-zero, but a little caution is
1014 * required to avoid errors in the case where the range ends
1015 * exactly at the top of the address space and so addr + len
1016 * wraps round to zero.
1018 vaddr wpend = wp->vaddr + wp->len - 1;
1019 vaddr addrend = addr + len - 1;
1021 return !(addr > wpend || wp->vaddr > addrend);
1024 #endif
1026 /* Add a breakpoint. */
1027 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1028 CPUBreakpoint **breakpoint)
1030 CPUBreakpoint *bp;
1032 bp = g_malloc(sizeof(*bp));
1034 bp->pc = pc;
1035 bp->flags = flags;
1037 /* keep all GDB-injected breakpoints in front */
1038 if (flags & BP_GDB) {
1039 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1040 } else {
1041 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1044 breakpoint_invalidate(cpu, pc);
1046 if (breakpoint) {
1047 *breakpoint = bp;
1049 return 0;
1052 /* Remove a specific breakpoint. */
1053 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1055 CPUBreakpoint *bp;
1057 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1058 if (bp->pc == pc && bp->flags == flags) {
1059 cpu_breakpoint_remove_by_ref(cpu, bp);
1060 return 0;
1063 return -ENOENT;
1066 /* Remove a specific breakpoint by reference. */
1067 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1069 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1071 breakpoint_invalidate(cpu, breakpoint->pc);
1073 g_free(breakpoint);
1076 /* Remove all matching breakpoints. */
1077 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1079 CPUBreakpoint *bp, *next;
1081 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1082 if (bp->flags & mask) {
1083 cpu_breakpoint_remove_by_ref(cpu, bp);
1088 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1089 CPU loop after each instruction */
1090 void cpu_single_step(CPUState *cpu, int enabled)
1092 if (cpu->singlestep_enabled != enabled) {
1093 cpu->singlestep_enabled = enabled;
1094 if (kvm_enabled()) {
1095 kvm_update_guest_debug(cpu, 0);
1096 } else {
1097 /* must flush all the translated code to avoid inconsistencies */
1098 /* XXX: only flush what is necessary */
1099 tb_flush(cpu);
1104 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1106 va_list ap;
1107 va_list ap2;
1109 va_start(ap, fmt);
1110 va_copy(ap2, ap);
1111 fprintf(stderr, "qemu: fatal: ");
1112 vfprintf(stderr, fmt, ap);
1113 fprintf(stderr, "\n");
1114 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1115 if (qemu_log_separate()) {
1116 qemu_log_lock();
1117 qemu_log("qemu: fatal: ");
1118 qemu_log_vprintf(fmt, ap2);
1119 qemu_log("\n");
1120 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1121 qemu_log_flush();
1122 qemu_log_unlock();
1123 qemu_log_close();
1125 va_end(ap2);
1126 va_end(ap);
1127 replay_finish();
1128 #if defined(CONFIG_USER_ONLY)
1130 struct sigaction act;
1131 sigfillset(&act.sa_mask);
1132 act.sa_handler = SIG_DFL;
1133 act.sa_flags = 0;
1134 sigaction(SIGABRT, &act, NULL);
1136 #endif
1137 abort();
1140 #if !defined(CONFIG_USER_ONLY)
1141 /* Called from RCU critical section */
1142 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1144 RAMBlock *block;
1146 block = atomic_rcu_read(&ram_list.mru_block);
1147 if (block && addr - block->offset < block->max_length) {
1148 return block;
1150 RAMBLOCK_FOREACH(block) {
1151 if (addr - block->offset < block->max_length) {
1152 goto found;
1156 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1157 abort();
1159 found:
1160 /* It is safe to write mru_block outside the iothread lock. This
1161 * is what happens:
1163 * mru_block = xxx
1164 * rcu_read_unlock()
1165 * xxx removed from list
1166 * rcu_read_lock()
1167 * read mru_block
1168 * mru_block = NULL;
1169 * call_rcu(reclaim_ramblock, xxx);
1170 * rcu_read_unlock()
1172 * atomic_rcu_set is not needed here. The block was already published
1173 * when it was placed into the list. Here we're just making an extra
1174 * copy of the pointer.
1176 ram_list.mru_block = block;
1177 return block;
1180 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1182 CPUState *cpu;
1183 ram_addr_t start1;
1184 RAMBlock *block;
1185 ram_addr_t end;
1187 end = TARGET_PAGE_ALIGN(start + length);
1188 start &= TARGET_PAGE_MASK;
1190 rcu_read_lock();
1191 block = qemu_get_ram_block(start);
1192 assert(block == qemu_get_ram_block(end - 1));
1193 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1194 CPU_FOREACH(cpu) {
1195 tlb_reset_dirty(cpu, start1, length);
1197 rcu_read_unlock();
1200 /* Note: start and end must be within the same ram block. */
1201 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1202 ram_addr_t length,
1203 unsigned client)
1205 DirtyMemoryBlocks *blocks;
1206 unsigned long end, page;
1207 bool dirty = false;
1209 if (length == 0) {
1210 return false;
1213 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1214 page = start >> TARGET_PAGE_BITS;
1216 rcu_read_lock();
1218 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1220 while (page < end) {
1221 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1222 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1223 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1225 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1226 offset, num);
1227 page += num;
1230 rcu_read_unlock();
1232 if (dirty && tcg_enabled()) {
1233 tlb_reset_dirty_range_all(start, length);
1236 return dirty;
1239 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1240 (ram_addr_t start, ram_addr_t length, unsigned client)
1242 DirtyMemoryBlocks *blocks;
1243 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1244 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1245 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1246 DirtyBitmapSnapshot *snap;
1247 unsigned long page, end, dest;
1249 snap = g_malloc0(sizeof(*snap) +
1250 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1251 snap->start = first;
1252 snap->end = last;
1254 page = first >> TARGET_PAGE_BITS;
1255 end = last >> TARGET_PAGE_BITS;
1256 dest = 0;
1258 rcu_read_lock();
1260 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1262 while (page < end) {
1263 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1264 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1265 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1267 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1268 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1269 offset >>= BITS_PER_LEVEL;
1271 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1272 blocks->blocks[idx] + offset,
1273 num);
1274 page += num;
1275 dest += num >> BITS_PER_LEVEL;
1278 rcu_read_unlock();
1280 if (tcg_enabled()) {
1281 tlb_reset_dirty_range_all(start, length);
1284 return snap;
1287 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1288 ram_addr_t start,
1289 ram_addr_t length)
1291 unsigned long page, end;
1293 assert(start >= snap->start);
1294 assert(start + length <= snap->end);
1296 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1297 page = (start - snap->start) >> TARGET_PAGE_BITS;
1299 while (page < end) {
1300 if (test_bit(page, snap->dirty)) {
1301 return true;
1303 page++;
1305 return false;
1308 /* Called from RCU critical section */
1309 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1310 MemoryRegionSection *section,
1311 target_ulong vaddr,
1312 hwaddr paddr, hwaddr xlat,
1313 int prot,
1314 target_ulong *address)
1316 hwaddr iotlb;
1317 CPUWatchpoint *wp;
1319 if (memory_region_is_ram(section->mr)) {
1320 /* Normal RAM. */
1321 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1322 if (!section->readonly) {
1323 iotlb |= PHYS_SECTION_NOTDIRTY;
1324 } else {
1325 iotlb |= PHYS_SECTION_ROM;
1327 } else {
1328 AddressSpaceDispatch *d;
1330 d = flatview_to_dispatch(section->fv);
1331 iotlb = section - d->map.sections;
1332 iotlb += xlat;
1335 /* Make accesses to pages with watchpoints go via the
1336 watchpoint trap routines. */
1337 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1338 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1339 /* Avoid trapping reads of pages with a write breakpoint. */
1340 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1341 iotlb = PHYS_SECTION_WATCH + paddr;
1342 *address |= TLB_MMIO;
1343 break;
1348 return iotlb;
1350 #endif /* defined(CONFIG_USER_ONLY) */
1352 #if !defined(CONFIG_USER_ONLY)
1354 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1355 uint16_t section);
1356 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1358 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1359 qemu_anon_ram_alloc;
1362 * Set a custom physical guest memory alloator.
1363 * Accelerators with unusual needs may need this. Hopefully, we can
1364 * get rid of it eventually.
1366 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1368 phys_mem_alloc = alloc;
1371 static uint16_t phys_section_add(PhysPageMap *map,
1372 MemoryRegionSection *section)
1374 /* The physical section number is ORed with a page-aligned
1375 * pointer to produce the iotlb entries. Thus it should
1376 * never overflow into the page-aligned value.
