acpi: add aml_increment() term
[qemu.git] / target-arm / translate-a64.c
blobffa6cb8e56f274683193881eba66f557d1e38c17
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include <stdarg.h>
20 #include <stdlib.h>
21 #include <stdio.h>
22 #include <string.h>
23 #include <inttypes.h>
25 #include "cpu.h"
26 #include "tcg-op.h"
27 #include "qemu/log.h"
28 #include "arm_ldst.h"
29 #include "translate.h"
30 #include "internals.h"
31 #include "qemu/host-utils.h"
33 #include "exec/gen-icount.h"
35 #include "exec/helper-proto.h"
36 #include "exec/helper-gen.h"
38 #include "trace-tcg.h"
40 static TCGv_i64 cpu_X[32];
41 static TCGv_i64 cpu_pc;
42 static TCGv_i32 cpu_NF, cpu_ZF, cpu_CF, cpu_VF;
44 /* Load/store exclusive handling */
45 static TCGv_i64 cpu_exclusive_addr;
46 static TCGv_i64 cpu_exclusive_val;
47 static TCGv_i64 cpu_exclusive_high;
48 #ifdef CONFIG_USER_ONLY
49 static TCGv_i64 cpu_exclusive_test;
50 static TCGv_i32 cpu_exclusive_info;
51 #endif
53 static const char *regnames[] = {
54 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
55 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
56 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
57 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
60 enum a64_shift_type {
61 A64_SHIFT_TYPE_LSL = 0,
62 A64_SHIFT_TYPE_LSR = 1,
63 A64_SHIFT_TYPE_ASR = 2,
64 A64_SHIFT_TYPE_ROR = 3
67 /* Table based decoder typedefs - used when the relevant bits for decode
68 * are too awkwardly scattered across the instruction (eg SIMD).
70 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
72 typedef struct AArch64DecodeTable {
73 uint32_t pattern;
74 uint32_t mask;
75 AArch64DecodeFn *disas_fn;
76 } AArch64DecodeTable;
78 /* Function prototype for gen_ functions for calling Neon helpers */
79 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
80 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
81 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
82 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
83 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
84 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
85 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
86 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
87 typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
88 typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
89 typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64);
90 typedef void CryptoTwoOpEnvFn(TCGv_ptr, TCGv_i32, TCGv_i32);
91 typedef void CryptoThreeOpEnvFn(TCGv_ptr, TCGv_i32, TCGv_i32, TCGv_i32);
93 /* initialize TCG globals. */
94 void a64_translate_init(void)
96 int i;
98 cpu_pc = tcg_global_mem_new_i64(TCG_AREG0,
99 offsetof(CPUARMState, pc),
100 "pc");
101 for (i = 0; i < 32; i++) {
102 cpu_X[i] = tcg_global_mem_new_i64(TCG_AREG0,
103 offsetof(CPUARMState, xregs[i]),
104 regnames[i]);
107 cpu_NF = tcg_global_mem_new_i32(TCG_AREG0, offsetof(CPUARMState, NF), "NF");
108 cpu_ZF = tcg_global_mem_new_i32(TCG_AREG0, offsetof(CPUARMState, ZF), "ZF");
109 cpu_CF = tcg_global_mem_new_i32(TCG_AREG0, offsetof(CPUARMState, CF), "CF");
110 cpu_VF = tcg_global_mem_new_i32(TCG_AREG0, offsetof(CPUARMState, VF), "VF");
112 cpu_exclusive_addr = tcg_global_mem_new_i64(TCG_AREG0,
113 offsetof(CPUARMState, exclusive_addr), "exclusive_addr");
114 cpu_exclusive_val = tcg_global_mem_new_i64(TCG_AREG0,
115 offsetof(CPUARMState, exclusive_val), "exclusive_val");
116 cpu_exclusive_high = tcg_global_mem_new_i64(TCG_AREG0,
117 offsetof(CPUARMState, exclusive_high), "exclusive_high");
118 #ifdef CONFIG_USER_ONLY
119 cpu_exclusive_test = tcg_global_mem_new_i64(TCG_AREG0,
120 offsetof(CPUARMState, exclusive_test), "exclusive_test");
121 cpu_exclusive_info = tcg_global_mem_new_i32(TCG_AREG0,
122 offsetof(CPUARMState, exclusive_info), "exclusive_info");
123 #endif
126 static inline ARMMMUIdx get_a64_user_mem_index(DisasContext *s)
128 /* Return the mmu_idx to use for A64 "unprivileged load/store" insns:
129 * if EL1, access as if EL0; otherwise access at current EL
131 switch (s->mmu_idx) {
132 case ARMMMUIdx_S12NSE1:
133 return ARMMMUIdx_S12NSE0;
134 case ARMMMUIdx_S1SE1:
135 return ARMMMUIdx_S1SE0;
136 case ARMMMUIdx_S2NS:
137 g_assert_not_reached();
138 default:
139 return s->mmu_idx;
143 void aarch64_cpu_dump_state(CPUState *cs, FILE *f,
144 fprintf_function cpu_fprintf, int flags)
146 ARMCPU *cpu = ARM_CPU(cs);
147 CPUARMState *env = &cpu->env;
148 uint32_t psr = pstate_read(env);
149 int i;
151 cpu_fprintf(f, "PC=%016"PRIx64" SP=%016"PRIx64"\n",
152 env->pc, env->xregs[31]);
153 for (i = 0; i < 31; i++) {
154 cpu_fprintf(f, "X%02d=%016"PRIx64, i, env->xregs[i]);
155 if ((i % 4) == 3) {
156 cpu_fprintf(f, "\n");
157 } else {
158 cpu_fprintf(f, " ");
161 cpu_fprintf(f, "PSTATE=%08x (flags %c%c%c%c)\n",
162 psr,
163 psr & PSTATE_N ? 'N' : '-',
164 psr & PSTATE_Z ? 'Z' : '-',
165 psr & PSTATE_C ? 'C' : '-',
166 psr & PSTATE_V ? 'V' : '-');
167 cpu_fprintf(f, "\n");
169 if (flags & CPU_DUMP_FPU) {
170 int numvfpregs = 32;
171 for (i = 0; i < numvfpregs; i += 2) {
172 uint64_t vlo = float64_val(env->vfp.regs[i * 2]);
173 uint64_t vhi = float64_val(env->vfp.regs[(i * 2) + 1]);
174 cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 " ",
175 i, vhi, vlo);
176 vlo = float64_val(env->vfp.regs[(i + 1) * 2]);
177 vhi = float64_val(env->vfp.regs[((i + 1) * 2) + 1]);
178 cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 "\n",
179 i + 1, vhi, vlo);
181 cpu_fprintf(f, "FPCR: %08x FPSR: %08x\n",
182 vfp_get_fpcr(env), vfp_get_fpsr(env));
186 void gen_a64_set_pc_im(uint64_t val)
188 tcg_gen_movi_i64(cpu_pc, val);
191 static void gen_exception_internal(int excp)
193 TCGv_i32 tcg_excp = tcg_const_i32(excp);
195 assert(excp_is_internal(excp));
196 gen_helper_exception_internal(cpu_env, tcg_excp);
197 tcg_temp_free_i32(tcg_excp);
200 static void gen_exception(int excp, uint32_t syndrome, uint32_t target_el)
202 TCGv_i32 tcg_excp = tcg_const_i32(excp);
203 TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
204 TCGv_i32 tcg_el = tcg_const_i32(target_el);
206 gen_helper_exception_with_syndrome(cpu_env, tcg_excp,
207 tcg_syn, tcg_el);
208 tcg_temp_free_i32(tcg_el);
209 tcg_temp_free_i32(tcg_syn);
210 tcg_temp_free_i32(tcg_excp);
213 static void gen_exception_internal_insn(DisasContext *s, int offset, int excp)
215 gen_a64_set_pc_im(s->pc - offset);
216 gen_exception_internal(excp);
217 s->is_jmp = DISAS_EXC;
220 static void gen_exception_insn(DisasContext *s, int offset, int excp,
221 uint32_t syndrome, uint32_t target_el)
223 gen_a64_set_pc_im(s->pc - offset);
224 gen_exception(excp, syndrome, target_el);
225 s->is_jmp = DISAS_EXC;
228 static void gen_ss_advance(DisasContext *s)
230 /* If the singlestep state is Active-not-pending, advance to
231 * Active-pending.
233 if (s->ss_active) {
234 s->pstate_ss = 0;
235 gen_helper_clear_pstate_ss(cpu_env);
239 static void gen_step_complete_exception(DisasContext *s)
241 /* We just completed step of an insn. Move from Active-not-pending
242 * to Active-pending, and then also take the swstep exception.
243 * This corresponds to making the (IMPDEF) choice to prioritize
244 * swstep exceptions over asynchronous exceptions taken to an exception
245 * level where debug is disabled. This choice has the advantage that
246 * we do not need to maintain internal state corresponding to the
247 * ISV/EX syndrome bits between completion of the step and generation
248 * of the exception, and our syndrome information is always correct.
250 gen_ss_advance(s);
251 gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex),
252 default_exception_el(s));
253 s->is_jmp = DISAS_EXC;
256 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
258 /* No direct tb linking with singlestep (either QEMU's or the ARM
259 * debug architecture kind) or deterministic io
261 if (s->singlestep_enabled || s->ss_active || (s->tb->cflags & CF_LAST_IO)) {
262 return false;
265 /* Only link tbs from inside the same guest page */
266 if ((s->tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
267 return false;
270 return true;
273 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
275 TranslationBlock *tb;
277 tb = s->tb;
278 if (use_goto_tb(s, n, dest)) {
279 tcg_gen_goto_tb(n);
280 gen_a64_set_pc_im(dest);
281 tcg_gen_exit_tb((intptr_t)tb + n);
282 s->is_jmp = DISAS_TB_JUMP;
283 } else {
284 gen_a64_set_pc_im(dest);
285 if (s->ss_active) {
286 gen_step_complete_exception(s);
287 } else if (s->singlestep_enabled) {
288 gen_exception_internal(EXCP_DEBUG);
289 } else {
290 tcg_gen_exit_tb(0);
291 s->is_jmp = DISAS_TB_JUMP;
296 static void unallocated_encoding(DisasContext *s)
298 /* Unallocated and reserved encodings are uncategorized */
299 gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
300 default_exception_el(s));
303 #define unsupported_encoding(s, insn) \
304 do { \
305 qemu_log_mask(LOG_UNIMP, \
306 "%s:%d: unsupported instruction encoding 0x%08x " \
307 "at pc=%016" PRIx64 "\n", \
308 __FILE__, __LINE__, insn, s->pc - 4); \
309 unallocated_encoding(s); \
310 } while (0);
312 static void init_tmp_a64_array(DisasContext *s)
314 #ifdef CONFIG_DEBUG_TCG
315 int i;
316 for (i = 0; i < ARRAY_SIZE(s->tmp_a64); i++) {
317 TCGV_UNUSED_I64(s->tmp_a64[i]);
319 #endif
320 s->tmp_a64_count = 0;
323 static void free_tmp_a64(DisasContext *s)
325 int i;
326 for (i = 0; i < s->tmp_a64_count; i++) {
327 tcg_temp_free_i64(s->tmp_a64[i]);
329 init_tmp_a64_array(s);
332 static TCGv_i64 new_tmp_a64(DisasContext *s)
334 assert(s->tmp_a64_count < TMP_A64_MAX);
335 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
338 static TCGv_i64 new_tmp_a64_zero(DisasContext *s)
340 TCGv_i64 t = new_tmp_a64(s);
341 tcg_gen_movi_i64(t, 0);
342 return t;
346 * Register access functions
348 * These functions are used for directly accessing a register in where
349 * changes to the final register value are likely to be made. If you
350 * need to use a register for temporary calculation (e.g. index type
351 * operations) use the read_* form.
353 * B1.2.1 Register mappings
355 * In instruction register encoding 31 can refer to ZR (zero register) or
356 * the SP (stack pointer) depending on context. In QEMU's case we map SP
357 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
358 * This is the point of the _sp forms.
360 static TCGv_i64 cpu_reg(DisasContext *s, int reg)
362 if (reg == 31) {
363 return new_tmp_a64_zero(s);
364 } else {
365 return cpu_X[reg];
369 /* register access for when 31 == SP */
370 static TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
372 return cpu_X[reg];
375 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
376 * representing the register contents. This TCGv is an auto-freed
377 * temporary so it need not be explicitly freed, and may be modified.
379 static TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
381 TCGv_i64 v = new_tmp_a64(s);
382 if (reg != 31) {
383 if (sf) {
384 tcg_gen_mov_i64(v, cpu_X[reg]);
385 } else {
386 tcg_gen_ext32u_i64(v, cpu_X[reg]);
388 } else {
389 tcg_gen_movi_i64(v, 0);
391 return v;
394 static TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
396 TCGv_i64 v = new_tmp_a64(s);
397 if (sf) {
398 tcg_gen_mov_i64(v, cpu_X[reg]);
399 } else {
400 tcg_gen_ext32u_i64(v, cpu_X[reg]);
402 return v;
405 /* We should have at some point before trying to access an FP register
406 * done the necessary access check, so assert that
407 * (a) we did the check and
408 * (b) we didn't then just plough ahead anyway if it failed.
409 * Print the instruction pattern in the abort message so we can figure
410 * out what we need to fix if a user encounters this problem in the wild.
412 static inline void assert_fp_access_checked(DisasContext *s)
414 #ifdef CONFIG_DEBUG_TCG
415 if (unlikely(!s->fp_access_checked || s->fp_excp_el)) {
416 fprintf(stderr, "target-arm: FP access check missing for "
417 "instruction 0x%08x\n", s->insn);
418 abort();
420 #endif
423 /* Return the offset into CPUARMState of an element of specified
424 * size, 'element' places in from the least significant end of
425 * the FP/vector register Qn.
427 static inline int vec_reg_offset(DisasContext *s, int regno,
428 int element, TCGMemOp size)
430 int offs = offsetof(CPUARMState, vfp.regs[regno * 2]);
431 #ifdef HOST_WORDS_BIGENDIAN
432 /* This is complicated slightly because vfp.regs[2n] is
433 * still the low half and vfp.regs[2n+1] the high half
434 * of the 128 bit vector, even on big endian systems.
435 * Calculate the offset assuming a fully bigendian 128 bits,
436 * then XOR to account for the order of the two 64 bit halves.
438 offs += (16 - ((element + 1) * (1 << size)));
439 offs ^= 8;
440 #else
441 offs += element * (1 << size);
442 #endif
443 assert_fp_access_checked(s);
444 return offs;
447 /* Return the offset into CPUARMState of a slice (from
448 * the least significant end) of FP register Qn (ie
449 * Dn, Sn, Hn or Bn).
450 * (Note that this is not the same mapping as for A32; see cpu.h)
452 static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size)
454 int offs = offsetof(CPUARMState, vfp.regs[regno * 2]);
455 #ifdef HOST_WORDS_BIGENDIAN
456 offs += (8 - (1 << size));
457 #endif
458 assert_fp_access_checked(s);
459 return offs;
462 /* Offset of the high half of the 128 bit vector Qn */
463 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
465 assert_fp_access_checked(s);
466 return offsetof(CPUARMState, vfp.regs[regno * 2 + 1]);
469 /* Convenience accessors for reading and writing single and double
470 * FP registers. Writing clears the upper parts of the associated
471 * 128 bit vector register, as required by the architecture.
472 * Note that unlike the GP register accessors, the values returned
473 * by the read functions must be manually freed.
475 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
477 TCGv_i64 v = tcg_temp_new_i64();
479 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
480 return v;
483 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
485 TCGv_i32 v = tcg_temp_new_i32();
487 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
488 return v;
491 static void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
493 TCGv_i64 tcg_zero = tcg_const_i64(0);
495 tcg_gen_st_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
496 tcg_gen_st_i64(tcg_zero, cpu_env, fp_reg_hi_offset(s, reg));
497 tcg_temp_free_i64(tcg_zero);
500 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
502 TCGv_i64 tmp = tcg_temp_new_i64();
504 tcg_gen_extu_i32_i64(tmp, v);
505 write_fp_dreg(s, reg, tmp);
506 tcg_temp_free_i64(tmp);
509 static TCGv_ptr get_fpstatus_ptr(void)
511 TCGv_ptr statusptr = tcg_temp_new_ptr();
512 int offset;
514 /* In A64 all instructions (both FP and Neon) use the FPCR;
515 * there is no equivalent of the A32 Neon "standard FPSCR value"
516 * and all operations use vfp.fp_status.
518 offset = offsetof(CPUARMState, vfp.fp_status);
519 tcg_gen_addi_ptr(statusptr, cpu_env, offset);
520 return statusptr;
523 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
524 * than the 32 bit equivalent.
526 static inline void gen_set_NZ64(TCGv_i64 result)
528 TCGv_i64 flag = tcg_temp_new_i64();
530 tcg_gen_setcondi_i64(TCG_COND_NE, flag, result, 0);
531 tcg_gen_trunc_i64_i32(cpu_ZF, flag);
532 tcg_gen_shri_i64(flag, result, 32);
533 tcg_gen_trunc_i64_i32(cpu_NF, flag);
534 tcg_temp_free_i64(flag);
537 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
538 static inline void gen_logic_CC(int sf, TCGv_i64 result)
540 if (sf) {
541 gen_set_NZ64(result);
542 } else {
543 tcg_gen_trunc_i64_i32(cpu_ZF, result);
544 tcg_gen_trunc_i64_i32(cpu_NF, result);
546 tcg_gen_movi_i32(cpu_CF, 0);
547 tcg_gen_movi_i32(cpu_VF, 0);
550 /* dest = T0 + T1; compute C, N, V and Z flags */
551 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
553 if (sf) {
554 TCGv_i64 result, flag, tmp;
555 result = tcg_temp_new_i64();
556 flag = tcg_temp_new_i64();
557 tmp = tcg_temp_new_i64();
559 tcg_gen_movi_i64(tmp, 0);
560 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
562 tcg_gen_trunc_i64_i32(cpu_CF, flag);
564 gen_set_NZ64(result);
566 tcg_gen_xor_i64(flag, result, t0);
567 tcg_gen_xor_i64(tmp, t0, t1);
568 tcg_gen_andc_i64(flag, flag, tmp);
569 tcg_temp_free_i64(tmp);
570 tcg_gen_shri_i64(flag, flag, 32);
571 tcg_gen_trunc_i64_i32(cpu_VF, flag);
573 tcg_gen_mov_i64(dest, result);
574 tcg_temp_free_i64(result);
575 tcg_temp_free_i64(flag);
576 } else {
577 /* 32 bit arithmetic */
578 TCGv_i32 t0_32 = tcg_temp_new_i32();
579 TCGv_i32 t1_32 = tcg_temp_new_i32();
580 TCGv_i32 tmp = tcg_temp_new_i32();
582 tcg_gen_movi_i32(tmp, 0);
583 tcg_gen_trunc_i64_i32(t0_32, t0);
584 tcg_gen_trunc_i64_i32(t1_32, t1);
585 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
586 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
587 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
588 tcg_gen_xor_i32(tmp, t0_32, t1_32);
589 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
590 tcg_gen_extu_i32_i64(dest, cpu_NF);
592 tcg_temp_free_i32(tmp);
593 tcg_temp_free_i32(t0_32);
594 tcg_temp_free_i32(t1_32);
598 /* dest = T0 - T1; compute C, N, V and Z flags */
599 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
601 if (sf) {
602 /* 64 bit arithmetic */
603 TCGv_i64 result, flag, tmp;
605 result = tcg_temp_new_i64();
606 flag = tcg_temp_new_i64();
607 tcg_gen_sub_i64(result, t0, t1);
609 gen_set_NZ64(result);
611 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
612 tcg_gen_trunc_i64_i32(cpu_CF, flag);
614 tcg_gen_xor_i64(flag, result, t0);
615 tmp = tcg_temp_new_i64();
616 tcg_gen_xor_i64(tmp, t0, t1);
617 tcg_gen_and_i64(flag, flag, tmp);
618 tcg_temp_free_i64(tmp);
619 tcg_gen_shri_i64(flag, flag, 32);
620 tcg_gen_trunc_i64_i32(cpu_VF, flag);
621 tcg_gen_mov_i64(dest, result);
622 tcg_temp_free_i64(flag);
623 tcg_temp_free_i64(result);
624 } else {
625 /* 32 bit arithmetic */
626 TCGv_i32 t0_32 = tcg_temp_new_i32();
627 TCGv_i32 t1_32 = tcg_temp_new_i32();
628 TCGv_i32 tmp;
630 tcg_gen_trunc_i64_i32(t0_32, t0);
631 tcg_gen_trunc_i64_i32(t1_32, t1);
632 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
633 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
634 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
635 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
636 tmp = tcg_temp_new_i32();
637 tcg_gen_xor_i32(tmp, t0_32, t1_32);
638 tcg_temp_free_i32(t0_32);
639 tcg_temp_free_i32(t1_32);
640 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
641 tcg_temp_free_i32(tmp);
642 tcg_gen_extu_i32_i64(dest, cpu_NF);
646 /* dest = T0 + T1 + CF; do not compute flags. */
647 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
649 TCGv_i64 flag = tcg_temp_new_i64();
650 tcg_gen_extu_i32_i64(flag, cpu_CF);
651 tcg_gen_add_i64(dest, t0, t1);
652 tcg_gen_add_i64(dest, dest, flag);
653 tcg_temp_free_i64(flag);
655 if (!sf) {
656 tcg_gen_ext32u_i64(dest, dest);
660 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
661 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
663 if (sf) {
664 TCGv_i64 result, cf_64, vf_64, tmp;
665 result = tcg_temp_new_i64();
666 cf_64 = tcg_temp_new_i64();
667 vf_64 = tcg_temp_new_i64();
668 tmp = tcg_const_i64(0);
670 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
671 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
672 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
673 tcg_gen_trunc_i64_i32(cpu_CF, cf_64);
674 gen_set_NZ64(result);
676 tcg_gen_xor_i64(vf_64, result, t0);
677 tcg_gen_xor_i64(tmp, t0, t1);
678 tcg_gen_andc_i64(vf_64, vf_64, tmp);
679 tcg_gen_shri_i64(vf_64, vf_64, 32);
680 tcg_gen_trunc_i64_i32(cpu_VF, vf_64);
682 tcg_gen_mov_i64(dest, result);
684 tcg_temp_free_i64(tmp);
685 tcg_temp_free_i64(vf_64);
686 tcg_temp_free_i64(cf_64);
687 tcg_temp_free_i64(result);
688 } else {
689 TCGv_i32 t0_32, t1_32, tmp;
690 t0_32 = tcg_temp_new_i32();
691 t1_32 = tcg_temp_new_i32();
692 tmp = tcg_const_i32(0);
694 tcg_gen_trunc_i64_i32(t0_32, t0);
695 tcg_gen_trunc_i64_i32(t1_32, t1);
696 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
697 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
699 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
700 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
701 tcg_gen_xor_i32(tmp, t0_32, t1_32);
702 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
703 tcg_gen_extu_i32_i64(dest, cpu_NF);
705 tcg_temp_free_i32(tmp);
706 tcg_temp_free_i32(t1_32);
707 tcg_temp_free_i32(t0_32);
712 * Load/Store generators
716 * Store from GPR register to memory.
718 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
719 TCGv_i64 tcg_addr, int size, int memidx)
721 g_assert(size <= 3);
722 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, MO_TE + size);
725 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
726 TCGv_i64 tcg_addr, int size)
728 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s));
732 * Load from memory to GPR register
734 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
735 int size, bool is_signed, bool extend, int memidx)
737 TCGMemOp memop = MO_TE + size;
739 g_assert(size <= 3);
741 if (is_signed) {
742 memop += MO_SIGN;
745 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
747 if (extend && is_signed) {
748 g_assert(size < 3);
749 tcg_gen_ext32u_i64(dest, dest);
753 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
754 int size, bool is_signed, bool extend)
756 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
757 get_mem_index(s));
761 * Store from FP register to memory
763 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
765 /* This writes the bottom N bits of a 128 bit wide vector to memory */
766 TCGv_i64 tmp = tcg_temp_new_i64();
767 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
768 if (size < 4) {
769 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s), MO_TE + size);
770 } else {
771 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
772 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s), MO_TEQ);
773 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
774 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
775 tcg_gen_qemu_st_i64(tmp, tcg_hiaddr, get_mem_index(s), MO_TEQ);
776 tcg_temp_free_i64(tcg_hiaddr);
779 tcg_temp_free_i64(tmp);
783 * Load from memory to FP register
785 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
787 /* This always zero-extends and writes to a full 128 bit wide vector */
788 TCGv_i64 tmplo = tcg_temp_new_i64();
789 TCGv_i64 tmphi;
791 if (size < 4) {
792 TCGMemOp memop = MO_TE + size;
793 tmphi = tcg_const_i64(0);
794 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
795 } else {
796 TCGv_i64 tcg_hiaddr;
797 tmphi = tcg_temp_new_i64();
798 tcg_hiaddr = tcg_temp_new_i64();
800 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), MO_TEQ);
801 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
802 tcg_gen_qemu_ld_i64(tmphi, tcg_hiaddr, get_mem_index(s), MO_TEQ);
803 tcg_temp_free_i64(tcg_hiaddr);
806 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
807 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
809 tcg_temp_free_i64(tmplo);
810 tcg_temp_free_i64(tmphi);
814 * Vector load/store helpers.
816 * The principal difference between this and a FP load is that we don't
817 * zero extend as we are filling a partial chunk of the vector register.
818 * These functions don't support 128 bit loads/stores, which would be
819 * normal load/store operations.
821 * The _i32 versions are useful when operating on 32 bit quantities
822 * (eg for floating point single or using Neon helper functions).
825 /* Get value of an element within a vector register */
826 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
827 int element, TCGMemOp memop)
829 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
830 switch (memop) {
831 case MO_8:
832 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
833 break;
834 case MO_16:
835 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
836 break;
837 case MO_32:
838 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
839 break;
840 case MO_8|MO_SIGN:
841 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
842 break;
843 case MO_16|MO_SIGN:
844 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
845 break;
846 case MO_32|MO_SIGN:
847 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
848 break;
849 case MO_64:
850 case MO_64|MO_SIGN:
851 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
852 break;
853 default:
854 g_assert_not_reached();
858 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
859 int element, TCGMemOp memop)
861 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
862 switch (memop) {
863 case MO_8:
864 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
865 break;
866 case MO_16:
867 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
868 break;
869 case MO_8|MO_SIGN:
870 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
871 break;
872 case MO_16|MO_SIGN:
873 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
874 break;
875 case MO_32:
876 case MO_32|MO_SIGN:
877 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
878 break;
879 default:
880 g_assert_not_reached();
884 /* Set value of an element within a vector register */
885 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
886 int element, TCGMemOp memop)
888 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
889 switch (memop) {
890 case MO_8:
891 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
892 break;
893 case MO_16:
894 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
895 break;
896 case MO_32:
897 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
898 break;
899 case MO_64:
900 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
901 break;
902 default:
903 g_assert_not_reached();
907 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
908 int destidx, int element, TCGMemOp memop)
910 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
911 switch (memop) {
912 case MO_8:
913 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
914 break;
915 case MO_16:
916 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
917 break;
918 case MO_32:
919 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
920 break;
921 default:
922 g_assert_not_reached();
926 /* Clear the high 64 bits of a 128 bit vector (in general non-quad
927 * vector ops all need to do this).
929 static void clear_vec_high(DisasContext *s, int rd)
931 TCGv_i64 tcg_zero = tcg_const_i64(0);
933 write_vec_element(s, tcg_zero, rd, 1, MO_64);
934 tcg_temp_free_i64(tcg_zero);
937 /* Store from vector register to memory */
938 static void do_vec_st(DisasContext *s, int srcidx, int element,
939 TCGv_i64 tcg_addr, int size)
941 TCGMemOp memop = MO_TE + size;
942 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
944 read_vec_element(s, tcg_tmp, srcidx, element, size);
945 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
947 tcg_temp_free_i64(tcg_tmp);
950 /* Load from memory to vector register */
951 static void do_vec_ld(DisasContext *s, int destidx, int element,
952 TCGv_i64 tcg_addr, int size)
954 TCGMemOp memop = MO_TE + size;
955 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
957 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
958 write_vec_element(s, tcg_tmp, destidx, element, size);
960 tcg_temp_free_i64(tcg_tmp);
963 /* Check that FP/Neon access is enabled. If it is, return
964 * true. If not, emit code to generate an appropriate exception,
965 * and return false; the caller should not emit any code for
966 * the instruction. Note that this check must happen after all
967 * unallocated-encoding checks (otherwise the syndrome information
968 * for the resulting exception will be incorrect).
970 static inline bool fp_access_check(DisasContext *s)
972 assert(!s->fp_access_checked);
973 s->fp_access_checked = true;
975 if (!s->fp_excp_el) {
976 return true;
979 gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false),
980 s->fp_excp_el);
981 return false;
985 * This utility function is for doing register extension with an
986 * optional shift. You will likely want to pass a temporary for the
987 * destination register. See DecodeRegExtend() in the ARM ARM.
989 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
990 int option, unsigned int shift)
992 int extsize = extract32(option, 0, 2);
993 bool is_signed = extract32(option, 2, 1);
995 if (is_signed) {
996 switch (extsize) {
997 case 0:
998 tcg_gen_ext8s_i64(tcg_out, tcg_in);
999 break;
1000 case 1:
1001 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1002 break;
1003 case 2:
1004 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1005 break;
1006 case 3:
1007 tcg_gen_mov_i64(tcg_out, tcg_in);
1008 break;
1010 } else {
1011 switch (extsize) {
1012 case 0:
1013 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1014 break;
1015 case 1:
1016 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1017 break;
1018 case 2:
1019 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1020 break;
1021 case 3:
1022 tcg_gen_mov_i64(tcg_out, tcg_in);
1023 break;
1027 if (shift) {
1028 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1032 static inline void gen_check_sp_alignment(DisasContext *s)
1034 /* The AArch64 architecture mandates that (if enabled via PSTATE
1035 * or SCTLR bits) there is a check that SP is 16-aligned on every
1036 * SP-relative load or store (with an exception generated if it is not).
1037 * In line with general QEMU practice regarding misaligned accesses,
1038 * we omit these checks for the sake of guest program performance.
1039 * This function is provided as a hook so we can more easily add these
1040 * checks in future (possibly as a "favour catching guest program bugs
1041 * over speed" user selectable option).
1046 * This provides a simple table based table lookup decoder. It is
1047 * intended to be used when the relevant bits for decode are too
1048 * awkwardly placed and switch/if based logic would be confusing and
1049 * deeply nested. Since it's a linear search through the table, tables
1050 * should be kept small.
1052 * It returns the first handler where insn & mask == pattern, or
1053 * NULL if there is no match.