1378 assert(map->sections_nb < TARGET_PAGE_SIZE);
1380 if (map->sections_nb == map->sections_nb_alloc) {
1381 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1382 map->sections = g_renew(MemoryRegionSection, map->sections,
1383 map->sections_nb_alloc);
1385 map->sections[map->sections_nb] = *section;
1386 memory_region_ref(section->mr);
1387 return map->sections_nb++;
1390 static void phys_section_destroy(MemoryRegion *mr)
1392 bool have_sub_page = mr->subpage;
1394 memory_region_unref(mr);
1396 if (have_sub_page) {
1397 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1398 object_unref(OBJECT(&subpage->iomem));
1399 g_free(subpage);
1403 static void phys_sections_free(PhysPageMap *map)
1405 while (map->sections_nb > 0) {
1406 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1407 phys_section_destroy(section->mr);
1409 g_free(map->sections);
1410 g_free(map->nodes);
1413 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1415 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1416 subpage_t *subpage;
1417 hwaddr base = section->offset_within_address_space
1418 & TARGET_PAGE_MASK;
1419 MemoryRegionSection *existing = phys_page_find(d, base);
1420 MemoryRegionSection subsection = {
1421 .offset_within_address_space = base,
1422 .size = int128_make64(TARGET_PAGE_SIZE),
1424 hwaddr start, end;
1426 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1428 if (!(existing->mr->subpage)) {
1429 subpage = subpage_init(fv, base);
1430 subsection.fv = fv;
1431 subsection.mr = &subpage->iomem;
1432 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1433 phys_section_add(&d->map, &subsection));
1434 } else {
1435 subpage = container_of(existing->mr, subpage_t, iomem);
1437 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1438 end = start + int128_get64(section->size) - 1;
1439 subpage_register(subpage, start, end,
1440 phys_section_add(&d->map, section));
1444 static void register_multipage(FlatView *fv,
1445 MemoryRegionSection *section)
1447 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1448 hwaddr start_addr = section->offset_within_address_space;
1449 uint16_t section_index = phys_section_add(&d->map, section);
1450 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1451 TARGET_PAGE_BITS));
1453 assert(num_pages);
1454 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1457 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1459 MemoryRegionSection now = *section, remain = *section;
1460 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1462 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1463 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1464 - now.offset_within_address_space;
1466 now.size = int128_min(int128_make64(left), now.size);
1467 register_subpage(fv, &now);
1468 } else {
1469 now.size = int128_zero();
1471 while (int128_ne(remain.size, now.size)) {
1472 remain.size = int128_sub(remain.size, now.size);
1473 remain.offset_within_address_space += int128_get64(now.size);
1474 remain.offset_within_region += int128_get64(now.size);
1475 now = remain;
1476 if (int128_lt(remain.size, page_size)) {
1477 register_subpage(fv, &now);
1478 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1479 now.size = page_size;
1480 register_subpage(fv, &now);
1481 } else {
1482 now.size = int128_and(now.size, int128_neg(page_size));
1483 register_multipage(fv, &now);
1488 void qemu_flush_coalesced_mmio_buffer(void)
1490 if (kvm_enabled())
1491 kvm_flush_coalesced_mmio_buffer();
1494 void qemu_mutex_lock_ramlist(void)
1496 qemu_mutex_lock(&ram_list.mutex);
1499 void qemu_mutex_unlock_ramlist(void)
1501 qemu_mutex_unlock(&ram_list.mutex);
1504 void ram_block_dump(Monitor *mon)
1506 RAMBlock *block;
1507 char *psize;
1509 rcu_read_lock();
1510 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1511 "Block Name", "PSize", "Offset", "Used", "Total");
1512 RAMBLOCK_FOREACH(block) {
1513 psize = size_to_str(block->page_size);
1514 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1515 " 0x%016" PRIx64 "\n", block->idstr, psize,
1516 (uint64_t)block->offset,
1517 (uint64_t)block->used_length,
1518 (uint64_t)block->max_length);
1519 g_free(psize);
1521 rcu_read_unlock();
1524 #ifdef __linux__
1526 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1527 * may or may not name the same files / on the same filesystem now as
1528 * when we actually open and map them. Iterate over the file
1529 * descriptors instead, and use qemu_fd_getpagesize().
1531 static int find_max_supported_pagesize(Object *obj, void *opaque)
1533 long *hpsize_min = opaque;
1535 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1536 long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj));
1538 if (hpsize < *hpsize_min) {
1539 *hpsize_min = hpsize;
1543 return 0;
1546 long qemu_getrampagesize(void)
1548 long hpsize = LONG_MAX;
1549 long mainrampagesize;
1550 Object *memdev_root;
1552 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1554 /* it's possible we have memory-backend objects with
1555 * hugepage-backed RAM. these may get mapped into system
1556 * address space via -numa parameters or memory hotplug
1557 * hooks. we want to take these into account, but we
1558 * also want to make sure these supported hugepage
1559 * sizes are applicable across the entire range of memory
1560 * we may boot from, so we take the min across all
1561 * backends, and assume normal pages in cases where a
1562 * backend isn't backed by hugepages.
1564 memdev_root = object_resolve_path("/objects", NULL);
1565 if (memdev_root) {
1566 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1568 if (hpsize == LONG_MAX) {
1569 /* No additional memory regions found ==> Report main RAM page size */
1570 return mainrampagesize;
1573 /* If NUMA is disabled or the NUMA nodes are not backed with a
1574 * memory-backend, then there is at least one node using "normal" RAM,
1575 * so if its page size is smaller we have got to report that size instead.
1577 if (hpsize > mainrampagesize &&
1578 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1579 static bool warned;
1580 if (!warned) {
1581 error_report("Huge page support disabled (n/a for main memory).");
1582 warned = true;
1584 return mainrampagesize;
1587 return hpsize;
1589 #else
1590 long qemu_getrampagesize(void)
1592 return getpagesize();
1594 #endif
1596 #ifdef __linux__
1597 static int64_t get_file_size(int fd)
1599 int64_t size = lseek(fd, 0, SEEK_END);
1600 if (size < 0) {
1601 return -errno;
1603 return size;
1606 static int file_ram_open(const char *path,
1607 const char *region_name,
1608 bool *created,
1609 Error **errp)
1611 char *filename;
1612 char *sanitized_name;
1613 char *c;
1614 int fd = -1;
1616 *created = false;
1617 for (;;) {
1618 fd = open(path, O_RDWR);
1619 if (fd >= 0) {
1620 /* @path names an existing file, use it */
1621 break;
1623 if (errno == ENOENT) {
1624 /* @path names a file that doesn't exist, create it */
1625 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1626 if (fd >= 0) {
1627 *created = true;
1628 break;
1630 } else if (errno == EISDIR) {
1631 /* @path names a directory, create a file there */
1632 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1633 sanitized_name = g_strdup(region_name);
1634 for (c = sanitized_name; *c != '\0'; c++) {
1635 if (*c == '/') {
1636 *c = '_';
1640 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1641 sanitized_name);
1642 g_free(sanitized_name);
1644 fd = mkstemp(filename);
1645 if (fd >= 0) {
1646 unlink(filename);
1647 g_free(filename);
1648 break;
1650 g_free(filename);
1652 if (errno != EEXIST && errno != EINTR) {
1653 error_setg_errno(errp, errno,
1654 "can't open backing store %s for guest RAM",
1655 path);
1656 return -1;
1659 * Try again on EINTR and EEXIST. The latter happens when
1660 * something else creates the file between our two open().
1664 return fd;
1667 static void *file_ram_alloc(RAMBlock *block,
1668 ram_addr_t memory,
1669 int fd,
1670 bool truncate,
1671 Error **errp)
1673 void *area;
1675 block->page_size = qemu_fd_getpagesize(fd);
1676 if (block->mr->align % block->page_size) {
1677 error_setg(errp, "alignment 0x%" PRIx64
1678 " must be multiples of page size 0x%zx",
1679 block->mr->align, block->page_size);
1680 return NULL;
1682 block->mr->align = MAX(block->page_size, block->mr->align);
1683 #if defined(__s390x__)
1684 if (kvm_enabled()) {
1685 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1687 #endif
1689 if (memory < block->page_size) {
1690 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1691 "or larger than page size 0x%zx",
1692 memory, block->page_size);
1693 return NULL;
1696 memory = ROUND_UP(memory, block->page_size);
1699 * ftruncate is not supported by hugetlbfs in older
1700 * hosts, so don't bother bailing out on errors.
1701 * If anything goes wrong with it under other filesystems,
1702 * mmap will fail.
1704 * Do not truncate the non-empty backend file to avoid corrupting
1705 * the existing data in the file. Disabling shrinking is not
1706 * enough. For example, the current vNVDIMM implementation stores
1707 * the guest NVDIMM labels at the end of the backend file. If the
1708 * backend file is later extended, QEMU will not be able to find
1709 * those labels. Therefore, extending the non-empty backend file
1710 * is disabled as well.
1712 if (truncate && ftruncate(fd, memory)) {
1713 perror("ftruncate");
1716 area = qemu_ram_mmap(fd, memory, block->mr->align,
1717 block->flags & RAM_SHARED);
1718 if (area == MAP_FAILED) {
1719 error_setg_errno(errp, errno,
1720 "unable to map backing store for guest RAM");
1721 return NULL;
1724 if (mem_prealloc) {
1725 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1726 if (errp && *errp) {
1727 qemu_ram_munmap(area, memory);
1728 return NULL;
1732 block->fd = fd;
1733 return area;
1735 #endif
1737 /* Allocate space within the ram_addr_t space that governs the
1738 * dirty bitmaps.
1739 * Called with the ramlist lock held.
1741 static ram_addr_t find_ram_offset(ram_addr_t size)
1743 RAMBlock *block, *next_block;
1744 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1746 assert(size != 0); /* it would hand out same offset multiple times */
1748 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1749 return 0;
1752 RAMBLOCK_FOREACH(block) {
1753 ram_addr_t candidate, next = RAM_ADDR_MAX;
1755 /* Align blocks to start on a 'long' in the bitmap
1756 * which makes the bitmap sync'ing take the fast path.
1758 candidate = block->offset + block->max_length;
1759 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1761 /* Search for the closest following block
1762 * and find the gap.
1764 RAMBLOCK_FOREACH(next_block) {
1765 if (next_block->offset >= candidate) {
1766 next = MIN(next, next_block->offset);
1770 /* If it fits remember our place and remember the size
1771 * of gap, but keep going so that we might find a smaller
1772 * gap to fill so avoiding fragmentation.
1774 if (next - candidate >= size && next - candidate < mingap) {
1775 offset = candidate;
1776 mingap = next - candidate;
1779 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1782 if (offset == RAM_ADDR_MAX) {
1783 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1784 (uint64_t)size);
1785 abort();
1788 trace_find_ram_offset(size, offset);
1790 return offset;
1793 unsigned long last_ram_page(void)
1795 RAMBlock *block;
1796 ram_addr_t last = 0;
1798 rcu_read_lock();
1799 RAMBLOCK_FOREACH(block) {
1800 last = MAX(last, block->offset + block->max_length);
1802 rcu_read_unlock();
1803 return last >> TARGET_PAGE_BITS;
1806 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1808 int ret;
1810 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1811 if (!machine_dump_guest_core(current_machine)) {
1812 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1813 if (ret) {
1814 perror("qemu_madvise");
1815 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1816 "but dump_guest_core=off specified\n");
1821 const char *qemu_ram_get_idstr(RAMBlock *rb)
1823 return rb->idstr;
1826 bool qemu_ram_is_shared(RAMBlock *rb)
1828 return rb->flags & RAM_SHARED;
1831 /* Note: Only set at the start of postcopy */
1832 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1834 return rb->flags & RAM_UF_ZEROPAGE;
1837 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1839 rb->flags |= RAM_UF_ZEROPAGE;
1842 /* Called with iothread lock held. */
1843 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1845 RAMBlock *block;
1847 assert(new_block);
1848 assert(!new_block->idstr[0]);
1850 if (dev) {
1851 char *id = qdev_get_dev_path(dev);
1852 if (id) {
1853 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1854 g_free(id);
1857 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1859 rcu_read_lock();
1860 RAMBLOCK_FOREACH(block) {
1861 if (block != new_block &&
1862 !strcmp(block->idstr, new_block->idstr)) {
1863 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1864 new_block->idstr);
1865 abort();
1868 rcu_read_unlock();
1871 /* Called with iothread lock held. */
1872 void qemu_ram_unset_idstr(RAMBlock *block)
1874 /* FIXME: arch_init.c assumes that this is not called throughout
1875 * migration. Ignore the problem since hot-unplug during migration
1876 * does not work anyway.
1878 if (block) {
1879 memset(block->idstr, 0, sizeof(block->idstr));
1883 size_t qemu_ram_pagesize(RAMBlock *rb)
1885 return rb->page_size;
1888 /* Returns the largest size of page in use */
1889 size_t qemu_ram_pagesize_largest(void)
1891 RAMBlock *block;
1892 size_t largest = 0;
1894 RAMBLOCK_FOREACH(block) {
1895 largest = MAX(largest, qemu_ram_pagesize(block));
1898 return largest;
1901 static int memory_try_enable_merging(void *addr, size_t len)
1903 if (!machine_mem_merge(current_machine)) {
1904 /* disabled by the user */
1905 return 0;
1908 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1911 /* Only legal before guest might have detected the memory size: e.g. on
1912 * incoming migration, or right after reset.
1914 * As memory core doesn't know how is memory accessed, it is up to
1915 * resize callback to update device state and/or add assertions to detect
1916 * misuse, if necessary.
1918 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1920 assert(block);
1922 newsize = HOST_PAGE_ALIGN(newsize);
1924 if (block->used_length == newsize) {
1925 return 0;
1928 if (!(block->flags & RAM_RESIZEABLE)) {
1929 error_setg_errno(errp, EINVAL,
1930 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1931 " in != 0x" RAM_ADDR_FMT, block->idstr,
1932 newsize, block->used_length);
1933 return -EINVAL;
1936 if (block->max_length < newsize) {
1937 error_setg_errno(errp, EINVAL,
1938 "Length too large: %s: 0x" RAM_ADDR_FMT
1939 " > 0x" RAM_ADDR_FMT, block->idstr,
1940 newsize, block->max_length);
1941 return -EINVAL;
1944 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1945 block->used_length = newsize;
1946 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1947 DIRTY_CLIENTS_ALL);
1948 memory_region_set_size(block->mr, newsize);
1949 if (block->resized) {
1950 block->resized(block->idstr, newsize, block->host);
1952 return 0;
1955 /* Called with ram_list.mutex held */
1956 static void dirty_memory_extend(ram_addr_t old_ram_size,
1957 ram_addr_t new_ram_size)
1959 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1960 DIRTY_MEMORY_BLOCK_SIZE);
1961 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1962 DIRTY_MEMORY_BLOCK_SIZE);
1963 int i;
1965 /* Only need to extend if block count increased */
1966 if (new_num_blocks <= old_num_blocks) {
1967 return;
1970 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1971 DirtyMemoryBlocks *old_blocks;
1972 DirtyMemoryBlocks *new_blocks;
1973 int j;
1975 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1976 new_blocks = g_malloc(sizeof(*new_blocks) +
1977 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1979 if (old_num_blocks) {
1980 memcpy(new_blocks->blocks, old_blocks->blocks,
1981 old_num_blocks * sizeof(old_blocks->blocks[0]));
1984 for (j = old_num_blocks; j < new_num_blocks; j++) {
1985 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1988 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1990 if (old_blocks) {
1991 g_free_rcu(old_blocks, rcu);
1996 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
1998 RAMBlock *block;
1999 RAMBlock *last_block = NULL;
2000 ram_addr_t old_ram_size, new_ram_size;
2001 Error *err = NULL;
2003 old_ram_size = last_ram_page();
2005 qemu_mutex_lock_ramlist();
2006 new_block->offset = find_ram_offset(new_block->max_length);
2008 if (!new_block->host) {
2009 if (xen_enabled()) {
2010 xen_ram_alloc(new_block->offset, new_block->max_length,
2011 new_block->mr, &err);
2012 if (err) {
2013 error_propagate(errp, err);
2014 qemu_mutex_unlock_ramlist();
2015 return;
2017 } else {
2018 new_block->host = phys_mem_alloc(new_block->max_length,
2019 &new_block->mr->align, shared);
2020 if (!new_block->host) {
2021 error_setg_errno(errp, errno,
2022 "cannot set up guest memory '%s'",
2023 memory_region_name(new_block->mr));
2024 qemu_mutex_unlock_ramlist();
2025 return;
2027 memory_try_enable_merging(new_block->host, new_block->max_length);
2031 new_ram_size = MAX(old_ram_size,
2032 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2033 if (new_ram_size > old_ram_size) {
2034 dirty_memory_extend(old_ram_size, new_ram_size);
2036 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2037 * QLIST (which has an RCU-friendly variant) does not have insertion at
2038 * tail, so save the last element in last_block.
2040 RAMBLOCK_FOREACH(block) {
2041 last_block = block;
2042 if (block->max_length < new_block->max_length) {
2043 break;
2046 if (block) {
2047 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2048 } else if (last_block) {
2049 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2050 } else { /* list is empty */
2051 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2053 ram_list.mru_block = NULL;
2055 /* Write list before version */
2056 smp_wmb();
2057 ram_list.version++;
2058 qemu_mutex_unlock_ramlist();
2060 cpu_physical_memory_set_dirty_range(new_block->offset,
2061 new_block->used_length,
2062 DIRTY_CLIENTS_ALL);
2064 if (new_block->host) {
2065 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2066 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2067 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2068 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2069 ram_block_notify_add(new_block->host, new_block->max_length);
2073 #ifdef __linux__
2074 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2075 bool share, int fd,
2076 Error **errp)
2078 RAMBlock *new_block;
2079 Error *local_err = NULL;
2080 int64_t file_size;
2082 if (xen_enabled()) {
2083 error_setg(errp, "-mem-path not supported with Xen");
2084 return NULL;
2087 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2088 error_setg(errp,
2089 "host lacks kvm mmu notifiers, -mem-path unsupported");
2090 return NULL;
2093 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2095 * file_ram_alloc() needs to allocate just like
2096 * phys_mem_alloc, but we haven't bothered to provide
2097 * a hook there.