1054 * The table is terminated by an empty mask (i.e. 0)
1056 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1057 uint32_t insn)
1059 const AArch64DecodeTable *tptr = table;
1061 while (tptr->mask) {
1062 if ((insn & tptr->mask) == tptr->pattern) {
1063 return tptr->disas_fn;
1065 tptr++;
1067 return NULL;
1071 * the instruction disassembly implemented here matches
1072 * the instruction encoding classifications in chapter 3 (C3)
1073 * of the ARM Architecture Reference Manual (DDI0487A_a)
1076 /* C3.2.7 Unconditional branch (immediate)
1077 * 31 30 26 25 0
1078 * +----+-----------+-------------------------------------+
1079 * | op | 0 0 1 0 1 | imm26 |
1080 * +----+-----------+-------------------------------------+
1082 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1084 uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4;
1086 if (insn & (1U << 31)) {
1087 /* C5.6.26 BL Branch with link */
1088 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1091 /* C5.6.20 B Branch / C5.6.26 BL Branch with link */
1092 gen_goto_tb(s, 0, addr);
1095 /* C3.2.1 Compare & branch (immediate)
1096 * 31 30 25 24 23 5 4 0
1097 * +----+-------------+----+---------------------+--------+
1098 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1099 * +----+-------------+----+---------------------+--------+
1101 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1103 unsigned int sf, op, rt;
1104 uint64_t addr;
1105 TCGLabel *label_match;
1106 TCGv_i64 tcg_cmp;
1108 sf = extract32(insn, 31, 1);
1109 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1110 rt = extract32(insn, 0, 5);
1111 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1113 tcg_cmp = read_cpu_reg(s, rt, sf);
1114 label_match = gen_new_label();
1116 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1117 tcg_cmp, 0, label_match);
1119 gen_goto_tb(s, 0, s->pc);
1120 gen_set_label(label_match);
1121 gen_goto_tb(s, 1, addr);
1124 /* C3.2.5 Test & branch (immediate)
1125 * 31 30 25 24 23 19 18 5 4 0
1126 * +----+-------------+----+-------+-------------+------+
1127 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1128 * +----+-------------+----+-------+-------------+------+
1130 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1132 unsigned int bit_pos, op, rt;
1133 uint64_t addr;
1134 TCGLabel *label_match;
1135 TCGv_i64 tcg_cmp;
1137 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1138 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1139 addr = s->pc + sextract32(insn, 5, 14) * 4 - 4;
1140 rt = extract32(insn, 0, 5);
1142 tcg_cmp = tcg_temp_new_i64();
1143 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1144 label_match = gen_new_label();
1145 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1146 tcg_cmp, 0, label_match);
1147 tcg_temp_free_i64(tcg_cmp);
1148 gen_goto_tb(s, 0, s->pc);
1149 gen_set_label(label_match);
1150 gen_goto_tb(s, 1, addr);
1153 /* C3.2.2 / C5.6.19 Conditional branch (immediate)
1154 * 31 25 24 23 5 4 3 0
1155 * +---------------+----+---------------------+----+------+
1156 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1157 * +---------------+----+---------------------+----+------+
1159 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1161 unsigned int cond;
1162 uint64_t addr;
1164 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1165 unallocated_encoding(s);
1166 return;
1168 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1169 cond = extract32(insn, 0, 4);
1171 if (cond < 0x0e) {
1172 /* genuinely conditional branches */
1173 TCGLabel *label_match = gen_new_label();
1174 arm_gen_test_cc(cond, label_match);
1175 gen_goto_tb(s, 0, s->pc);
1176 gen_set_label(label_match);
1177 gen_goto_tb(s, 1, addr);
1178 } else {
1179 /* 0xe and 0xf are both "always" conditions */
1180 gen_goto_tb(s, 0, addr);
1184 /* C5.6.68 HINT */
1185 static void handle_hint(DisasContext *s, uint32_t insn,
1186 unsigned int op1, unsigned int op2, unsigned int crm)
1188 unsigned int selector = crm << 3 | op2;
1190 if (op1 != 3) {
1191 unallocated_encoding(s);
1192 return;
1195 switch (selector) {
1196 case 0: /* NOP */
1197 return;
1198 case 3: /* WFI */
1199 s->is_jmp = DISAS_WFI;
1200 return;
1201 case 1: /* YIELD */
1202 case 2: /* WFE */
1203 s->is_jmp = DISAS_WFE;
1204 return;
1205 case 4: /* SEV */
1206 case 5: /* SEVL */
1207 /* we treat all as NOP at least for now */
1208 return;
1209 default:
1210 /* default specified as NOP equivalent */
1211 return;
1215 static void gen_clrex(DisasContext *s, uint32_t insn)
1217 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1220 /* CLREX, DSB, DMB, ISB */
1221 static void handle_sync(DisasContext *s, uint32_t insn,
1222 unsigned int op1, unsigned int op2, unsigned int crm)
1224 if (op1 != 3) {
1225 unallocated_encoding(s);
1226 return;
1229 switch (op2) {
1230 case 2: /* CLREX */
1231 gen_clrex(s, insn);
1232 return;
1233 case 4: /* DSB */
1234 case 5: /* DMB */
1235 case 6: /* ISB */
1236 /* We don't emulate caches so barriers are no-ops */
1237 return;
1238 default:
1239 unallocated_encoding(s);
1240 return;
1244 /* C5.6.130 MSR (immediate) - move immediate to processor state field */
1245 static void handle_msr_i(DisasContext *s, uint32_t insn,
1246 unsigned int op1, unsigned int op2, unsigned int crm)
1248 int op = op1 << 3 | op2;
1249 switch (op) {
1250 case 0x05: /* SPSel */
1251 if (s->current_el == 0) {
1252 unallocated_encoding(s);
1253 return;
1255 /* fall through */
1256 case 0x1e: /* DAIFSet */
1257 case 0x1f: /* DAIFClear */
1259 TCGv_i32 tcg_imm = tcg_const_i32(crm);
1260 TCGv_i32 tcg_op = tcg_const_i32(op);
1261 gen_a64_set_pc_im(s->pc - 4);
1262 gen_helper_msr_i_pstate(cpu_env, tcg_op, tcg_imm);
1263 tcg_temp_free_i32(tcg_imm);
1264 tcg_temp_free_i32(tcg_op);
1265 s->is_jmp = DISAS_UPDATE;
1266 break;
1268 default:
1269 unallocated_encoding(s);
1270 return;
1274 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1276 TCGv_i32 tmp = tcg_temp_new_i32();
1277 TCGv_i32 nzcv = tcg_temp_new_i32();
1279 /* build bit 31, N */
1280 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1281 /* build bit 30, Z */
1282 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1283 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1284 /* build bit 29, C */
1285 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1286 /* build bit 28, V */
1287 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1288 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1289 /* generate result */
1290 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1292 tcg_temp_free_i32(nzcv);
1293 tcg_temp_free_i32(tmp);
1296 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1299 TCGv_i32 nzcv = tcg_temp_new_i32();
1301 /* take NZCV from R[t] */
1302 tcg_gen_trunc_i64_i32(nzcv, tcg_rt);
1304 /* bit 31, N */
1305 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1306 /* bit 30, Z */
1307 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1308 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1309 /* bit 29, C */
1310 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1311 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1312 /* bit 28, V */
1313 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1314 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1315 tcg_temp_free_i32(nzcv);
1318 /* C5.6.129 MRS - move from system register
1319 * C5.6.131 MSR (register) - move to system register
1320 * C5.6.204 SYS
1321 * C5.6.205 SYSL
1322 * These are all essentially the same insn in 'read' and 'write'
1323 * versions, with varying op0 fields.
1325 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1326 unsigned int op0, unsigned int op1, unsigned int op2,
1327 unsigned int crn, unsigned int crm, unsigned int rt)
1329 const ARMCPRegInfo *ri;
1330 TCGv_i64 tcg_rt;
1332 ri = get_arm_cp_reginfo(s->cp_regs,
1333 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1334 crn, crm, op0, op1, op2));
1336 if (!ri) {
1337 /* Unknown register; this might be a guest error or a QEMU
1338 * unimplemented feature.
1340 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1341 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1342 isread ? "read" : "write", op0, op1, crn, crm, op2);
1343 unallocated_encoding(s);
1344 return;
1347 /* Check access permissions */
1348 if (!cp_access_ok(s->current_el, ri, isread)) {
1349 unallocated_encoding(s);
1350 return;
1353 if (ri->accessfn) {
1354 /* Emit code to perform further access permissions checks at
1355 * runtime; this may result in an exception.
1357 TCGv_ptr tmpptr;
1358 TCGv_i32 tcg_syn;
1359 uint32_t syndrome;
1361 gen_a64_set_pc_im(s->pc - 4);
1362 tmpptr = tcg_const_ptr(ri);
1363 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1364 tcg_syn = tcg_const_i32(syndrome);
1365 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn);
1366 tcg_temp_free_ptr(tmpptr);
1367 tcg_temp_free_i32(tcg_syn);
1370 /* Handle special cases first */
1371 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1372 case ARM_CP_NOP:
1373 return;
1374 case ARM_CP_NZCV:
1375 tcg_rt = cpu_reg(s, rt);
1376 if (isread) {
1377 gen_get_nzcv(tcg_rt);
1378 } else {
1379 gen_set_nzcv(tcg_rt);
1381 return;
1382 case ARM_CP_CURRENTEL:
1383 /* Reads as current EL value from pstate, which is
1384 * guaranteed to be constant by the tb flags.
1386 tcg_rt = cpu_reg(s, rt);
1387 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1388 return;
1389 case ARM_CP_DC_ZVA:
1390 /* Writes clear the aligned block of memory which rt points into. */
1391 tcg_rt = cpu_reg(s, rt);
1392 gen_helper_dc_zva(cpu_env, tcg_rt);
1393 return;
1394 default:
1395 break;
1398 if ((s->tb->cflags & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1399 gen_io_start();
1402 tcg_rt = cpu_reg(s, rt);
1404 if (isread) {
1405 if (ri->type & ARM_CP_CONST) {
1406 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1407 } else if (ri->readfn) {
1408 TCGv_ptr tmpptr;
1409 tmpptr = tcg_const_ptr(ri);
1410 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1411 tcg_temp_free_ptr(tmpptr);
1412 } else {
1413 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1415 } else {
1416 if (ri->type & ARM_CP_CONST) {
1417 /* If not forbidden by access permissions, treat as WI */
1418 return;
1419 } else if (ri->writefn) {
1420 TCGv_ptr tmpptr;
1421 tmpptr = tcg_const_ptr(ri);
1422 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1423 tcg_temp_free_ptr(tmpptr);
1424 } else {
1425 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1429 if ((s->tb->cflags & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1430 /* I/O operations must end the TB here (whether read or write) */
1431 gen_io_end();
1432 s->is_jmp = DISAS_UPDATE;
1433 } else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1434 /* We default to ending the TB on a coprocessor register write,
1435 * but allow this to be suppressed by the register definition
1436 * (usually only necessary to work around guest bugs).
1438 s->is_jmp = DISAS_UPDATE;
1442 /* C3.2.4 System
1443 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1444 * +---------------------+---+-----+-----+-------+-------+-----+------+
1445 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1446 * +---------------------+---+-----+-----+-------+-------+-----+------+
1448 static void disas_system(DisasContext *s, uint32_t insn)
1450 unsigned int l, op0, op1, crn, crm, op2, rt;
1451 l = extract32(insn, 21, 1);
1452 op0 = extract32(insn, 19, 2);
1453 op1 = extract32(insn, 16, 3);
1454 crn = extract32(insn, 12, 4);
1455 crm = extract32(insn, 8, 4);
1456 op2 = extract32(insn, 5, 3);
1457 rt = extract32(insn, 0, 5);
1459 if (op0 == 0) {
1460 if (l || rt != 31) {
1461 unallocated_encoding(s);
1462 return;
1464 switch (crn) {
1465 case 2: /* C5.6.68 HINT */
1466 handle_hint(s, insn, op1, op2, crm);
1467 break;
1468 case 3: /* CLREX, DSB, DMB, ISB */
1469 handle_sync(s, insn, op1, op2, crm);
1470 break;
1471 case 4: /* C5.6.130 MSR (immediate) */
1472 handle_msr_i(s, insn, op1, op2, crm);
1473 break;
1474 default:
1475 unallocated_encoding(s);
1476 break;
1478 return;
1480 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
1483 /* C3.2.3 Exception generation
1485 * 31 24 23 21 20 5 4 2 1 0
1486 * +-----------------+-----+------------------------+-----+----+
1487 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
1488 * +-----------------------+------------------------+----------+
1490 static void disas_exc(DisasContext *s, uint32_t insn)
1492 int opc = extract32(insn, 21, 3);
1493 int op2_ll = extract32(insn, 0, 5);
1494 int imm16 = extract32(insn, 5, 16);
1495 TCGv_i32 tmp;
1497 switch (opc) {
1498 case 0:
1499 /* For SVC, HVC and SMC we advance the single-step state
1500 * machine before taking the exception. This is architecturally
1501 * mandated, to ensure that single-stepping a system call
1502 * instruction works properly.
1504 switch (op2_ll) {
1505 case 1:
1506 gen_ss_advance(s);
1507 gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16),
1508 default_exception_el(s));
1509 break;
1510 case 2:
1511 if (s->current_el == 0) {
1512 unallocated_encoding(s);
1513 break;
1515 /* The pre HVC helper handles cases when HVC gets trapped
1516 * as an undefined insn by runtime configuration.
1518 gen_a64_set_pc_im(s->pc - 4);
1519 gen_helper_pre_hvc(cpu_env);
1520 gen_ss_advance(s);
1521 gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16), 2);
1522 break;
1523 case 3:
1524 if (s->current_el == 0) {
1525 unallocated_encoding(s);
1526 break;
1528 gen_a64_set_pc_im(s->pc - 4);
1529 tmp = tcg_const_i32(syn_aa64_smc(imm16));
1530 gen_helper_pre_smc(cpu_env, tmp);
1531 tcg_temp_free_i32(tmp);
1532 gen_ss_advance(s);
1533 gen_exception_insn(s, 0, EXCP_SMC, syn_aa64_smc(imm16), 3);
1534 break;
1535 default:
1536 unallocated_encoding(s);
1537 break;
1539 break;
1540 case 1:
1541 if (op2_ll != 0) {
1542 unallocated_encoding(s);
1543 break;
1545 /* BRK */
1546 gen_exception_insn(s, 4, EXCP_BKPT, syn_aa64_bkpt(imm16),
1547 default_exception_el(s));
1548 break;
1549 case 2:
1550 if (op2_ll != 0) {
1551 unallocated_encoding(s);
1552 break;
1554 /* HLT */
1555 unsupported_encoding(s, insn);
1556 break;
1557 case 5:
1558 if (op2_ll < 1 || op2_ll > 3) {
1559 unallocated_encoding(s);
1560 break;
1562 /* DCPS1, DCPS2, DCPS3 */
1563 unsupported_encoding(s, insn);
1564 break;
1565 default:
1566 unallocated_encoding(s);
1567 break;
1571 /* C3.2.7 Unconditional branch (register)
1572 * 31 25 24 21 20 16 15 10 9 5 4 0
1573 * +---------------+-------+-------+-------+------+-------+
1574 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
1575 * +---------------+-------+-------+-------+------+-------+
1577 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
1579 unsigned int opc, op2, op3, rn, op4;
1581 opc = extract32(insn, 21, 4);
1582 op2 = extract32(insn, 16, 5);
1583 op3 = extract32(insn, 10, 6);
1584 rn = extract32(insn, 5, 5);
1585 op4 = extract32(insn, 0, 5);
1587 if (op4 != 0x0 || op3 != 0x0 || op2 != 0x1f) {
1588 unallocated_encoding(s);
1589 return;
1592 switch (opc) {
1593 case 0: /* BR */
1594 case 2: /* RET */
1595 tcg_gen_mov_i64(cpu_pc, cpu_reg(s, rn));
1596 break;
1597 case 1: /* BLR */
1598 tcg_gen_mov_i64(cpu_pc, cpu_reg(s, rn));
1599 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1600 break;
1601 case 4: /* ERET */
1602 if (s->current_el == 0) {
1603 unallocated_encoding(s);
1604 return;
1606 gen_helper_exception_return(cpu_env);
1607 s->is_jmp = DISAS_JUMP;
1608 return;
1609 case 5: /* DRPS */
1610 if (rn != 0x1f) {
1611 unallocated_encoding(s);
1612 } else {
1613 unsupported_encoding(s, insn);
1615 return;
1616 default:
1617 unallocated_encoding(s);
1618 return;
1621 s->is_jmp = DISAS_JUMP;
1624 /* C3.2 Branches, exception generating and system instructions */
1625 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
1627 switch (extract32(insn, 25, 7)) {
1628 case 0x0a: case 0x0b:
1629 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
1630 disas_uncond_b_imm(s, insn);
1631 break;
1632 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
1633 disas_comp_b_imm(s, insn);
1634 break;
1635 case 0x1b: case 0x5b: /* Test & branch (immediate) */
1636 disas_test_b_imm(s, insn);
1637 break;
1638 case 0x2a: /* Conditional branch (immediate) */
1639 disas_cond_b_imm(s, insn);
1640 break;
1641 case 0x6a: /* Exception generation / System */
1642 if (insn & (1 << 24)) {
1643 disas_system(s, insn);
1644 } else {
1645 disas_exc(s, insn);
1647 break;
1648 case 0x6b: /* Unconditional branch (register) */
1649 disas_uncond_b_reg(s, insn);
1650 break;
1651 default:
1652 unallocated_encoding(s);
1653 break;
1658 * Load/Store exclusive instructions are implemented by remembering
1659 * the value/address loaded, and seeing if these are the same
1660 * when the store is performed. This is not actually the architecturally
1661 * mandated semantics, but it works for typical guest code sequences
1662 * and avoids having to monitor regular stores.
1664 * In system emulation mode only one CPU will be running at once, so
1665 * this sequence is effectively atomic. In user emulation mode we
1666 * throw an exception and handle the atomic operation elsewhere.
1668 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
1669 TCGv_i64 addr, int size, bool is_pair)
1671 TCGv_i64 tmp = tcg_temp_new_i64();
1672 TCGMemOp memop = MO_TE + size;
1674 g_assert(size <= 3);
1675 tcg_gen_qemu_ld_i64(tmp, addr, get_mem_index(s), memop);
1677 if (is_pair) {
1678 TCGv_i64 addr2 = tcg_temp_new_i64();
1679 TCGv_i64 hitmp = tcg_temp_new_i64();
1681 g_assert(size >= 2);
1682 tcg_gen_addi_i64(addr2, addr, 1 << size);
1683 tcg_gen_qemu_ld_i64(hitmp, addr2, get_mem_index(s), memop);
1684 tcg_temp_free_i64(addr2);
1685 tcg_gen_mov_i64(cpu_exclusive_high, hitmp);
1686 tcg_gen_mov_i64(cpu_reg(s, rt2), hitmp);
1687 tcg_temp_free_i64(hitmp);
1690 tcg_gen_mov_i64(cpu_exclusive_val, tmp);
1691 tcg_gen_mov_i64(cpu_reg(s, rt), tmp);
1693 tcg_temp_free_i64(tmp);
1694 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
1697 #ifdef CONFIG_USER_ONLY
1698 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
1699 TCGv_i64 addr, int size, int is_pair)
1701 tcg_gen_mov_i64(cpu_exclusive_test, addr);
1702 tcg_gen_movi_i32(cpu_exclusive_info,
1703 size | is_pair << 2 | (rd << 4) | (rt << 9) | (rt2 << 14));
1704 gen_exception_internal_insn(s, 4, EXCP_STREX);
1706 #else
1707 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
1708 TCGv_i64 inaddr, int size, int is_pair)
1710 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
1711 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
1712 * [addr] = {Rt};
1713 * if (is_pair) {
1714 * [addr + datasize] = {Rt2};
1716 * {Rd} = 0;
1717 * } else {
1718 * {Rd} = 1;
1720 * env->exclusive_addr = -1;
1722 TCGLabel *fail_label = gen_new_label();
1723 TCGLabel *done_label = gen_new_label();
1724 TCGv_i64 addr = tcg_temp_local_new_i64();
1725 TCGv_i64 tmp;
1727 /* Copy input into a local temp so it is not trashed when the
1728 * basic block ends at the branch insn.
1730 tcg_gen_mov_i64(addr, inaddr);
1731 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
1733 tmp = tcg_temp_new_i64();
1734 tcg_gen_qemu_ld_i64(tmp, addr, get_mem_index(s), MO_TE + size);
1735 tcg_gen_brcond_i64(TCG_COND_NE, tmp, cpu_exclusive_val, fail_label);
1736 tcg_temp_free_i64(tmp);
1738 if (is_pair) {
1739 TCGv_i64 addrhi = tcg_temp_new_i64();
1740 TCGv_i64 tmphi = tcg_temp_new_i64();
1742 tcg_gen_addi_i64(addrhi, addr, 1 << size);
1743 tcg_gen_qemu_ld_i64(tmphi, addrhi, get_mem_index(s), MO_TE + size);
1744 tcg_gen_brcond_i64(TCG_COND_NE, tmphi, cpu_exclusive_high, fail_label);
1746 tcg_temp_free_i64(tmphi);
1747 tcg_temp_free_i64(addrhi);
1750 /* We seem to still have the exclusive monitor, so do the store */
1751 tcg_gen_qemu_st_i64(cpu_reg(s, rt), addr, get_mem_index(s), MO_TE + size);
1752 if (is_pair) {
1753 TCGv_i64 addrhi = tcg_temp_new_i64();
1755 tcg_gen_addi_i64(addrhi, addr, 1 << size);
1756 tcg_gen_qemu_st_i64(cpu_reg(s, rt2), addrhi,
1757 get_mem_index(s), MO_TE + size);
1758 tcg_temp_free_i64(addrhi);
1761 tcg_temp_free_i64(addr);
1763 tcg_gen_movi_i64(cpu_reg(s, rd), 0);
1764 tcg_gen_br(done_label);
1765 gen_set_label(fail_label);
1766 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
1767 gen_set_label(done_label);
1768 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1771 #endif
1773 /* C3.3.6 Load/store exclusive
1775 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
1776 * +-----+-------------+----+---+----+------+----+-------+------+------+
1777 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
1778 * +-----+-------------+----+---+----+------+----+-------+------+------+
1780 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
1781 * L: 0 -> store, 1 -> load
1782 * o2: 0 -> exclusive, 1 -> not
1783 * o1: 0 -> single register, 1 -> register pair
1784 * o0: 1 -> load-acquire/store-release, 0 -> not
1786 * o0 == 0 AND o2 == 1 is un-allocated
1787 * o1 == 1 is un-allocated except for 32 and 64 bit sizes
1789 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
1791 int rt = extract32(insn, 0, 5);
1792 int rn = extract32(insn, 5, 5);
1793 int rt2 = extract32(insn, 10, 5);
1794 int is_lasr = extract32(insn, 15, 1);
1795 int rs = extract32(insn, 16, 5);
1796 int is_pair = extract32(insn, 21, 1);
1797 int is_store = !extract32(insn, 22, 1);
1798 int is_excl = !extract32(insn, 23, 1);
1799 int size = extract32(insn, 30, 2);
1800 TCGv_i64 tcg_addr;
1802 if ((!is_excl && !is_lasr) ||
1803 (is_pair && size < 2)) {
1804 unallocated_encoding(s);
1805 return;
1808 if (rn == 31) {
1809 gen_check_sp_alignment(s);
1811 tcg_addr = read_cpu_reg_sp(s, rn, 1);
1813 /* Note that since TCG is single threaded load-acquire/store-release
1814 * semantics require no extra if (is_lasr) { ... } handling.
1817 if (is_excl) {
1818 if (!is_store) {
1819 s->is_ldex = true;
1820 gen_load_exclusive(s, rt, rt2, tcg_addr, size, is_pair);
1821 } else {
1822 gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, is_pair);
1824 } else {
1825 TCGv_i64 tcg_rt = cpu_reg(s, rt);
1826 if (is_store) {
1827 do_gpr_st(s, tcg_rt, tcg_addr, size);
1828 } else {
1829 do_gpr_ld(s, tcg_rt, tcg_addr, size, false, false);
1831 if (is_pair) {
1832 TCGv_i64 tcg_rt2 = cpu_reg(s, rt);
1833 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
1834 if (is_store) {
1835 do_gpr_st(s, tcg_rt2, tcg_addr, size);
1836 } else {
1837 do_gpr_ld(s, tcg_rt2, tcg_addr, size, false, false);
1844 * C3.3.5 Load register (literal)
1846 * 31 30 29 27 26 25 24 23 5 4 0
1847 * +-----+-------+---+-----+-------------------+-------+
1848 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
1849 * +-----+-------+---+-----+-------------------+-------+
1851 * V: 1 -> vector (simd/fp)
1852 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
1853 * 10-> 32 bit signed, 11 -> prefetch
1854 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
1856 static void disas_ld_lit(DisasContext *s, uint32_t insn)
1858 int rt = extract32(insn, 0, 5);
1859 int64_t imm = sextract32(insn, 5, 19) << 2;
1860 bool is_vector = extract32(insn, 26, 1);
1861 int opc = extract32(insn, 30, 2);
1862 bool is_signed = false;
1863 int size = 2;
1864 TCGv_i64 tcg_rt, tcg_addr;
1866 if (is_vector) {
1867 if (opc == 3) {
1868 unallocated_encoding(s);
1869 return;
1871 size = 2 + opc;
1872 if (!fp_access_check(s)) {
1873 return;
1875 } else {
1876 if (opc == 3) {
1877 /* PRFM (literal) : prefetch */
1878 return;
1880 size = 2 + extract32(opc, 0, 1);
1881 is_signed = extract32(opc, 1, 1);
1884 tcg_rt = cpu_reg(s, rt);
1886 tcg_addr = tcg_const_i64((s->pc - 4) + imm);
1887 if (is_vector) {
1888 do_fp_ld(s, rt, tcg_addr, size);
1889 } else {
1890 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false);
1892 tcg_temp_free_i64(tcg_addr);
1896 * C5.6.80 LDNP (Load Pair - non-temporal hint)
1897 * C5.6.81 LDP (Load Pair - non vector)
1898 * C5.6.82 LDPSW (Load Pair Signed Word - non vector)
1899 * C5.6.176 STNP (Store Pair - non-temporal hint)
1900 * C5.6.177 STP (Store Pair - non vector)
1901 * C6.3.165 LDNP (Load Pair of SIMD&FP - non-temporal hint)
1902 * C6.3.165 LDP (Load Pair of SIMD&FP)
1903 * C6.3.284 STNP (Store Pair of SIMD&FP - non-temporal hint)
1904 * C6.3.284 STP (Store Pair of SIMD&FP)
1906 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
1907 * +-----+-------+---+---+-------+---+-----------------------------+
1908 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
1909 * +-----+-------+---+---+-------+---+-------+-------+------+------+
1911 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
1912 * LDPSW 01
1913 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
1914 * V: 0 -> GPR, 1 -> Vector
1915 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
1916 * 10 -> signed offset, 11 -> pre-index
1917 * L: 0 -> Store 1 -> Load
1919 * Rt, Rt2 = GPR or SIMD registers to be stored
1920 * Rn = general purpose register containing address
1921 * imm7 = signed offset (multiple of 4 or 8 depending on size)
1923 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
1925 int rt = extract32(insn, 0, 5);
1926 int rn = extract32(insn, 5, 5);
1927 int rt2 = extract32(insn, 10, 5);
1928 uint64_t offset = sextract64(insn, 15, 7);
1929 int index = extract32(insn, 23, 2);
1930 bool is_vector = extract32(insn, 26, 1);
1931 bool is_load = extract32(insn, 22, 1);
1932 int opc = extract32(insn, 30, 2);
1934 bool is_signed = false;
1935 bool postindex = false;
1936 bool wback = false;
1938 TCGv_i64 tcg_addr; /* calculated address */
1939 int size;
1941 if (opc == 3) {
1942 unallocated_encoding(s);
1943 return;
1946 if (is_vector) {
1947 size = 2 + opc;
1948 } else {
1949 size = 2 + extract32(opc, 1, 1);
1950 is_signed = extract32(opc, 0, 1);
1951 if (!is_load && is_signed) {
1952 unallocated_encoding(s);
1953 return;
1957 switch (index) {
1958 case 1: /* post-index */
1959 postindex = true;
1960 wback = true;
1961 break;
1962 case 0:
1963 /* signed offset with "non-temporal" hint. Since we don't emulate
1964 * caches we don't care about hints to the cache system about
1965 * data access patterns, and handle this identically to plain
1966 * signed offset.
1968 if (is_signed) {
1969 /* There is no non-temporal-hint version of LDPSW */
1970 unallocated_encoding(s);
1971 return;
1973 postindex = false;
1974 break;
1975 case 2: /* signed offset, rn not updated */
1976 postindex = false;
1977 break;
1978 case 3: /* pre-index */
1979 postindex = false;
1980 wback = true;
1981 break;
1984 if (is_vector && !fp_access_check(s)) {
1985 return;
1988 offset <<= size;
1990 if (rn == 31) {
1991 gen_check_sp_alignment(s);
1994 tcg_addr = read_cpu_reg_sp(s, rn, 1);
1996 if (!postindex) {
1997 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2000 if (is_vector) {
2001 if (is_load) {
2002 do_fp_ld(s, rt, tcg_addr, size);
2003 } else {
2004 do_fp_st(s, rt, tcg_addr, size);
2006 } else {
2007 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2008 if (is_load) {
2009 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false);
2010 } else {
2011 do_gpr_st(s, tcg_rt, tcg_addr, size);
2014 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2015 if (is_vector) {
2016 if (is_load) {
2017 do_fp_ld(s, rt2, tcg_addr, size);
2018 } else {
2019 do_fp_st(s, rt2, tcg_addr, size);
2021 } else {
2022 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2023 if (is_load) {
2024 do_gpr_ld(s, tcg_rt2, tcg_addr, size, is_signed, false);
2025 } else {
2026 do_gpr_st(s, tcg_rt2, tcg_addr, size);
2030 if (wback) {
2031 if (postindex) {
2032 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset - (1 << size));
2033 } else {
2034 tcg_gen_subi_i64(tcg_addr, tcg_addr, 1 << size);
2036 tcg_gen_mov_i64(cpu_reg_sp(s, rn), tcg_addr);
2041 * C3.3.8 Load/store (immediate post-indexed)
2042 * C3.3.9 Load/store (immediate pre-indexed)
2043 * C3.3.12 Load/store (unscaled immediate)
2045 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2046 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2047 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2048 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2050 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
2051 10 -> unprivileged
2052 * V = 0 -> non-vector
2053 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
2054 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2056 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn)
2058 int rt = extract32(insn, 0, 5);
2059 int rn = extract32(insn, 5, 5);
2060 int imm9 = sextract32(insn, 12, 9);
2061 int opc = extract32(insn, 22, 2);
2062 int size = extract32(insn, 30, 2);
2063 int idx = extract32(insn, 10, 2);
2064 bool is_signed = false;
2065 bool is_store = false;
2066 bool is_extended = false;
2067 bool is_unpriv = (idx == 2);
2068 bool is_vector = extract32(insn, 26, 1);
2069 bool post_index;
2070 bool writeback;
2072 TCGv_i64 tcg_addr;
2074 if (is_vector) {
2075 size |= (opc & 2) << 1;
2076 if (size > 4 || is_unpriv) {
2077 unallocated_encoding(s);
2078 return;
2080 is_store = ((opc & 1) == 0);
2081 if (!fp_access_check(s)) {
2082 return;
2084 } else {
2085 if (size == 3 && opc == 2) {
2086 /* PRFM - prefetch */
2087 if (is_unpriv) {
2088 unallocated_encoding(s);
2089 return;
2091 return;
2093 if (opc == 3 && size > 1) {
2094 unallocated_encoding(s);
2095 return;
2097 is_store = (opc == 0);
2098 is_signed = opc & (1<<1);
2099 is_extended = (size < 3) && (opc & 1);
2102 switch (idx) {
2103 case 0:
2104 case 2:
2105 post_index = false;
2106 writeback = false;
2107 break;
2108 case 1:
2109 post_index = true;
2110 writeback = true;
2111 break;
2112 case 3:
2113 post_index = false;
2114 writeback = true;
2115 break;
2118 if (rn == 31) {
2119 gen_check_sp_alignment(s);
2121 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2123 if (!post_index) {
2124 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2127 if (is_vector) {
2128 if (is_store) {
2129 do_fp_st(s, rt, tcg_addr, size);
2130 } else {
2131 do_fp_ld(s, rt, tcg_addr, size);
2133 } else {
2134 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2135 int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
2137 if (is_store) {
2138 do_gpr_st_memidx(s, tcg_rt, tcg_addr, size, memidx);
2139 } else {
2140 do_gpr_ld_memidx(s, tcg_rt, tcg_addr, size,
2141 is_signed, is_extended, memidx);
2145 if (writeback) {
2146 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2147 if (post_index) {
2148 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2150 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2155 * C3.3.10 Load/store (register offset)
2157 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2158 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2159 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
2160 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2162 * For non-vector:
2163 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2164 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2165 * For vector:
2166 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2167 * opc<0>: 0 -> store, 1 -> load
2168 * V: 1 -> vector/simd
2169 * opt: extend encoding (see DecodeRegExtend)
2170 * S: if S=1 then scale (essentially index by sizeof(size))
2171 * Rt: register to transfer into/out of
2172 * Rn: address register or SP for base
2173 * Rm: offset register or ZR for offset
2175 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn)
2177 int rt = extract32(insn, 0, 5);
2178 int rn = extract32(insn, 5, 5);
2179 int shift = extract32(insn, 12, 1);
2180 int rm = extract32(insn, 16, 5);
2181 int opc = extract32(insn, 22, 2);
2182 int opt = extract32(insn, 13, 3);
2183 int size = extract32(insn, 30, 2);
2184 bool is_signed = false;
2185 bool is_store = false;
2186 bool is_extended = false;
2187 bool is_vector = extract32(insn, 26, 1);
2189 TCGv_i64 tcg_rm;
2190 TCGv_i64 tcg_addr;
2192 if (extract32(opt, 1, 1) == 0) {
2193 unallocated_encoding(s);
2194 return;
2197 if (is_vector) {
2198 size |= (opc & 2) << 1;
2199 if (size > 4) {
2200 unallocated_encoding(s);
2201 return;
2203 is_store = !extract32(opc, 0, 1);
2204 if (!fp_access_check(s)) {
2205 return;
2207 } else {
2208 if (size == 3 && opc == 2) {
2209 /* PRFM - prefetch */
2210 return;
2212 if (opc == 3 && size > 1) {
2213 unallocated_encoding(s);
2214 return;
2216 is_store = (opc == 0);
2217 is_signed = extract32(opc, 1, 1);
2218 is_extended = (size < 3) && extract32(opc, 0, 1);
2221 if (rn == 31) {
2222 gen_check_sp_alignment(s);
2224 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2226 tcg_rm = read_cpu_reg(s, rm, 1);
2227 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
2229 tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_rm);
2231 if (is_vector) {
2232 if (is_store) {
2233 do_fp_st(s, rt, tcg_addr, size);
2234 } else {
2235 do_fp_ld(s, rt, tcg_addr, size);
2237 } else {
2238 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2239 if (is_store) {
2240 do_gpr_st(s, tcg_rt, tcg_addr, size);
2241 } else {
2242 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended);
2248 * C3.3.13 Load/store (unsigned immediate)
2250 * 31 30 29 27 26 25 24 23 22 21 10 9 5
2251 * +----+-------+---+-----+-----+------------+-------+------+
2252 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
2253 * +----+-------+---+-----+-----+------------+-------+------+
2255 * For non-vector:
2256 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2257 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2258 * For vector:
2259 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2260 * opc<0>: 0 -> store, 1 -> load
2261 * Rn: base address register (inc SP)
2262 * Rt: target register
2264 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn)
2266 int rt = extract32(insn, 0, 5);
2267 int rn = extract32(insn, 5, 5);
2268 unsigned int imm12 = extract32(insn, 10, 12);
2269 bool is_vector = extract32(insn, 26, 1);
2270 int size = extract32(insn, 30, 2);
2271 int opc = extract32(insn, 22, 2);
2272 unsigned int offset;
2274 TCGv_i64 tcg_addr;
2276 bool is_store;
2277 bool is_signed = false;
2278 bool is_extended = false;
2280 if (is_vector) {
2281 size |= (opc & 2) << 1;
2282 if (size > 4) {
2283 unallocated_encoding(s);
2284 return;
2286 is_store = !extract32(opc, 0, 1);
2287 if (!fp_access_check(s)) {
2288 return;
2290 } else {
2291 if (size == 3 && opc == 2) {
2292 /* PRFM - prefetch */
2293 return;
2295 if (opc == 3 && size > 1) {
2296 unallocated_encoding(s);
2297 return;
2299 is_store = (opc == 0);
2300 is_signed = extract32(opc, 1, 1);
2301 is_extended = (size < 3) && extract32(opc, 0, 1);
2304 if (rn == 31) {
2305 gen_check_sp_alignment(s);
2307 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2308 offset = imm12 << size;
2309 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2311 if (is_vector) {
2312 if (is_store) {
2313 do_fp_st(s, rt, tcg_addr, size);
2314 } else {
2315 do_fp_ld(s, rt, tcg_addr, size);
2317 } else {
2318 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2319 if (is_store) {
2320 do_gpr_st(s, tcg_rt, tcg_addr, size);
2321 } else {
2322 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended);
2327 /* Load/store register (all forms) */
2328 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
2330 switch (extract32(insn, 24, 2)) {
2331 case 0:
2332 if (extract32(insn, 21, 1) == 1 && extract32(insn, 10, 2) == 2) {
2333 disas_ldst_reg_roffset(s, insn);
2334 } else {
2335 /* Load/store register (unscaled immediate)
2336 * Load/store immediate pre/post-indexed
2337 * Load/store register unprivileged
2339 disas_ldst_reg_imm9(s, insn);
2341 break;
2342 case 1:
2343 disas_ldst_reg_unsigned_imm(s, insn);
2344 break;
2345 default:
2346 unallocated_encoding(s);
2347 break;
2351 /* C3.3.1 AdvSIMD load/store multiple structures
2353 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
2354 * +---+---+---------------+---+-------------+--------+------+------+------+
2355 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
2356 * +---+---+---------------+---+-------------+--------+------+------+------+
2358 * C3.3.2 AdvSIMD load/store multiple structures (post-indexed)
2360 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
2361 * +---+---+---------------+---+---+---------+--------+------+------+------+
2362 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
2363 * +---+---+---------------+---+---+---------+--------+------+------+------+
2365 * Rt: first (or only) SIMD&FP register to be transferred
2366 * Rn: base address or SP
2367 * Rm (post-index only): post-index register (when !31) or size dependent #imm
2369 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
2371 int rt = extract32(insn, 0, 5);
2372 int rn = extract32(insn, 5, 5);
2373 int size = extract32(insn, 10, 2);
2374 int opcode = extract32(insn, 12, 4);
2375 bool is_store = !extract32(insn, 22, 1);
2376 bool is_postidx = extract32(insn, 23, 1);
2377 bool is_q = extract32(insn, 30, 1);
2378 TCGv_i64 tcg_addr, tcg_rn;
2380 int ebytes = 1 << size;
2381 int elements = (is_q ? 128 : 64) / (8 << size);
2382 int rpt; /* num iterations */
2383 int selem; /* structure elements */
2384 int r;
2386 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
2387 unallocated_encoding(s);
2388 return;
2391 /* From the shared decode logic */
2392 switch (opcode) {
2393 case 0x0:
2394 rpt = 1;
2395 selem = 4;
2396 break;
2397 case 0x2:
2398 rpt = 4;
2399 selem = 1;
2400 break;
2401 case 0x4:
2402 rpt = 1;
2403 selem = 3;
2404 break;
2405 case 0x6:
2406 rpt = 3;
2407 selem = 1;
2408 break;
2409 case 0x7:
2410 rpt = 1;
2411 selem = 1;
2412 break;
2413 case 0x8:
2414 rpt = 1;
2415 selem = 2;
2416 break;
2417 case 0xa:
2418 rpt = 2;
2419 selem = 1;
2420 break;
2421 default:
2422 unallocated_encoding(s);
2423 return;
2426 if (size == 3 && !is_q && selem != 1) {
2427 /* reserved */
2428 unallocated_encoding(s);
2429 return;
2432 if (!fp_access_check(s)) {
2433 return;
2436 if (rn == 31) {
2437 gen_check_sp_alignment(s);
2440 tcg_rn = cpu_reg_sp(s, rn);
2441 tcg_addr = tcg_temp_new_i64();
2442 tcg_gen_mov_i64(tcg_addr, tcg_rn);
2444 for (r = 0; r < rpt; r++) {
2445 int e;
2446 for (e = 0; e < elements; e++) {
2447 int tt = (rt + r) % 32;
2448 int xs;
2449 for (xs = 0; xs < selem; xs++) {
2450 if (is_store) {
2451 do_vec_st(s, tt, e, tcg_addr, size);
2452 } else {
2453 do_vec_ld(s, tt, e, tcg_addr, size);
2455 /* For non-quad operations, setting a slice of the low
2456 * 64 bits of the register clears the high 64 bits (in
2457 * the ARM ARM pseudocode this is implicit in the fact
2458 * that 'rval' is a 64 bit wide variable). We optimize
2459 * by noticing that we only need to do this the first
2460 * time we touch a register.