2099 error_setg(errp,
2100 "-mem-path not supported with this accelerator");
2101 return NULL;
2104 size = HOST_PAGE_ALIGN(size);
2105 file_size = get_file_size(fd);
2106 if (file_size > 0 && file_size < size) {
2107 error_setg(errp, "backing store %s size 0x%" PRIx64
2108 " does not match 'size' option 0x" RAM_ADDR_FMT,
2109 mem_path, file_size, size);
2110 return NULL;
2113 new_block = g_malloc0(sizeof(*new_block));
2114 new_block->mr = mr;
2115 new_block->used_length = size;
2116 new_block->max_length = size;
2117 new_block->flags = share ? RAM_SHARED : 0;
2118 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2119 if (!new_block->host) {
2120 g_free(new_block);
2121 return NULL;
2124 ram_block_add(new_block, &local_err, share);
2125 if (local_err) {
2126 g_free(new_block);
2127 error_propagate(errp, local_err);
2128 return NULL;
2130 return new_block;
2135 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2136 bool share, const char *mem_path,
2137 Error **errp)
2139 int fd;
2140 bool created;
2141 RAMBlock *block;
2143 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2144 if (fd < 0) {
2145 return NULL;
2148 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2149 if (!block) {
2150 if (created) {
2151 unlink(mem_path);
2153 close(fd);
2154 return NULL;
2157 return block;
2159 #endif
2161 static
2162 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2163 void (*resized)(const char*,
2164 uint64_t length,
2165 void *host),
2166 void *host, bool resizeable, bool share,
2167 MemoryRegion *mr, Error **errp)
2169 RAMBlock *new_block;
2170 Error *local_err = NULL;
2172 size = HOST_PAGE_ALIGN(size);
2173 max_size = HOST_PAGE_ALIGN(max_size);
2174 new_block = g_malloc0(sizeof(*new_block));
2175 new_block->mr = mr;
2176 new_block->resized = resized;
2177 new_block->used_length = size;
2178 new_block->max_length = max_size;
2179 assert(max_size >= size);
2180 new_block->fd = -1;
2181 new_block->page_size = getpagesize();
2182 new_block->host = host;
2183 if (host) {
2184 new_block->flags |= RAM_PREALLOC;
2186 if (resizeable) {
2187 new_block->flags |= RAM_RESIZEABLE;
2189 ram_block_add(new_block, &local_err, share);
2190 if (local_err) {
2191 g_free(new_block);
2192 error_propagate(errp, local_err);
2193 return NULL;
2195 return new_block;
2198 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2199 MemoryRegion *mr, Error **errp)
2201 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2202 false, mr, errp);
2205 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2206 MemoryRegion *mr, Error **errp)
2208 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2209 share, mr, errp);
2212 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2213 void (*resized)(const char*,
2214 uint64_t length,
2215 void *host),
2216 MemoryRegion *mr, Error **errp)
2218 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2219 false, mr, errp);
2222 static void reclaim_ramblock(RAMBlock *block)
2224 if (block->flags & RAM_PREALLOC) {
2226 } else if (xen_enabled()) {
2227 xen_invalidate_map_cache_entry(block->host);
2228 #ifndef _WIN32
2229 } else if (block->fd >= 0) {
2230 qemu_ram_munmap(block->host, block->max_length);
2231 close(block->fd);
2232 #endif
2233 } else {
2234 qemu_anon_ram_free(block->host, block->max_length);
2236 g_free(block);
2239 void qemu_ram_free(RAMBlock *block)
2241 if (!block) {
2242 return;
2245 if (block->host) {
2246 ram_block_notify_remove(block->host, block->max_length);
2249 qemu_mutex_lock_ramlist();
2250 QLIST_REMOVE_RCU(block, next);
2251 ram_list.mru_block = NULL;
2252 /* Write list before version */
2253 smp_wmb();
2254 ram_list.version++;
2255 call_rcu(block, reclaim_ramblock, rcu);
2256 qemu_mutex_unlock_ramlist();
2259 #ifndef _WIN32
2260 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2262 RAMBlock *block;
2263 ram_addr_t offset;
2264 int flags;
2265 void *area, *vaddr;
2267 RAMBLOCK_FOREACH(block) {
2268 offset = addr - block->offset;
2269 if (offset < block->max_length) {
2270 vaddr = ramblock_ptr(block, offset);
2271 if (block->flags & RAM_PREALLOC) {
2273 } else if (xen_enabled()) {
2274 abort();
2275 } else {
2276 flags = MAP_FIXED;
2277 if (block->fd >= 0) {
2278 flags |= (block->flags & RAM_SHARED ?
2279 MAP_SHARED : MAP_PRIVATE);
2280 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2281 flags, block->fd, offset);
2282 } else {
2284 * Remap needs to match alloc. Accelerators that
2285 * set phys_mem_alloc never remap. If they did,
2286 * we'd need a remap hook here.
2288 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2290 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2291 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2292 flags, -1, 0);
2294 if (area != vaddr) {
2295 error_report("Could not remap addr: "
2296 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2297 length, addr);
2298 exit(1);
2300 memory_try_enable_merging(vaddr, length);
2301 qemu_ram_setup_dump(vaddr, length);
2306 #endif /* !_WIN32 */
2308 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2309 * This should not be used for general purpose DMA. Use address_space_map
2310 * or address_space_rw instead. For local memory (e.g. video ram) that the
2311 * device owns, use memory_region_get_ram_ptr.
2313 * Called within RCU critical section.
2315 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2317 RAMBlock *block = ram_block;
2319 if (block == NULL) {
2320 block = qemu_get_ram_block(addr);
2321 addr -= block->offset;
2324 if (xen_enabled() && block->host == NULL) {
2325 /* We need to check if the requested address is in the RAM
2326 * because we don't want to map the entire memory in QEMU.
2327 * In that case just map until the end of the page.
2329 if (block->offset == 0) {
2330 return xen_map_cache(addr, 0, 0, false);
2333 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2335 return ramblock_ptr(block, addr);
2338 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2339 * but takes a size argument.
2341 * Called within RCU critical section.
2343 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2344 hwaddr *size, bool lock)
2346 RAMBlock *block = ram_block;
2347 if (*size == 0) {
2348 return NULL;
2351 if (block == NULL) {
2352 block = qemu_get_ram_block(addr);
2353 addr -= block->offset;
2355 *size = MIN(*size, block->max_length - addr);
2357 if (xen_enabled() && block->host == NULL) {
2358 /* We need to check if the requested address is in the RAM
2359 * because we don't want to map the entire memory in QEMU.
2360 * In that case just map the requested area.
2362 if (block->offset == 0) {
2363 return xen_map_cache(addr, *size, lock, lock);
2366 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2369 return ramblock_ptr(block, addr);
2372 /* Return the offset of a hostpointer within a ramblock */
2373 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2375 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2376 assert((uintptr_t)host >= (uintptr_t)rb->host);
2377 assert(res < rb->max_length);
2379 return res;
2383 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2384 * in that RAMBlock.
2386 * ptr: Host pointer to look up
2387 * round_offset: If true round the result offset down to a page boundary
2388 * *ram_addr: set to result ram_addr
2389 * *offset: set to result offset within the RAMBlock
2391 * Returns: RAMBlock (or NULL if not found)
2393 * By the time this function returns, the returned pointer is not protected
2394 * by RCU anymore. If the caller is not within an RCU critical section and
2395 * does not hold the iothread lock, it must have other means of protecting the
2396 * pointer, such as a reference to the region that includes the incoming
2397 * ram_addr_t.
2399 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2400 ram_addr_t *offset)
2402 RAMBlock *block;
2403 uint8_t *host = ptr;
2405 if (xen_enabled()) {
2406 ram_addr_t ram_addr;
2407 rcu_read_lock();
2408 ram_addr = xen_ram_addr_from_mapcache(ptr);
2409 block = qemu_get_ram_block(ram_addr);
2410 if (block) {
2411 *offset = ram_addr - block->offset;
2413 rcu_read_unlock();
2414 return block;
2417 rcu_read_lock();
2418 block = atomic_rcu_read(&ram_list.mru_block);
2419 if (block && block->host && host - block->host < block->max_length) {
2420 goto found;
2423 RAMBLOCK_FOREACH(block) {
2424 /* This case append when the block is not mapped. */
2425 if (block->host == NULL) {
2426 continue;
2428 if (host - block->host < block->max_length) {
2429 goto found;
2433 rcu_read_unlock();
2434 return NULL;
2436 found:
2437 *offset = (host - block->host);
2438 if (round_offset) {
2439 *offset &= TARGET_PAGE_MASK;
2441 rcu_read_unlock();
2442 return block;
2446 * Finds the named RAMBlock
2448 * name: The name of RAMBlock to find
2450 * Returns: RAMBlock (or NULL if not found)
2452 RAMBlock *qemu_ram_block_by_name(const char *name)
2454 RAMBlock *block;
2456 RAMBLOCK_FOREACH(block) {
2457 if (!strcmp(name, block->idstr)) {
2458 return block;
2462 return NULL;
2465 /* Some of the softmmu routines need to translate from a host pointer
2466 (typically a TLB entry) back to a ram offset. */
2467 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2469 RAMBlock *block;
2470 ram_addr_t offset;
2472 block = qemu_ram_block_from_host(ptr, false, &offset);
2473 if (!block) {
2474 return RAM_ADDR_INVALID;
2477 return block->offset + offset;
2480 /* Called within RCU critical section. */
2481 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2482 CPUState *cpu,
2483 vaddr mem_vaddr,
2484 ram_addr_t ram_addr,
2485 unsigned size)
2487 ndi->cpu = cpu;
2488 ndi->ram_addr = ram_addr;
2489 ndi->mem_vaddr = mem_vaddr;
2490 ndi->size = size;
2491 ndi->locked = false;
2493 assert(tcg_enabled());
2494 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2495 ndi->locked = true;
2496 tb_lock();
2497 tb_invalidate_phys_page_fast(ram_addr, size);
2501 /* Called within RCU critical section. */
2502 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2504 if (ndi->locked) {
2505 tb_unlock();
2508 /* Set both VGA and migration bits for simplicity and to remove
2509 * the notdirty callback faster.
2511 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2512 DIRTY_CLIENTS_NOCODE);
2513 /* we remove the notdirty callback only if the code has been
2514 flushed */
2515 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2516 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2520 /* Called within RCU critical section. */
2521 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2522 uint64_t val, unsigned size)
2524 NotDirtyInfo ndi;
2526 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2527 ram_addr, size);
2529 switch (size) {
2530 case 1:
2531 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2532 break;
2533 case 2:
2534 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2535 break;
2536 case 4:
2537 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2538 break;
2539 case 8:
2540 stq_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2541 break;
2542 default:
2543 abort();
2545 memory_notdirty_write_complete(&ndi);
2548 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2549 unsigned size, bool is_write,
2550 MemTxAttrs attrs)
2552 return is_write;
2555 static const MemoryRegionOps notdirty_mem_ops = {
2556 .write = notdirty_mem_write,
2557 .valid.accepts = notdirty_mem_accepts,
2558 .endianness = DEVICE_NATIVE_ENDIAN,
2559 .valid = {
2560 .min_access_size = 1,
2561 .max_access_size = 8,
2562 .unaligned = false,
2564 .impl = {
2565 .min_access_size = 1,
2566 .max_access_size = 8,
2567 .unaligned = false,
2571 /* Generate a debug exception if a watchpoint has been hit. */
2572 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2574 CPUState *cpu = current_cpu;
2575 CPUClass *cc = CPU_GET_CLASS(cpu);
2576 target_ulong vaddr;
2577 CPUWatchpoint *wp;
2579 assert(tcg_enabled());
2580 if (cpu->watchpoint_hit) {
2581 /* We re-entered the check after replacing the TB. Now raise
2582 * the debug interrupt so that is will trigger after the
2583 * current instruction. */
2584 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2585 return;
2587 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2588 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2589 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2590 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2591 && (wp->flags & flags)) {
2592 if (flags == BP_MEM_READ) {
2593 wp->flags |= BP_WATCHPOINT_HIT_READ;
2594 } else {
2595 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2597 wp->hitaddr = vaddr;
2598 wp->hitattrs = attrs;
2599 if (!cpu->watchpoint_hit) {
2600 if (wp->flags & BP_CPU &&
2601 !cc->debug_check_watchpoint(cpu, wp)) {
2602 wp->flags &= ~BP_WATCHPOINT_HIT;
2603 continue;
2605 cpu->watchpoint_hit = wp;
2607 /* Both tb_lock and iothread_mutex will be reset when
2608 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2609 * back into the cpu_exec main loop.