2462 if (!is_q && e == 0 && (r == 0 || xs == selem - 1)) {
2463 clear_vec_high(s, tt);
2466 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
2467 tt = (tt + 1) % 32;
2472 if (is_postidx) {
2473 int rm = extract32(insn, 16, 5);
2474 if (rm == 31) {
2475 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2476 } else {
2477 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
2480 tcg_temp_free_i64(tcg_addr);
2483 /* C3.3.3 AdvSIMD load/store single structure
2485 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2486 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2487 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
2488 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2490 * C3.3.4 AdvSIMD load/store single structure (post-indexed)
2492 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2493 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2494 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
2495 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2497 * Rt: first (or only) SIMD&FP register to be transferred
2498 * Rn: base address or SP
2499 * Rm (post-index only): post-index register (when !31) or size dependent #imm
2500 * index = encoded in Q:S:size dependent on size
2502 * lane_size = encoded in R, opc
2503 * transfer width = encoded in opc, S, size
2505 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
2507 int rt = extract32(insn, 0, 5);
2508 int rn = extract32(insn, 5, 5);
2509 int size = extract32(insn, 10, 2);
2510 int S = extract32(insn, 12, 1);
2511 int opc = extract32(insn, 13, 3);
2512 int R = extract32(insn, 21, 1);
2513 int is_load = extract32(insn, 22, 1);
2514 int is_postidx = extract32(insn, 23, 1);
2515 int is_q = extract32(insn, 30, 1);
2517 int scale = extract32(opc, 1, 2);
2518 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
2519 bool replicate = false;
2520 int index = is_q << 3 | S << 2 | size;
2521 int ebytes, xs;
2522 TCGv_i64 tcg_addr, tcg_rn;
2524 switch (scale) {
2525 case 3:
2526 if (!is_load || S) {
2527 unallocated_encoding(s);
2528 return;
2530 scale = size;
2531 replicate = true;
2532 break;
2533 case 0:
2534 break;
2535 case 1:
2536 if (extract32(size, 0, 1)) {
2537 unallocated_encoding(s);
2538 return;
2540 index >>= 1;
2541 break;
2542 case 2:
2543 if (extract32(size, 1, 1)) {
2544 unallocated_encoding(s);
2545 return;
2547 if (!extract32(size, 0, 1)) {
2548 index >>= 2;
2549 } else {
2550 if (S) {
2551 unallocated_encoding(s);
2552 return;
2554 index >>= 3;
2555 scale = 3;
2557 break;
2558 default:
2559 g_assert_not_reached();
2562 if (!fp_access_check(s)) {
2563 return;
2566 ebytes = 1 << scale;
2568 if (rn == 31) {
2569 gen_check_sp_alignment(s);
2572 tcg_rn = cpu_reg_sp(s, rn);
2573 tcg_addr = tcg_temp_new_i64();
2574 tcg_gen_mov_i64(tcg_addr, tcg_rn);
2576 for (xs = 0; xs < selem; xs++) {
2577 if (replicate) {
2578 /* Load and replicate to all elements */
2579 uint64_t mulconst;
2580 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
2582 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr,
2583 get_mem_index(s), MO_TE + scale);
2584 switch (scale) {
2585 case 0:
2586 mulconst = 0x0101010101010101ULL;
2587 break;
2588 case 1:
2589 mulconst = 0x0001000100010001ULL;
2590 break;
2591 case 2:
2592 mulconst = 0x0000000100000001ULL;
2593 break;
2594 case 3:
2595 mulconst = 0;
2596 break;
2597 default:
2598 g_assert_not_reached();
2600 if (mulconst) {
2601 tcg_gen_muli_i64(tcg_tmp, tcg_tmp, mulconst);
2603 write_vec_element(s, tcg_tmp, rt, 0, MO_64);
2604 if (is_q) {
2605 write_vec_element(s, tcg_tmp, rt, 1, MO_64);
2606 } else {
2607 clear_vec_high(s, rt);
2609 tcg_temp_free_i64(tcg_tmp);
2610 } else {
2611 /* Load/store one element per register */
2612 if (is_load) {
2613 do_vec_ld(s, rt, index, tcg_addr, MO_TE + scale);
2614 } else {
2615 do_vec_st(s, rt, index, tcg_addr, MO_TE + scale);
2618 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
2619 rt = (rt + 1) % 32;
2622 if (is_postidx) {
2623 int rm = extract32(insn, 16, 5);
2624 if (rm == 31) {
2625 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2626 } else {
2627 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
2630 tcg_temp_free_i64(tcg_addr);
2633 /* C3.3 Loads and stores */
2634 static void disas_ldst(DisasContext *s, uint32_t insn)
2636 switch (extract32(insn, 24, 6)) {
2637 case 0x08: /* Load/store exclusive */
2638 disas_ldst_excl(s, insn);
2639 break;
2640 case 0x18: case 0x1c: /* Load register (literal) */
2641 disas_ld_lit(s, insn);
2642 break;
2643 case 0x28: case 0x29:
2644 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
2645 disas_ldst_pair(s, insn);
2646 break;
2647 case 0x38: case 0x39:
2648 case 0x3c: case 0x3d: /* Load/store register (all forms) */
2649 disas_ldst_reg(s, insn);
2650 break;
2651 case 0x0c: /* AdvSIMD load/store multiple structures */
2652 disas_ldst_multiple_struct(s, insn);
2653 break;
2654 case 0x0d: /* AdvSIMD load/store single structure */
2655 disas_ldst_single_struct(s, insn);
2656 break;
2657 default:
2658 unallocated_encoding(s);
2659 break;
2663 /* C3.4.6 PC-rel. addressing
2664 * 31 30 29 28 24 23 5 4 0
2665 * +----+-------+-----------+-------------------+------+
2666 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
2667 * +----+-------+-----------+-------------------+------+
2669 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
2671 unsigned int page, rd;
2672 uint64_t base;
2673 uint64_t offset;
2675 page = extract32(insn, 31, 1);
2676 /* SignExtend(immhi:immlo) -> offset */
2677 offset = sextract64(insn, 5, 19);
2678 offset = offset << 2 | extract32(insn, 29, 2);
2679 rd = extract32(insn, 0, 5);
2680 base = s->pc - 4;
2682 if (page) {
2683 /* ADRP (page based) */
2684 base &= ~0xfff;
2685 offset <<= 12;
2688 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
2692 * C3.4.1 Add/subtract (immediate)
2694 * 31 30 29 28 24 23 22 21 10 9 5 4 0
2695 * +--+--+--+-----------+-----+-------------+-----+-----+
2696 * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
2697 * +--+--+--+-----------+-----+-------------+-----+-----+
2699 * sf: 0 -> 32bit, 1 -> 64bit
2700 * op: 0 -> add , 1 -> sub
2701 * S: 1 -> set flags
2702 * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
2704 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
2706 int rd = extract32(insn, 0, 5);
2707 int rn = extract32(insn, 5, 5);
2708 uint64_t imm = extract32(insn, 10, 12);
2709 int shift = extract32(insn, 22, 2);
2710 bool setflags = extract32(insn, 29, 1);
2711 bool sub_op = extract32(insn, 30, 1);
2712 bool is_64bit = extract32(insn, 31, 1);
2714 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2715 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
2716 TCGv_i64 tcg_result;
2718 switch (shift) {
2719 case 0x0:
2720 break;
2721 case 0x1:
2722 imm <<= 12;
2723 break;
2724 default:
2725 unallocated_encoding(s);
2726 return;
2729 tcg_result = tcg_temp_new_i64();
2730 if (!setflags) {
2731 if (sub_op) {
2732 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
2733 } else {
2734 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
2736 } else {
2737 TCGv_i64 tcg_imm = tcg_const_i64(imm);
2738 if (sub_op) {
2739 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
2740 } else {
2741 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
2743 tcg_temp_free_i64(tcg_imm);
2746 if (is_64bit) {
2747 tcg_gen_mov_i64(tcg_rd, tcg_result);
2748 } else {
2749 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
2752 tcg_temp_free_i64(tcg_result);
2755 /* The input should be a value in the bottom e bits (with higher
2756 * bits zero); returns that value replicated into every element
2757 * of size e in a 64 bit integer.
2759 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
2761 assert(e != 0);
2762 while (e < 64) {
2763 mask |= mask << e;
2764 e *= 2;
2766 return mask;
2769 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
2770 static inline uint64_t bitmask64(unsigned int length)
2772 assert(length > 0 && length <= 64);
2773 return ~0ULL >> (64 - length);
2776 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
2777 * only require the wmask. Returns false if the imms/immr/immn are a reserved
2778 * value (ie should cause a guest UNDEF exception), and true if they are
2779 * valid, in which case the decoded bit pattern is written to result.
2781 static bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
2782 unsigned int imms, unsigned int immr)
2784 uint64_t mask;
2785 unsigned e, levels, s, r;
2786 int len;
2788 assert(immn < 2 && imms < 64 && immr < 64);
2790 /* The bit patterns we create here are 64 bit patterns which
2791 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
2792 * 64 bits each. Each element contains the same value: a run
2793 * of between 1 and e-1 non-zero bits, rotated within the
2794 * element by between 0 and e-1 bits.
2796 * The element size and run length are encoded into immn (1 bit)
2797 * and imms (6 bits) as follows:
2798 * 64 bit elements: immn = 1, imms = <length of run - 1>
2799 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
2800 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
2801 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
2802 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
2803 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
2804 * Notice that immn = 0, imms = 11111x is the only combination
2805 * not covered by one of the above options; this is reserved.
2806 * Further, <length of run - 1> all-ones is a reserved pattern.
2808 * In all cases the rotation is by immr % e (and immr is 6 bits).
2811 /* First determine the element size */
2812 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
2813 if (len < 1) {
2814 /* This is the immn == 0, imms == 0x11111x case */
2815 return false;
2817 e = 1 << len;
2819 levels = e - 1;
2820 s = imms & levels;
2821 r = immr & levels;
2823 if (s == levels) {
2824 /* <length of run - 1> mustn't be all-ones. */
2825 return false;
2828 /* Create the value of one element: s+1 set bits rotated
2829 * by r within the element (which is e bits wide)...
2831 mask = bitmask64(s + 1);
2832 if (r) {
2833 mask = (mask >> r) | (mask << (e - r));
2834 mask &= bitmask64(e);
2836 /* ...then replicate the element over the whole 64 bit value */
2837 mask = bitfield_replicate(mask, e);
2838 *result = mask;
2839 return true;
2842 /* C3.4.4 Logical (immediate)
2843 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
2844 * +----+-----+-------------+---+------+------+------+------+
2845 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
2846 * +----+-----+-------------+---+------+------+------+------+
2848 static void disas_logic_imm(DisasContext *s, uint32_t insn)
2850 unsigned int sf, opc, is_n, immr, imms, rn, rd;
2851 TCGv_i64 tcg_rd, tcg_rn;
2852 uint64_t wmask;
2853 bool is_and = false;
2855 sf = extract32(insn, 31, 1);
2856 opc = extract32(insn, 29, 2);
2857 is_n = extract32(insn, 22, 1);
2858 immr = extract32(insn, 16, 6);
2859 imms = extract32(insn, 10, 6);
2860 rn = extract32(insn, 5, 5);
2861 rd = extract32(insn, 0, 5);
2863 if (!sf && is_n) {
2864 unallocated_encoding(s);
2865 return;
2868 if (opc == 0x3) { /* ANDS */
2869 tcg_rd = cpu_reg(s, rd);
2870 } else {
2871 tcg_rd = cpu_reg_sp(s, rd);
2873 tcg_rn = cpu_reg(s, rn);
2875 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
2876 /* some immediate field values are reserved */
2877 unallocated_encoding(s);
2878 return;
2881 if (!sf) {
2882 wmask &= 0xffffffff;
2885 switch (opc) {
2886 case 0x3: /* ANDS */
2887 case 0x0: /* AND */
2888 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
2889 is_and = true;
2890 break;
2891 case 0x1: /* ORR */
2892 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
2893 break;
2894 case 0x2: /* EOR */
2895 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
2896 break;
2897 default:
2898 assert(FALSE); /* must handle all above */
2899 break;
2902 if (!sf && !is_and) {
2903 /* zero extend final result; we know we can skip this for AND
2904 * since the immediate had the high 32 bits clear.
2906 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
2909 if (opc == 3) { /* ANDS */
2910 gen_logic_CC(sf, tcg_rd);
2915 * C3.4.5 Move wide (immediate)
2917 * 31 30 29 28 23 22 21 20 5 4 0
2918 * +--+-----+-------------+-----+----------------+------+
2919 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
2920 * +--+-----+-------------+-----+----------------+------+
2922 * sf: 0 -> 32 bit, 1 -> 64 bit
2923 * opc: 00 -> N, 10 -> Z, 11 -> K
2924 * hw: shift/16 (0,16, and sf only 32, 48)
2926 static void disas_movw_imm(DisasContext *s, uint32_t insn)
2928 int rd = extract32(insn, 0, 5);
2929 uint64_t imm = extract32(insn, 5, 16);
2930 int sf = extract32(insn, 31, 1);
2931 int opc = extract32(insn, 29, 2);
2932 int pos = extract32(insn, 21, 2) << 4;
2933 TCGv_i64 tcg_rd = cpu_reg(s, rd);
2934 TCGv_i64 tcg_imm;
2936 if (!sf && (pos >= 32)) {
2937 unallocated_encoding(s);
2938 return;
2941 switch (opc) {
2942 case 0: /* MOVN */
2943 case 2: /* MOVZ */
2944 imm <<= pos;
2945 if (opc == 0) {
2946 imm = ~imm;
2948 if (!sf) {
2949 imm &= 0xffffffffu;
2951 tcg_gen_movi_i64(tcg_rd, imm);
2952 break;
2953 case 3: /* MOVK */
2954 tcg_imm = tcg_const_i64(imm);
2955 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
2956 tcg_temp_free_i64(tcg_imm);
2957 if (!sf) {
2958 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
2960 break;
2961 default:
2962 unallocated_encoding(s);
2963 break;
2967 /* C3.4.2 Bitfield
2968 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
2969 * +----+-----+-------------+---+------+------+------+------+
2970 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
2971 * +----+-----+-------------+---+------+------+------+------+
2973 static void disas_bitfield(DisasContext *s, uint32_t insn)
2975 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
2976 TCGv_i64 tcg_rd, tcg_tmp;
2978 sf = extract32(insn, 31, 1);
2979 opc = extract32(insn, 29, 2);
2980 n = extract32(insn, 22, 1);
2981 ri = extract32(insn, 16, 6);
2982 si = extract32(insn, 10, 6);
2983 rn = extract32(insn, 5, 5);
2984 rd = extract32(insn, 0, 5);
2985 bitsize = sf ? 64 : 32;
2987 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
2988 unallocated_encoding(s);
2989 return;
2992 tcg_rd = cpu_reg(s, rd);
2993 tcg_tmp = read_cpu_reg(s, rn, sf);
2995 /* OPTME: probably worth recognizing common cases of ext{8,16,32}{u,s} */
2997 if (opc != 1) { /* SBFM or UBFM */
2998 tcg_gen_movi_i64(tcg_rd, 0);
3001 /* do the bit move operation */
3002 if (si >= ri) {
3003 /* Wd<s-r:0> = Wn<s:r> */
3004 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
3005 pos = 0;
3006 len = (si - ri) + 1;
3007 } else {
3008 /* Wd<32+s-r,32-r> = Wn<s:0> */
3009 pos = bitsize - ri;
3010 len = si + 1;
3013 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
3015 if (opc == 0) { /* SBFM - sign extend the destination field */
3016 tcg_gen_shli_i64(tcg_rd, tcg_rd, 64 - (pos + len));
3017 tcg_gen_sari_i64(tcg_rd, tcg_rd, 64 - (pos + len));
3020 if (!sf) { /* zero extend final result */
3021 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3025 /* C3.4.3 Extract
3026 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
3027 * +----+------+-------------+---+----+------+--------+------+------+
3028 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
3029 * +----+------+-------------+---+----+------+--------+------+------+
3031 static void disas_extract(DisasContext *s, uint32_t insn)
3033 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
3035 sf = extract32(insn, 31, 1);
3036 n = extract32(insn, 22, 1);
3037 rm = extract32(insn, 16, 5);
3038 imm = extract32(insn, 10, 6);
3039 rn = extract32(insn, 5, 5);
3040 rd = extract32(insn, 0, 5);
3041 op21 = extract32(insn, 29, 2);
3042 op0 = extract32(insn, 21, 1);
3043 bitsize = sf ? 64 : 32;
3045 if (sf != n || op21 || op0 || imm >= bitsize) {
3046 unallocated_encoding(s);
3047 } else {
3048 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
3050 tcg_rd = cpu_reg(s, rd);
3052 if (imm) {
3053 /* OPTME: we can special case rm==rn as a rotate */
3054 tcg_rm = read_cpu_reg(s, rm, sf);
3055 tcg_rn = read_cpu_reg(s, rn, sf);
3056 tcg_gen_shri_i64(tcg_rm, tcg_rm, imm);
3057 tcg_gen_shli_i64(tcg_rn, tcg_rn, bitsize - imm);
3058 tcg_gen_or_i64(tcg_rd, tcg_rm, tcg_rn);
3059 if (!sf) {
3060 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3062 } else {
3063 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
3064 * so an extract from bit 0 is a special case.
3066 if (sf) {
3067 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
3068 } else {
3069 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
3076 /* C3.4 Data processing - immediate */
3077 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
3079 switch (extract32(insn, 23, 6)) {
3080 case 0x20: case 0x21: /* PC-rel. addressing */
3081 disas_pc_rel_adr(s, insn);
3082 break;
3083 case 0x22: case 0x23: /* Add/subtract (immediate) */
3084 disas_add_sub_imm(s, insn);
3085 break;
3086 case 0x24: /* Logical (immediate) */
3087 disas_logic_imm(s, insn);
3088 break;
3089 case 0x25: /* Move wide (immediate) */
3090 disas_movw_imm(s, insn);
3091 break;
3092 case 0x26: /* Bitfield */
3093 disas_bitfield(s, insn);
3094 break;
3095 case 0x27: /* Extract */
3096 disas_extract(s, insn);
3097 break;
3098 default:
3099 unallocated_encoding(s);
3100 break;
3104 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
3105 * Note that it is the caller's responsibility to ensure that the
3106 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
3107 * mandated semantics for out of range shifts.
3109 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
3110 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
3112 switch (shift_type) {
3113 case A64_SHIFT_TYPE_LSL:
3114 tcg_gen_shl_i64(dst, src, shift_amount);
3115 break;
3116 case A64_SHIFT_TYPE_LSR:
3117 tcg_gen_shr_i64(dst, src, shift_amount);
3118 break;
3119 case A64_SHIFT_TYPE_ASR:
3120 if (!sf) {
3121 tcg_gen_ext32s_i64(dst, src);
3123 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
3124 break;
3125 case A64_SHIFT_TYPE_ROR:
3126 if (sf) {
3127 tcg_gen_rotr_i64(dst, src, shift_amount);
3128 } else {
3129 TCGv_i32 t0, t1;
3130 t0 = tcg_temp_new_i32();
3131 t1 = tcg_temp_new_i32();
3132 tcg_gen_trunc_i64_i32(t0, src);
3133 tcg_gen_trunc_i64_i32(t1, shift_amount);
3134 tcg_gen_rotr_i32(t0, t0, t1);
3135 tcg_gen_extu_i32_i64(dst, t0);
3136 tcg_temp_free_i32(t0);
3137 tcg_temp_free_i32(t1);
3139 break;
3140 default:
3141 assert(FALSE); /* all shift types should be handled */
3142 break;
3145 if (!sf) { /* zero extend final result */
3146 tcg_gen_ext32u_i64(dst, dst);
3150 /* Shift a TCGv src by immediate, put result in dst.
3151 * The shift amount must be in range (this should always be true as the
3152 * relevant instructions will UNDEF on bad shift immediates).
3154 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
3155 enum a64_shift_type shift_type, unsigned int shift_i)
3157 assert(shift_i < (sf ? 64 : 32));
3159 if (shift_i == 0) {
3160 tcg_gen_mov_i64(dst, src);
3161 } else {
3162 TCGv_i64 shift_const;
3164 shift_const = tcg_const_i64(shift_i);
3165 shift_reg(dst, src, sf, shift_type, shift_const);
3166 tcg_temp_free_i64(shift_const);
3170 /* C3.5.10 Logical (shifted register)
3171 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3172 * +----+-----+-----------+-------+---+------+--------+------+------+
3173 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
3174 * +----+-----+-----------+-------+---+------+--------+------+------+
3176 static void disas_logic_reg(DisasContext *s, uint32_t insn)
3178 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
3179 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
3181 sf = extract32(insn, 31, 1);
3182 opc = extract32(insn, 29, 2);
3183 shift_type = extract32(insn, 22, 2);
3184 invert = extract32(insn, 21, 1);
3185 rm = extract32(insn, 16, 5);
3186 shift_amount = extract32(insn, 10, 6);
3187 rn = extract32(insn, 5, 5);
3188 rd = extract32(insn, 0, 5);
3190 if (!sf && (shift_amount & (1 << 5))) {
3191 unallocated_encoding(s);
3192 return;
3195 tcg_rd = cpu_reg(s, rd);
3197 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
3198 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
3199 * register-register MOV and MVN, so it is worth special casing.
3201 tcg_rm = cpu_reg(s, rm);
3202 if (invert) {
3203 tcg_gen_not_i64(tcg_rd, tcg_rm);
3204 if (!sf) {
3205 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3207 } else {
3208 if (sf) {
3209 tcg_gen_mov_i64(tcg_rd, tcg_rm);
3210 } else {
3211 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
3214 return;
3217 tcg_rm = read_cpu_reg(s, rm, sf);
3219 if (shift_amount) {
3220 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
3223 tcg_rn = cpu_reg(s, rn);
3225 switch (opc | (invert << 2)) {
3226 case 0: /* AND */
3227 case 3: /* ANDS */
3228 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
3229 break;
3230 case 1: /* ORR */
3231 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
3232 break;
3233 case 2: /* EOR */
3234 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
3235 break;
3236 case 4: /* BIC */
3237 case 7: /* BICS */
3238 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
3239 break;
3240 case 5: /* ORN */
3241 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
3242 break;
3243 case 6: /* EON */
3244 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
3245 break;
3246 default:
3247 assert(FALSE);
3248 break;
3251 if (!sf) {
3252 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3255 if (opc == 3) {
3256 gen_logic_CC(sf, tcg_rd);
3261 * C3.5.1 Add/subtract (extended register)
3263 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
3264 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3265 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
3266 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3268 * sf: 0 -> 32bit, 1 -> 64bit
3269 * op: 0 -> add , 1 -> sub
3270 * S: 1 -> set flags
3271 * opt: 00
3272 * option: extension type (see DecodeRegExtend)
3273 * imm3: optional shift to Rm
3275 * Rd = Rn + LSL(extend(Rm), amount)
3277 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
3279 int rd = extract32(insn, 0, 5);
3280 int rn = extract32(insn, 5, 5);
3281 int imm3 = extract32(insn, 10, 3);
3282 int option = extract32(insn, 13, 3);
3283 int rm = extract32(insn, 16, 5);
3284 bool setflags = extract32(insn, 29, 1);
3285 bool sub_op = extract32(insn, 30, 1);
3286 bool sf = extract32(insn, 31, 1);
3288 TCGv_i64 tcg_rm, tcg_rn; /* temps */
3289 TCGv_i64 tcg_rd;
3290 TCGv_i64 tcg_result;
3292 if (imm3 > 4) {
3293 unallocated_encoding(s);
3294 return;
3297 /* non-flag setting ops may use SP */
3298 if (!setflags) {
3299 tcg_rd = cpu_reg_sp(s, rd);
3300 } else {
3301 tcg_rd = cpu_reg(s, rd);
3303 tcg_rn = read_cpu_reg_sp(s, rn, sf);
3305 tcg_rm = read_cpu_reg(s, rm, sf);
3306 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
3308 tcg_result = tcg_temp_new_i64();
3310 if (!setflags) {
3311 if (sub_op) {
3312 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3313 } else {
3314 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3316 } else {
3317 if (sub_op) {
3318 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3319 } else {
3320 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3324 if (sf) {
3325 tcg_gen_mov_i64(tcg_rd, tcg_result);
3326 } else {
3327 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3330 tcg_temp_free_i64(tcg_result);
3334 * C3.5.2 Add/subtract (shifted register)
3336 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3337 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3338 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
3339 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3341 * sf: 0 -> 32bit, 1 -> 64bit
3342 * op: 0 -> add , 1 -> sub
3343 * S: 1 -> set flags
3344 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
3345 * imm6: Shift amount to apply to Rm before the add/sub
3347 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
3349 int rd = extract32(insn, 0, 5);
3350 int rn = extract32(insn, 5, 5);
3351 int imm6 = extract32(insn, 10, 6);
3352 int rm = extract32(insn, 16, 5);
3353 int shift_type = extract32(insn, 22, 2);
3354 bool setflags = extract32(insn, 29, 1);
3355 bool sub_op = extract32(insn, 30, 1);
3356 bool sf = extract32(insn, 31, 1);
3358 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3359 TCGv_i64 tcg_rn, tcg_rm;
3360 TCGv_i64 tcg_result;
3362 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
3363 unallocated_encoding(s);
3364 return;
3367 tcg_rn = read_cpu_reg(s, rn, sf);
3368 tcg_rm = read_cpu_reg(s, rm, sf);
3370 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
3372 tcg_result = tcg_temp_new_i64();
3374 if (!setflags) {
3375 if (sub_op) {
3376 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3377 } else {
3378 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3380 } else {
3381 if (sub_op) {
3382 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3383 } else {
3384 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3388 if (sf) {
3389 tcg_gen_mov_i64(tcg_rd, tcg_result);
3390 } else {
3391 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3394 tcg_temp_free_i64(tcg_result);
3397 /* C3.5.9 Data-processing (3 source)
3399 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
3400 +--+------+-----------+------+------+----+------+------+------+
3401 |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
3402 +--+------+-----------+------+------+----+------+------+------+
3405 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
3407 int rd = extract32(insn, 0, 5);
3408 int rn = extract32(insn, 5, 5);
3409 int ra = extract32(insn, 10, 5);
3410 int rm = extract32(insn, 16, 5);
3411 int op_id = (extract32(insn, 29, 3) << 4) |
3412 (extract32(insn, 21, 3) << 1) |
3413 extract32(insn, 15, 1);
3414 bool sf = extract32(insn, 31, 1);
3415 bool is_sub = extract32(op_id, 0, 1);
3416 bool is_high = extract32(op_id, 2, 1);
3417 bool is_signed = false;
3418 TCGv_i64 tcg_op1;
3419 TCGv_i64 tcg_op2;
3420 TCGv_i64 tcg_tmp;
3422 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
3423 switch (op_id) {
3424 case 0x42: /* SMADDL */
3425 case 0x43: /* SMSUBL */
3426 case 0x44: /* SMULH */
3427 is_signed = true;
3428 break;
3429 case 0x0: /* MADD (32bit) */
3430 case 0x1: /* MSUB (32bit) */
3431 case 0x40: /* MADD (64bit) */
3432 case 0x41: /* MSUB (64bit) */
3433 case 0x4a: /* UMADDL */
3434 case 0x4b: /* UMSUBL */
3435 case 0x4c: /* UMULH */
3436 break;
3437 default:
3438 unallocated_encoding(s);
3439 return;
3442 if (is_high) {
3443 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
3444 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3445 TCGv_i64 tcg_rn = cpu_reg(s, rn);
3446 TCGv_i64 tcg_rm = cpu_reg(s, rm);
3448 if (is_signed) {
3449 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
3450 } else {
3451 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
3454 tcg_temp_free_i64(low_bits);
3455 return;
3458 tcg_op1 = tcg_temp_new_i64();
3459 tcg_op2 = tcg_temp_new_i64();
3460 tcg_tmp = tcg_temp_new_i64();
3462 if (op_id < 0x42) {
3463 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
3464 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
3465 } else {
3466 if (is_signed) {
3467 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
3468 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
3469 } else {
3470 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
3471 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
3475 if (ra == 31 && !is_sub) {
3476 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
3477 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
3478 } else {
3479 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
3480 if (is_sub) {
3481 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
3482 } else {
3483 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
3487 if (!sf) {
3488 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
3491 tcg_temp_free_i64(tcg_op1);
3492 tcg_temp_free_i64(tcg_op2);
3493 tcg_temp_free_i64(tcg_tmp);
3496 /* C3.5.3 - Add/subtract (with carry)
3497 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
3498 * +--+--+--+------------------------+------+---------+------+-----+
3499 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | opcode2 | Rn | Rd |
3500 * +--+--+--+------------------------+------+---------+------+-----+
3501 * [000000]
3504 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
3506 unsigned int sf, op, setflags, rm, rn, rd;
3507 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
3509 if (extract32(insn, 10, 6) != 0) {
3510 unallocated_encoding(s);
3511 return;
3514 sf = extract32(insn, 31, 1);
3515 op = extract32(insn, 30, 1);
3516 setflags = extract32(insn, 29, 1);
3517 rm = extract32(insn, 16, 5);
3518 rn = extract32(insn, 5, 5);
3519 rd = extract32(insn, 0, 5);
3521 tcg_rd = cpu_reg(s, rd);
3522 tcg_rn = cpu_reg(s, rn);
3524 if (op) {
3525 tcg_y = new_tmp_a64(s);
3526 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
3527 } else {
3528 tcg_y = cpu_reg(s, rm);
3531 if (setflags) {
3532 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
3533 } else {
3534 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
3538 /* C3.5.4 - C3.5.5 Conditional compare (immediate / register)
3539 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
3540 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
3541 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
3542 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
3543 * [1] y [0] [0]
3545 static void disas_cc(DisasContext *s, uint32_t insn)
3547 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
3548 TCGLabel *label_continue = NULL;
3549 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
3551 if (!extract32(insn, 29, 1)) {
3552 unallocated_encoding(s);
3553 return;
3555 if (insn & (1 << 10 | 1 << 4)) {
3556 unallocated_encoding(s);
3557 return;
3559 sf = extract32(insn, 31, 1);
3560 op = extract32(insn, 30, 1);
3561 is_imm = extract32(insn, 11, 1);
3562 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
3563 cond = extract32(insn, 12, 4);
3564 rn = extract32(insn, 5, 5);
3565 nzcv = extract32(insn, 0, 4);
3567 if (cond < 0x0e) { /* not always */
3568 TCGLabel *label_match = gen_new_label();
3569 label_continue = gen_new_label();
3570 arm_gen_test_cc(cond, label_match);
3571 /* nomatch: */
3572 tcg_tmp = tcg_temp_new_i64();
3573 tcg_gen_movi_i64(tcg_tmp, nzcv << 28);
3574 gen_set_nzcv(tcg_tmp);
3575 tcg_temp_free_i64(tcg_tmp);
3576 tcg_gen_br(label_continue);
3577 gen_set_label(label_match);
3579 /* match, or condition is always */
3580 if (is_imm) {
3581 tcg_y = new_tmp_a64(s);
3582 tcg_gen_movi_i64(tcg_y, y);
3583 } else {
3584 tcg_y = cpu_reg(s, y);
3586 tcg_rn = cpu_reg(s, rn);
3588 tcg_tmp = tcg_temp_new_i64();
3589 if (op) {
3590 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
3591 } else {
3592 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
3594 tcg_temp_free_i64(tcg_tmp);
3596 if (cond < 0x0e) { /* continue */
3597 gen_set_label(label_continue);
3601 /* C3.5.6 Conditional select
3602 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
3603 * +----+----+---+-----------------+------+------+-----+------+------+
3604 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
3605 * +----+----+---+-----------------+------+------+-----+------+------+
3607 static void disas_cond_select(DisasContext *s, uint32_t insn)
3609 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
3610 TCGv_i64 tcg_rd, tcg_src;
3612 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
3613 /* S == 1 or op2<1> == 1 */
3614 unallocated_encoding(s);
3615 return;
3617 sf = extract32(insn, 31, 1);
3618 else_inv = extract32(insn, 30, 1);
3619 rm = extract32(insn, 16, 5);
3620 cond = extract32(insn, 12, 4);
3621 else_inc = extract32(insn, 10, 1);
3622 rn = extract32(insn, 5, 5);
3623 rd = extract32(insn, 0, 5);
3625 if (rd == 31) {
3626 /* silly no-op write; until we use movcond we must special-case
3627 * this to avoid a dead temporary across basic blocks.
3629 return;
3632 tcg_rd = cpu_reg(s, rd);
3634 if (cond >= 0x0e) { /* condition "always" */
3635 tcg_src = read_cpu_reg(s, rn, sf);
3636 tcg_gen_mov_i64(tcg_rd, tcg_src);
3637 } else {
3638 /* OPTME: we could use movcond here, at the cost of duplicating
3639 * a lot of the arm_gen_test_cc() logic.
3641 TCGLabel *label_match = gen_new_label();
3642 TCGLabel *label_continue = gen_new_label();
3644 arm_gen_test_cc(cond, label_match);
3645 /* nomatch: */
3646 tcg_src = cpu_reg(s, rm);
3648 if (else_inv && else_inc) {
3649 tcg_gen_neg_i64(tcg_rd, tcg_src);
3650 } else if (else_inv) {
3651 tcg_gen_not_i64(tcg_rd, tcg_src);
3652 } else if (else_inc) {
3653 tcg_gen_addi_i64(tcg_rd, tcg_src, 1);
3654 } else {
3655 tcg_gen_mov_i64(tcg_rd, tcg_src);
3657 if (!sf) {
3658 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3660 tcg_gen_br(label_continue);
3661 /* match: */
3662 gen_set_label(label_match);
3663 tcg_src = read_cpu_reg(s, rn, sf);
3664 tcg_gen_mov_i64(tcg_rd, tcg_src);
3665 /* continue: */
3666 gen_set_label(label_continue);
3670 static void handle_clz(DisasContext *s, unsigned int sf,
3671 unsigned int rn, unsigned int rd)
3673 TCGv_i64 tcg_rd, tcg_rn;
3674 tcg_rd = cpu_reg(s, rd);
3675 tcg_rn = cpu_reg(s, rn);
3677 if (sf) {
3678 gen_helper_clz64(tcg_rd, tcg_rn);
3679 } else {
3680 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
3681 tcg_gen_trunc_i64_i32(tcg_tmp32, tcg_rn);
3682 gen_helper_clz(tcg_tmp32, tcg_tmp32);
3683 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
3684 tcg_temp_free_i32(tcg_tmp32);
3688 static void handle_cls(DisasContext *s, unsigned int sf,
3689 unsigned int rn, unsigned int rd)
3691 TCGv_i64 tcg_rd, tcg_rn;
3692 tcg_rd = cpu_reg(s, rd);
3693 tcg_rn = cpu_reg(s, rn);
3695 if (sf) {
3696 gen_helper_cls64(tcg_rd, tcg_rn);
3697 } else {
3698 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
3699 tcg_gen_trunc_i64_i32(tcg_tmp32, tcg_rn);
3700 gen_helper_cls32(tcg_tmp32, tcg_tmp32);
3701 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
3702 tcg_temp_free_i32(tcg_tmp32);
3706 static void handle_rbit(DisasContext *s, unsigned int sf,
3707 unsigned int rn, unsigned int rd)
3709 TCGv_i64 tcg_rd, tcg_rn;
3710 tcg_rd = cpu_reg(s, rd);
3711 tcg_rn = cpu_reg(s, rn);
3713 if (sf) {
3714 gen_helper_rbit64(tcg_rd, tcg_rn);
3715 } else {
3716 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
3717 tcg_gen_trunc_i64_i32(tcg_tmp32, tcg_rn);
3718 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
3719 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
3720 tcg_temp_free_i32(tcg_tmp32);
3724 /* C5.6.149 REV with sf==1, opcode==3 ("REV64") */
3725 static void handle_rev64(DisasContext *s, unsigned int sf,
3726 unsigned int rn, unsigned int rd)
3728 if (!sf) {
3729 unallocated_encoding(s);
3730 return;
3732 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
3735 /* C5.6.149 REV with sf==0, opcode==2
3736 * C5.6.151 REV32 (sf==1, opcode==2)
3738 static void handle_rev32(DisasContext *s, unsigned int sf,
3739 unsigned int rn, unsigned int rd)
3741 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3743 if (sf) {
3744 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3745 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
3747 /* bswap32_i64 requires zero high word */
3748 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
3749 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
3750 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
3751 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
3752 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
3754 tcg_temp_free_i64(tcg_tmp);
3755 } else {
3756 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
3757 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
3761 /* C5.6.150 REV16 (opcode==1) */
3762 static void handle_rev16(DisasContext *s, unsigned int sf,
3763 unsigned int rn, unsigned int rd)
3765 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3766 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3767 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
3769 tcg_gen_andi_i64(tcg_tmp, tcg_rn, 0xffff);
3770 tcg_gen_bswap16_i64(tcg_rd, tcg_tmp);
3772 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 16);
3773 tcg_gen_andi_i64(tcg_tmp, tcg_tmp, 0xffff);
3774 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
3775 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 16, 16);
3777 if (sf) {
3778 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
3779 tcg_gen_andi_i64(tcg_tmp, tcg_tmp, 0xffff);
3780 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
3781 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 32, 16);
3783 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 48);
3784 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
3785 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 48, 16);
3788 tcg_temp_free_i64(tcg_tmp);
3791 /* C3.5.7 Data-processing (1 source)
3792 * 31 30 29 28 21 20 16 15 10 9 5 4 0
3793 * +----+---+---+-----------------+---------+--------+------+------+
3794 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
3795 * +----+---+---+-----------------+---------+--------+------+------+
3797 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
3799 unsigned int sf, opcode, rn, rd;
3801 if (extract32(insn, 29, 1) || extract32(insn, 16, 5)) {
3802 unallocated_encoding(s);
3803 return;
3806 sf = extract32(insn, 31, 1);
3807 opcode = extract32(insn, 10, 6);
3808 rn = extract32(insn, 5, 5);
3809 rd = extract32(insn, 0, 5);
3811 switch (opcode) {
3812 case 0: /* RBIT */
3813 handle_rbit(s, sf, rn, rd);
3814 break;
3815 case 1: /* REV16 */
3816 handle_rev16(s, sf, rn, rd);
3817 break;
3818 case 2: /* REV32 */
3819 handle_rev32(s, sf, rn, rd);
3820 break;
3821 case 3: /* REV64 */
3822 handle_rev64(s, sf, rn, rd);
3823 break;
3824 case 4: /* CLZ */
3825 handle_clz(s, sf, rn, rd);
3826 break;
3827 case 5: /* CLS */
3828 handle_cls(s, sf, rn, rd);
3829 break;
3833 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
3834 unsigned int rm, unsigned int rn, unsigned int rd)
3836 TCGv_i64 tcg_n, tcg_m, tcg_rd;
3837 tcg_rd = cpu_reg(s, rd);
3839 if (!sf && is_signed) {
3840 tcg_n = new_tmp_a64(s);
3841 tcg_m = new_tmp_a64(s);
3842 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
3843 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
3844 } else {
3845 tcg_n = read_cpu_reg(s, rn, sf);
3846 tcg_m = read_cpu_reg(s, rm, sf);
3849 if (is_signed) {
3850 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
3851 } else {
3852 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
3855 if (!sf) { /* zero extend final result */
3856 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3860 /* C5.6.115 LSLV, C5.6.118 LSRV, C5.6.17 ASRV, C5.6.154 RORV */
3861 static void handle_shift_reg(DisasContext *s,
3862 enum a64_shift_type shift_type, unsigned int sf,
3863 unsigned int rm, unsigned int rn, unsigned int rd)
3865 TCGv_i64 tcg_shift = tcg_temp_new_i64();
3866 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3867 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
3869 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
3870 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
3871 tcg_temp_free_i64(tcg_shift);
3874 /* CRC32[BHWX], CRC32C[BHWX] */
3875 static void handle_crc32(DisasContext *s,
3876 unsigned int sf, unsigned int sz, bool crc32c,
3877 unsigned int rm, unsigned int rn, unsigned int rd)
3879 TCGv_i64 tcg_acc, tcg_val;
3880 TCGv_i32 tcg_bytes;
3882 if (!arm_dc_feature(s, ARM_FEATURE_CRC)
3883 || (sf == 1 && sz != 3)
3884 || (sf == 0 && sz == 3)) {
3885 unallocated_encoding(s);
3886 return;
3889 if (sz == 3) {
3890 tcg_val = cpu_reg(s, rm);
3891 } else {
3892 uint64_t mask;
3893 switch (sz) {
3894 case 0:
3895 mask = 0xFF;
3896 break;
3897 case 1:
3898 mask = 0xFFFF;
3899 break;
3900 case 2:
3901 mask = 0xFFFFFFFF;
3902 break;
3903 default:
3904 g_assert_not_reached();
3906 tcg_val = new_tmp_a64(s);
3907 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
3910 tcg_acc = cpu_reg(s, rn);
3911 tcg_bytes = tcg_const_i32(1 << sz);
3913 if (crc32c) {
3914 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
3915 } else {
3916 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
3919 tcg_temp_free_i32(tcg_bytes);
3922 /* C3.5.8 Data-processing (2 source)
3923 * 31 30 29 28 21 20 16 15 10 9 5 4 0
3924 * +----+---+---+-----------------+------+--------+------+------+
3925 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
3926 * +----+---+---+-----------------+------+--------+------+------+
3928 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
3930 unsigned int sf, rm, opcode, rn, rd;
3931 sf = extract32(insn, 31, 1);
3932 rm = extract32(insn, 16, 5);
3933 opcode = extract32(insn, 10, 6);
3934 rn = extract32(insn, 5, 5);
3935 rd = extract32(insn, 0, 5);
3937 if (extract32(insn, 29, 1)) {
3938 unallocated_encoding(s);
3939 return;
3942 switch (opcode) {
3943 case 2: /* UDIV */
3944 handle_div(s, false, sf, rm, rn, rd);
3945 break;
3946 case 3: /* SDIV */
3947 handle_div(s, true, sf, rm, rn, rd);
3948 break;
3949 case 8: /* LSLV */
3950 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
3951 break;
3952 case 9: /* LSRV */
3953 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
3954 break;
3955 case 10: /* ASRV */
3956 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
3957 break;
3958 case 11: /* RORV */
3959 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
3960 break;
3961 case 16:
3962 case 17:
3963 case 18:
3964 case 19:
3965 case 20:
3966 case 21:
3967 case 22:
3968 case 23: /* CRC32 */
3970 int sz = extract32(opcode, 0, 2);
3971 bool crc32c = extract32(opcode, 2, 1);
3972 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
3973 break;
3975 default:
3976 unallocated_encoding(s);
3977 break;
3981 /* C3.5 Data processing - register */
3982 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
3984 switch (extract32(insn, 24, 5)) {
3985 case 0x0a: /* Logical (shifted register) */
3986 disas_logic_reg(s, insn);
3987 break;
3988 case 0x0b: /* Add/subtract */
3989 if (insn & (1 << 21)) { /* (extended register) */
3990 disas_add_sub_ext_reg(s, insn);
3991 } else {
3992 disas_add_sub_reg(s, insn);
3994 break;
3995 case 0x1b: /* Data-processing (3 source) */
3996 disas_data_proc_3src(s, insn);
3997 break;
3998 case 0x1a:
3999 switch (extract32(insn, 21, 3)) {
4000 case 0x0: /* Add/subtract (with carry) */
4001 disas_adc_sbc(s, insn);
4002 break;
4003 case 0x2: /* Conditional compare */
4004 disas_cc(s, insn); /* both imm and reg forms */
4005 break;
4006 case 0x4: /* Conditional select */
4007 disas_cond_select(s, insn);
4008 break;
4009 case 0x6: /* Data-processing */
4010 if (insn & (1 << 30)) { /* (1 source) */
4011 disas_data_proc_1src(s, insn);
4012 } else { /* (2 source) */
4013 disas_data_proc_2src(s, insn);
4015 break;
4016 default:
4017 unallocated_encoding(s);
4018 break;
4020 break;
4021 default:
4022 unallocated_encoding(s);
4023 break;
4027 static void handle_fp_compare(DisasContext *s, bool is_double,
4028 unsigned int rn, unsigned int rm,
4029 bool cmp_with_zero, bool signal_all_nans)
4031 TCGv_i64 tcg_flags = tcg_temp_new_i64();
4032 TCGv_ptr fpst = get_fpstatus_ptr();
4034 if (is_double) {
4035 TCGv_i64 tcg_vn, tcg_vm;
4037 tcg_vn = read_fp_dreg(s, rn);
4038 if (cmp_with_zero) {
4039 tcg_vm = tcg_const_i64(0);
4040 } else {
4041 tcg_vm = read_fp_dreg(s, rm);
4043 if (signal_all_nans) {
4044 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4045 } else {
4046 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4048 tcg_temp_free_i64(tcg_vn);
4049 tcg_temp_free_i64(tcg_vm);
4050 } else {
4051 TCGv_i32 tcg_vn, tcg_vm;
4053 tcg_vn = read_fp_sreg(s, rn);
4054 if (cmp_with_zero) {
4055 tcg_vm = tcg_const_i32(0);
4056 } else {
4057 tcg_vm = read_fp_sreg(s, rm);
4059 if (signal_all_nans) {
4060 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4061 } else {
4062 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4064 tcg_temp_free_i32(tcg_vn);
4065 tcg_temp_free_i32(tcg_vm);
4068 tcg_temp_free_ptr(fpst);
4070 gen_set_nzcv(tcg_flags);
4072 tcg_temp_free_i64(tcg_flags);
4075 /* C3.6.22 Floating point compare
4076 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
4077 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4078 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
4079 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4081 static void disas_fp_compare(DisasContext *s, uint32_t insn)
4083 unsigned int mos, type, rm, op, rn, opc, op2r;
4085 mos = extract32(insn, 29, 3);
4086 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4087 rm = extract32(insn, 16, 5);
4088 op = extract32(insn, 14, 2);
4089 rn = extract32(insn, 5, 5);
4090 opc = extract32(insn, 3, 2);
4091 op2r = extract32(insn, 0, 3);
4093 if (mos || op || op2r || type > 1) {
4094 unallocated_encoding(s);
4095 return;
4098 if (!fp_access_check(s)) {
4099 return;
4102 handle_fp_compare(s, type, rn, rm, opc & 1, opc & 2);
4105 /* C3.6.23 Floating point conditional compare
4106 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4107 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4108 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
4109 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4111 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
4113 unsigned int mos, type, rm, cond, rn, op, nzcv;
4114 TCGv_i64 tcg_flags;
4115 TCGLabel *label_continue = NULL;
4117 mos = extract32(insn, 29, 3);
4118 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4119 rm = extract32(insn, 16, 5);
4120 cond = extract32(insn, 12, 4);
4121 rn = extract32(insn, 5, 5);
4122 op = extract32(insn, 4, 1);
4123 nzcv = extract32(insn, 0, 4);
4125 if (mos || type > 1) {
4126 unallocated_encoding(s);
4127 return;
4130 if (!fp_access_check(s)) {
4131 return;
4134 if (cond < 0x0e) { /* not always */
4135 TCGLabel *label_match = gen_new_label();
4136 label_continue = gen_new_label();
4137 arm_gen_test_cc(cond, label_match);
4138 /* nomatch: */
4139 tcg_flags = tcg_const_i64(nzcv << 28);
4140 gen_set_nzcv(tcg_flags);
4141 tcg_temp_free_i64(tcg_flags);
4142 tcg_gen_br(label_continue);
4143 gen_set_label(label_match);
4146 handle_fp_compare(s, type, rn, rm, false, op);
4148 if (cond < 0x0e) {
4149 gen_set_label(label_continue);
4153 /* copy src FP register to dst FP register; type specifies single or double */
4154 static void gen_mov_fp2fp(DisasContext *s, int type, int dst, int src)
4156 if (type) {
4157 TCGv_i64 v = read_fp_dreg(s, src);
4158 write_fp_dreg(s, dst, v);
4159 tcg_temp_free_i64(v);
4160 } else {
4161 TCGv_i32 v = read_fp_sreg(s, src);
4162 write_fp_sreg(s, dst, v);
4163 tcg_temp_free_i32(v);
4167 /* C3.6.24 Floating point conditional select
4168 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
4169 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4170 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
4171 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4173 static void disas_fp_csel(DisasContext *s, uint32_t insn)
4175 unsigned int mos, type, rm, cond, rn, rd;
4176 TCGLabel *label_continue = NULL;
4178 mos = extract32(insn, 29, 3);
4179 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4180 rm = extract32(insn, 16, 5);
4181 cond = extract32(insn, 12, 4);
4182 rn = extract32(insn, 5, 5);
4183 rd = extract32(insn, 0, 5);
4185 if (mos || type > 1) {
4186 unallocated_encoding(s);
4187 return;
4190 if (!fp_access_check(s)) {
4191 return;
4194 if (cond < 0x0e) { /* not always */
4195 TCGLabel *label_match = gen_new_label();
4196 label_continue = gen_new_label();
4197 arm_gen_test_cc(cond, label_match);
4198 /* nomatch: */
4199 gen_mov_fp2fp(s, type, rd, rm);
4200 tcg_gen_br(label_continue);
4201 gen_set_label(label_match);
4204 gen_mov_fp2fp(s, type, rd, rn);
4206 if (cond < 0x0e) { /* continue */
4207 gen_set_label(label_continue);
4211 /* C3.6.25 Floating-point data-processing (1 source) - single precision */
4212 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
4214 TCGv_ptr fpst;
4215 TCGv_i32 tcg_op;
4216 TCGv_i32 tcg_res;
4218 fpst = get_fpstatus_ptr();
4219 tcg_op = read_fp_sreg(s, rn);
4220 tcg_res = tcg_temp_new_i32();
4222 switch (opcode) {
4223 case 0x0: /* FMOV */
4224 tcg_gen_mov_i32(tcg_res, tcg_op);
4225 break;
4226 case 0x1: /* FABS */
4227 gen_helper_vfp_abss(tcg_res, tcg_op);
4228 break;
4229 case 0x2: /* FNEG */
4230 gen_helper_vfp_negs(tcg_res, tcg_op);
4231 break;
4232 case 0x3: /* FSQRT */
4233 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
4234 break;
4235 case 0x8: /* FRINTN */
4236 case 0x9: /* FRINTP */
4237 case 0xa: /* FRINTM */
4238 case 0xb: /* FRINTZ */
4239 case 0xc: /* FRINTA */
4241 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4243 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4244 gen_helper_rints(tcg_res, tcg_op, fpst);
4246 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4247 tcg_temp_free_i32(tcg_rmode);
4248 break;
4250 case 0xe: /* FRINTX */
4251 gen_helper_rints_exact(tcg_res, tcg_op, fpst);
4252 break;
4253 case 0xf: /* FRINTI */
4254 gen_helper_rints(tcg_res, tcg_op, fpst);
4255 break;
4256 default:
4257 abort();
4260 write_fp_sreg(s, rd, tcg_res);
4262 tcg_temp_free_ptr(fpst);
4263 tcg_temp_free_i32(tcg_op);
4264 tcg_temp_free_i32(tcg_res);
4267 /* C3.6.25 Floating-point data-processing (1 source) - double precision */
4268 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
4270 TCGv_ptr fpst;
4271 TCGv_i64 tcg_op;
4272 TCGv_i64 tcg_res;
4274 fpst = get_fpstatus_ptr();
4275 tcg_op = read_fp_dreg(s, rn);
4276 tcg_res = tcg_temp_new_i64();
4278 switch (opcode) {
4279 case 0x0: /* FMOV */
4280 tcg_gen_mov_i64(tcg_res, tcg_op);
4281 break;
4282 case 0x1: /* FABS */
4283 gen_helper_vfp_absd(tcg_res, tcg_op);
4284 break;
4285 case 0x2: /* FNEG */
4286 gen_helper_vfp_negd(tcg_res, tcg_op);
4287 break;
4288 case 0x3: /* FSQRT */
4289 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
4290 break;
4291 case 0x8: /* FRINTN */
4292 case 0x9: /* FRINTP */
4293 case 0xa: /* FRINTM */
4294 case 0xb: /* FRINTZ */
4295 case 0xc: /* FRINTA */
4297 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4299 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4300 gen_helper_rintd(tcg_res, tcg_op, fpst);
4302 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4303 tcg_temp_free_i32(tcg_rmode);
4304 break;
4306 case 0xe: /* FRINTX */
4307 gen_helper_rintd_exact(tcg_res, tcg_op, fpst);
4308 break;
4309 case 0xf: /* FRINTI */
4310 gen_helper_rintd(tcg_res, tcg_op, fpst);
4311 break;
4312 default:
4313 abort();
4316 write_fp_dreg(s, rd, tcg_res);
4318 tcg_temp_free_ptr(fpst);
4319 tcg_temp_free_i64(tcg_op);
4320 tcg_temp_free_i64(tcg_res);
4323 static void handle_fp_fcvt(DisasContext *s, int opcode,
4324 int rd, int rn, int dtype, int ntype)
4326 switch (ntype) {
4327 case 0x0:
4329 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
4330 if (dtype == 1) {
4331 /* Single to double */
4332 TCGv_i64 tcg_rd = tcg_temp_new_i64();
4333 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
4334 write_fp_dreg(s, rd, tcg_rd);
4335 tcg_temp_free_i64(tcg_rd);
4336 } else {
4337 /* Single to half */
4338 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4339 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, cpu_env);
4340 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
4341 write_fp_sreg(s, rd, tcg_rd);
4342 tcg_temp_free_i32(tcg_rd);
4344 tcg_temp_free_i32(tcg_rn);
4345 break;
4347 case 0x1:
4349 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
4350 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4351 if (dtype == 0) {
4352 /* Double to single */
4353 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
4354 } else {
4355 /* Double to half */
4356 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, cpu_env);
4357 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
4359 write_fp_sreg(s, rd, tcg_rd);
4360 tcg_temp_free_i32(tcg_rd);
4361 tcg_temp_free_i64(tcg_rn);
4362 break;
4364 case 0x3:
4366 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
4367 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
4368 if (dtype == 0) {
4369 /* Half to single */
4370 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4371 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, cpu_env);
4372 write_fp_sreg(s, rd, tcg_rd);
4373 tcg_temp_free_i32(tcg_rd);
4374 } else {
4375 /* Half to double */
4376 TCGv_i64 tcg_rd = tcg_temp_new_i64();
4377 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, cpu_env);
4378 write_fp_dreg(s, rd, tcg_rd);
4379 tcg_temp_free_i64(tcg_rd);
4381 tcg_temp_free_i32(tcg_rn);
4382 break;
4384 default:
4385 abort();
4389 /* C3.6.25 Floating point data-processing (1 source)
4390 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
4391 * +---+---+---+-----------+------+---+--------+-----------+------+------+
4392 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
4393 * +---+---+---+-----------+------+---+--------+-----------+------+------+
4395 static void disas_fp_1src(DisasContext *s, uint32_t insn)
4397 int type = extract32(insn, 22, 2);
4398 int opcode = extract32(insn, 15, 6);
4399 int rn = extract32(insn, 5, 5);
4400 int rd = extract32(insn, 0, 5);
4402 switch (opcode) {
4403 case 0x4: case 0x5: case 0x7:
4405 /* FCVT between half, single and double precision */
4406 int dtype = extract32(opcode, 0, 2);
4407 if (type == 2 || dtype == type) {
4408 unallocated_encoding(s);
4409 return;
4411 if (!fp_access_check(s)) {
4412 return;
4415 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
4416 break;
4418 case 0x0 ... 0x3:
4419 case 0x8 ... 0xc:
4420 case 0xe ... 0xf:
4421 /* 32-to-32 and 64-to-64 ops */
4422 switch (type) {
4423 case 0:
4424 if (!fp_access_check(s)) {
4425 return;
4428 handle_fp_1src_single(s, opcode, rd, rn);
4429 break;
4430 case 1:
4431 if (!fp_access_check(s)) {
4432 return;
4435 handle_fp_1src_double(s, opcode, rd, rn);
4436 break;
4437 default:
4438 unallocated_encoding(s);
4440 break;
4441 default:
4442 unallocated_encoding(s);
4443 break;
4447 /* C3.6.26 Floating-point data-processing (2 source) - single precision */
4448 static void handle_fp_2src_single(DisasContext *s, int opcode,
4449 int rd, int rn, int rm)
4451 TCGv_i32 tcg_op1;
4452 TCGv_i32 tcg_op2;
4453 TCGv_i32 tcg_res;
4454 TCGv_ptr fpst;
4456 tcg_res = tcg_temp_new_i32();
4457 fpst = get_fpstatus_ptr();
4458 tcg_op1 = read_fp_sreg(s, rn);
4459 tcg_op2 = read_fp_sreg(s, rm);
4461 switch (opcode) {
4462 case 0x0: /* FMUL */
4463 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
4464 break;
4465 case 0x1: /* FDIV */
4466 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
4467 break;
4468 case 0x2: /* FADD */
4469 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
4470 break;
4471 case 0x3: /* FSUB */
4472 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
4473 break;
4474 case 0x4: /* FMAX */
4475 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
4476 break;
4477 case 0x5: /* FMIN */
4478 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
4479 break;
4480 case 0x6: /* FMAXNM */
4481 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
4482 break;
4483 case 0x7: /* FMINNM */
4484 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
4485 break;
4486 case 0x8: /* FNMUL */
4487 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
4488 gen_helper_vfp_negs(tcg_res, tcg_res);
4489 break;
4492 write_fp_sreg(s, rd, tcg_res);
4494 tcg_temp_free_ptr(fpst);
4495 tcg_temp_free_i32(tcg_op1);
4496 tcg_temp_free_i32(tcg_op2);
4497 tcg_temp_free_i32(tcg_res);
4500 /* C3.6.26 Floating-point data-processing (2 source) - double precision */
4501 static void handle_fp_2src_double(DisasContext *s, int opcode,
4502 int rd, int rn, int rm)
4504 TCGv_i64 tcg_op1;
4505 TCGv_i64 tcg_op2;
4506 TCGv_i64 tcg_res;
4507 TCGv_ptr fpst;
4509 tcg_res = tcg_temp_new_i64();
4510 fpst = get_fpstatus_ptr();
4511 tcg_op1 = read_fp_dreg(s, rn);
4512 tcg_op2 = read_fp_dreg(s, rm);
4514 switch (opcode) {
4515 case 0x0: /* FMUL */
4516 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
4517 break;
4518 case 0x1: /* FDIV */
4519 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
4520 break;
4521 case 0x2: /* FADD */
4522 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
4523 break;
4524 case 0x3: /* FSUB */
4525 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
4526 break;
4527 case 0x4: /* FMAX */
4528 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
4529 break;
4530 case 0x5: /* FMIN */
4531 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
4532 break;
4533 case 0x6: /* FMAXNM */
4534 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
4535 break;
4536 case 0x7: /* FMINNM */
4537 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
4538 break;
4539 case 0x8: /* FNMUL */
4540 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
4541 gen_helper_vfp_negd(tcg_res, tcg_res);
4542 break;
4545 write_fp_dreg(s, rd, tcg_res);
4547 tcg_temp_free_ptr(fpst);
4548 tcg_temp_free_i64(tcg_op1);
4549 tcg_temp_free_i64(tcg_op2);
4550 tcg_temp_free_i64(tcg_res);
4553 /* C3.6.26 Floating point data-processing (2 source)
4554 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
4555 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
4556 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
4557 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
4559 static void disas_fp_2src(DisasContext *s, uint32_t insn)
4561 int type = extract32(insn, 22, 2);
4562 int rd = extract32(insn, 0, 5);
4563 int rn = extract32(insn, 5, 5);
4564 int rm = extract32(insn, 16, 5);
4565 int opcode = extract32(insn, 12, 4);
4567 if (opcode > 8) {
4568 unallocated_encoding(s);
4569 return;
4572 switch (type) {
4573 case 0:
4574 if (!fp_access_check(s)) {
4575 return;
4577 handle_fp_2src_single(s, opcode, rd, rn, rm);
4578 break;
4579 case 1:
4580 if (!fp_access_check(s)) {
4581 return;
4583 handle_fp_2src_double(s, opcode, rd, rn, rm);
4584 break;
4585 default:
4586 unallocated_encoding(s);
4590 /* C3.6.27 Floating-point data-processing (3 source) - single precision */
4591 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
4592 int rd, int rn, int rm, int ra)
4594 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
4595 TCGv_i32 tcg_res = tcg_temp_new_i32();
4596 TCGv_ptr fpst = get_fpstatus_ptr();
4598 tcg_op1 = read_fp_sreg(s, rn);
4599 tcg_op2 = read_fp_sreg(s, rm);
4600 tcg_op3 = read_fp_sreg(s, ra);
4602 /* These are fused multiply-add, and must be done as one
4603 * floating point operation with no rounding between the
4604 * multiplication and addition steps.
4605 * NB that doing the negations here as separate steps is
4606 * correct : an input NaN should come out with its sign bit
4607 * flipped if it is a negated-input.
4609 if (o1 == true) {
4610 gen_helper_vfp_negs(tcg_op3, tcg_op3);
4613 if (o0 != o1) {
4614 gen_helper_vfp_negs(tcg_op1, tcg_op1);
4617 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
4619 write_fp_sreg(s, rd, tcg_res);
4621 tcg_temp_free_ptr(fpst);
4622 tcg_temp_free_i32(tcg_op1);
4623 tcg_temp_free_i32(tcg_op2);
4624 tcg_temp_free_i32(tcg_op3);
4625 tcg_temp_free_i32(tcg_res);
4628 /* C3.6.27 Floating-point data-processing (3 source) - double precision */
4629 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
4630 int rd, int rn, int rm, int ra)
4632 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
4633 TCGv_i64 tcg_res = tcg_temp_new_i64();
4634 TCGv_ptr fpst = get_fpstatus_ptr();
4636 tcg_op1 = read_fp_dreg(s, rn);
4637 tcg_op2 = read_fp_dreg(s, rm);
4638 tcg_op3 = read_fp_dreg(s, ra);
4640 /* These are fused multiply-add, and must be done as one
4641 * floating point operation with no rounding between the
4642 * multiplication and addition steps.
4643 * NB that doing the negations here as separate steps is
4644 * correct : an input NaN should come out with its sign bit
4645 * flipped if it is a negated-input.