2611 tb_lock();
2612 tb_check_watchpoint(cpu);
2613 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2614 cpu->exception_index = EXCP_DEBUG;
2615 cpu_loop_exit(cpu);
2616 } else {
2617 /* Force execution of one insn next time. */
2618 cpu->cflags_next_tb = 1 | curr_cflags();
2619 cpu_loop_exit_noexc(cpu);
2622 } else {
2623 wp->flags &= ~BP_WATCHPOINT_HIT;
2628 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2629 so these check for a hit then pass through to the normal out-of-line
2630 phys routines. */
2631 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2632 unsigned size, MemTxAttrs attrs)
2634 MemTxResult res;
2635 uint64_t data;
2636 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2637 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2639 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2640 switch (size) {
2641 case 1:
2642 data = address_space_ldub(as, addr, attrs, &res);
2643 break;
2644 case 2:
2645 data = address_space_lduw(as, addr, attrs, &res);
2646 break;
2647 case 4:
2648 data = address_space_ldl(as, addr, attrs, &res);
2649 break;
2650 case 8:
2651 data = address_space_ldq(as, addr, attrs, &res);
2652 break;
2653 default: abort();
2655 *pdata = data;
2656 return res;
2659 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2660 uint64_t val, unsigned size,
2661 MemTxAttrs attrs)
2663 MemTxResult res;
2664 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2665 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2667 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2668 switch (size) {
2669 case 1:
2670 address_space_stb(as, addr, val, attrs, &res);
2671 break;
2672 case 2:
2673 address_space_stw(as, addr, val, attrs, &res);
2674 break;
2675 case 4:
2676 address_space_stl(as, addr, val, attrs, &res);
2677 break;
2678 case 8:
2679 address_space_stq(as, addr, val, attrs, &res);
2680 break;
2681 default: abort();
2683 return res;
2686 static const MemoryRegionOps watch_mem_ops = {
2687 .read_with_attrs = watch_mem_read,
2688 .write_with_attrs = watch_mem_write,
2689 .endianness = DEVICE_NATIVE_ENDIAN,
2690 .valid = {
2691 .min_access_size = 1,
2692 .max_access_size = 8,
2693 .unaligned = false,
2695 .impl = {
2696 .min_access_size = 1,
2697 .max_access_size = 8,
2698 .unaligned = false,
2702 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2703 MemTxAttrs attrs, uint8_t *buf, int len);
2704 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2705 const uint8_t *buf, int len);
2706 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2707 bool is_write, MemTxAttrs attrs);
2709 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2710 unsigned len, MemTxAttrs attrs)
2712 subpage_t *subpage = opaque;
2713 uint8_t buf[8];
2714 MemTxResult res;
2716 #if defined(DEBUG_SUBPAGE)
2717 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2718 subpage, len, addr);
2719 #endif
2720 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2721 if (res) {
2722 return res;
2724 switch (len) {
2725 case 1:
2726 *data = ldub_p(buf);
2727 return MEMTX_OK;
2728 case 2:
2729 *data = lduw_p(buf);
2730 return MEMTX_OK;
2731 case 4:
2732 *data = ldl_p(buf);
2733 return MEMTX_OK;
2734 case 8:
2735 *data = ldq_p(buf);
2736 return MEMTX_OK;
2737 default:
2738 abort();
2742 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2743 uint64_t value, unsigned len, MemTxAttrs attrs)
2745 subpage_t *subpage = opaque;
2746 uint8_t buf[8];
2748 #if defined(DEBUG_SUBPAGE)
2749 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2750 " value %"PRIx64"\n",
2751 __func__, subpage, len, addr, value);
2752 #endif
2753 switch (len) {
2754 case 1:
2755 stb_p(buf, value);
2756 break;
2757 case 2:
2758 stw_p(buf, value);
2759 break;
2760 case 4:
2761 stl_p(buf, value);
2762 break;
2763 case 8:
2764 stq_p(buf, value);
2765 break;
2766 default:
2767 abort();
2769 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2772 static bool subpage_accepts(void *opaque, hwaddr addr,
2773 unsigned len, bool is_write,
2774 MemTxAttrs attrs)
2776 subpage_t *subpage = opaque;
2777 #if defined(DEBUG_SUBPAGE)
2778 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2779 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2780 #endif
2782 return flatview_access_valid(subpage->fv, addr + subpage->base,
2783 len, is_write, attrs);
2786 static const MemoryRegionOps subpage_ops = {
2787 .read_with_attrs = subpage_read,
2788 .write_with_attrs = subpage_write,
2789 .impl.min_access_size = 1,
2790 .impl.max_access_size = 8,
2791 .valid.min_access_size = 1,
2792 .valid.max_access_size = 8,
2793 .valid.accepts = subpage_accepts,
2794 .endianness = DEVICE_NATIVE_ENDIAN,
2797 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2798 uint16_t section)
2800 int idx, eidx;
2802 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2803 return -1;
2804 idx = SUBPAGE_IDX(start);
2805 eidx = SUBPAGE_IDX(end);
2806 #if defined(DEBUG_SUBPAGE)
2807 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2808 __func__, mmio, start, end, idx, eidx, section);
2809 #endif
2810 for (; idx <= eidx; idx++) {
2811 mmio->sub_section[idx] = section;
2814 return 0;
2817 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2819 subpage_t *mmio;
2821 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2822 mmio->fv = fv;
2823 mmio->base = base;
2824 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2825 NULL, TARGET_PAGE_SIZE);
2826 mmio->iomem.subpage = true;
2827 #if defined(DEBUG_SUBPAGE)
2828 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2829 mmio, base, TARGET_PAGE_SIZE);
2830 #endif
2831 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2833 return mmio;
2836 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2838 assert(fv);
2839 MemoryRegionSection section = {
2840 .fv = fv,
2841 .mr = mr,
2842 .offset_within_address_space = 0,
2843 .offset_within_region = 0,
2844 .size = int128_2_64(),
2847 return phys_section_add(map, &section);
2850 static void readonly_mem_write(void *opaque, hwaddr addr,
2851 uint64_t val, unsigned size)
2853 /* Ignore any write to ROM. */
2856 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2857 unsigned size, bool is_write,
2858 MemTxAttrs attrs)
2860 return is_write;
2863 /* This will only be used for writes, because reads are special cased
2864 * to directly access the underlying host ram.
2866 static const MemoryRegionOps readonly_mem_ops = {
2867 .write = readonly_mem_write,
2868 .valid.accepts = readonly_mem_accepts,
2869 .endianness = DEVICE_NATIVE_ENDIAN,
2870 .valid = {
2871 .min_access_size = 1,
2872 .max_access_size = 8,
2873 .unaligned = false,
2875 .impl = {
2876 .min_access_size = 1,
2877 .max_access_size = 8,
2878 .unaligned = false,
2882 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2884 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2885 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2886 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2887 MemoryRegionSection *sections = d->map.sections;
2889 return sections[index & ~TARGET_PAGE_MASK].mr;
2892 static void io_mem_init(void)
2894 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
2895 NULL, NULL, UINT64_MAX);
2896 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2897 NULL, UINT64_MAX);
2899 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2900 * which can be called without the iothread mutex.
2902 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2903 NULL, UINT64_MAX);
2904 memory_region_clear_global_locking(&io_mem_notdirty);
2906 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2907 NULL, UINT64_MAX);
2910 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2912 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2913 uint16_t n;
2915 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2916 assert(n == PHYS_SECTION_UNASSIGNED);
2917 n = dummy_section(&d->map, fv, &io_mem_notdirty);
2918 assert(n == PHYS_SECTION_NOTDIRTY);
2919 n = dummy_section(&d->map, fv, &io_mem_rom);
2920 assert(n == PHYS_SECTION_ROM);
2921 n = dummy_section(&d->map, fv, &io_mem_watch);
2922 assert(n == PHYS_SECTION_WATCH);
2924 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2926 return d;
2929 void address_space_dispatch_free(AddressSpaceDispatch *d)
2931 phys_sections_free(&d->map);
2932 g_free(d);
2935 static void tcg_commit(MemoryListener *listener)
2937 CPUAddressSpace *cpuas;
2938 AddressSpaceDispatch *d;
2940 /* since each CPU stores ram addresses in its TLB cache, we must
2941 reset the modified entries */
2942 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2943 cpu_reloading_memory_map();
2944 /* The CPU and TLB are protected by the iothread lock.
2945 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2946 * may have split the RCU critical section.