4647 if (o1 == true) {
4648 gen_helper_vfp_negd(tcg_op3, tcg_op3);
4651 if (o0 != o1) {
4652 gen_helper_vfp_negd(tcg_op1, tcg_op1);
4655 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
4657 write_fp_dreg(s, rd, tcg_res);
4659 tcg_temp_free_ptr(fpst);
4660 tcg_temp_free_i64(tcg_op1);
4661 tcg_temp_free_i64(tcg_op2);
4662 tcg_temp_free_i64(tcg_op3);
4663 tcg_temp_free_i64(tcg_res);
4666 /* C3.6.27 Floating point data-processing (3 source)
4667 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
4668 * +---+---+---+-----------+------+----+------+----+------+------+------+
4669 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
4670 * +---+---+---+-----------+------+----+------+----+------+------+------+
4672 static void disas_fp_3src(DisasContext *s, uint32_t insn)
4674 int type = extract32(insn, 22, 2);
4675 int rd = extract32(insn, 0, 5);
4676 int rn = extract32(insn, 5, 5);
4677 int ra = extract32(insn, 10, 5);
4678 int rm = extract32(insn, 16, 5);
4679 bool o0 = extract32(insn, 15, 1);
4680 bool o1 = extract32(insn, 21, 1);
4682 switch (type) {
4683 case 0:
4684 if (!fp_access_check(s)) {
4685 return;
4687 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
4688 break;
4689 case 1:
4690 if (!fp_access_check(s)) {
4691 return;
4693 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
4694 break;
4695 default:
4696 unallocated_encoding(s);
4700 /* C3.6.28 Floating point immediate
4701 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
4702 * +---+---+---+-----------+------+---+------------+-------+------+------+
4703 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
4704 * +---+---+---+-----------+------+---+------------+-------+------+------+
4706 static void disas_fp_imm(DisasContext *s, uint32_t insn)
4708 int rd = extract32(insn, 0, 5);
4709 int imm8 = extract32(insn, 13, 8);
4710 int is_double = extract32(insn, 22, 2);
4711 uint64_t imm;
4712 TCGv_i64 tcg_res;
4714 if (is_double > 1) {
4715 unallocated_encoding(s);
4716 return;
4719 if (!fp_access_check(s)) {
4720 return;
4723 /* The imm8 encodes the sign bit, enough bits to represent
4724 * an exponent in the range 01....1xx to 10....0xx,
4725 * and the most significant 4 bits of the mantissa; see
4726 * VFPExpandImm() in the v8 ARM ARM.
4728 if (is_double) {
4729 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
4730 (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
4731 extract32(imm8, 0, 6);
4732 imm <<= 48;
4733 } else {
4734 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
4735 (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
4736 (extract32(imm8, 0, 6) << 3);
4737 imm <<= 16;
4740 tcg_res = tcg_const_i64(imm);
4741 write_fp_dreg(s, rd, tcg_res);
4742 tcg_temp_free_i64(tcg_res);
4745 /* Handle floating point <=> fixed point conversions. Note that we can
4746 * also deal with fp <=> integer conversions as a special case (scale == 64)
4747 * OPTME: consider handling that special case specially or at least skipping
4748 * the call to scalbn in the helpers for zero shifts.
4750 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
4751 bool itof, int rmode, int scale, int sf, int type)
4753 bool is_signed = !(opcode & 1);
4754 bool is_double = type;
4755 TCGv_ptr tcg_fpstatus;
4756 TCGv_i32 tcg_shift;
4758 tcg_fpstatus = get_fpstatus_ptr();
4760 tcg_shift = tcg_const_i32(64 - scale);
4762 if (itof) {
4763 TCGv_i64 tcg_int = cpu_reg(s, rn);
4764 if (!sf) {
4765 TCGv_i64 tcg_extend = new_tmp_a64(s);
4767 if (is_signed) {
4768 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
4769 } else {
4770 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
4773 tcg_int = tcg_extend;
4776 if (is_double) {
4777 TCGv_i64 tcg_double = tcg_temp_new_i64();
4778 if (is_signed) {
4779 gen_helper_vfp_sqtod(tcg_double, tcg_int,
4780 tcg_shift, tcg_fpstatus);
4781 } else {
4782 gen_helper_vfp_uqtod(tcg_double, tcg_int,
4783 tcg_shift, tcg_fpstatus);
4785 write_fp_dreg(s, rd, tcg_double);
4786 tcg_temp_free_i64(tcg_double);
4787 } else {
4788 TCGv_i32 tcg_single = tcg_temp_new_i32();
4789 if (is_signed) {
4790 gen_helper_vfp_sqtos(tcg_single, tcg_int,
4791 tcg_shift, tcg_fpstatus);
4792 } else {
4793 gen_helper_vfp_uqtos(tcg_single, tcg_int,
4794 tcg_shift, tcg_fpstatus);
4796 write_fp_sreg(s, rd, tcg_single);
4797 tcg_temp_free_i32(tcg_single);
4799 } else {
4800 TCGv_i64 tcg_int = cpu_reg(s, rd);
4801 TCGv_i32 tcg_rmode;
4803 if (extract32(opcode, 2, 1)) {
4804 /* There are too many rounding modes to all fit into rmode,
4805 * so FCVTA[US] is a special case.
4807 rmode = FPROUNDING_TIEAWAY;
4810 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
4812 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4814 if (is_double) {
4815 TCGv_i64 tcg_double = read_fp_dreg(s, rn);
4816 if (is_signed) {
4817 if (!sf) {
4818 gen_helper_vfp_tosld(tcg_int, tcg_double,
4819 tcg_shift, tcg_fpstatus);
4820 } else {
4821 gen_helper_vfp_tosqd(tcg_int, tcg_double,
4822 tcg_shift, tcg_fpstatus);
4824 } else {
4825 if (!sf) {
4826 gen_helper_vfp_tould(tcg_int, tcg_double,
4827 tcg_shift, tcg_fpstatus);
4828 } else {
4829 gen_helper_vfp_touqd(tcg_int, tcg_double,
4830 tcg_shift, tcg_fpstatus);
4833 tcg_temp_free_i64(tcg_double);
4834 } else {
4835 TCGv_i32 tcg_single = read_fp_sreg(s, rn);
4836 if (sf) {
4837 if (is_signed) {
4838 gen_helper_vfp_tosqs(tcg_int, tcg_single,
4839 tcg_shift, tcg_fpstatus);
4840 } else {
4841 gen_helper_vfp_touqs(tcg_int, tcg_single,
4842 tcg_shift, tcg_fpstatus);
4844 } else {
4845 TCGv_i32 tcg_dest = tcg_temp_new_i32();
4846 if (is_signed) {
4847 gen_helper_vfp_tosls(tcg_dest, tcg_single,
4848 tcg_shift, tcg_fpstatus);
4849 } else {
4850 gen_helper_vfp_touls(tcg_dest, tcg_single,
4851 tcg_shift, tcg_fpstatus);
4853 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
4854 tcg_temp_free_i32(tcg_dest);
4856 tcg_temp_free_i32(tcg_single);
4859 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4860 tcg_temp_free_i32(tcg_rmode);
4862 if (!sf) {
4863 tcg_gen_ext32u_i64(tcg_int, tcg_int);
4867 tcg_temp_free_ptr(tcg_fpstatus);
4868 tcg_temp_free_i32(tcg_shift);
4871 /* C3.6.29 Floating point <-> fixed point conversions
4872 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
4873 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
4874 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
4875 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
4877 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
4879 int rd = extract32(insn, 0, 5);
4880 int rn = extract32(insn, 5, 5);
4881 int scale = extract32(insn, 10, 6);
4882 int opcode = extract32(insn, 16, 3);
4883 int rmode = extract32(insn, 19, 2);
4884 int type = extract32(insn, 22, 2);
4885 bool sbit = extract32(insn, 29, 1);
4886 bool sf = extract32(insn, 31, 1);
4887 bool itof;
4889 if (sbit || (type > 1)
4890 || (!sf && scale < 32)) {
4891 unallocated_encoding(s);
4892 return;
4895 switch ((rmode << 3) | opcode) {
4896 case 0x2: /* SCVTF */
4897 case 0x3: /* UCVTF */
4898 itof = true;
4899 break;
4900 case 0x18: /* FCVTZS */
4901 case 0x19: /* FCVTZU */
4902 itof = false;
4903 break;
4904 default:
4905 unallocated_encoding(s);
4906 return;
4909 if (!fp_access_check(s)) {
4910 return;
4913 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
4916 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
4918 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
4919 * without conversion.
4922 if (itof) {
4923 TCGv_i64 tcg_rn = cpu_reg(s, rn);
4925 switch (type) {
4926 case 0:
4928 /* 32 bit */
4929 TCGv_i64 tmp = tcg_temp_new_i64();
4930 tcg_gen_ext32u_i64(tmp, tcg_rn);
4931 tcg_gen_st_i64(tmp, cpu_env, fp_reg_offset(s, rd, MO_64));
4932 tcg_gen_movi_i64(tmp, 0);
4933 tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
4934 tcg_temp_free_i64(tmp);
4935 break;
4937 case 1:
4939 /* 64 bit */
4940 TCGv_i64 tmp = tcg_const_i64(0);
4941 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_offset(s, rd, MO_64));
4942 tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
4943 tcg_temp_free_i64(tmp);
4944 break;
4946 case 2:
4947 /* 64 bit to top half. */
4948 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
4949 break;
4951 } else {
4952 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4954 switch (type) {
4955 case 0:
4956 /* 32 bit */
4957 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
4958 break;
4959 case 1:
4960 /* 64 bit */
4961 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
4962 break;
4963 case 2:
4964 /* 64 bits from top half */
4965 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
4966 break;
4971 /* C3.6.30 Floating point <-> integer conversions
4972 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
4973 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
4974 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
4975 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
4977 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
4979 int rd = extract32(insn, 0, 5);
4980 int rn = extract32(insn, 5, 5);
4981 int opcode = extract32(insn, 16, 3);
4982 int rmode = extract32(insn, 19, 2);
4983 int type = extract32(insn, 22, 2);
4984 bool sbit = extract32(insn, 29, 1);
4985 bool sf = extract32(insn, 31, 1);
4987 if (sbit) {
4988 unallocated_encoding(s);
4989 return;
4992 if (opcode > 5) {
4993 /* FMOV */
4994 bool itof = opcode & 1;
4996 if (rmode >= 2) {
4997 unallocated_encoding(s);
4998 return;
5001 switch (sf << 3 | type << 1 | rmode) {
5002 case 0x0: /* 32 bit */
5003 case 0xa: /* 64 bit */
5004 case 0xd: /* 64 bit to top half of quad */
5005 break;
5006 default:
5007 /* all other sf/type/rmode combinations are invalid */
5008 unallocated_encoding(s);
5009 break;
5012 if (!fp_access_check(s)) {
5013 return;
5015 handle_fmov(s, rd, rn, type, itof);
5016 } else {
5017 /* actual FP conversions */
5018 bool itof = extract32(opcode, 1, 1);
5020 if (type > 1 || (rmode != 0 && opcode > 1)) {
5021 unallocated_encoding(s);
5022 return;
5025 if (!fp_access_check(s)) {
5026 return;
5028 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
5032 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
5033 * 31 30 29 28 25 24 0
5034 * +---+---+---+---------+-----------------------------+
5035 * | | 0 | | 1 1 1 1 | |
5036 * +---+---+---+---------+-----------------------------+
5038 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
5040 if (extract32(insn, 24, 1)) {
5041 /* Floating point data-processing (3 source) */
5042 disas_fp_3src(s, insn);
5043 } else if (extract32(insn, 21, 1) == 0) {
5044 /* Floating point to fixed point conversions */
5045 disas_fp_fixed_conv(s, insn);
5046 } else {
5047 switch (extract32(insn, 10, 2)) {
5048 case 1:
5049 /* Floating point conditional compare */
5050 disas_fp_ccomp(s, insn);
5051 break;
5052 case 2:
5053 /* Floating point data-processing (2 source) */
5054 disas_fp_2src(s, insn);
5055 break;
5056 case 3:
5057 /* Floating point conditional select */
5058 disas_fp_csel(s, insn);
5059 break;
5060 case 0:
5061 switch (ctz32(extract32(insn, 12, 4))) {
5062 case 0: /* [15:12] == xxx1 */
5063 /* Floating point immediate */
5064 disas_fp_imm(s, insn);
5065 break;
5066 case 1: /* [15:12] == xx10 */
5067 /* Floating point compare */
5068 disas_fp_compare(s, insn);
5069 break;
5070 case 2: /* [15:12] == x100 */
5071 /* Floating point data-processing (1 source) */
5072 disas_fp_1src(s, insn);
5073 break;
5074 case 3: /* [15:12] == 1000 */
5075 unallocated_encoding(s);
5076 break;
5077 default: /* [15:12] == 0000 */
5078 /* Floating point <-> integer conversions */
5079 disas_fp_int_conv(s, insn);
5080 break;
5082 break;
5087 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
5088 int pos)
5090 /* Extract 64 bits from the middle of two concatenated 64 bit
5091 * vector register slices left:right. The extracted bits start
5092 * at 'pos' bits into the right (least significant) side.
5093 * We return the result in tcg_right, and guarantee not to
5094 * trash tcg_left.
5096 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5097 assert(pos > 0 && pos < 64);
5099 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
5100 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
5101 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
5103 tcg_temp_free_i64(tcg_tmp);
5106 /* C3.6.1 EXT
5107 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
5108 * +---+---+-------------+-----+---+------+---+------+---+------+------+
5109 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
5110 * +---+---+-------------+-----+---+------+---+------+---+------+------+
5112 static void disas_simd_ext(DisasContext *s, uint32_t insn)
5114 int is_q = extract32(insn, 30, 1);
5115 int op2 = extract32(insn, 22, 2);
5116 int imm4 = extract32(insn, 11, 4);
5117 int rm = extract32(insn, 16, 5);
5118 int rn = extract32(insn, 5, 5);
5119 int rd = extract32(insn, 0, 5);
5120 int pos = imm4 << 3;
5121 TCGv_i64 tcg_resl, tcg_resh;
5123 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
5124 unallocated_encoding(s);
5125 return;
5128 if (!fp_access_check(s)) {
5129 return;
5132 tcg_resh = tcg_temp_new_i64();
5133 tcg_resl = tcg_temp_new_i64();
5135 /* Vd gets bits starting at pos bits into Vm:Vn. This is
5136 * either extracting 128 bits from a 128:128 concatenation, or
5137 * extracting 64 bits from a 64:64 concatenation.
5139 if (!is_q) {
5140 read_vec_element(s, tcg_resl, rn, 0, MO_64);
5141 if (pos != 0) {
5142 read_vec_element(s, tcg_resh, rm, 0, MO_64);
5143 do_ext64(s, tcg_resh, tcg_resl, pos);
5145 tcg_gen_movi_i64(tcg_resh, 0);
5146 } else {
5147 TCGv_i64 tcg_hh;
5148 typedef struct {
5149 int reg;
5150 int elt;
5151 } EltPosns;
5152 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
5153 EltPosns *elt = eltposns;
5155 if (pos >= 64) {
5156 elt++;
5157 pos -= 64;
5160 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
5161 elt++;
5162 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
5163 elt++;
5164 if (pos != 0) {
5165 do_ext64(s, tcg_resh, tcg_resl, pos);
5166 tcg_hh = tcg_temp_new_i64();
5167 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
5168 do_ext64(s, tcg_hh, tcg_resh, pos);
5169 tcg_temp_free_i64(tcg_hh);
5173 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5174 tcg_temp_free_i64(tcg_resl);
5175 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5176 tcg_temp_free_i64(tcg_resh);
5179 /* C3.6.2 TBL/TBX
5180 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
5181 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
5182 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
5183 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
5185 static void disas_simd_tb(DisasContext *s, uint32_t insn)
5187 int op2 = extract32(insn, 22, 2);
5188 int is_q = extract32(insn, 30, 1);
5189 int rm = extract32(insn, 16, 5);
5190 int rn = extract32(insn, 5, 5);
5191 int rd = extract32(insn, 0, 5);
5192 int is_tblx = extract32(insn, 12, 1);
5193 int len = extract32(insn, 13, 2);
5194 TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
5195 TCGv_i32 tcg_regno, tcg_numregs;
5197 if (op2 != 0) {
5198 unallocated_encoding(s);
5199 return;
5202 if (!fp_access_check(s)) {
5203 return;
5206 /* This does a table lookup: for every byte element in the input
5207 * we index into a table formed from up to four vector registers,
5208 * and then the output is the result of the lookups. Our helper
5209 * function does the lookup operation for a single 64 bit part of
5210 * the input.
5212 tcg_resl = tcg_temp_new_i64();
5213 tcg_resh = tcg_temp_new_i64();
5215 if (is_tblx) {
5216 read_vec_element(s, tcg_resl, rd, 0, MO_64);
5217 } else {
5218 tcg_gen_movi_i64(tcg_resl, 0);
5220 if (is_tblx && is_q) {
5221 read_vec_element(s, tcg_resh, rd, 1, MO_64);
5222 } else {
5223 tcg_gen_movi_i64(tcg_resh, 0);
5226 tcg_idx = tcg_temp_new_i64();
5227 tcg_regno = tcg_const_i32(rn);
5228 tcg_numregs = tcg_const_i32(len + 1);
5229 read_vec_element(s, tcg_idx, rm, 0, MO_64);
5230 gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
5231 tcg_regno, tcg_numregs);
5232 if (is_q) {
5233 read_vec_element(s, tcg_idx, rm, 1, MO_64);
5234 gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
5235 tcg_regno, tcg_numregs);
5237 tcg_temp_free_i64(tcg_idx);
5238 tcg_temp_free_i32(tcg_regno);
5239 tcg_temp_free_i32(tcg_numregs);
5241 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5242 tcg_temp_free_i64(tcg_resl);
5243 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5244 tcg_temp_free_i64(tcg_resh);
5247 /* C3.6.3 ZIP/UZP/TRN
5248 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
5249 * +---+---+-------------+------+---+------+---+------------------+------+
5250 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
5251 * +---+---+-------------+------+---+------+---+------------------+------+
5253 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
5255 int rd = extract32(insn, 0, 5);
5256 int rn = extract32(insn, 5, 5);
5257 int rm = extract32(insn, 16, 5);
5258 int size = extract32(insn, 22, 2);
5259 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
5260 * bit 2 indicates 1 vs 2 variant of the insn.
5262 int opcode = extract32(insn, 12, 2);
5263 bool part = extract32(insn, 14, 1);
5264 bool is_q = extract32(insn, 30, 1);
5265 int esize = 8 << size;
5266 int i, ofs;
5267 int datasize = is_q ? 128 : 64;
5268 int elements = datasize / esize;
5269 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
5271 if (opcode == 0 || (size == 3 && !is_q)) {
5272 unallocated_encoding(s);
5273 return;
5276 if (!fp_access_check(s)) {
5277 return;
5280 tcg_resl = tcg_const_i64(0);
5281 tcg_resh = tcg_const_i64(0);
5282 tcg_res = tcg_temp_new_i64();
5284 for (i = 0; i < elements; i++) {
5285 switch (opcode) {
5286 case 1: /* UZP1/2 */
5288 int midpoint = elements / 2;
5289 if (i < midpoint) {
5290 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
5291 } else {
5292 read_vec_element(s, tcg_res, rm,
5293 2 * (i - midpoint) + part, size);
5295 break;
5297 case 2: /* TRN1/2 */
5298 if (i & 1) {
5299 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
5300 } else {
5301 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
5303 break;
5304 case 3: /* ZIP1/2 */
5306 int base = part * elements / 2;
5307 if (i & 1) {
5308 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
5309 } else {
5310 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
5312 break;
5314 default:
5315 g_assert_not_reached();
5318 ofs = i * esize;
5319 if (ofs < 64) {
5320 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
5321 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
5322 } else {
5323 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
5324 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
5328 tcg_temp_free_i64(tcg_res);
5330 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5331 tcg_temp_free_i64(tcg_resl);
5332 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5333 tcg_temp_free_i64(tcg_resh);
5336 static void do_minmaxop(DisasContext *s, TCGv_i32 tcg_elt1, TCGv_i32 tcg_elt2,
5337 int opc, bool is_min, TCGv_ptr fpst)
5339 /* Helper function for disas_simd_across_lanes: do a single precision
5340 * min/max operation on the specified two inputs,
5341 * and return the result in tcg_elt1.
5343 if (opc == 0xc) {
5344 if (is_min) {
5345 gen_helper_vfp_minnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5346 } else {
5347 gen_helper_vfp_maxnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5349 } else {
5350 assert(opc == 0xf);
5351 if (is_min) {
5352 gen_helper_vfp_mins(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5353 } else {
5354 gen_helper_vfp_maxs(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5359 /* C3.6.4 AdvSIMD across lanes
5360 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
5361 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
5362 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
5363 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
5365 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
5367 int rd = extract32(insn, 0, 5);
5368 int rn = extract32(insn, 5, 5);
5369 int size = extract32(insn, 22, 2);
5370 int opcode = extract32(insn, 12, 5);
5371 bool is_q = extract32(insn, 30, 1);
5372 bool is_u = extract32(insn, 29, 1);
5373 bool is_fp = false;
5374 bool is_min = false;
5375 int esize;
5376 int elements;
5377 int i;
5378 TCGv_i64 tcg_res, tcg_elt;
5380 switch (opcode) {
5381 case 0x1b: /* ADDV */
5382 if (is_u) {
5383 unallocated_encoding(s);
5384 return;
5386 /* fall through */
5387 case 0x3: /* SADDLV, UADDLV */
5388 case 0xa: /* SMAXV, UMAXV */
5389 case 0x1a: /* SMINV, UMINV */
5390 if (size == 3 || (size == 2 && !is_q)) {
5391 unallocated_encoding(s);
5392 return;
5394 break;
5395 case 0xc: /* FMAXNMV, FMINNMV */
5396 case 0xf: /* FMAXV, FMINV */
5397 if (!is_u || !is_q || extract32(size, 0, 1)) {
5398 unallocated_encoding(s);
5399 return;
5401 /* Bit 1 of size field encodes min vs max, and actual size is always
5402 * 32 bits: adjust the size variable so following code can rely on it
5404 is_min = extract32(size, 1, 1);
5405 is_fp = true;
5406 size = 2;
5407 break;
5408 default:
5409 unallocated_encoding(s);
5410 return;
5413 if (!fp_access_check(s)) {
5414 return;
5417 esize = 8 << size;
5418 elements = (is_q ? 128 : 64) / esize;
5420 tcg_res = tcg_temp_new_i64();
5421 tcg_elt = tcg_temp_new_i64();
5423 /* These instructions operate across all lanes of a vector
5424 * to produce a single result. We can guarantee that a 64
5425 * bit intermediate is sufficient:
5426 * + for [US]ADDLV the maximum element size is 32 bits, and
5427 * the result type is 64 bits
5428 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
5429 * same as the element size, which is 32 bits at most
5430 * For the integer operations we can choose to work at 64
5431 * or 32 bits and truncate at the end; for simplicity
5432 * we use 64 bits always. The floating point
5433 * ops do require 32 bit intermediates, though.
5435 if (!is_fp) {
5436 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
5438 for (i = 1; i < elements; i++) {
5439 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
5441 switch (opcode) {
5442 case 0x03: /* SADDLV / UADDLV */
5443 case 0x1b: /* ADDV */
5444 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
5445 break;
5446 case 0x0a: /* SMAXV / UMAXV */
5447 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
5448 tcg_res,
5449 tcg_res, tcg_elt, tcg_res, tcg_elt);
5450 break;
5451 case 0x1a: /* SMINV / UMINV */
5452 tcg_gen_movcond_i64(is_u ? TCG_COND_LEU : TCG_COND_LE,
5453 tcg_res,
5454 tcg_res, tcg_elt, tcg_res, tcg_elt);
5455 break;
5456 break;
5457 default:
5458 g_assert_not_reached();
5462 } else {
5463 /* Floating point ops which work on 32 bit (single) intermediates.
5464 * Note that correct NaN propagation requires that we do these
5465 * operations in exactly the order specified by the pseudocode.
5467 TCGv_i32 tcg_elt1 = tcg_temp_new_i32();
5468 TCGv_i32 tcg_elt2 = tcg_temp_new_i32();
5469 TCGv_i32 tcg_elt3 = tcg_temp_new_i32();
5470 TCGv_ptr fpst = get_fpstatus_ptr();
5472 assert(esize == 32);
5473 assert(elements == 4);
5475 read_vec_element(s, tcg_elt, rn, 0, MO_32);
5476 tcg_gen_trunc_i64_i32(tcg_elt1, tcg_elt);
5477 read_vec_element(s, tcg_elt, rn, 1, MO_32);
5478 tcg_gen_trunc_i64_i32(tcg_elt2, tcg_elt);
5480 do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst);
5482 read_vec_element(s, tcg_elt, rn, 2, MO_32);
5483 tcg_gen_trunc_i64_i32(tcg_elt2, tcg_elt);
5484 read_vec_element(s, tcg_elt, rn, 3, MO_32);
5485 tcg_gen_trunc_i64_i32(tcg_elt3, tcg_elt);
5487 do_minmaxop(s, tcg_elt2, tcg_elt3, opcode, is_min, fpst);
5489 do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst);
5491 tcg_gen_extu_i32_i64(tcg_res, tcg_elt1);
5492 tcg_temp_free_i32(tcg_elt1);
5493 tcg_temp_free_i32(tcg_elt2);
5494 tcg_temp_free_i32(tcg_elt3);
5495 tcg_temp_free_ptr(fpst);
5498 tcg_temp_free_i64(tcg_elt);
5500 /* Now truncate the result to the width required for the final output */
5501 if (opcode == 0x03) {
5502 /* SADDLV, UADDLV: result is 2*esize */
5503 size++;
5506 switch (size) {
5507 case 0:
5508 tcg_gen_ext8u_i64(tcg_res, tcg_res);
5509 break;
5510 case 1:
5511 tcg_gen_ext16u_i64(tcg_res, tcg_res);
5512 break;
5513 case 2:
5514 tcg_gen_ext32u_i64(tcg_res, tcg_res);
5515 break;
5516 case 3:
5517 break;
5518 default:
5519 g_assert_not_reached();
5522 write_fp_dreg(s, rd, tcg_res);
5523 tcg_temp_free_i64(tcg_res);
5526 /* C6.3.31 DUP (Element, Vector)
5528 * 31 30 29 21 20 16 15 10 9 5 4 0
5529 * +---+---+-------------------+--------+-------------+------+------+
5530 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
5531 * +---+---+-------------------+--------+-------------+------+------+
5533 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5535 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
5536 int imm5)
5538 int size = ctz32(imm5);
5539 int esize = 8 << size;
5540 int elements = (is_q ? 128 : 64) / esize;
5541 int index, i;
5542 TCGv_i64 tmp;
5544 if (size > 3 || (size == 3 && !is_q)) {
5545 unallocated_encoding(s);
5546 return;
5549 if (!fp_access_check(s)) {
5550 return;
5553 index = imm5 >> (size + 1);
5555 tmp = tcg_temp_new_i64();
5556 read_vec_element(s, tmp, rn, index, size);
5558 for (i = 0; i < elements; i++) {
5559 write_vec_element(s, tmp, rd, i, size);
5562 if (!is_q) {
5563 clear_vec_high(s, rd);
5566 tcg_temp_free_i64(tmp);
5569 /* C6.3.31 DUP (element, scalar)
5570 * 31 21 20 16 15 10 9 5 4 0
5571 * +-----------------------+--------+-------------+------+------+
5572 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
5573 * +-----------------------+--------+-------------+------+------+
5575 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
5576 int imm5)
5578 int size = ctz32(imm5);
5579 int index;
5580 TCGv_i64 tmp;
5582 if (size > 3) {
5583 unallocated_encoding(s);
5584 return;
5587 if (!fp_access_check(s)) {
5588 return;
5591 index = imm5 >> (size + 1);
5593 /* This instruction just extracts the specified element and
5594 * zero-extends it into the bottom of the destination register.
5596 tmp = tcg_temp_new_i64();
5597 read_vec_element(s, tmp, rn, index, size);
5598 write_fp_dreg(s, rd, tmp);
5599 tcg_temp_free_i64(tmp);
5602 /* C6.3.32 DUP (General)
5604 * 31 30 29 21 20 16 15 10 9 5 4 0
5605 * +---+---+-------------------+--------+-------------+------+------+
5606 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
5607 * +---+---+-------------------+--------+-------------+------+------+
5609 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5611 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
5612 int imm5)
5614 int size = ctz32(imm5);
5615 int esize = 8 << size;
5616 int elements = (is_q ? 128 : 64)/esize;
5617 int i = 0;
5619 if (size > 3 || ((size == 3) && !is_q)) {
5620 unallocated_encoding(s);
5621 return;
5624 if (!fp_access_check(s)) {
5625 return;
5628 for (i = 0; i < elements; i++) {
5629 write_vec_element(s, cpu_reg(s, rn), rd, i, size);
5631 if (!is_q) {
5632 clear_vec_high(s, rd);
5636 /* C6.3.150 INS (Element)
5638 * 31 21 20 16 15 14 11 10 9 5 4 0
5639 * +-----------------------+--------+------------+---+------+------+
5640 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
5641 * +-----------------------+--------+------------+---+------+------+
5643 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5644 * index: encoded in imm5<4:size+1>
5646 static void handle_simd_inse(DisasContext *s, int rd, int rn,
5647 int imm4, int imm5)
5649 int size = ctz32(imm5);
5650 int src_index, dst_index;
5651 TCGv_i64 tmp;
5653 if (size > 3) {
5654 unallocated_encoding(s);
5655 return;
5658 if (!fp_access_check(s)) {
5659 return;
5662 dst_index = extract32(imm5, 1+size, 5);
5663 src_index = extract32(imm4, size, 4);
5665 tmp = tcg_temp_new_i64();
5667 read_vec_element(s, tmp, rn, src_index, size);
5668 write_vec_element(s, tmp, rd, dst_index, size);
5670 tcg_temp_free_i64(tmp);
5674 /* C6.3.151 INS (General)
5676 * 31 21 20 16 15 10 9 5 4 0
5677 * +-----------------------+--------+-------------+------+------+
5678 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
5679 * +-----------------------+--------+-------------+------+------+
5681 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5682 * index: encoded in imm5<4:size+1>
5684 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
5686 int size = ctz32(imm5);
5687 int idx;
5689 if (size > 3) {
5690 unallocated_encoding(s);
5691 return;
5694 if (!fp_access_check(s)) {
5695 return;
5698 idx = extract32(imm5, 1 + size, 4 - size);
5699 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
5703 * C6.3.321 UMOV (General)
5704 * C6.3.237 SMOV (General)
5706 * 31 30 29 21 20 16 15 12 10 9 5 4 0
5707 * +---+---+-------------------+--------+-------------+------+------+
5708 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
5709 * +---+---+-------------------+--------+-------------+------+------+
5711 * U: unsigned when set
5712 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5714 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
5715 int rn, int rd, int imm5)
5717 int size = ctz32(imm5);
5718 int element;
5719 TCGv_i64 tcg_rd;
5721 /* Check for UnallocatedEncodings */
5722 if (is_signed) {
5723 if (size > 2 || (size == 2 && !is_q)) {
5724 unallocated_encoding(s);
5725 return;
5727 } else {
5728 if (size > 3
5729 || (size < 3 && is_q)
5730 || (size == 3 && !is_q)) {
5731 unallocated_encoding(s);
5732 return;
5736 if (!fp_access_check(s)) {
5737 return;
5740 element = extract32(imm5, 1+size, 4);
5742 tcg_rd = cpu_reg(s, rd);
5743 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
5744 if (is_signed && !is_q) {
5745 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5749 /* C3.6.5 AdvSIMD copy
5750 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
5751 * +---+---+----+-----------------+------+---+------+---+------+------+
5752 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
5753 * +---+---+----+-----------------+------+---+------+---+------+------+
5755 static void disas_simd_copy(DisasContext *s, uint32_t insn)
5757 int rd = extract32(insn, 0, 5);
5758 int rn = extract32(insn, 5, 5);
5759 int imm4 = extract32(insn, 11, 4);
5760 int op = extract32(insn, 29, 1);
5761 int is_q = extract32(insn, 30, 1);
5762 int imm5 = extract32(insn, 16, 5);
5764 if (op) {
5765 if (is_q) {
5766 /* INS (element) */
5767 handle_simd_inse(s, rd, rn, imm4, imm5);
5768 } else {
5769 unallocated_encoding(s);
5771 } else {
5772 switch (imm4) {
5773 case 0:
5774 /* DUP (element - vector) */
5775 handle_simd_dupe(s, is_q, rd, rn, imm5);
5776 break;
5777 case 1:
5778 /* DUP (general) */
5779 handle_simd_dupg(s, is_q, rd, rn, imm5);
5780 break;
5781 case 3:
5782 if (is_q) {
5783 /* INS (general) */
5784 handle_simd_insg(s, rd, rn, imm5);
5785 } else {
5786 unallocated_encoding(s);
5788 break;
5789 case 5:
5790 case 7:
5791 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
5792 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
5793 break;
5794 default:
5795 unallocated_encoding(s);
5796 break;
5801 /* C3.6.6 AdvSIMD modified immediate
5802 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
5803 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
5804 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
5805 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
5807 * There are a number of operations that can be carried out here:
5808 * MOVI - move (shifted) imm into register
5809 * MVNI - move inverted (shifted) imm into register
5810 * ORR - bitwise OR of (shifted) imm with register
5811 * BIC - bitwise clear of (shifted) imm with register
5813 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
5815 int rd = extract32(insn, 0, 5);
5816 int cmode = extract32(insn, 12, 4);
5817 int cmode_3_1 = extract32(cmode, 1, 3);
5818 int cmode_0 = extract32(cmode, 0, 1);
5819 int o2 = extract32(insn, 11, 1);
5820 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
5821 bool is_neg = extract32(insn, 29, 1);
5822 bool is_q = extract32(insn, 30, 1);
5823 uint64_t imm = 0;
5824 TCGv_i64 tcg_rd, tcg_imm;
5825 int i;
5827 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
5828 unallocated_encoding(s);
5829 return;
5832 if (!fp_access_check(s)) {
5833 return;
5836 /* See AdvSIMDExpandImm() in ARM ARM */
5837 switch (cmode_3_1) {
5838 case 0: /* Replicate(Zeros(24):imm8, 2) */
5839 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
5840 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
5841 case 3: /* Replicate(imm8:Zeros(24), 2) */
5843 int shift = cmode_3_1 * 8;
5844 imm = bitfield_replicate(abcdefgh << shift, 32);
5845 break;
5847 case 4: /* Replicate(Zeros(8):imm8, 4) */
5848 case 5: /* Replicate(imm8:Zeros(8), 4) */
5850 int shift = (cmode_3_1 & 0x1) * 8;
5851 imm = bitfield_replicate(abcdefgh << shift, 16);
5852 break;
5854 case 6:
5855 if (cmode_0) {
5856 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
5857 imm = (abcdefgh << 16) | 0xffff;
5858 } else {
5859 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
5860 imm = (abcdefgh << 8) | 0xff;
5862 imm = bitfield_replicate(imm, 32);
5863 break;
5864 case 7:
5865 if (!cmode_0 && !is_neg) {
5866 imm = bitfield_replicate(abcdefgh, 8);
5867 } else if (!cmode_0 && is_neg) {
5868 int i;
5869 imm = 0;
5870 for (i = 0; i < 8; i++) {
5871 if ((abcdefgh) & (1 << i)) {
5872 imm |= 0xffULL << (i * 8);
5875 } else if (cmode_0) {
5876 if (is_neg) {
5877 imm = (abcdefgh & 0x3f) << 48;
5878 if (abcdefgh & 0x80) {
5879 imm |= 0x8000000000000000ULL;
5881 if (abcdefgh & 0x40) {
5882 imm |= 0x3fc0000000000000ULL;
5883 } else {
5884 imm |= 0x4000000000000000ULL;
5886 } else {
5887 imm = (abcdefgh & 0x3f) << 19;
5888 if (abcdefgh & 0x80) {
5889 imm |= 0x80000000;
5891 if (abcdefgh & 0x40) {
5892 imm |= 0x3e000000;
5893 } else {
5894 imm |= 0x40000000;
5896 imm |= (imm << 32);
5899 break;
5902 if (cmode_3_1 != 7 && is_neg) {
5903 imm = ~imm;
5906 tcg_imm = tcg_const_i64(imm);
5907 tcg_rd = new_tmp_a64(s);
5909 for (i = 0; i < 2; i++) {
5910 int foffs = i ? fp_reg_hi_offset(s, rd) : fp_reg_offset(s, rd, MO_64);
5912 if (i == 1 && !is_q) {
5913 /* non-quad ops clear high half of vector */
5914 tcg_gen_movi_i64(tcg_rd, 0);
5915 } else if ((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9) {
5916 tcg_gen_ld_i64(tcg_rd, cpu_env, foffs);
5917 if (is_neg) {
5918 /* AND (BIC) */
5919 tcg_gen_and_i64(tcg_rd, tcg_rd, tcg_imm);
5920 } else {
5921 /* ORR */
5922 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_imm);
5924 } else {
5925 /* MOVI */
5926 tcg_gen_mov_i64(tcg_rd, tcg_imm);
5928 tcg_gen_st_i64(tcg_rd, cpu_env, foffs);
5931 tcg_temp_free_i64(tcg_imm);
5934 /* C3.6.7 AdvSIMD scalar copy
5935 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
5936 * +-----+----+-----------------+------+---+------+---+------+------+
5937 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
5938 * +-----+----+-----------------+------+---+------+---+------+------+
5940 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
5942 int rd = extract32(insn, 0, 5);
5943 int rn = extract32(insn, 5, 5);
5944 int imm4 = extract32(insn, 11, 4);
5945 int imm5 = extract32(insn, 16, 5);
5946 int op = extract32(insn, 29, 1);
5948 if (op != 0 || imm4 != 0) {
5949 unallocated_encoding(s);
5950 return;
5953 /* DUP (element, scalar) */
5954 handle_simd_dupes(s, rd, rn, imm5);
5957 /* C3.6.8 AdvSIMD scalar pairwise
5958 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
5959 * +-----+---+-----------+------+-----------+--------+-----+------+------+
5960 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
5961 * +-----+---+-----------+------+-----------+--------+-----+------+------+
5963 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
5965 int u = extract32(insn, 29, 1);
5966 int size = extract32(insn, 22, 2);
5967 int opcode = extract32(insn, 12, 5);
5968 int rn = extract32(insn, 5, 5);
5969 int rd = extract32(insn, 0, 5);
5970 TCGv_ptr fpst;
5972 /* For some ops (the FP ones), size[1] is part of the encoding.
5973 * For ADDP strictly it is not but size[1] is always 1 for valid
5974 * encodings.
5976 opcode |= (extract32(size, 1, 1) << 5);
5978 switch (opcode) {
5979 case 0x3b: /* ADDP */
5980 if (u || size != 3) {
5981 unallocated_encoding(s);
5982 return;
5984 if (!fp_access_check(s)) {
5985 return;
5988 TCGV_UNUSED_PTR(fpst);
5989 break;
5990 case 0xc: /* FMAXNMP */
5991 case 0xd: /* FADDP */
5992 case 0xf: /* FMAXP */
5993 case 0x2c: /* FMINNMP */
5994 case 0x2f: /* FMINP */
5995 /* FP op, size[0] is 32 or 64 bit */
5996 if (!u) {
5997 unallocated_encoding(s);
5998 return;
6000 if (!fp_access_check(s)) {
6001 return;
6004 size = extract32(size, 0, 1) ? 3 : 2;
6005 fpst = get_fpstatus_ptr();
6006 break;
6007 default:
6008 unallocated_encoding(s);
6009 return;
6012 if (size == 3) {
6013 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
6014 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
6015 TCGv_i64 tcg_res = tcg_temp_new_i64();
6017 read_vec_element(s, tcg_op1, rn, 0, MO_64);
6018 read_vec_element(s, tcg_op2, rn, 1, MO_64);
6020 switch (opcode) {
6021 case 0x3b: /* ADDP */
6022 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
6023 break;
6024 case 0xc: /* FMAXNMP */
6025 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6026 break;
6027 case 0xd: /* FADDP */
6028 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6029 break;
6030 case 0xf: /* FMAXP */
6031 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6032 break;
6033 case 0x2c: /* FMINNMP */
6034 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6035 break;
6036 case 0x2f: /* FMINP */
6037 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6038 break;
6039 default:
6040 g_assert_not_reached();
6043 write_fp_dreg(s, rd, tcg_res);
6045 tcg_temp_free_i64(tcg_op1);
6046 tcg_temp_free_i64(tcg_op2);
6047 tcg_temp_free_i64(tcg_res);
6048 } else {
6049 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
6050 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
6051 TCGv_i32 tcg_res = tcg_temp_new_i32();
6053 read_vec_element_i32(s, tcg_op1, rn, 0, MO_32);
6054 read_vec_element_i32(s, tcg_op2, rn, 1, MO_32);
6056 switch (opcode) {
6057 case 0xc: /* FMAXNMP */
6058 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6059 break;
6060 case 0xd: /* FADDP */
6061 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6062 break;
6063 case 0xf: /* FMAXP */
6064 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6065 break;
6066 case 0x2c: /* FMINNMP */
6067 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6068 break;
6069 case 0x2f: /* FMINP */
6070 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6071 break;
6072 default:
6073 g_assert_not_reached();
6076 write_fp_sreg(s, rd, tcg_res);
6078 tcg_temp_free_i32(tcg_op1);
6079 tcg_temp_free_i32(tcg_op2);
6080 tcg_temp_free_i32(tcg_res);
6083 if (!TCGV_IS_UNUSED_PTR(fpst)) {
6084 tcg_temp_free_ptr(fpst);
6089 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
6091 * This code is handles the common shifting code and is used by both
6092 * the vector and scalar code.
6094 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6095 TCGv_i64 tcg_rnd, bool accumulate,
6096 bool is_u, int size, int shift)
6098 bool extended_result = false;
6099 bool round = !TCGV_IS_UNUSED_I64(tcg_rnd);
6100 int ext_lshift = 0;
6101 TCGv_i64 tcg_src_hi;
6103 if (round && size == 3) {
6104 extended_result = true;
6105 ext_lshift = 64 - shift;
6106 tcg_src_hi = tcg_temp_new_i64();
6107 } else if (shift == 64) {
6108 if (!accumulate && is_u) {
6109 /* result is zero */
6110 tcg_gen_movi_i64(tcg_res, 0);
6111 return;
6115 /* Deal with the rounding step */
6116 if (round) {
6117 if (extended_result) {
6118 TCGv_i64 tcg_zero = tcg_const_i64(0);
6119 if (!is_u) {
6120 /* take care of sign extending tcg_res */
6121 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
6122 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
6123 tcg_src, tcg_src_hi,
6124 tcg_rnd, tcg_zero);
6125 } else {
6126 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
6127 tcg_src, tcg_zero,
6128 tcg_rnd, tcg_zero);
6130 tcg_temp_free_i64(tcg_zero);
6131 } else {
6132 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
6136 /* Now do the shift right */
6137 if (round && extended_result) {
6138 /* extended case, >64 bit precision required */
6139 if (ext_lshift == 0) {
6140 /* special case, only high bits matter */
6141 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
6142 } else {
6143 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6144 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
6145 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
6147 } else {
6148 if (is_u) {
6149 if (shift == 64) {
6150 /* essentially shifting in 64 zeros */
6151 tcg_gen_movi_i64(tcg_src, 0);
6152 } else {
6153 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6155 } else {
6156 if (shift == 64) {
6157 /* effectively extending the sign-bit */
6158 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
6159 } else {
6160 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
6165 if (accumulate) {
6166 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
6167 } else {
6168 tcg_gen_mov_i64(tcg_res, tcg_src);
6171 if (extended_result) {
6172 tcg_temp_free_i64(tcg_src_hi);
6176 /* Common SHL/SLI - Shift left with an optional insert */
6177 static void handle_shli_with_ins(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6178 bool insert, int shift)
6180 if (insert) { /* SLI */
6181 tcg_gen_deposit_i64(tcg_res, tcg_res, tcg_src, shift, 64 - shift);
6182 } else { /* SHL */
6183 tcg_gen_shli_i64(tcg_res, tcg_src, shift);
6187 /* SRI: shift right with insert */
6188 static void handle_shri_with_ins(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6189 int size, int shift)
6191 int esize = 8 << size;
6193 /* shift count same as element size is valid but does nothing;
6194 * special case to avoid potential shift by 64.
6196 if (shift != esize) {
6197 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6198 tcg_gen_deposit_i64(tcg_res, tcg_res, tcg_src, 0, esize - shift);
6202 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
6203 static void handle_scalar_simd_shri(DisasContext *s,
6204 bool is_u, int immh, int immb,
6205 int opcode, int rn, int rd)
6207 const int size = 3;
6208 int immhb = immh << 3 | immb;
6209 int shift = 2 * (8 << size) - immhb;
6210 bool accumulate = false;
6211 bool round = false;
6212 bool insert = false;
6213 TCGv_i64 tcg_rn;
6214 TCGv_i64 tcg_rd;
6215 TCGv_i64 tcg_round;
6217 if (!extract32(immh, 3, 1)) {
6218 unallocated_encoding(s);
6219 return;
6222 if (!fp_access_check(s)) {
6223 return;
6226 switch (opcode) {
6227 case 0x02: /* SSRA / USRA (accumulate) */
6228 accumulate = true;
6229 break;
6230 case 0x04: /* SRSHR / URSHR (rounding) */
6231 round = true;
6232 break;
6233 case 0x06: /* SRSRA / URSRA (accum + rounding) */
6234 accumulate = round = true;
6235 break;
6236 case 0x08: /* SRI */
6237 insert = true;
6238 break;
6241 if (round) {
6242 uint64_t round_const = 1ULL << (shift - 1);
6243 tcg_round = tcg_const_i64(round_const);
6244 } else {
6245 TCGV_UNUSED_I64(tcg_round);
6248 tcg_rn = read_fp_dreg(s, rn);
6249 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
6251 if (insert) {
6252 handle_shri_with_ins(tcg_rd, tcg_rn, size, shift);
6253 } else {
6254 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
6255 accumulate, is_u, size, shift);
6258 write_fp_dreg(s, rd, tcg_rd);
6260 tcg_temp_free_i64(tcg_rn);
6261 tcg_temp_free_i64(tcg_rd);
6262 if (round) {
6263 tcg_temp_free_i64(tcg_round);
6267 /* SHL/SLI - Scalar shift left */
6268 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
6269 int immh, int immb, int opcode,
6270 int rn, int rd)
6272 int size = 32 - clz32(immh) - 1;
6273 int immhb = immh << 3 | immb;
6274 int shift = immhb - (8 << size);
6275 TCGv_i64 tcg_rn = new_tmp_a64(s);
6276 TCGv_i64 tcg_rd = new_tmp_a64(s);
6278 if (!extract32(immh, 3, 1)) {
6279 unallocated_encoding(s);
6280 return;
6283 if (!fp_access_check(s)) {
6284 return;
6287 tcg_rn = read_fp_dreg(s, rn);
6288 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
6290 handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift);
6292 write_fp_dreg(s, rd, tcg_rd);
6294 tcg_temp_free_i64(tcg_rn);
6295 tcg_temp_free_i64(tcg_rd);
6298 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
6299 * (signed/unsigned) narrowing */
6300 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
6301 bool is_u_shift, bool is_u_narrow,
6302 int immh, int immb, int opcode,
6303 int rn, int rd)
6305 int immhb = immh << 3 | immb;
6306 int size = 32 - clz32(immh) - 1;
6307 int esize = 8 << size;
6308 int shift = (2 * esize) - immhb;
6309 int elements = is_scalar ? 1 : (64 / esize);
6310 bool round = extract32(opcode, 0, 1);
6311 TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
6312 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
6313 TCGv_i32 tcg_rd_narrowed;
6314 TCGv_i64 tcg_final;
6316 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
6317 { gen_helper_neon_narrow_sat_s8,
6318 gen_helper_neon_unarrow_sat8 },
6319 { gen_helper_neon_narrow_sat_s16,
6320 gen_helper_neon_unarrow_sat16 },
6321 { gen_helper_neon_narrow_sat_s32,
6322 gen_helper_neon_unarrow_sat32 },
6323 { NULL, NULL },
6325 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
6326 gen_helper_neon_narrow_sat_u8,
6327 gen_helper_neon_narrow_sat_u16,
6328 gen_helper_neon_narrow_sat_u32,
6329 NULL
6331 NeonGenNarrowEnvFn *narrowfn;
6333 int i;
6335 assert(size < 4);
6337 if (extract32(immh, 3, 1)) {
6338 unallocated_encoding(s);
6339 return;
6342 if (!fp_access_check(s)) {
6343 return;
6346 if (is_u_shift) {
6347 narrowfn = unsigned_narrow_fns[size];
6348 } else {
6349 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
6352 tcg_rn = tcg_temp_new_i64();
6353 tcg_rd = tcg_temp_new_i64();
6354 tcg_rd_narrowed = tcg_temp_new_i32();
6355 tcg_final = tcg_const_i64(0);
6357 if (round) {
6358 uint64_t round_const = 1ULL << (shift - 1);
6359 tcg_round = tcg_const_i64(round_const);
6360 } else {
6361 TCGV_UNUSED_I64(tcg_round);
6364 for (i = 0; i < elements; i++) {
6365 read_vec_element(s, tcg_rn, rn, i, ldop);
6366 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
6367 false, is_u_shift, size+1, shift);
6368 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
6369 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
6370 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
6373 if (!is_q) {
6374 clear_vec_high(s, rd);
6375 write_vec_element(s, tcg_final, rd, 0, MO_64);
6376 } else {
6377 write_vec_element(s, tcg_final, rd, 1, MO_64);
6380 if (round) {
6381 tcg_temp_free_i64(tcg_round);
6383 tcg_temp_free_i64(tcg_rn);
6384 tcg_temp_free_i64(tcg_rd);
6385 tcg_temp_free_i32(tcg_rd_narrowed);
6386 tcg_temp_free_i64(tcg_final);
6387 return;
6390 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
6391 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
6392 bool src_unsigned, bool dst_unsigned,
6393 int immh, int immb, int rn, int rd)
6395 int immhb = immh << 3 | immb;
6396 int size = 32 - clz32(immh) - 1;
6397 int shift = immhb - (8 << size);
6398 int pass;
6400 assert(immh != 0);
6401 assert(!(scalar && is_q));
6403 if (!scalar) {
6404 if (!is_q && extract32(immh, 3, 1)) {
6405 unallocated_encoding(s);
6406 return;
6409 /* Since we use the variable-shift helpers we must
6410 * replicate the shift count into each element of
6411 * the tcg_shift value.
6413 switch (size) {
6414 case 0:
6415 shift |= shift << 8;
6416 /* fall through */
6417 case 1:
6418 shift |= shift << 16;
6419 break;
6420 case 2:
6421 case 3:
6422 break;
6423 default:
6424 g_assert_not_reached();
6428 if (!fp_access_check(s)) {
6429 return;
6432 if (size == 3) {
6433 TCGv_i64 tcg_shift = tcg_const_i64(shift);
6434 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
6435 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
6436 { NULL, gen_helper_neon_qshl_u64 },
6438 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
6439 int maxpass = is_q ? 2 : 1;
6441 for (pass = 0; pass < maxpass; pass++) {
6442 TCGv_i64 tcg_op = tcg_temp_new_i64();
6444 read_vec_element(s, tcg_op, rn, pass, MO_64);
6445 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
6446 write_vec_element(s, tcg_op, rd, pass, MO_64);
6448 tcg_temp_free_i64(tcg_op);
6450 tcg_temp_free_i64(tcg_shift);
6452 if (!is_q) {
6453 clear_vec_high(s, rd);
6455 } else {
6456 TCGv_i32 tcg_shift = tcg_const_i32(shift);
6457 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
6459 { gen_helper_neon_qshl_s8,
6460 gen_helper_neon_qshl_s16,
6461 gen_helper_neon_qshl_s32 },
6462 { gen_helper_neon_qshlu_s8,
6463 gen_helper_neon_qshlu_s16,
6464 gen_helper_neon_qshlu_s32 }
6465 }, {
6466 { NULL, NULL, NULL },
6467 { gen_helper_neon_qshl_u8,
6468 gen_helper_neon_qshl_u16,
6469 gen_helper_neon_qshl_u32 }
6472 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
6473 TCGMemOp memop = scalar ? size : MO_32;
6474 int maxpass = scalar ? 1 : is_q ? 4 : 2;
6476 for (pass = 0; pass < maxpass; pass++) {
6477 TCGv_i32 tcg_op = tcg_temp_new_i32();
6479 read_vec_element_i32(s, tcg_op, rn, pass, memop);
6480 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
6481 if (scalar) {
6482 switch (size) {
6483 case 0:
6484 tcg_gen_ext8u_i32(tcg_op, tcg_op);
6485 break;
6486 case 1:
6487 tcg_gen_ext16u_i32(tcg_op, tcg_op);
6488 break;
6489 case 2:
6490 break;
6491 default:
6492 g_assert_not_reached();
6494 write_fp_sreg(s, rd, tcg_op);
6495 } else {
6496 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
6499 tcg_temp_free_i32(tcg_op);
6501 tcg_temp_free_i32(tcg_shift);
6503 if (!is_q && !scalar) {
6504 clear_vec_high(s, rd);
6509 /* Common vector code for handling integer to FP conversion */
6510 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
6511 int elements, int is_signed,
6512 int fracbits, int size)
6514 bool is_double = size == 3 ? true : false;
6515 TCGv_ptr tcg_fpst = get_fpstatus_ptr();
6516 TCGv_i32 tcg_shift = tcg_const_i32(fracbits);
6517 TCGv_i64 tcg_int = tcg_temp_new_i64();
6518 TCGMemOp mop = size | (is_signed ? MO_SIGN : 0);
6519 int pass;
6521 for (pass = 0; pass < elements; pass++) {
6522 read_vec_element(s, tcg_int, rn, pass, mop);
6524 if (is_double) {
6525 TCGv_i64 tcg_double = tcg_temp_new_i64();
6526 if (is_signed) {
6527 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6528 tcg_shift, tcg_fpst);
6529 } else {
6530 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6531 tcg_shift, tcg_fpst);
6533 if (elements == 1) {
6534 write_fp_dreg(s, rd, tcg_double);
6535 } else {
6536 write_vec_element(s, tcg_double, rd, pass, MO_64);
6538 tcg_temp_free_i64(tcg_double);
6539 } else {
6540 TCGv_i32 tcg_single = tcg_temp_new_i32();
6541 if (is_signed) {
6542 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6543 tcg_shift, tcg_fpst);
6544 } else {
6545 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6546 tcg_shift, tcg_fpst);
6548 if (elements == 1) {
6549 write_fp_sreg(s, rd, tcg_single);
6550 } else {
6551 write_vec_element_i32(s, tcg_single, rd, pass, MO_32);
6553 tcg_temp_free_i32(tcg_single);
6557 if (!is_double && elements == 2) {
6558 clear_vec_high(s, rd);
6561 tcg_temp_free_i64(tcg_int);
6562 tcg_temp_free_ptr(tcg_fpst);
6563 tcg_temp_free_i32(tcg_shift);
6566 /* UCVTF/SCVTF - Integer to FP conversion */
6567 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
6568 bool is_q, bool is_u,
6569 int immh, int immb, int opcode,
6570 int rn, int rd)
6572 bool is_double = extract32(immh, 3, 1);
6573 int size = is_double ? MO_64 : MO_32;
6574 int elements;
6575 int immhb = immh << 3 | immb;
6576 int fracbits = (is_double ? 128 : 64) - immhb;
6578 if (!extract32(immh, 2, 2)) {
6579 unallocated_encoding(s);
6580 return;
6583 if (is_scalar) {
6584 elements = 1;
6585 } else {
6586 elements = is_double ? 2 : is_q ? 4 : 2;
6587 if (is_double && !is_q) {
6588 unallocated_encoding(s);
6589 return;
6593 if (!fp_access_check(s)) {
6594 return;
6597 /* immh == 0 would be a failure of the decode logic */
6598 g_assert(immh);
6600 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
6603 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
6604 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
6605 bool is_q, bool is_u,
6606 int immh, int immb, int rn, int rd)
6608 bool is_double = extract32(immh, 3, 1);
6609 int immhb = immh << 3 | immb;
6610 int fracbits = (is_double ? 128 : 64) - immhb;
6611 int pass;
6612 TCGv_ptr tcg_fpstatus;
6613 TCGv_i32 tcg_rmode, tcg_shift;
6615 if (!extract32(immh, 2, 2)) {
6616 unallocated_encoding(s);
6617 return;
6620 if (!is_scalar && !is_q && is_double) {
6621 unallocated_encoding(s);
6622 return;
6625 if (!fp_access_check(s)) {
6626 return;
6629 assert(!(is_scalar && is_q));
6631 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
6632 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
6633 tcg_fpstatus = get_fpstatus_ptr();
6634 tcg_shift = tcg_const_i32(fracbits);
6636 if (is_double) {
6637 int maxpass = is_scalar ? 1 : 2;
6639 for (pass = 0; pass < maxpass; pass++) {
6640 TCGv_i64 tcg_op = tcg_temp_new_i64();
6642 read_vec_element(s, tcg_op, rn, pass, MO_64);
6643 if (is_u) {
6644 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6645 } else {
6646 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6648 write_vec_element(s, tcg_op, rd, pass, MO_64);
6649 tcg_temp_free_i64(tcg_op);
6651 if (!is_q) {
6652 clear_vec_high(s, rd);
6654 } else {
6655 int maxpass = is_scalar ? 1 : is_q ? 4 : 2;
6656 for (pass = 0; pass < maxpass; pass++) {
6657 TCGv_i32 tcg_op = tcg_temp_new_i32();
6659 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
6660 if (is_u) {
6661 gen_helper_vfp_touls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6662 } else {
6663 gen_helper_vfp_tosls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6665 if (is_scalar) {
6666 write_fp_sreg(s, rd, tcg_op);
6667 } else {
6668 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
6670 tcg_temp_free_i32(tcg_op);
6672 if (!is_q && !is_scalar) {
6673 clear_vec_high(s, rd);
6677 tcg_temp_free_ptr(tcg_fpstatus);
6678 tcg_temp_free_i32(tcg_shift);
6679 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
6680 tcg_temp_free_i32(tcg_rmode);
6683 /* C3.6.9 AdvSIMD scalar shift by immediate
6684 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
6685 * +-----+---+-------------+------+------+--------+---+------+------+
6686 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
6687 * +-----+---+-------------+------+------+--------+---+------+------+
6689 * This is the scalar version so it works on a fixed sized registers
6691 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
6693 int rd = extract32(insn, 0, 5);
6694 int rn = extract32(insn, 5, 5);
6695 int opcode = extract32(insn, 11, 5);
6696 int immb = extract32(insn, 16, 3);
6697 int immh = extract32(insn, 19, 4);
6698 bool is_u = extract32(insn, 29, 1);
6700 if (immh == 0) {
6701 unallocated_encoding(s);
6702 return;
6705 switch (opcode) {
6706 case 0x08: /* SRI */
6707 if (!is_u) {
6708 unallocated_encoding(s);
6709 return;
6711 /* fall through */
6712 case 0x00: /* SSHR / USHR */
6713 case 0x02: /* SSRA / USRA */
6714 case 0x04: /* SRSHR / URSHR */
6715 case 0x06: /* SRSRA / URSRA */
6716 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
6717 break;
6718 case 0x0a: /* SHL / SLI */
6719 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
6720 break;
6721 case 0x1c: /* SCVTF, UCVTF */
6722 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
6723 opcode, rn, rd);
6724 break;
6725 case 0x10: /* SQSHRUN, SQSHRUN2 */
6726 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
6727 if (!is_u) {
6728 unallocated_encoding(s);
6729 return;
6731 handle_vec_simd_sqshrn(s, true, false, false, true,
6732 immh, immb, opcode, rn, rd);
6733 break;
6734 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
6735 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
6736 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
6737 immh, immb, opcode, rn, rd);
6738 break;
6739 case 0xc: /* SQSHLU */
6740 if (!is_u) {
6741 unallocated_encoding(s);
6742 return;
6744 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
6745 break;
6746 case 0xe: /* SQSHL, UQSHL */
6747 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
6748 break;
6749 case 0x1f: /* FCVTZS, FCVTZU */
6750 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
6751 break;
6752 default:
6753 unallocated_encoding(s);
6754 break;
6758 /* C3.6.10 AdvSIMD scalar three different
6759 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6760 * +-----+---+-----------+------+---+------+--------+-----+------+------+
6761 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
6762 * +-----+---+-----------+------+---+------+--------+-----+------+------+
6764 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
6766 bool is_u = extract32(insn, 29, 1);
6767 int size = extract32(insn, 22, 2);
6768 int opcode = extract32(insn, 12, 4);
6769 int rm = extract32(insn, 16, 5);
6770 int rn = extract32(insn, 5, 5);
6771 int rd = extract32(insn, 0, 5);
6773 if (is_u) {
6774 unallocated_encoding(s);
6775 return;
6778 switch (opcode) {
6779 case 0x9: /* SQDMLAL, SQDMLAL2 */
6780 case 0xb: /* SQDMLSL, SQDMLSL2 */
6781 case 0xd: /* SQDMULL, SQDMULL2 */
6782 if (size == 0 || size == 3) {
6783 unallocated_encoding(s);
6784 return;
6786 break;
6787 default:
6788 unallocated_encoding(s);
6789 return;
6792 if (!fp_access_check(s)) {
6793 return;
6796 if (size == 2) {
6797 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
6798 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
6799 TCGv_i64 tcg_res = tcg_temp_new_i64();
6801 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
6802 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
6804 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
6805 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
6807 switch (opcode) {
6808 case 0xd: /* SQDMULL, SQDMULL2 */
6809 break;
6810 case 0xb: /* SQDMLSL, SQDMLSL2 */
6811 tcg_gen_neg_i64(tcg_res, tcg_res);
6812 /* fall through */
6813 case 0x9: /* SQDMLAL, SQDMLAL2 */
6814 read_vec_element(s, tcg_op1, rd, 0, MO_64);
6815 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
6816 tcg_res, tcg_op1);
6817 break;
6818 default:
6819 g_assert_not_reached();
6822 write_fp_dreg(s, rd, tcg_res);
6824 tcg_temp_free_i64(tcg_op1);
6825 tcg_temp_free_i64(tcg_op2);
6826 tcg_temp_free_i64(tcg_res);
6827 } else {
6828 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
6829 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
6830 TCGv_i64 tcg_res = tcg_temp_new_i64();
6832 read_vec_element_i32(s, tcg_op1, rn, 0, MO_16);
6833 read_vec_element_i32(s, tcg_op2, rm, 0, MO_16);
6835 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
6836 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
6838 switch (opcode) {
6839 case 0xd: /* SQDMULL, SQDMULL2 */
6840 break;
6841 case 0xb: /* SQDMLSL, SQDMLSL2 */
6842 gen_helper_neon_negl_u32(tcg_res, tcg_res);
6843 /* fall through */
6844 case 0x9: /* SQDMLAL, SQDMLAL2 */
6846 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
6847 read_vec_element(s, tcg_op3, rd, 0, MO_32);
6848 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
6849 tcg_res, tcg_op3);
6850 tcg_temp_free_i64(tcg_op3);
6851 break;
6853 default:
6854 g_assert_not_reached();
6857 tcg_gen_ext32u_i64(tcg_res, tcg_res);
6858 write_fp_dreg(s, rd, tcg_res);
6860 tcg_temp_free_i32(tcg_op1);
6861 tcg_temp_free_i32(tcg_op2);
6862 tcg_temp_free_i64(tcg_res);
6866 static void handle_3same_64(DisasContext *s, int opcode, bool u,
6867 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
6869 /* Handle 64x64->64 opcodes which are shared between the scalar
6870 * and vector 3-same groups. We cover every opcode where size == 3
6871 * is valid in either the three-reg-same (integer, not pairwise)
6872 * or scalar-three-reg-same groups. (Some opcodes are not yet
6873 * implemented.)
6875 TCGCond cond;
6877 switch (opcode) {
6878 case 0x1: /* SQADD */
6879 if (u) {
6880 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
6881 } else {
6882 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
6884 break;
6885 case 0x5: /* SQSUB */
6886 if (u) {
6887 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
6888 } else {
6889 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
6891 break;
6892 case 0x6: /* CMGT, CMHI */
6893 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
6894 * We implement this using setcond (test) and then negating.
6896 cond = u ? TCG_COND_GTU : TCG_COND_GT;
6897 do_cmop:
6898 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
6899 tcg_gen_neg_i64(tcg_rd, tcg_rd);
6900 break;
6901 case 0x7: /* CMGE, CMHS */
6902 cond = u ? TCG_COND_GEU : TCG_COND_GE;
6903 goto do_cmop;
6904 case 0x11: /* CMTST, CMEQ */
6905 if (u) {
6906 cond = TCG_COND_EQ;
6907 goto do_cmop;
6909 /* CMTST : test is "if (X & Y != 0)". */
6910 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
6911 tcg_gen_setcondi_i64(TCG_COND_NE, tcg_rd, tcg_rd, 0);
6912 tcg_gen_neg_i64(tcg_rd, tcg_rd);
6913 break;
6914 case 0x8: /* SSHL, USHL */
6915 if (u) {
6916 gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm);
6917 } else {
6918 gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm);
6920 break;
6921 case 0x9: /* SQSHL, UQSHL */
6922 if (u) {
6923 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
6924 } else {
6925 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
6927 break;
6928 case 0xa: /* SRSHL, URSHL */
6929 if (u) {
6930 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
6931 } else {
6932 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
6934 break;
6935 case 0xb: /* SQRSHL, UQRSHL */
6936 if (u) {
6937 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
6938 } else {
6939 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
6941 break;
6942 case 0x10: /* ADD, SUB */
6943 if (u) {
6944 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
6945 } else {
6946 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
6948 break;
6949 default:
6950 g_assert_not_reached();
6954 /* Handle the 3-same-operands float operations; shared by the scalar
6955 * and vector encodings. The caller must filter out any encodings
6956 * not allocated for the encoding it is dealing with.