2948 d = address_space_to_dispatch(cpuas->as);
2949 atomic_rcu_set(&cpuas->memory_dispatch, d);
2950 tlb_flush(cpuas->cpu);
2953 static void memory_map_init(void)
2955 system_memory = g_malloc(sizeof(*system_memory));
2957 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2958 address_space_init(&address_space_memory, system_memory, "memory");
2960 system_io = g_malloc(sizeof(*system_io));
2961 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2962 65536);
2963 address_space_init(&address_space_io, system_io, "I/O");
2966 MemoryRegion *get_system_memory(void)
2968 return system_memory;
2971 MemoryRegion *get_system_io(void)
2973 return system_io;
2976 #endif /* !defined(CONFIG_USER_ONLY) */
2978 /* physical memory access (slow version, mainly for debug) */
2979 #if defined(CONFIG_USER_ONLY)
2980 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2981 uint8_t *buf, int len, int is_write)
2983 int l, flags;
2984 target_ulong page;
2985 void * p;
2987 while (len > 0) {
2988 page = addr & TARGET_PAGE_MASK;
2989 l = (page + TARGET_PAGE_SIZE) - addr;
2990 if (l > len)
2991 l = len;
2992 flags = page_get_flags(page);
2993 if (!(flags & PAGE_VALID))
2994 return -1;
2995 if (is_write) {
2996 if (!(flags & PAGE_WRITE))
2997 return -1;
2998 /* XXX: this code should not depend on lock_user */
2999 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3000 return -1;
3001 memcpy(p, buf, l);
3002 unlock_user(p, addr, l);
3003 } else {
3004 if (!(flags & PAGE_READ))
3005 return -1;
3006 /* XXX: this code should not depend on lock_user */
3007 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3008 return -1;
3009 memcpy(buf, p, l);
3010 unlock_user(p, addr, 0);
3012 len -= l;
3013 buf += l;
3014 addr += l;
3016 return 0;
3019 #else
3021 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3022 hwaddr length)
3024 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3025 addr += memory_region_get_ram_addr(mr);
3027 /* No early return if dirty_log_mask is or becomes 0, because
3028 * cpu_physical_memory_set_dirty_range will still call
3029 * xen_modified_memory.
3031 if (dirty_log_mask) {
3032 dirty_log_mask =
3033 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3035 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3036 assert(tcg_enabled());
3037 tb_lock();
3038 tb_invalidate_phys_range(addr, addr + length);
3039 tb_unlock();
3040 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3042 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3045 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3047 unsigned access_size_max = mr->ops->valid.max_access_size;
3049 /* Regions are assumed to support 1-4 byte accesses unless
3050 otherwise specified. */
3051 if (access_size_max == 0) {
3052 access_size_max = 4;
3055 /* Bound the maximum access by the alignment of the address. */
3056 if (!mr->ops->impl.unaligned) {
3057 unsigned align_size_max = addr & -addr;
3058 if (align_size_max != 0 && align_size_max < access_size_max) {
3059 access_size_max = align_size_max;
3063 /* Don't attempt accesses larger than the maximum. */
3064 if (l > access_size_max) {
3065 l = access_size_max;
3067 l = pow2floor(l);
3069 return l;
3072 static bool prepare_mmio_access(MemoryRegion *mr)
3074 bool unlocked = !qemu_mutex_iothread_locked();
3075 bool release_lock = false;
3077 if (unlocked && mr->global_locking) {
3078 qemu_mutex_lock_iothread();
3079 unlocked = false;
3080 release_lock = true;
3082 if (mr->flush_coalesced_mmio) {
3083 if (unlocked) {
3084 qemu_mutex_lock_iothread();
3086 qemu_flush_coalesced_mmio_buffer();
3087 if (unlocked) {
3088 qemu_mutex_unlock_iothread();
3092 return release_lock;
3095 /* Called within RCU critical section. */
3096 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3097 MemTxAttrs attrs,
3098 const uint8_t *buf,
3099 int len, hwaddr addr1,
3100 hwaddr l, MemoryRegion *mr)
3102 uint8_t *ptr;
3103 uint64_t val;
3104 MemTxResult result = MEMTX_OK;
3105 bool release_lock = false;
3107 for (;;) {
3108 if (!memory_access_is_direct(mr, true)) {
3109 release_lock |= prepare_mmio_access(mr);
3110 l = memory_access_size(mr, l, addr1);
3111 /* XXX: could force current_cpu to NULL to avoid
3112 potential bugs */
3113 switch (l) {
3114 case 8:
3115 /* 64 bit write access */
3116 val = ldq_p(buf);
3117 result |= memory_region_dispatch_write(mr, addr1, val, 8,
3118 attrs);
3119 break;
3120 case 4:
3121 /* 32 bit write access */
3122 val = (uint32_t)ldl_p(buf);
3123 result |= memory_region_dispatch_write(mr, addr1, val, 4,
3124 attrs);
3125 break;
3126 case 2:
3127 /* 16 bit write access */
3128 val = lduw_p(buf);
3129 result |= memory_region_dispatch_write(mr, addr1, val, 2,
3130 attrs);
3131 break;
3132 case 1:
3133 /* 8 bit write access */
3134 val = ldub_p(buf);
3135 result |= memory_region_dispatch_write(mr, addr1, val, 1,
3136 attrs);
3137 break;
3138 default:
3139 abort();
3141 } else {
3142 /* RAM case */
3143 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3144 memcpy(ptr, buf, l);
3145 invalidate_and_set_dirty(mr, addr1, l);
3148 if (release_lock) {
3149 qemu_mutex_unlock_iothread();
3150 release_lock = false;
3153 len -= l;
3154 buf += l;
3155 addr += l;
3157 if (!len) {
3158 break;
3161 l = len;
3162 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3165 return result;
3168 /* Called from RCU critical section. */
3169 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3170 const uint8_t *buf, int len)
3172 hwaddr l;
3173 hwaddr addr1;
3174 MemoryRegion *mr;
3175 MemTxResult result = MEMTX_OK;
3177 l = len;
3178 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3179 result = flatview_write_continue(fv, addr, attrs, buf, len,
3180 addr1, l, mr);
3182 return result;
3185 /* Called within RCU critical section. */
3186 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3187 MemTxAttrs attrs, uint8_t *buf,
3188 int len, hwaddr addr1, hwaddr l,
3189 MemoryRegion *mr)
3191 uint8_t *ptr;
3192 uint64_t val;
3193 MemTxResult result = MEMTX_OK;
3194 bool release_lock = false;
3196 for (;;) {
3197 if (!memory_access_is_direct(mr, false)) {
3198 /* I/O case */
3199 release_lock |= prepare_mmio_access(mr);
3200 l = memory_access_size(mr, l, addr1);
3201 switch (l) {
3202 case 8:
3203 /* 64 bit read access */
3204 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
3205 attrs);
3206 stq_p(buf, val);
3207 break;
3208 case 4:
3209 /* 32 bit read access */
3210 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3211 attrs);
3212 stl_p(buf, val);
3213 break;
3214 case 2:
3215 /* 16 bit read access */
3216 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3217 attrs);
3218 stw_p(buf, val);
3219 break;
3220 case 1:
3221 /* 8 bit read access */
3222 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3223 attrs);
3224 stb_p(buf, val);
3225 break;
3226 default:
3227 abort();
3229 } else {
3230 /* RAM case */
3231 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3232 memcpy(buf, ptr, l);
3235 if (release_lock) {
3236 qemu_mutex_unlock_iothread();
3237 release_lock = false;
3240 len -= l;
3241 buf += l;
3242 addr += l;
3244 if (!len) {
3245 break;
3248 l = len;
3249 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3252 return result;
3255 /* Called from RCU critical section. */
3256 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3257 MemTxAttrs attrs, uint8_t *buf, int len)
3259 hwaddr l;
3260 hwaddr addr1;
3261 MemoryRegion *mr;
3263 l = len;
3264 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3265 return flatview_read_continue(fv, addr, attrs, buf, len,
3266 addr1, l, mr);
3269 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3270 MemTxAttrs attrs, uint8_t *buf, int len)
3272 MemTxResult result = MEMTX_OK;
3273 FlatView *fv;
3275 if (len > 0) {
3276 rcu_read_lock();
3277 fv = address_space_to_flatview(as);
3278 result = flatview_read(fv, addr, attrs, buf, len);
3279 rcu_read_unlock();
3282 return result;
3285 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3286 MemTxAttrs attrs,
3287 const uint8_t *buf, int len)
3289 MemTxResult result = MEMTX_OK;
3290 FlatView *fv;
3292 if (len > 0) {
3293 rcu_read_lock();
3294 fv = address_space_to_flatview(as);
3295 result = flatview_write(fv, addr, attrs, buf, len);
3296 rcu_read_unlock();
3299 return result;
3302 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3303 uint8_t *buf, int len, bool is_write)
3305 if (is_write) {
3306 return address_space_write(as, addr, attrs, buf, len);
3307 } else {
3308 return address_space_read_full(as, addr, attrs, buf, len);
3312 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3313 int len, int is_write)
3315 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3316 buf, len, is_write);
3319 enum write_rom_type {
3320 WRITE_DATA,
3321 FLUSH_CACHE,
3324 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3325 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3327 hwaddr l;
3328 uint8_t *ptr;
3329 hwaddr addr1;
3330 MemoryRegion *mr;
3332 rcu_read_lock();
3333 while (len > 0) {
3334 l = len;
3335 mr = address_space_translate(as, addr, &addr1, &l, true,
3336 MEMTXATTRS_UNSPECIFIED);
3338 if (!(memory_region_is_ram(mr) ||
3339 memory_region_is_romd(mr))) {
3340 l = memory_access_size(mr, l, addr1);
3341 } else {
3342 /* ROM/RAM case */
3343 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3344 switch (type) {
3345 case WRITE_DATA:
3346 memcpy(ptr, buf, l);
3347 invalidate_and_set_dirty(mr, addr1, l);
3348 break;
3349 case FLUSH_CACHE:
3350 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3351 break;
3354 len -= l;
3355 buf += l;
3356 addr += l;
3358 rcu_read_unlock();
3361 /* used for ROM loading : can write in RAM and ROM */
3362 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3363 const uint8_t *buf, int len)
3365 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3368 void cpu_flush_icache_range(hwaddr start, int len)
3371 * This function should do the same thing as an icache flush that was
3372 * triggered from within the guest. For TCG we are always cache coherent,
3373 * so there is no need to flush anything. For KVM / Xen we need to flush
3374 * the host's instruction cache at least.