6958 static void handle_3same_float(DisasContext *s, int size, int elements,
6959 int fpopcode, int rd, int rn, int rm)
6961 int pass;
6962 TCGv_ptr fpst = get_fpstatus_ptr();
6964 for (pass = 0; pass < elements; pass++) {
6965 if (size) {
6966 /* Double */
6967 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
6968 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
6969 TCGv_i64 tcg_res = tcg_temp_new_i64();
6971 read_vec_element(s, tcg_op1, rn, pass, MO_64);
6972 read_vec_element(s, tcg_op2, rm, pass, MO_64);
6974 switch (fpopcode) {
6975 case 0x39: /* FMLS */
6976 /* As usual for ARM, separate negation for fused multiply-add */
6977 gen_helper_vfp_negd(tcg_op1, tcg_op1);
6978 /* fall through */
6979 case 0x19: /* FMLA */
6980 read_vec_element(s, tcg_res, rd, pass, MO_64);
6981 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
6982 tcg_res, fpst);
6983 break;
6984 case 0x18: /* FMAXNM */
6985 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6986 break;
6987 case 0x1a: /* FADD */
6988 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6989 break;
6990 case 0x1b: /* FMULX */
6991 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
6992 break;
6993 case 0x1c: /* FCMEQ */
6994 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
6995 break;
6996 case 0x1e: /* FMAX */
6997 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6998 break;
6999 case 0x1f: /* FRECPS */
7000 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7001 break;
7002 case 0x38: /* FMINNM */
7003 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7004 break;
7005 case 0x3a: /* FSUB */
7006 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
7007 break;
7008 case 0x3e: /* FMIN */
7009 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7010 break;
7011 case 0x3f: /* FRSQRTS */
7012 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7013 break;
7014 case 0x5b: /* FMUL */
7015 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
7016 break;
7017 case 0x5c: /* FCMGE */
7018 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7019 break;
7020 case 0x5d: /* FACGE */
7021 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7022 break;
7023 case 0x5f: /* FDIV */
7024 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
7025 break;
7026 case 0x7a: /* FABD */
7027 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
7028 gen_helper_vfp_absd(tcg_res, tcg_res);
7029 break;
7030 case 0x7c: /* FCMGT */
7031 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7032 break;
7033 case 0x7d: /* FACGT */
7034 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7035 break;
7036 default:
7037 g_assert_not_reached();
7040 write_vec_element(s, tcg_res, rd, pass, MO_64);
7042 tcg_temp_free_i64(tcg_res);
7043 tcg_temp_free_i64(tcg_op1);
7044 tcg_temp_free_i64(tcg_op2);
7045 } else {
7046 /* Single */
7047 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7048 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7049 TCGv_i32 tcg_res = tcg_temp_new_i32();
7051 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
7052 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
7054 switch (fpopcode) {
7055 case 0x39: /* FMLS */
7056 /* As usual for ARM, separate negation for fused multiply-add */
7057 gen_helper_vfp_negs(tcg_op1, tcg_op1);
7058 /* fall through */
7059 case 0x19: /* FMLA */
7060 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7061 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
7062 tcg_res, fpst);
7063 break;
7064 case 0x1a: /* FADD */
7065 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7066 break;
7067 case 0x1b: /* FMULX */
7068 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
7069 break;
7070 case 0x1c: /* FCMEQ */
7071 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7072 break;
7073 case 0x1e: /* FMAX */
7074 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7075 break;
7076 case 0x1f: /* FRECPS */
7077 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7078 break;
7079 case 0x18: /* FMAXNM */
7080 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7081 break;
7082 case 0x38: /* FMINNM */
7083 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7084 break;
7085 case 0x3a: /* FSUB */
7086 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
7087 break;
7088 case 0x3e: /* FMIN */
7089 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7090 break;
7091 case 0x3f: /* FRSQRTS */
7092 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7093 break;
7094 case 0x5b: /* FMUL */
7095 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
7096 break;
7097 case 0x5c: /* FCMGE */
7098 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7099 break;
7100 case 0x5d: /* FACGE */
7101 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7102 break;
7103 case 0x5f: /* FDIV */
7104 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
7105 break;
7106 case 0x7a: /* FABD */
7107 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
7108 gen_helper_vfp_abss(tcg_res, tcg_res);
7109 break;
7110 case 0x7c: /* FCMGT */
7111 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7112 break;
7113 case 0x7d: /* FACGT */
7114 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7115 break;
7116 default:
7117 g_assert_not_reached();
7120 if (elements == 1) {
7121 /* scalar single so clear high part */
7122 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7124 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
7125 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
7126 tcg_temp_free_i64(tcg_tmp);
7127 } else {
7128 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7131 tcg_temp_free_i32(tcg_res);
7132 tcg_temp_free_i32(tcg_op1);
7133 tcg_temp_free_i32(tcg_op2);
7137 tcg_temp_free_ptr(fpst);
7139 if ((elements << size) < 4) {
7140 /* scalar, or non-quad vector op */
7141 clear_vec_high(s, rd);
7145 /* C3.6.11 AdvSIMD scalar three same
7146 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
7147 * +-----+---+-----------+------+---+------+--------+---+------+------+
7148 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
7149 * +-----+---+-----------+------+---+------+--------+---+------+------+
7151 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
7153 int rd = extract32(insn, 0, 5);
7154 int rn = extract32(insn, 5, 5);
7155 int opcode = extract32(insn, 11, 5);
7156 int rm = extract32(insn, 16, 5);
7157 int size = extract32(insn, 22, 2);
7158 bool u = extract32(insn, 29, 1);
7159 TCGv_i64 tcg_rd;
7161 if (opcode >= 0x18) {
7162 /* Floating point: U, size[1] and opcode indicate operation */
7163 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
7164 switch (fpopcode) {
7165 case 0x1b: /* FMULX */
7166 case 0x1f: /* FRECPS */
7167 case 0x3f: /* FRSQRTS */
7168 case 0x5d: /* FACGE */
7169 case 0x7d: /* FACGT */
7170 case 0x1c: /* FCMEQ */
7171 case 0x5c: /* FCMGE */
7172 case 0x7c: /* FCMGT */
7173 case 0x7a: /* FABD */
7174 break;
7175 default:
7176 unallocated_encoding(s);
7177 return;
7180 if (!fp_access_check(s)) {
7181 return;
7184 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
7185 return;
7188 switch (opcode) {
7189 case 0x1: /* SQADD, UQADD */
7190 case 0x5: /* SQSUB, UQSUB */
7191 case 0x9: /* SQSHL, UQSHL */
7192 case 0xb: /* SQRSHL, UQRSHL */
7193 break;
7194 case 0x8: /* SSHL, USHL */
7195 case 0xa: /* SRSHL, URSHL */
7196 case 0x6: /* CMGT, CMHI */
7197 case 0x7: /* CMGE, CMHS */
7198 case 0x11: /* CMTST, CMEQ */
7199 case 0x10: /* ADD, SUB (vector) */
7200 if (size != 3) {
7201 unallocated_encoding(s);
7202 return;
7204 break;
7205 case 0x16: /* SQDMULH, SQRDMULH (vector) */
7206 if (size != 1 && size != 2) {
7207 unallocated_encoding(s);
7208 return;
7210 break;
7211 default:
7212 unallocated_encoding(s);
7213 return;
7216 if (!fp_access_check(s)) {
7217 return;
7220 tcg_rd = tcg_temp_new_i64();
7222 if (size == 3) {
7223 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7224 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
7226 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
7227 tcg_temp_free_i64(tcg_rn);
7228 tcg_temp_free_i64(tcg_rm);
7229 } else {
7230 /* Do a single operation on the lowest element in the vector.
7231 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
7232 * no side effects for all these operations.
7233 * OPTME: special-purpose helpers would avoid doing some
7234 * unnecessary work in the helper for the 8 and 16 bit cases.
7236 NeonGenTwoOpEnvFn *genenvfn;
7237 TCGv_i32 tcg_rn = tcg_temp_new_i32();
7238 TCGv_i32 tcg_rm = tcg_temp_new_i32();
7239 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
7241 read_vec_element_i32(s, tcg_rn, rn, 0, size);
7242 read_vec_element_i32(s, tcg_rm, rm, 0, size);
7244 switch (opcode) {
7245 case 0x1: /* SQADD, UQADD */
7247 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7248 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
7249 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
7250 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
7252 genenvfn = fns[size][u];
7253 break;
7255 case 0x5: /* SQSUB, UQSUB */
7257 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7258 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
7259 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
7260 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
7262 genenvfn = fns[size][u];
7263 break;
7265 case 0x9: /* SQSHL, UQSHL */
7267 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7268 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
7269 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
7270 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
7272 genenvfn = fns[size][u];
7273 break;
7275 case 0xb: /* SQRSHL, UQRSHL */
7277 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7278 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
7279 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
7280 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
7282 genenvfn = fns[size][u];
7283 break;
7285 case 0x16: /* SQDMULH, SQRDMULH */
7287 static NeonGenTwoOpEnvFn * const fns[2][2] = {
7288 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
7289 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
7291 assert(size == 1 || size == 2);
7292 genenvfn = fns[size - 1][u];
7293 break;
7295 default:
7296 g_assert_not_reached();
7299 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
7300 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
7301 tcg_temp_free_i32(tcg_rd32);
7302 tcg_temp_free_i32(tcg_rn);
7303 tcg_temp_free_i32(tcg_rm);
7306 write_fp_dreg(s, rd, tcg_rd);
7308 tcg_temp_free_i64(tcg_rd);
7311 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
7312 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
7313 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
7315 /* Handle 64->64 opcodes which are shared between the scalar and
7316 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
7317 * is valid in either group and also the double-precision fp ops.
7318 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
7319 * requires them.
7321 TCGCond cond;
7323 switch (opcode) {
7324 case 0x4: /* CLS, CLZ */
7325 if (u) {
7326 gen_helper_clz64(tcg_rd, tcg_rn);
7327 } else {
7328 gen_helper_cls64(tcg_rd, tcg_rn);
7330 break;
7331 case 0x5: /* NOT */
7332 /* This opcode is shared with CNT and RBIT but we have earlier
7333 * enforced that size == 3 if and only if this is the NOT insn.
7335 tcg_gen_not_i64(tcg_rd, tcg_rn);
7336 break;
7337 case 0x7: /* SQABS, SQNEG */
7338 if (u) {
7339 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
7340 } else {
7341 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
7343 break;
7344 case 0xa: /* CMLT */
7345 /* 64 bit integer comparison against zero, result is
7346 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
7347 * subtracting 1.
7349 cond = TCG_COND_LT;
7350 do_cmop:
7351 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
7352 tcg_gen_neg_i64(tcg_rd, tcg_rd);
7353 break;
7354 case 0x8: /* CMGT, CMGE */
7355 cond = u ? TCG_COND_GE : TCG_COND_GT;
7356 goto do_cmop;
7357 case 0x9: /* CMEQ, CMLE */
7358 cond = u ? TCG_COND_LE : TCG_COND_EQ;
7359 goto do_cmop;
7360 case 0xb: /* ABS, NEG */
7361 if (u) {
7362 tcg_gen_neg_i64(tcg_rd, tcg_rn);
7363 } else {
7364 TCGv_i64 tcg_zero = tcg_const_i64(0);
7365 tcg_gen_neg_i64(tcg_rd, tcg_rn);
7366 tcg_gen_movcond_i64(TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero,
7367 tcg_rn, tcg_rd);
7368 tcg_temp_free_i64(tcg_zero);
7370 break;
7371 case 0x2f: /* FABS */
7372 gen_helper_vfp_absd(tcg_rd, tcg_rn);
7373 break;
7374 case 0x6f: /* FNEG */
7375 gen_helper_vfp_negd(tcg_rd, tcg_rn);
7376 break;
7377 case 0x7f: /* FSQRT */
7378 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
7379 break;
7380 case 0x1a: /* FCVTNS */
7381 case 0x1b: /* FCVTMS */
7382 case 0x1c: /* FCVTAS */
7383 case 0x3a: /* FCVTPS */
7384 case 0x3b: /* FCVTZS */
7386 TCGv_i32 tcg_shift = tcg_const_i32(0);
7387 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
7388 tcg_temp_free_i32(tcg_shift);
7389 break;
7391 case 0x5a: /* FCVTNU */
7392 case 0x5b: /* FCVTMU */
7393 case 0x5c: /* FCVTAU */
7394 case 0x7a: /* FCVTPU */
7395 case 0x7b: /* FCVTZU */
7397 TCGv_i32 tcg_shift = tcg_const_i32(0);
7398 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
7399 tcg_temp_free_i32(tcg_shift);
7400 break;
7402 case 0x18: /* FRINTN */
7403 case 0x19: /* FRINTM */
7404 case 0x38: /* FRINTP */
7405 case 0x39: /* FRINTZ */
7406 case 0x58: /* FRINTA */
7407 case 0x79: /* FRINTI */
7408 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
7409 break;
7410 case 0x59: /* FRINTX */
7411 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
7412 break;
7413 default:
7414 g_assert_not_reached();
7418 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
7419 bool is_scalar, bool is_u, bool is_q,
7420 int size, int rn, int rd)
7422 bool is_double = (size == 3);
7423 TCGv_ptr fpst;
7425 if (!fp_access_check(s)) {
7426 return;
7429 fpst = get_fpstatus_ptr();
7431 if (is_double) {
7432 TCGv_i64 tcg_op = tcg_temp_new_i64();
7433 TCGv_i64 tcg_zero = tcg_const_i64(0);
7434 TCGv_i64 tcg_res = tcg_temp_new_i64();
7435 NeonGenTwoDoubleOPFn *genfn;
7436 bool swap = false;
7437 int pass;
7439 switch (opcode) {
7440 case 0x2e: /* FCMLT (zero) */
7441 swap = true;
7442 /* fallthrough */
7443 case 0x2c: /* FCMGT (zero) */
7444 genfn = gen_helper_neon_cgt_f64;
7445 break;
7446 case 0x2d: /* FCMEQ (zero) */
7447 genfn = gen_helper_neon_ceq_f64;
7448 break;
7449 case 0x6d: /* FCMLE (zero) */
7450 swap = true;
7451 /* fall through */
7452 case 0x6c: /* FCMGE (zero) */
7453 genfn = gen_helper_neon_cge_f64;
7454 break;
7455 default:
7456 g_assert_not_reached();
7459 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
7460 read_vec_element(s, tcg_op, rn, pass, MO_64);
7461 if (swap) {
7462 genfn(tcg_res, tcg_zero, tcg_op, fpst);
7463 } else {
7464 genfn(tcg_res, tcg_op, tcg_zero, fpst);
7466 write_vec_element(s, tcg_res, rd, pass, MO_64);
7468 if (is_scalar) {
7469 clear_vec_high(s, rd);
7472 tcg_temp_free_i64(tcg_res);
7473 tcg_temp_free_i64(tcg_zero);
7474 tcg_temp_free_i64(tcg_op);
7475 } else {
7476 TCGv_i32 tcg_op = tcg_temp_new_i32();
7477 TCGv_i32 tcg_zero = tcg_const_i32(0);
7478 TCGv_i32 tcg_res = tcg_temp_new_i32();
7479 NeonGenTwoSingleOPFn *genfn;
7480 bool swap = false;
7481 int pass, maxpasses;
7483 switch (opcode) {
7484 case 0x2e: /* FCMLT (zero) */
7485 swap = true;
7486 /* fall through */
7487 case 0x2c: /* FCMGT (zero) */
7488 genfn = gen_helper_neon_cgt_f32;
7489 break;
7490 case 0x2d: /* FCMEQ (zero) */
7491 genfn = gen_helper_neon_ceq_f32;
7492 break;
7493 case 0x6d: /* FCMLE (zero) */
7494 swap = true;
7495 /* fall through */
7496 case 0x6c: /* FCMGE (zero) */
7497 genfn = gen_helper_neon_cge_f32;
7498 break;
7499 default:
7500 g_assert_not_reached();
7503 if (is_scalar) {
7504 maxpasses = 1;
7505 } else {
7506 maxpasses = is_q ? 4 : 2;
7509 for (pass = 0; pass < maxpasses; pass++) {
7510 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
7511 if (swap) {
7512 genfn(tcg_res, tcg_zero, tcg_op, fpst);
7513 } else {
7514 genfn(tcg_res, tcg_op, tcg_zero, fpst);
7516 if (is_scalar) {
7517 write_fp_sreg(s, rd, tcg_res);
7518 } else {
7519 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7522 tcg_temp_free_i32(tcg_res);
7523 tcg_temp_free_i32(tcg_zero);
7524 tcg_temp_free_i32(tcg_op);
7525 if (!is_q && !is_scalar) {
7526 clear_vec_high(s, rd);
7530 tcg_temp_free_ptr(fpst);
7533 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
7534 bool is_scalar, bool is_u, bool is_q,
7535 int size, int rn, int rd)
7537 bool is_double = (size == 3);
7538 TCGv_ptr fpst = get_fpstatus_ptr();
7540 if (is_double) {
7541 TCGv_i64 tcg_op = tcg_temp_new_i64();
7542 TCGv_i64 tcg_res = tcg_temp_new_i64();
7543 int pass;
7545 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
7546 read_vec_element(s, tcg_op, rn, pass, MO_64);
7547 switch (opcode) {
7548 case 0x3d: /* FRECPE */
7549 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
7550 break;
7551 case 0x3f: /* FRECPX */
7552 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
7553 break;
7554 case 0x7d: /* FRSQRTE */
7555 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
7556 break;
7557 default:
7558 g_assert_not_reached();
7560 write_vec_element(s, tcg_res, rd, pass, MO_64);
7562 if (is_scalar) {
7563 clear_vec_high(s, rd);
7566 tcg_temp_free_i64(tcg_res);
7567 tcg_temp_free_i64(tcg_op);
7568 } else {
7569 TCGv_i32 tcg_op = tcg_temp_new_i32();
7570 TCGv_i32 tcg_res = tcg_temp_new_i32();
7571 int pass, maxpasses;
7573 if (is_scalar) {
7574 maxpasses = 1;
7575 } else {
7576 maxpasses = is_q ? 4 : 2;
7579 for (pass = 0; pass < maxpasses; pass++) {
7580 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
7582 switch (opcode) {
7583 case 0x3c: /* URECPE */
7584 gen_helper_recpe_u32(tcg_res, tcg_op, fpst);
7585 break;
7586 case 0x3d: /* FRECPE */
7587 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
7588 break;
7589 case 0x3f: /* FRECPX */
7590 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
7591 break;
7592 case 0x7d: /* FRSQRTE */
7593 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
7594 break;
7595 default:
7596 g_assert_not_reached();
7599 if (is_scalar) {
7600 write_fp_sreg(s, rd, tcg_res);
7601 } else {
7602 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7605 tcg_temp_free_i32(tcg_res);
7606 tcg_temp_free_i32(tcg_op);
7607 if (!is_q && !is_scalar) {
7608 clear_vec_high(s, rd);
7611 tcg_temp_free_ptr(fpst);
7614 static void handle_2misc_narrow(DisasContext *s, bool scalar,
7615 int opcode, bool u, bool is_q,
7616 int size, int rn, int rd)
7618 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
7619 * in the source becomes a size element in the destination).
7621 int pass;
7622 TCGv_i32 tcg_res[2];
7623 int destelt = is_q ? 2 : 0;
7624 int passes = scalar ? 1 : 2;
7626 if (scalar) {
7627 tcg_res[1] = tcg_const_i32(0);
7630 for (pass = 0; pass < passes; pass++) {
7631 TCGv_i64 tcg_op = tcg_temp_new_i64();
7632 NeonGenNarrowFn *genfn = NULL;
7633 NeonGenNarrowEnvFn *genenvfn = NULL;
7635 if (scalar) {
7636 read_vec_element(s, tcg_op, rn, pass, size + 1);
7637 } else {
7638 read_vec_element(s, tcg_op, rn, pass, MO_64);
7640 tcg_res[pass] = tcg_temp_new_i32();
7642 switch (opcode) {
7643 case 0x12: /* XTN, SQXTUN */
7645 static NeonGenNarrowFn * const xtnfns[3] = {
7646 gen_helper_neon_narrow_u8,
7647 gen_helper_neon_narrow_u16,
7648 tcg_gen_trunc_i64_i32,
7650 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
7651 gen_helper_neon_unarrow_sat8,
7652 gen_helper_neon_unarrow_sat16,
7653 gen_helper_neon_unarrow_sat32,
7655 if (u) {
7656 genenvfn = sqxtunfns[size];
7657 } else {
7658 genfn = xtnfns[size];
7660 break;
7662 case 0x14: /* SQXTN, UQXTN */
7664 static NeonGenNarrowEnvFn * const fns[3][2] = {
7665 { gen_helper_neon_narrow_sat_s8,
7666 gen_helper_neon_narrow_sat_u8 },
7667 { gen_helper_neon_narrow_sat_s16,
7668 gen_helper_neon_narrow_sat_u16 },
7669 { gen_helper_neon_narrow_sat_s32,
7670 gen_helper_neon_narrow_sat_u32 },
7672 genenvfn = fns[size][u];
7673 break;
7675 case 0x16: /* FCVTN, FCVTN2 */
7676 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
7677 if (size == 2) {
7678 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
7679 } else {
7680 TCGv_i32 tcg_lo = tcg_temp_new_i32();
7681 TCGv_i32 tcg_hi = tcg_temp_new_i32();
7682 tcg_gen_trunc_i64_i32(tcg_lo, tcg_op);
7683 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, cpu_env);
7684 tcg_gen_shri_i64(tcg_op, tcg_op, 32);
7685 tcg_gen_trunc_i64_i32(tcg_hi, tcg_op);
7686 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, cpu_env);
7687 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
7688 tcg_temp_free_i32(tcg_lo);
7689 tcg_temp_free_i32(tcg_hi);
7691 break;
7692 case 0x56: /* FCVTXN, FCVTXN2 */
7693 /* 64 bit to 32 bit float conversion
7694 * with von Neumann rounding (round to odd)
7696 assert(size == 2);
7697 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
7698 break;
7699 default:
7700 g_assert_not_reached();
7703 if (genfn) {
7704 genfn(tcg_res[pass], tcg_op);
7705 } else if (genenvfn) {
7706 genenvfn(tcg_res[pass], cpu_env, tcg_op);
7709 tcg_temp_free_i64(tcg_op);
7712 for (pass = 0; pass < 2; pass++) {
7713 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
7714 tcg_temp_free_i32(tcg_res[pass]);
7716 if (!is_q) {
7717 clear_vec_high(s, rd);
7721 /* Remaining saturating accumulating ops */
7722 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
7723 bool is_q, int size, int rn, int rd)
7725 bool is_double = (size == 3);
7727 if (is_double) {
7728 TCGv_i64 tcg_rn = tcg_temp_new_i64();
7729 TCGv_i64 tcg_rd = tcg_temp_new_i64();
7730 int pass;
7732 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
7733 read_vec_element(s, tcg_rn, rn, pass, MO_64);
7734 read_vec_element(s, tcg_rd, rd, pass, MO_64);
7736 if (is_u) { /* USQADD */
7737 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7738 } else { /* SUQADD */
7739 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7741 write_vec_element(s, tcg_rd, rd, pass, MO_64);
7743 if (is_scalar) {
7744 clear_vec_high(s, rd);
7747 tcg_temp_free_i64(tcg_rd);
7748 tcg_temp_free_i64(tcg_rn);
7749 } else {
7750 TCGv_i32 tcg_rn = tcg_temp_new_i32();
7751 TCGv_i32 tcg_rd = tcg_temp_new_i32();
7752 int pass, maxpasses;
7754 if (is_scalar) {
7755 maxpasses = 1;
7756 } else {
7757 maxpasses = is_q ? 4 : 2;
7760 for (pass = 0; pass < maxpasses; pass++) {
7761 if (is_scalar) {
7762 read_vec_element_i32(s, tcg_rn, rn, pass, size);
7763 read_vec_element_i32(s, tcg_rd, rd, pass, size);
7764 } else {
7765 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
7766 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
7769 if (is_u) { /* USQADD */
7770 switch (size) {
7771 case 0:
7772 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7773 break;
7774 case 1:
7775 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7776 break;
7777 case 2:
7778 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7779 break;
7780 default:
7781 g_assert_not_reached();
7783 } else { /* SUQADD */
7784 switch (size) {
7785 case 0:
7786 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7787 break;
7788 case 1:
7789 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7790 break;
7791 case 2:
7792 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7793 break;
7794 default:
7795 g_assert_not_reached();
7799 if (is_scalar) {
7800 TCGv_i64 tcg_zero = tcg_const_i64(0);
7801 write_vec_element(s, tcg_zero, rd, 0, MO_64);
7802 tcg_temp_free_i64(tcg_zero);
7804 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
7807 if (!is_q) {
7808 clear_vec_high(s, rd);
7811 tcg_temp_free_i32(tcg_rd);
7812 tcg_temp_free_i32(tcg_rn);
7816 /* C3.6.12 AdvSIMD scalar two reg misc
7817 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7818 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7819 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
7820 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7822 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
7824 int rd = extract32(insn, 0, 5);
7825 int rn = extract32(insn, 5, 5);
7826 int opcode = extract32(insn, 12, 5);
7827 int size = extract32(insn, 22, 2);
7828 bool u = extract32(insn, 29, 1);
7829 bool is_fcvt = false;
7830 int rmode;
7831 TCGv_i32 tcg_rmode;
7832 TCGv_ptr tcg_fpstatus;
7834 switch (opcode) {
7835 case 0x3: /* USQADD / SUQADD*/
7836 if (!fp_access_check(s)) {
7837 return;
7839 handle_2misc_satacc(s, true, u, false, size, rn, rd);
7840 return;
7841 case 0x7: /* SQABS / SQNEG */
7842 break;
7843 case 0xa: /* CMLT */
7844 if (u) {
7845 unallocated_encoding(s);
7846 return;
7848 /* fall through */
7849 case 0x8: /* CMGT, CMGE */
7850 case 0x9: /* CMEQ, CMLE */
7851 case 0xb: /* ABS, NEG */
7852 if (size != 3) {
7853 unallocated_encoding(s);
7854 return;
7856 break;
7857 case 0x12: /* SQXTUN */
7858 if (!u) {
7859 unallocated_encoding(s);
7860 return;
7862 /* fall through */
7863 case 0x14: /* SQXTN, UQXTN */
7864 if (size == 3) {
7865 unallocated_encoding(s);
7866 return;
7868 if (!fp_access_check(s)) {
7869 return;
7871 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
7872 return;
7873 case 0xc ... 0xf:
7874 case 0x16 ... 0x1d:
7875 case 0x1f:
7876 /* Floating point: U, size[1] and opcode indicate operation;
7877 * size[0] indicates single or double precision.
7879 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
7880 size = extract32(size, 0, 1) ? 3 : 2;
7881 switch (opcode) {
7882 case 0x2c: /* FCMGT (zero) */
7883 case 0x2d: /* FCMEQ (zero) */
7884 case 0x2e: /* FCMLT (zero) */
7885 case 0x6c: /* FCMGE (zero) */
7886 case 0x6d: /* FCMLE (zero) */
7887 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
7888 return;
7889 case 0x1d: /* SCVTF */
7890 case 0x5d: /* UCVTF */
7892 bool is_signed = (opcode == 0x1d);
7893 if (!fp_access_check(s)) {
7894 return;
7896 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
7897 return;
7899 case 0x3d: /* FRECPE */
7900 case 0x3f: /* FRECPX */
7901 case 0x7d: /* FRSQRTE */
7902 if (!fp_access_check(s)) {
7903 return;
7905 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
7906 return;
7907 case 0x1a: /* FCVTNS */
7908 case 0x1b: /* FCVTMS */
7909 case 0x3a: /* FCVTPS */
7910 case 0x3b: /* FCVTZS */
7911 case 0x5a: /* FCVTNU */
7912 case 0x5b: /* FCVTMU */
7913 case 0x7a: /* FCVTPU */
7914 case 0x7b: /* FCVTZU */
7915 is_fcvt = true;
7916 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
7917 break;
7918 case 0x1c: /* FCVTAS */
7919 case 0x5c: /* FCVTAU */
7920 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
7921 is_fcvt = true;
7922 rmode = FPROUNDING_TIEAWAY;
7923 break;
7924 case 0x56: /* FCVTXN, FCVTXN2 */
7925 if (size == 2) {
7926 unallocated_encoding(s);
7927 return;
7929 if (!fp_access_check(s)) {
7930 return;
7932 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
7933 return;
7934 default:
7935 unallocated_encoding(s);
7936 return;
7938 break;
7939 default:
7940 unallocated_encoding(s);
7941 return;
7944 if (!fp_access_check(s)) {
7945 return;
7948 if (is_fcvt) {
7949 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
7950 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
7951 tcg_fpstatus = get_fpstatus_ptr();
7952 } else {
7953 TCGV_UNUSED_I32(tcg_rmode);
7954 TCGV_UNUSED_PTR(tcg_fpstatus);
7957 if (size == 3) {
7958 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7959 TCGv_i64 tcg_rd = tcg_temp_new_i64();
7961 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
7962 write_fp_dreg(s, rd, tcg_rd);
7963 tcg_temp_free_i64(tcg_rd);
7964 tcg_temp_free_i64(tcg_rn);
7965 } else {
7966 TCGv_i32 tcg_rn = tcg_temp_new_i32();
7967 TCGv_i32 tcg_rd = tcg_temp_new_i32();
7969 read_vec_element_i32(s, tcg_rn, rn, 0, size);
7971 switch (opcode) {
7972 case 0x7: /* SQABS, SQNEG */
7974 NeonGenOneOpEnvFn *genfn;
7975 static NeonGenOneOpEnvFn * const fns[3][2] = {
7976 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
7977 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
7978 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
7980 genfn = fns[size][u];
7981 genfn(tcg_rd, cpu_env, tcg_rn);
7982 break;
7984 case 0x1a: /* FCVTNS */
7985 case 0x1b: /* FCVTMS */
7986 case 0x1c: /* FCVTAS */
7987 case 0x3a: /* FCVTPS */
7988 case 0x3b: /* FCVTZS */
7990 TCGv_i32 tcg_shift = tcg_const_i32(0);
7991 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
7992 tcg_temp_free_i32(tcg_shift);
7993 break;
7995 case 0x5a: /* FCVTNU */
7996 case 0x5b: /* FCVTMU */
7997 case 0x5c: /* FCVTAU */
7998 case 0x7a: /* FCVTPU */
7999 case 0x7b: /* FCVTZU */
8001 TCGv_i32 tcg_shift = tcg_const_i32(0);
8002 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8003 tcg_temp_free_i32(tcg_shift);
8004 break;
8006 default:
8007 g_assert_not_reached();
8010 write_fp_sreg(s, rd, tcg_rd);
8011 tcg_temp_free_i32(tcg_rd);
8012 tcg_temp_free_i32(tcg_rn);
8015 if (is_fcvt) {
8016 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
8017 tcg_temp_free_i32(tcg_rmode);
8018 tcg_temp_free_ptr(tcg_fpstatus);
8022 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
8023 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
8024 int immh, int immb, int opcode, int rn, int rd)
8026 int size = 32 - clz32(immh) - 1;
8027 int immhb = immh << 3 | immb;
8028 int shift = 2 * (8 << size) - immhb;
8029 bool accumulate = false;
8030 bool round = false;
8031 bool insert = false;
8032 int dsize = is_q ? 128 : 64;
8033 int esize = 8 << size;
8034 int elements = dsize/esize;
8035 TCGMemOp memop = size | (is_u ? 0 : MO_SIGN);
8036 TCGv_i64 tcg_rn = new_tmp_a64(s);
8037 TCGv_i64 tcg_rd = new_tmp_a64(s);
8038 TCGv_i64 tcg_round;
8039 int i;
8041 if (extract32(immh, 3, 1) && !is_q) {
8042 unallocated_encoding(s);
8043 return;
8046 if (size > 3 && !is_q) {
8047 unallocated_encoding(s);
8048 return;
8051 if (!fp_access_check(s)) {
8052 return;
8055 switch (opcode) {
8056 case 0x02: /* SSRA / USRA (accumulate) */
8057 accumulate = true;
8058 break;
8059 case 0x04: /* SRSHR / URSHR (rounding) */
8060 round = true;
8061 break;
8062 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8063 accumulate = round = true;
8064 break;
8065 case 0x08: /* SRI */
8066 insert = true;
8067 break;
8070 if (round) {
8071 uint64_t round_const = 1ULL << (shift - 1);
8072 tcg_round = tcg_const_i64(round_const);
8073 } else {
8074 TCGV_UNUSED_I64(tcg_round);
8077 for (i = 0; i < elements; i++) {
8078 read_vec_element(s, tcg_rn, rn, i, memop);
8079 if (accumulate || insert) {
8080 read_vec_element(s, tcg_rd, rd, i, memop);
8083 if (insert) {
8084 handle_shri_with_ins(tcg_rd, tcg_rn, size, shift);
8085 } else {
8086 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8087 accumulate, is_u, size, shift);
8090 write_vec_element(s, tcg_rd, rd, i, size);
8093 if (!is_q) {
8094 clear_vec_high(s, rd);
8097 if (round) {
8098 tcg_temp_free_i64(tcg_round);
8102 /* SHL/SLI - Vector shift left */
8103 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
8104 int immh, int immb, int opcode, int rn, int rd)
8106 int size = 32 - clz32(immh) - 1;
8107 int immhb = immh << 3 | immb;
8108 int shift = immhb - (8 << size);
8109 int dsize = is_q ? 128 : 64;
8110 int esize = 8 << size;
8111 int elements = dsize/esize;
8112 TCGv_i64 tcg_rn = new_tmp_a64(s);
8113 TCGv_i64 tcg_rd = new_tmp_a64(s);
8114 int i;
8116 if (extract32(immh, 3, 1) && !is_q) {
8117 unallocated_encoding(s);
8118 return;
8121 if (size > 3 && !is_q) {
8122 unallocated_encoding(s);
8123 return;
8126 if (!fp_access_check(s)) {
8127 return;
8130 for (i = 0; i < elements; i++) {
8131 read_vec_element(s, tcg_rn, rn, i, size);
8132 if (insert) {
8133 read_vec_element(s, tcg_rd, rd, i, size);
8136 handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift);
8138 write_vec_element(s, tcg_rd, rd, i, size);
8141 if (!is_q) {
8142 clear_vec_high(s, rd);
8146 /* USHLL/SHLL - Vector shift left with widening */
8147 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
8148 int immh, int immb, int opcode, int rn, int rd)
8150 int size = 32 - clz32(immh) - 1;
8151 int immhb = immh << 3 | immb;
8152 int shift = immhb - (8 << size);
8153 int dsize = 64;
8154 int esize = 8 << size;
8155 int elements = dsize/esize;
8156 TCGv_i64 tcg_rn = new_tmp_a64(s);
8157 TCGv_i64 tcg_rd = new_tmp_a64(s);
8158 int i;
8160 if (size >= 3) {
8161 unallocated_encoding(s);
8162 return;
8165 if (!fp_access_check(s)) {
8166 return;
8169 /* For the LL variants the store is larger than the load,
8170 * so if rd == rn we would overwrite parts of our input.
8171 * So load everything right now and use shifts in the main loop.