3376 if (tcg_enabled()) {
3377 return;
3380 cpu_physical_memory_write_rom_internal(&address_space_memory,
3381 start, NULL, len, FLUSH_CACHE);
3384 typedef struct {
3385 MemoryRegion *mr;
3386 void *buffer;
3387 hwaddr addr;
3388 hwaddr len;
3389 bool in_use;
3390 } BounceBuffer;
3392 static BounceBuffer bounce;
3394 typedef struct MapClient {
3395 QEMUBH *bh;
3396 QLIST_ENTRY(MapClient) link;
3397 } MapClient;
3399 QemuMutex map_client_list_lock;
3400 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3401 = QLIST_HEAD_INITIALIZER(map_client_list);
3403 static void cpu_unregister_map_client_do(MapClient *client)
3405 QLIST_REMOVE(client, link);
3406 g_free(client);
3409 static void cpu_notify_map_clients_locked(void)
3411 MapClient *client;
3413 while (!QLIST_EMPTY(&map_client_list)) {
3414 client = QLIST_FIRST(&map_client_list);
3415 qemu_bh_schedule(client->bh);
3416 cpu_unregister_map_client_do(client);
3420 void cpu_register_map_client(QEMUBH *bh)
3422 MapClient *client = g_malloc(sizeof(*client));
3424 qemu_mutex_lock(&map_client_list_lock);
3425 client->bh = bh;
3426 QLIST_INSERT_HEAD(&map_client_list, client, link);
3427 if (!atomic_read(&bounce.in_use)) {
3428 cpu_notify_map_clients_locked();
3430 qemu_mutex_unlock(&map_client_list_lock);
3433 void cpu_exec_init_all(void)
3435 qemu_mutex_init(&ram_list.mutex);
3436 /* The data structures we set up here depend on knowing the page size,
3437 * so no more changes can be made after this point.
3438 * In an ideal world, nothing we did before we had finished the
3439 * machine setup would care about the target page size, and we could
3440 * do this much later, rather than requiring board models to state
3441 * up front what their requirements are.
3443 finalize_target_page_bits();
3444 io_mem_init();
3445 memory_map_init();
3446 qemu_mutex_init(&map_client_list_lock);
3449 void cpu_unregister_map_client(QEMUBH *bh)
3451 MapClient *client;
3453 qemu_mutex_lock(&map_client_list_lock);
3454 QLIST_FOREACH(client, &map_client_list, link) {
3455 if (client->bh == bh) {
3456 cpu_unregister_map_client_do(client);
3457 break;
3460 qemu_mutex_unlock(&map_client_list_lock);
3463 static void cpu_notify_map_clients(void)
3465 qemu_mutex_lock(&map_client_list_lock);
3466 cpu_notify_map_clients_locked();
3467 qemu_mutex_unlock(&map_client_list_lock);
3470 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3471 bool is_write, MemTxAttrs attrs)
3473 MemoryRegion *mr;
3474 hwaddr l, xlat;
3476 while (len > 0) {
3477 l = len;
3478 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3479 if (!memory_access_is_direct(mr, is_write)) {
3480 l = memory_access_size(mr, l, addr);
3481 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3482 return false;
3486 len -= l;
3487 addr += l;
3489 return true;
3492 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3493 int len, bool is_write,
3494 MemTxAttrs attrs)
3496 FlatView *fv;
3497 bool result;
3499 rcu_read_lock();
3500 fv = address_space_to_flatview(as);
3501 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3502 rcu_read_unlock();
3503 return result;
3506 static hwaddr
3507 flatview_extend_translation(FlatView *fv, hwaddr addr,
3508 hwaddr target_len,
3509 MemoryRegion *mr, hwaddr base, hwaddr len,
3510 bool is_write, MemTxAttrs attrs)
3512 hwaddr done = 0;
3513 hwaddr xlat;
3514 MemoryRegion *this_mr;
3516 for (;;) {
3517 target_len -= len;
3518 addr += len;
3519 done += len;
3520 if (target_len == 0) {
3521 return done;
3524 len = target_len;
3525 this_mr = flatview_translate(fv, addr, &xlat,
3526 &len, is_write, attrs);
3527 if (this_mr != mr || xlat != base + done) {
3528 return done;
3533 /* Map a physical memory region into a host virtual address.
3534 * May map a subset of the requested range, given by and returned in *plen.
3535 * May return NULL if resources needed to perform the mapping are exhausted.
3536 * Use only for reads OR writes - not for read-modify-write operations.
3537 * Use cpu_register_map_client() to know when retrying the map operation is
3538 * likely to succeed.
3540 void *address_space_map(AddressSpace *as,
3541 hwaddr addr,
3542 hwaddr *plen,
3543 bool is_write,
3544 MemTxAttrs attrs)
3546 hwaddr len = *plen;
3547 hwaddr l, xlat;
3548 MemoryRegion *mr;
3549 void *ptr;
3550 FlatView *fv;
3552 if (len == 0) {
3553 return NULL;
3556 l = len;
3557 rcu_read_lock();
3558 fv = address_space_to_flatview(as);
3559 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3561 if (!memory_access_is_direct(mr, is_write)) {
3562 if (atomic_xchg(&bounce.in_use, true)) {
3563 rcu_read_unlock();
3564 return NULL;
3566 /* Avoid unbounded allocations */
3567 l = MIN(l, TARGET_PAGE_SIZE);
3568 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3569 bounce.addr = addr;
3570 bounce.len = l;
3572 memory_region_ref(mr);
3573 bounce.mr = mr;
3574 if (!is_write) {
3575 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3576 bounce.buffer, l);
3579 rcu_read_unlock();
3580 *plen = l;
3581 return bounce.buffer;
3585 memory_region_ref(mr);
3586 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3587 l, is_write, attrs);
3588 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3589 rcu_read_unlock();
3591 return ptr;
3594 /* Unmaps a memory region previously mapped by address_space_map().
3595 * Will also mark the memory as dirty if is_write == 1. access_len gives
3596 * the amount of memory that was actually read or written by the caller.
3598 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3599 int is_write, hwaddr access_len)
3601 if (buffer != bounce.buffer) {
3602 MemoryRegion *mr;
3603 ram_addr_t addr1;
3605 mr = memory_region_from_host(buffer, &addr1);
3606 assert(mr != NULL);
3607 if (is_write) {
3608 invalidate_and_set_dirty(mr, addr1, access_len);
3610 if (xen_enabled()) {
3611 xen_invalidate_map_cache_entry(buffer);
3613 memory_region_unref(mr);
3614 return;
3616 if (is_write) {
3617 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3618 bounce.buffer, access_len);
3620 qemu_vfree(bounce.buffer);
3621 bounce.buffer = NULL;
3622 memory_region_unref(bounce.mr);
3623 atomic_mb_set(&bounce.in_use, false);
3624 cpu_notify_map_clients();
3627 void *cpu_physical_memory_map(hwaddr addr,
3628 hwaddr *plen,
3629 int is_write)
3631 return address_space_map(&address_space_memory, addr, plen, is_write,
3632 MEMTXATTRS_UNSPECIFIED);
3635 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3636 int is_write, hwaddr access_len)
3638 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3641 #define ARG1_DECL AddressSpace *as
3642 #define ARG1 as
3643 #define SUFFIX
3644 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3645 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3646 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3647 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3648 #define RCU_READ_LOCK(...) rcu_read_lock()
3649 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3650 #include "memory_ldst.inc.c"
3652 int64_t address_space_cache_init(MemoryRegionCache *cache,
3653 AddressSpace *as,
3654 hwaddr addr,
3655 hwaddr len,
3656 bool is_write)
3658 AddressSpaceDispatch *d;
3659 hwaddr l;
3660 MemoryRegion *mr;
3662 assert(len > 0);
3664 l = len;
3665 cache->fv = address_space_get_flatview(as);
3666 d = flatview_to_dispatch(cache->fv);
3667 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3669 mr = cache->mrs.mr;
3670 memory_region_ref(mr);
3671 if (memory_access_is_direct(mr, is_write)) {
3672 /* We don't care about the memory attributes here as we're only
3673 * doing this if we found actual RAM, which behaves the same
3674 * regardless of attributes; so UNSPECIFIED is fine.
3676 l = flatview_extend_translation(cache->fv, addr, len, mr,
3677 cache->xlat, l, is_write,
3678 MEMTXATTRS_UNSPECIFIED);
3679 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3680 } else {
3681 cache->ptr = NULL;
3684 cache->len = l;
3685 cache->is_write = is_write;
3686 return l;
3689 void address_space_cache_invalidate(MemoryRegionCache *cache,
3690 hwaddr addr,
3691 hwaddr access_len)
3693 assert(cache->is_write);
3694 if (likely(cache->ptr)) {
3695 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3699 void address_space_cache_destroy(MemoryRegionCache *cache)
3701 if (!cache->mrs.mr) {
3702 return;
3705 if (xen_enabled()) {
3706 xen_invalidate_map_cache_entry(cache->ptr);
3708 memory_region_unref(cache->mrs.mr);
3709 flatview_unref(cache->fv);
3710 cache->mrs.mr = NULL;
3711 cache->fv = NULL;
3714 /* Called from RCU critical section. This function has the same
3715 * semantics as address_space_translate, but it only works on a
3716 * predefined range of a MemoryRegion that was mapped with
3717 * address_space_cache_init.
3719 static inline MemoryRegion *address_space_translate_cached(
3720 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3721 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3723 MemoryRegionSection section;
3724 MemoryRegion *mr;
3725 IOMMUMemoryRegion *iommu_mr;
3726 AddressSpace *target_as;
3728 assert(!cache->ptr);
3729 *xlat = addr + cache->xlat;
3731 mr = cache->mrs.mr;
3732 iommu_mr = memory_region_get_iommu(mr);
3733 if (!iommu_mr) {
3734 /* MMIO region. */
3735 return mr;
3738 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3739 NULL, is_write, true,
3740 &target_as, attrs);
3741 return section.mr;
3744 /* Called from RCU critical section. address_space_read_cached uses this
3745 * out of line function when the target is an MMIO or IOMMU region.
3747 void
3748 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3749 void *buf, int len)
3751 hwaddr addr1, l;
3752 MemoryRegion *mr;
3754 l = len;
3755 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3756 MEMTXATTRS_UNSPECIFIED);
3757 flatview_read_continue(cache->fv,
3758 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3759 addr1, l, mr);
3762 /* Called from RCU critical section. address_space_write_cached uses this
3763 * out of line function when the target is an MMIO or IOMMU region.
3765 void
3766 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3767 const void *buf, int len)
3769 hwaddr addr1, l;
3770 MemoryRegion *mr;
3772 l = len;
3773 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3774 MEMTXATTRS_UNSPECIFIED);
3775 flatview_write_continue(cache->fv,
3776 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3777 addr1, l, mr);
3780 #define ARG1_DECL MemoryRegionCache *cache
3781 #define ARG1 cache
3782 #define SUFFIX _cached_slow
3783 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3784 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3785 #define MAP_RAM(mr, ofs) (cache->ptr + (ofs - cache->xlat))
3786 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3787 #define RCU_READ_LOCK() ((void)0)
3788 #define RCU_READ_UNLOCK() ((void)0)
3789 #include "memory_ldst.inc.c"
3791 /* virtual memory access for debug (includes writing to ROM) */
3792 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3793 uint8_t *buf, int len, int is_write)
3795 int l;
3796 hwaddr phys_addr;
3797 target_ulong page;
3799 cpu_synchronize_state(cpu);
3800 while (len > 0) {
3801 int asidx;
3802 MemTxAttrs attrs;
3804 page = addr & TARGET_PAGE_MASK;
3805 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3806 asidx = cpu_asidx_from_attrs(cpu, attrs);
3807 /* if no physical page mapped, return an error */
3808 if (phys_addr == -1)
3809 return -1;
3810 l = (page + TARGET_PAGE_SIZE) - addr;
3811 if (l > len)
3812 l = len;
3813 phys_addr += (addr & ~TARGET_PAGE_MASK);
3814 if (is_write) {
3815 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3816 phys_addr, buf, l);
3817 } else {
3818 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3819 MEMTXATTRS_UNSPECIFIED,
3820 buf, l, 0);
3822 len -= l;
3823 buf += l;
3824 addr += l;
3826 return 0;
3830 * Allows code that needs to deal with migration bitmaps etc to still be built
3831 * target independent.
3833 size_t qemu_target_page_size(void)
3835 return TARGET_PAGE_SIZE;
3838 int qemu_target_page_bits(void)
3840 return TARGET_PAGE_BITS;
3843 int qemu_target_page_bits_min(void)
3845 return TARGET_PAGE_BITS_MIN;
3847 #endif
3850 * A helper function for the _utterly broken_ virtio device model to find out if
3851 * it's running on a big endian machine. Don't do this at home kids!
3853 bool target_words_bigendian(void);
3854 bool target_words_bigendian(void)
3856 #if defined(TARGET_WORDS_BIGENDIAN)
3857 return true;
3858 #else
3859 return false;
3860 #endif
3863 #ifndef CONFIG_USER_ONLY
3864 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3866 MemoryRegion*mr;
3867 hwaddr l = 1;
3868 bool res;
3870 rcu_read_lock();
3871 mr = address_space_translate(&address_space_memory,
3872 phys_addr, &phys_addr, &l, false,
3873 MEMTXATTRS_UNSPECIFIED);
3875 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3876 rcu_read_unlock();
3877 return res;
3880 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3882 RAMBlock *block;
3883 int ret = 0;
3885 rcu_read_lock();
3886 RAMBLOCK_FOREACH(block) {
3887 ret = func(block->idstr, block->host, block->offset,
3888 block->used_length, opaque);
3889 if (ret) {
3890 break;
3893 rcu_read_unlock();
3894 return ret;
3898 * Unmap pages of memory from start to start+length such that
3899 * they a) read as 0, b) Trigger whatever fault mechanism
3900 * the OS provides for postcopy.
3901 * The pages must be unmapped by the end of the function.
3902 * Returns: 0 on success, none-0 on failure
3905 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3907 int ret = -1;
3909 uint8_t *host_startaddr = rb->host + start;
3911 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3912 error_report("ram_block_discard_range: Unaligned start address: %p",
3913 host_startaddr);
3914 goto err;
3917 if ((start + length) <= rb->used_length) {
3918 bool need_madvise, need_fallocate;
3919 uint8_t *host_endaddr = host_startaddr + length;
3920 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3921 error_report("ram_block_discard_range: Unaligned end address: %p",
3922 host_endaddr);
3923 goto err;
3926 errno = ENOTSUP; /* If we are missing MADVISE etc */
3928 /* The logic here is messy;
3929 * madvise DONTNEED fails for hugepages
3930 * fallocate works on hugepages and shmem
3932 need_madvise = (rb->page_size == qemu_host_page_size);
3933 need_fallocate = rb->fd != -1;
3934 if (need_fallocate) {
3935 /* For a file, this causes the area of the file to be zero'd
3936 * if read, and for hugetlbfs also causes it to be unmapped
3937 * so a userfault will trigger.
3939 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3940 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3941 start, length);
3942 if (ret) {
3943 ret = -errno;
3944 error_report("ram_block_discard_range: Failed to fallocate "
3945 "%s:%" PRIx64 " +%zx (%d)",
3946 rb->idstr, start, length, ret);
3947 goto err;
3949 #else
3950 ret = -ENOSYS;
3951 error_report("ram_block_discard_range: fallocate not available/file"
3952 "%s:%" PRIx64 " +%zx (%d)",
3953 rb->idstr, start, length, ret);
3954 goto err;
3955 #endif
3957 if (need_madvise) {
3958 /* For normal RAM this causes it to be unmapped,
3959 * for shared memory it causes the local mapping to disappear
3960 * and to fall back on the file contents (which we just
3961 * fallocate'd away).
3963 #if defined(CONFIG_MADVISE)
3964 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3965 if (ret) {
3966 ret = -errno;
3967 error_report("ram_block_discard_range: Failed to discard range "
3968 "%s:%" PRIx64 " +%zx (%d)",
3969 rb->idstr, start, length, ret);
3970 goto err;
3972 #else
3973 ret = -ENOSYS;
3974 error_report("ram_block_discard_range: MADVISE not available"
3975 "%s:%" PRIx64 " +%zx (%d)",
3976 rb->idstr, start, length, ret);
3977 goto err;
3978 #endif
3980 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3981 need_madvise, need_fallocate, ret);
3982 } else {
3983 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3984 "/%zx/" RAM_ADDR_FMT")",
3985 rb->idstr, start, length, rb->used_length);
3988 err:
3989 return ret;
3992 #endif
3994 void page_size_init(void)
3996 /* NOTE: we can always suppose that qemu_host_page_size >=
3997 TARGET_PAGE_SIZE */
3998 if (qemu_host_page_size == 0) {
3999 qemu_host_page_size = qemu_real_host_page_size;
4001 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4002 qemu_host_page_size = TARGET_PAGE_SIZE;
4004 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4007 #if !defined(CONFIG_USER_ONLY)
4009 static void mtree_print_phys_entries(fprintf_function mon, void *f,
4010 int start, int end, int skip, int ptr)
4012 if (start == end - 1) {
4013 mon(f, "\t%3d ", start);
4014 } else {
4015 mon(f, "\t%3d..%-3d ", start, end - 1);
4017 mon(f, " skip=%d ", skip);
4018 if (ptr == PHYS_MAP_NODE_NIL) {
4019 mon(f, " ptr=NIL");
4020 } else if (!skip) {
4021 mon(f, " ptr=#%d", ptr);
4022 } else {
4023 mon(f, " ptr=[%d]", ptr);
4025 mon(f, "\n");
4028 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4029 int128_sub((size), int128_one())) : 0)
4031 void mtree_print_dispatch(fprintf_function mon, void *f,
4032 AddressSpaceDispatch *d, MemoryRegion *root)
4034 int i;
4036 mon(f, " Dispatch\n");
4037 mon(f, " Physical sections\n");
4039 for (i = 0; i < d->map.sections_nb; ++i) {
4040 MemoryRegionSection *s = d->map.sections + i;
4041 const char *names[] = { " [unassigned]", " [not dirty]",
4042 " [ROM]", " [watch]" };
4044 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
4046 s->offset_within_address_space,
4047 s->offset_within_address_space + MR_SIZE(s->mr->size),
4048 s->mr->name ? s->mr->name : "(noname)",
4049 i < ARRAY_SIZE(names) ? names[i] : "",
4050 s->mr == root ? " [ROOT]" : "",
4051 s == d->mru_section ? " [MRU]" : "",
4052 s->mr->is_iommu ? " [iommu]" : "");
4054 if (s->mr->alias) {
4055 mon(f, " alias=%s", s->mr->alias->name ?
4056 s->mr->alias->name : "noname");
4058 mon(f, "\n");
4061 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4062 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4063 for (i = 0; i < d->map.nodes_nb; ++i) {
4064 int j, jprev;
4065 PhysPageEntry prev;
4066 Node *n = d->map.nodes + i;
4068 mon(f, " [%d]\n", i);
4070 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4071 PhysPageEntry *pe = *n + j;
4073 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4074 continue;
4077 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4079 jprev = j;
4080 prev = *pe;
4083 if (jprev != ARRAY_SIZE(*n)) {
4084 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4089 #endif