8173 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
8175 for (i = 0; i < elements; i++) {
8176 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
8177 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
8178 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
8179 write_vec_element(s, tcg_rd, rd, i, size + 1);
8183 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
8184 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
8185 int immh, int immb, int opcode, int rn, int rd)
8187 int immhb = immh << 3 | immb;
8188 int size = 32 - clz32(immh) - 1;
8189 int dsize = 64;
8190 int esize = 8 << size;
8191 int elements = dsize/esize;
8192 int shift = (2 * esize) - immhb;
8193 bool round = extract32(opcode, 0, 1);
8194 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
8195 TCGv_i64 tcg_round;
8196 int i;
8198 if (extract32(immh, 3, 1)) {
8199 unallocated_encoding(s);
8200 return;
8203 if (!fp_access_check(s)) {
8204 return;
8207 tcg_rn = tcg_temp_new_i64();
8208 tcg_rd = tcg_temp_new_i64();
8209 tcg_final = tcg_temp_new_i64();
8210 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
8212 if (round) {
8213 uint64_t round_const = 1ULL << (shift - 1);
8214 tcg_round = tcg_const_i64(round_const);
8215 } else {
8216 TCGV_UNUSED_I64(tcg_round);
8219 for (i = 0; i < elements; i++) {
8220 read_vec_element(s, tcg_rn, rn, i, size+1);
8221 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8222 false, true, size+1, shift);
8224 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8227 if (!is_q) {
8228 clear_vec_high(s, rd);
8229 write_vec_element(s, tcg_final, rd, 0, MO_64);
8230 } else {
8231 write_vec_element(s, tcg_final, rd, 1, MO_64);
8234 if (round) {
8235 tcg_temp_free_i64(tcg_round);
8237 tcg_temp_free_i64(tcg_rn);
8238 tcg_temp_free_i64(tcg_rd);
8239 tcg_temp_free_i64(tcg_final);
8240 return;
8244 /* C3.6.14 AdvSIMD shift by immediate
8245 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
8246 * +---+---+---+-------------+------+------+--------+---+------+------+
8247 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
8248 * +---+---+---+-------------+------+------+--------+---+------+------+
8250 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
8252 int rd = extract32(insn, 0, 5);
8253 int rn = extract32(insn, 5, 5);
8254 int opcode = extract32(insn, 11, 5);
8255 int immb = extract32(insn, 16, 3);
8256 int immh = extract32(insn, 19, 4);
8257 bool is_u = extract32(insn, 29, 1);
8258 bool is_q = extract32(insn, 30, 1);
8260 switch (opcode) {
8261 case 0x08: /* SRI */
8262 if (!is_u) {
8263 unallocated_encoding(s);
8264 return;
8266 /* fall through */
8267 case 0x00: /* SSHR / USHR */
8268 case 0x02: /* SSRA / USRA (accumulate) */
8269 case 0x04: /* SRSHR / URSHR (rounding) */
8270 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8271 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
8272 break;
8273 case 0x0a: /* SHL / SLI */
8274 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
8275 break;
8276 case 0x10: /* SHRN */
8277 case 0x11: /* RSHRN / SQRSHRUN */
8278 if (is_u) {
8279 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
8280 opcode, rn, rd);
8281 } else {
8282 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
8284 break;
8285 case 0x12: /* SQSHRN / UQSHRN */
8286 case 0x13: /* SQRSHRN / UQRSHRN */
8287 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
8288 opcode, rn, rd);
8289 break;
8290 case 0x14: /* SSHLL / USHLL */
8291 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
8292 break;
8293 case 0x1c: /* SCVTF / UCVTF */
8294 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
8295 opcode, rn, rd);
8296 break;
8297 case 0xc: /* SQSHLU */
8298 if (!is_u) {
8299 unallocated_encoding(s);
8300 return;
8302 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
8303 break;
8304 case 0xe: /* SQSHL, UQSHL */
8305 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
8306 break;
8307 case 0x1f: /* FCVTZS/ FCVTZU */
8308 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
8309 return;
8310 default:
8311 unallocated_encoding(s);
8312 return;
8316 /* Generate code to do a "long" addition or subtraction, ie one done in
8317 * TCGv_i64 on vector lanes twice the width specified by size.
8319 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
8320 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
8322 static NeonGenTwo64OpFn * const fns[3][2] = {
8323 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
8324 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
8325 { tcg_gen_add_i64, tcg_gen_sub_i64 },
8327 NeonGenTwo64OpFn *genfn;
8328 assert(size < 3);
8330 genfn = fns[size][is_sub];
8331 genfn(tcg_res, tcg_op1, tcg_op2);
8334 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
8335 int opcode, int rd, int rn, int rm)
8337 /* 3-reg-different widening insns: 64 x 64 -> 128 */
8338 TCGv_i64 tcg_res[2];
8339 int pass, accop;
8341 tcg_res[0] = tcg_temp_new_i64();
8342 tcg_res[1] = tcg_temp_new_i64();
8344 /* Does this op do an adding accumulate, a subtracting accumulate,
8345 * or no accumulate at all?
8347 switch (opcode) {
8348 case 5:
8349 case 8:
8350 case 9:
8351 accop = 1;
8352 break;
8353 case 10:
8354 case 11:
8355 accop = -1;
8356 break;
8357 default:
8358 accop = 0;
8359 break;
8362 if (accop != 0) {
8363 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
8364 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
8367 /* size == 2 means two 32x32->64 operations; this is worth special
8368 * casing because we can generally handle it inline.
8370 if (size == 2) {
8371 for (pass = 0; pass < 2; pass++) {
8372 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8373 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8374 TCGv_i64 tcg_passres;
8375 TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
8377 int elt = pass + is_q * 2;
8379 read_vec_element(s, tcg_op1, rn, elt, memop);
8380 read_vec_element(s, tcg_op2, rm, elt, memop);
8382 if (accop == 0) {
8383 tcg_passres = tcg_res[pass];
8384 } else {
8385 tcg_passres = tcg_temp_new_i64();
8388 switch (opcode) {
8389 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
8390 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
8391 break;
8392 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
8393 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
8394 break;
8395 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
8396 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
8398 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
8399 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
8401 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
8402 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
8403 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
8404 tcg_passres,
8405 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
8406 tcg_temp_free_i64(tcg_tmp1);
8407 tcg_temp_free_i64(tcg_tmp2);
8408 break;
8410 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
8411 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
8412 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
8413 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
8414 break;
8415 case 9: /* SQDMLAL, SQDMLAL2 */
8416 case 11: /* SQDMLSL, SQDMLSL2 */
8417 case 13: /* SQDMULL, SQDMULL2 */
8418 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
8419 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
8420 tcg_passres, tcg_passres);
8421 break;
8422 default:
8423 g_assert_not_reached();
8426 if (opcode == 9 || opcode == 11) {
8427 /* saturating accumulate ops */
8428 if (accop < 0) {
8429 tcg_gen_neg_i64(tcg_passres, tcg_passres);
8431 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
8432 tcg_res[pass], tcg_passres);
8433 } else if (accop > 0) {
8434 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
8435 } else if (accop < 0) {
8436 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
8439 if (accop != 0) {
8440 tcg_temp_free_i64(tcg_passres);
8443 tcg_temp_free_i64(tcg_op1);
8444 tcg_temp_free_i64(tcg_op2);
8446 } else {
8447 /* size 0 or 1, generally helper functions */
8448 for (pass = 0; pass < 2; pass++) {
8449 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8450 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8451 TCGv_i64 tcg_passres;
8452 int elt = pass + is_q * 2;
8454 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
8455 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
8457 if (accop == 0) {
8458 tcg_passres = tcg_res[pass];
8459 } else {
8460 tcg_passres = tcg_temp_new_i64();
8463 switch (opcode) {
8464 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
8465 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
8467 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
8468 static NeonGenWidenFn * const widenfns[2][2] = {
8469 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
8470 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
8472 NeonGenWidenFn *widenfn = widenfns[size][is_u];
8474 widenfn(tcg_op2_64, tcg_op2);
8475 widenfn(tcg_passres, tcg_op1);
8476 gen_neon_addl(size, (opcode == 2), tcg_passres,
8477 tcg_passres, tcg_op2_64);
8478 tcg_temp_free_i64(tcg_op2_64);
8479 break;
8481 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
8482 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
8483 if (size == 0) {
8484 if (is_u) {
8485 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
8486 } else {
8487 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
8489 } else {
8490 if (is_u) {
8491 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
8492 } else {
8493 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
8496 break;
8497 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
8498 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
8499 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
8500 if (size == 0) {
8501 if (is_u) {
8502 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
8503 } else {
8504 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
8506 } else {
8507 if (is_u) {
8508 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
8509 } else {
8510 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
8513 break;
8514 case 9: /* SQDMLAL, SQDMLAL2 */
8515 case 11: /* SQDMLSL, SQDMLSL2 */
8516 case 13: /* SQDMULL, SQDMULL2 */
8517 assert(size == 1);
8518 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
8519 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
8520 tcg_passres, tcg_passres);
8521 break;
8522 case 14: /* PMULL */
8523 assert(size == 0);
8524 gen_helper_neon_mull_p8(tcg_passres, tcg_op1, tcg_op2);
8525 break;
8526 default:
8527 g_assert_not_reached();
8529 tcg_temp_free_i32(tcg_op1);
8530 tcg_temp_free_i32(tcg_op2);
8532 if (accop != 0) {
8533 if (opcode == 9 || opcode == 11) {
8534 /* saturating accumulate ops */
8535 if (accop < 0) {
8536 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
8538 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
8539 tcg_res[pass],
8540 tcg_passres);
8541 } else {
8542 gen_neon_addl(size, (accop < 0), tcg_res[pass],
8543 tcg_res[pass], tcg_passres);
8545 tcg_temp_free_i64(tcg_passres);
8550 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
8551 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
8552 tcg_temp_free_i64(tcg_res[0]);
8553 tcg_temp_free_i64(tcg_res[1]);
8556 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
8557 int opcode, int rd, int rn, int rm)
8559 TCGv_i64 tcg_res[2];
8560 int part = is_q ? 2 : 0;
8561 int pass;
8563 for (pass = 0; pass < 2; pass++) {
8564 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8565 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8566 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
8567 static NeonGenWidenFn * const widenfns[3][2] = {
8568 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
8569 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
8570 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
8572 NeonGenWidenFn *widenfn = widenfns[size][is_u];
8574 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8575 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
8576 widenfn(tcg_op2_wide, tcg_op2);
8577 tcg_temp_free_i32(tcg_op2);
8578 tcg_res[pass] = tcg_temp_new_i64();
8579 gen_neon_addl(size, (opcode == 3),
8580 tcg_res[pass], tcg_op1, tcg_op2_wide);
8581 tcg_temp_free_i64(tcg_op1);
8582 tcg_temp_free_i64(tcg_op2_wide);
8585 for (pass = 0; pass < 2; pass++) {
8586 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
8587 tcg_temp_free_i64(tcg_res[pass]);
8591 static void do_narrow_high_u32(TCGv_i32 res, TCGv_i64 in)
8593 tcg_gen_shri_i64(in, in, 32);
8594 tcg_gen_trunc_i64_i32(res, in);
8597 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
8599 tcg_gen_addi_i64(in, in, 1U << 31);
8600 do_narrow_high_u32(res, in);
8603 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
8604 int opcode, int rd, int rn, int rm)
8606 TCGv_i32 tcg_res[2];
8607 int part = is_q ? 2 : 0;
8608 int pass;
8610 for (pass = 0; pass < 2; pass++) {
8611 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8612 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8613 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
8614 static NeonGenNarrowFn * const narrowfns[3][2] = {
8615 { gen_helper_neon_narrow_high_u8,
8616 gen_helper_neon_narrow_round_high_u8 },
8617 { gen_helper_neon_narrow_high_u16,
8618 gen_helper_neon_narrow_round_high_u16 },
8619 { do_narrow_high_u32, do_narrow_round_high_u32 },
8621 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
8623 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8624 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8626 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
8628 tcg_temp_free_i64(tcg_op1);
8629 tcg_temp_free_i64(tcg_op2);
8631 tcg_res[pass] = tcg_temp_new_i32();
8632 gennarrow(tcg_res[pass], tcg_wideres);
8633 tcg_temp_free_i64(tcg_wideres);
8636 for (pass = 0; pass < 2; pass++) {
8637 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
8638 tcg_temp_free_i32(tcg_res[pass]);
8640 if (!is_q) {
8641 clear_vec_high(s, rd);
8645 static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm)
8647 /* PMULL of 64 x 64 -> 128 is an odd special case because it
8648 * is the only three-reg-diff instruction which produces a
8649 * 128-bit wide result from a single operation. However since
8650 * it's possible to calculate the two halves more or less
8651 * separately we just use two helper calls.
8653 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8654 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8655 TCGv_i64 tcg_res = tcg_temp_new_i64();
8657 read_vec_element(s, tcg_op1, rn, is_q, MO_64);
8658 read_vec_element(s, tcg_op2, rm, is_q, MO_64);
8659 gen_helper_neon_pmull_64_lo(tcg_res, tcg_op1, tcg_op2);
8660 write_vec_element(s, tcg_res, rd, 0, MO_64);
8661 gen_helper_neon_pmull_64_hi(tcg_res, tcg_op1, tcg_op2);
8662 write_vec_element(s, tcg_res, rd, 1, MO_64);
8664 tcg_temp_free_i64(tcg_op1);
8665 tcg_temp_free_i64(tcg_op2);
8666 tcg_temp_free_i64(tcg_res);
8669 /* C3.6.15 AdvSIMD three different
8670 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
8671 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
8672 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
8673 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
8675 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
8677 /* Instructions in this group fall into three basic classes
8678 * (in each case with the operation working on each element in
8679 * the input vectors):
8680 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
8681 * 128 bit input)
8682 * (2) wide 64 x 128 -> 128
8683 * (3) narrowing 128 x 128 -> 64
8684 * Here we do initial decode, catch unallocated cases and
8685 * dispatch to separate functions for each class.
8687 int is_q = extract32(insn, 30, 1);
8688 int is_u = extract32(insn, 29, 1);
8689 int size = extract32(insn, 22, 2);
8690 int opcode = extract32(insn, 12, 4);
8691 int rm = extract32(insn, 16, 5);
8692 int rn = extract32(insn, 5, 5);
8693 int rd = extract32(insn, 0, 5);
8695 switch (opcode) {
8696 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
8697 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
8698 /* 64 x 128 -> 128 */
8699 if (size == 3) {
8700 unallocated_encoding(s);
8701 return;
8703 if (!fp_access_check(s)) {
8704 return;
8706 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
8707 break;
8708 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
8709 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
8710 /* 128 x 128 -> 64 */
8711 if (size == 3) {
8712 unallocated_encoding(s);
8713 return;
8715 if (!fp_access_check(s)) {
8716 return;
8718 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
8719 break;
8720 case 14: /* PMULL, PMULL2 */
8721 if (is_u || size == 1 || size == 2) {
8722 unallocated_encoding(s);
8723 return;
8725 if (size == 3) {
8726 if (!arm_dc_feature(s, ARM_FEATURE_V8_PMULL)) {
8727 unallocated_encoding(s);
8728 return;
8730 if (!fp_access_check(s)) {
8731 return;
8733 handle_pmull_64(s, is_q, rd, rn, rm);
8734 return;
8736 goto is_widening;
8737 case 9: /* SQDMLAL, SQDMLAL2 */
8738 case 11: /* SQDMLSL, SQDMLSL2 */
8739 case 13: /* SQDMULL, SQDMULL2 */
8740 if (is_u || size == 0) {
8741 unallocated_encoding(s);
8742 return;
8744 /* fall through */
8745 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
8746 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
8747 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
8748 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
8749 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
8750 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
8751 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
8752 /* 64 x 64 -> 128 */
8753 if (size == 3) {
8754 unallocated_encoding(s);
8755 return;
8757 is_widening:
8758 if (!fp_access_check(s)) {
8759 return;
8762 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
8763 break;
8764 default:
8765 /* opcode 15 not allocated */
8766 unallocated_encoding(s);
8767 break;
8771 /* Logic op (opcode == 3) subgroup of C3.6.16. */
8772 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
8774 int rd = extract32(insn, 0, 5);
8775 int rn = extract32(insn, 5, 5);
8776 int rm = extract32(insn, 16, 5);
8777 int size = extract32(insn, 22, 2);
8778 bool is_u = extract32(insn, 29, 1);
8779 bool is_q = extract32(insn, 30, 1);
8780 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
8781 int pass;
8783 if (!fp_access_check(s)) {
8784 return;
8787 tcg_op1 = tcg_temp_new_i64();
8788 tcg_op2 = tcg_temp_new_i64();
8789 tcg_res[0] = tcg_temp_new_i64();
8790 tcg_res[1] = tcg_temp_new_i64();
8792 for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
8793 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8794 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8796 if (!is_u) {
8797 switch (size) {
8798 case 0: /* AND */
8799 tcg_gen_and_i64(tcg_res[pass], tcg_op1, tcg_op2);
8800 break;
8801 case 1: /* BIC */
8802 tcg_gen_andc_i64(tcg_res[pass], tcg_op1, tcg_op2);
8803 break;
8804 case 2: /* ORR */
8805 tcg_gen_or_i64(tcg_res[pass], tcg_op1, tcg_op2);
8806 break;
8807 case 3: /* ORN */
8808 tcg_gen_orc_i64(tcg_res[pass], tcg_op1, tcg_op2);
8809 break;
8811 } else {
8812 if (size != 0) {
8813 /* B* ops need res loaded to operate on */
8814 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
8817 switch (size) {
8818 case 0: /* EOR */
8819 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
8820 break;
8821 case 1: /* BSL bitwise select */
8822 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_op2);
8823 tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_res[pass]);
8824 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op1);
8825 break;
8826 case 2: /* BIT, bitwise insert if true */
8827 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]);
8828 tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_op2);
8829 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
8830 break;
8831 case 3: /* BIF, bitwise insert if false */
8832 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]);
8833 tcg_gen_andc_i64(tcg_op1, tcg_op1, tcg_op2);
8834 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
8835 break;
8840 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
8841 if (!is_q) {
8842 tcg_gen_movi_i64(tcg_res[1], 0);
8844 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
8846 tcg_temp_free_i64(tcg_op1);
8847 tcg_temp_free_i64(tcg_op2);
8848 tcg_temp_free_i64(tcg_res[0]);
8849 tcg_temp_free_i64(tcg_res[1]);
8852 /* Helper functions for 32 bit comparisons */
8853 static void gen_max_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
8855 tcg_gen_movcond_i32(TCG_COND_GE, res, op1, op2, op1, op2);
8858 static void gen_max_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
8860 tcg_gen_movcond_i32(TCG_COND_GEU, res, op1, op2, op1, op2);
8863 static void gen_min_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
8865 tcg_gen_movcond_i32(TCG_COND_LE, res, op1, op2, op1, op2);
8868 static void gen_min_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
8870 tcg_gen_movcond_i32(TCG_COND_LEU, res, op1, op2, op1, op2);
8873 /* Pairwise op subgroup of C3.6.16.
8875 * This is called directly or via the handle_3same_float for float pairwise
8876 * operations where the opcode and size are calculated differently.
8878 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
8879 int size, int rn, int rm, int rd)
8881 TCGv_ptr fpst;
8882 int pass;
8884 /* Floating point operations need fpst */
8885 if (opcode >= 0x58) {
8886 fpst = get_fpstatus_ptr();
8887 } else {
8888 TCGV_UNUSED_PTR(fpst);
8891 if (!fp_access_check(s)) {
8892 return;
8895 /* These operations work on the concatenated rm:rn, with each pair of
8896 * adjacent elements being operated on to produce an element in the result.
8898 if (size == 3) {
8899 TCGv_i64 tcg_res[2];
8901 for (pass = 0; pass < 2; pass++) {
8902 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8903 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8904 int passreg = (pass == 0) ? rn : rm;
8906 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
8907 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
8908 tcg_res[pass] = tcg_temp_new_i64();
8910 switch (opcode) {
8911 case 0x17: /* ADDP */
8912 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
8913 break;
8914 case 0x58: /* FMAXNMP */
8915 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
8916 break;
8917 case 0x5a: /* FADDP */
8918 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
8919 break;
8920 case 0x5e: /* FMAXP */
8921 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
8922 break;
8923 case 0x78: /* FMINNMP */
8924 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
8925 break;
8926 case 0x7e: /* FMINP */
8927 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
8928 break;
8929 default:
8930 g_assert_not_reached();
8933 tcg_temp_free_i64(tcg_op1);
8934 tcg_temp_free_i64(tcg_op2);
8937 for (pass = 0; pass < 2; pass++) {
8938 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
8939 tcg_temp_free_i64(tcg_res[pass]);
8941 } else {
8942 int maxpass = is_q ? 4 : 2;
8943 TCGv_i32 tcg_res[4];
8945 for (pass = 0; pass < maxpass; pass++) {
8946 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8947 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8948 NeonGenTwoOpFn *genfn = NULL;
8949 int passreg = pass < (maxpass / 2) ? rn : rm;
8950 int passelt = (is_q && (pass & 1)) ? 2 : 0;
8952 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
8953 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
8954 tcg_res[pass] = tcg_temp_new_i32();
8956 switch (opcode) {
8957 case 0x17: /* ADDP */
8959 static NeonGenTwoOpFn * const fns[3] = {
8960 gen_helper_neon_padd_u8,
8961 gen_helper_neon_padd_u16,
8962 tcg_gen_add_i32,
8964 genfn = fns[size];
8965 break;
8967 case 0x14: /* SMAXP, UMAXP */
8969 static NeonGenTwoOpFn * const fns[3][2] = {
8970 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
8971 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
8972 { gen_max_s32, gen_max_u32 },
8974 genfn = fns[size][u];
8975 break;
8977 case 0x15: /* SMINP, UMINP */
8979 static NeonGenTwoOpFn * const fns[3][2] = {
8980 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
8981 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
8982 { gen_min_s32, gen_min_u32 },
8984 genfn = fns[size][u];
8985 break;
8987 /* The FP operations are all on single floats (32 bit) */
8988 case 0x58: /* FMAXNMP */
8989 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
8990 break;
8991 case 0x5a: /* FADDP */
8992 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
8993 break;
8994 case 0x5e: /* FMAXP */
8995 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
8996 break;
8997 case 0x78: /* FMINNMP */
8998 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
8999 break;
9000 case 0x7e: /* FMINP */
9001 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9002 break;
9003 default:
9004 g_assert_not_reached();
9007 /* FP ops called directly, otherwise call now */
9008 if (genfn) {
9009 genfn(tcg_res[pass], tcg_op1, tcg_op2);
9012 tcg_temp_free_i32(tcg_op1);
9013 tcg_temp_free_i32(tcg_op2);
9016 for (pass = 0; pass < maxpass; pass++) {
9017 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
9018 tcg_temp_free_i32(tcg_res[pass]);
9020 if (!is_q) {
9021 clear_vec_high(s, rd);
9025 if (!TCGV_IS_UNUSED_PTR(fpst)) {
9026 tcg_temp_free_ptr(fpst);
9030 /* Floating point op subgroup of C3.6.16. */
9031 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
9033 /* For floating point ops, the U, size[1] and opcode bits
9034 * together indicate the operation. size[0] indicates single
9035 * or double.
9037 int fpopcode = extract32(insn, 11, 5)
9038 | (extract32(insn, 23, 1) << 5)
9039 | (extract32(insn, 29, 1) << 6);
9040 int is_q = extract32(insn, 30, 1);
9041 int size = extract32(insn, 22, 1);
9042 int rm = extract32(insn, 16, 5);
9043 int rn = extract32(insn, 5, 5);
9044 int rd = extract32(insn, 0, 5);
9046 int datasize = is_q ? 128 : 64;
9047 int esize = 32 << size;
9048 int elements = datasize / esize;
9050 if (size == 1 && !is_q) {
9051 unallocated_encoding(s);
9052 return;
9055 switch (fpopcode) {
9056 case 0x58: /* FMAXNMP */
9057 case 0x5a: /* FADDP */
9058 case 0x5e: /* FMAXP */
9059 case 0x78: /* FMINNMP */
9060 case 0x7e: /* FMINP */
9061 if (size && !is_q) {
9062 unallocated_encoding(s);
9063 return;
9065 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
9066 rn, rm, rd);
9067 return;
9068 case 0x1b: /* FMULX */
9069 case 0x1f: /* FRECPS */
9070 case 0x3f: /* FRSQRTS */
9071 case 0x5d: /* FACGE */
9072 case 0x7d: /* FACGT */
9073 case 0x19: /* FMLA */
9074 case 0x39: /* FMLS */
9075 case 0x18: /* FMAXNM */
9076 case 0x1a: /* FADD */
9077 case 0x1c: /* FCMEQ */
9078 case 0x1e: /* FMAX */
9079 case 0x38: /* FMINNM */
9080 case 0x3a: /* FSUB */
9081 case 0x3e: /* FMIN */
9082 case 0x5b: /* FMUL */
9083 case 0x5c: /* FCMGE */
9084 case 0x5f: /* FDIV */
9085 case 0x7a: /* FABD */
9086 case 0x7c: /* FCMGT */
9087 if (!fp_access_check(s)) {
9088 return;
9091 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
9092 return;
9093 default:
9094 unallocated_encoding(s);
9095 return;
9099 /* Integer op subgroup of C3.6.16. */
9100 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
9102 int is_q = extract32(insn, 30, 1);
9103 int u = extract32(insn, 29, 1);
9104 int size = extract32(insn, 22, 2);
9105 int opcode = extract32(insn, 11, 5);
9106 int rm = extract32(insn, 16, 5);
9107 int rn = extract32(insn, 5, 5);
9108 int rd = extract32(insn, 0, 5);
9109 int pass;
9111 switch (opcode) {
9112 case 0x13: /* MUL, PMUL */
9113 if (u && size != 0) {
9114 unallocated_encoding(s);
9115 return;
9117 /* fall through */
9118 case 0x0: /* SHADD, UHADD */
9119 case 0x2: /* SRHADD, URHADD */
9120 case 0x4: /* SHSUB, UHSUB */
9121 case 0xc: /* SMAX, UMAX */
9122 case 0xd: /* SMIN, UMIN */
9123 case 0xe: /* SABD, UABD */
9124 case 0xf: /* SABA, UABA */
9125 case 0x12: /* MLA, MLS */
9126 if (size == 3) {
9127 unallocated_encoding(s);
9128 return;
9130 break;
9131 case 0x16: /* SQDMULH, SQRDMULH */
9132 if (size == 0 || size == 3) {
9133 unallocated_encoding(s);
9134 return;
9136 break;
9137 default:
9138 if (size == 3 && !is_q) {
9139 unallocated_encoding(s);
9140 return;
9142 break;
9145 if (!fp_access_check(s)) {
9146 return;
9149 if (size == 3) {
9150 assert(is_q);
9151 for (pass = 0; pass < 2; pass++) {
9152 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9153 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9154 TCGv_i64 tcg_res = tcg_temp_new_i64();
9156 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9157 read_vec_element(s, tcg_op2, rm, pass, MO_64);
9159 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
9161 write_vec_element(s, tcg_res, rd, pass, MO_64);
9163 tcg_temp_free_i64(tcg_res);
9164 tcg_temp_free_i64(tcg_op1);
9165 tcg_temp_free_i64(tcg_op2);
9167 } else {
9168 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
9169 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9170 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9171 TCGv_i32 tcg_res = tcg_temp_new_i32();
9172 NeonGenTwoOpFn *genfn = NULL;
9173 NeonGenTwoOpEnvFn *genenvfn = NULL;
9175 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9176 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9178 switch (opcode) {
9179 case 0x0: /* SHADD, UHADD */
9181 static NeonGenTwoOpFn * const fns[3][2] = {
9182 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
9183 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
9184 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
9186 genfn = fns[size][u];
9187 break;
9189 case 0x1: /* SQADD, UQADD */
9191 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9192 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9193 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9194 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9196 genenvfn = fns[size][u];
9197 break;
9199 case 0x2: /* SRHADD, URHADD */
9201 static NeonGenTwoOpFn * const fns[3][2] = {
9202 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
9203 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
9204 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
9206 genfn = fns[size][u];
9207 break;
9209 case 0x4: /* SHSUB, UHSUB */
9211 static NeonGenTwoOpFn * const fns[3][2] = {
9212 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
9213 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
9214 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
9216 genfn = fns[size][u];
9217 break;
9219 case 0x5: /* SQSUB, UQSUB */
9221 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9222 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9223 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9224 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9226 genenvfn = fns[size][u];
9227 break;
9229 case 0x6: /* CMGT, CMHI */
9231 static NeonGenTwoOpFn * const fns[3][2] = {
9232 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_u8 },
9233 { gen_helper_neon_cgt_s16, gen_helper_neon_cgt_u16 },
9234 { gen_helper_neon_cgt_s32, gen_helper_neon_cgt_u32 },
9236 genfn = fns[size][u];
9237 break;
9239 case 0x7: /* CMGE, CMHS */
9241 static NeonGenTwoOpFn * const fns[3][2] = {
9242 { gen_helper_neon_cge_s8, gen_helper_neon_cge_u8 },
9243 { gen_helper_neon_cge_s16, gen_helper_neon_cge_u16 },
9244 { gen_helper_neon_cge_s32, gen_helper_neon_cge_u32 },
9246 genfn = fns[size][u];
9247 break;
9249 case 0x8: /* SSHL, USHL */
9251 static NeonGenTwoOpFn * const fns[3][2] = {
9252 { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 },
9253 { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 },
9254 { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 },
9256 genfn = fns[size][u];
9257 break;
9259 case 0x9: /* SQSHL, UQSHL */
9261 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9262 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9263 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9264 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9266 genenvfn = fns[size][u];
9267 break;
9269 case 0xa: /* SRSHL, URSHL */
9271 static NeonGenTwoOpFn * const fns[3][2] = {
9272 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
9273 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
9274 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
9276 genfn = fns[size][u];
9277 break;
9279 case 0xb: /* SQRSHL, UQRSHL */
9281 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9282 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9283 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9284 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9286 genenvfn = fns[size][u];
9287 break;
9289 case 0xc: /* SMAX, UMAX */
9291 static NeonGenTwoOpFn * const fns[3][2] = {
9292 { gen_helper_neon_max_s8, gen_helper_neon_max_u8 },
9293 { gen_helper_neon_max_s16, gen_helper_neon_max_u16 },
9294 { gen_max_s32, gen_max_u32 },
9296 genfn = fns[size][u];
9297 break;
9300 case 0xd: /* SMIN, UMIN */
9302 static NeonGenTwoOpFn * const fns[3][2] = {
9303 { gen_helper_neon_min_s8, gen_helper_neon_min_u8 },
9304 { gen_helper_neon_min_s16, gen_helper_neon_min_u16 },
9305 { gen_min_s32, gen_min_u32 },
9307 genfn = fns[size][u];
9308 break;
9310 case 0xe: /* SABD, UABD */
9311 case 0xf: /* SABA, UABA */
9313 static NeonGenTwoOpFn * const fns[3][2] = {
9314 { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
9315 { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
9316 { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
9318 genfn = fns[size][u];
9319 break;
9321 case 0x10: /* ADD, SUB */
9323 static NeonGenTwoOpFn * const fns[3][2] = {
9324 { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 },
9325 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
9326 { tcg_gen_add_i32, tcg_gen_sub_i32 },
9328 genfn = fns[size][u];
9329 break;
9331 case 0x11: /* CMTST, CMEQ */
9333 static NeonGenTwoOpFn * const fns[3][2] = {
9334 { gen_helper_neon_tst_u8, gen_helper_neon_ceq_u8 },
9335 { gen_helper_neon_tst_u16, gen_helper_neon_ceq_u16 },
9336 { gen_helper_neon_tst_u32, gen_helper_neon_ceq_u32 },
9338 genfn = fns[size][u];
9339 break;
9341 case 0x13: /* MUL, PMUL */
9342 if (u) {
9343 /* PMUL */
9344 assert(size == 0);
9345 genfn = gen_helper_neon_mul_p8;
9346 break;
9348 /* fall through : MUL */
9349 case 0x12: /* MLA, MLS */
9351 static NeonGenTwoOpFn * const fns[3] = {
9352 gen_helper_neon_mul_u8,
9353 gen_helper_neon_mul_u16,
9354 tcg_gen_mul_i32,
9356 genfn = fns[size];
9357 break;
9359 case 0x16: /* SQDMULH, SQRDMULH */
9361 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9362 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9363 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9365 assert(size == 1 || size == 2);
9366 genenvfn = fns[size - 1][u];
9367 break;
9369 default:
9370 g_assert_not_reached();
9373 if (genenvfn) {
9374 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
9375 } else {
9376 genfn(tcg_res, tcg_op1, tcg_op2);
9379 if (opcode == 0xf || opcode == 0x12) {
9380 /* SABA, UABA, MLA, MLS: accumulating ops */
9381 static NeonGenTwoOpFn * const fns[3][2] = {
9382 { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 },
9383 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
9384 { tcg_gen_add_i32, tcg_gen_sub_i32 },
9386 bool is_sub = (opcode == 0x12 && u); /* MLS */
9388 genfn = fns[size][is_sub];
9389 read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
9390 genfn(tcg_res, tcg_op1, tcg_res);
9393 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9395 tcg_temp_free_i32(tcg_res);
9396 tcg_temp_free_i32(tcg_op1);
9397 tcg_temp_free_i32(tcg_op2);
9401 if (!is_q) {
9402 clear_vec_high(s, rd);
9406 /* C3.6.16 AdvSIMD three same
9407 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9408 * +---+---+---+-----------+------+---+------+--------+---+------+------+
9409 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9410 * +---+---+---+-----------+------+---+------+--------+---+------+------+
9412 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
9414 int opcode = extract32(insn, 11, 5);
9416 switch (opcode) {
9417 case 0x3: /* logic ops */
9418 disas_simd_3same_logic(s, insn);
9419 break;
9420 case 0x17: /* ADDP */
9421 case 0x14: /* SMAXP, UMAXP */
9422 case 0x15: /* SMINP, UMINP */
9424 /* Pairwise operations */
9425 int is_q = extract32(insn, 30, 1);
9426 int u = extract32(insn, 29, 1);
9427 int size = extract32(insn, 22, 2);
9428 int rm = extract32(insn, 16, 5);
9429 int rn = extract32(insn, 5, 5);
9430 int rd = extract32(insn, 0, 5);
9431 if (opcode == 0x17) {
9432 if (u || (size == 3 && !is_q)) {
9433 unallocated_encoding(s);
9434 return;
9436 } else {
9437 if (size == 3) {
9438 unallocated_encoding(s);
9439 return;
9442 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
9443 break;
9445 case 0x18 ... 0x31:
9446 /* floating point ops, sz[1] and U are part of opcode */
9447 disas_simd_3same_float(s, insn);
9448 break;
9449 default:
9450 disas_simd_3same_int(s, insn);
9451 break;
9455 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
9456 int size, int rn, int rd)
9458 /* Handle 2-reg-misc ops which are widening (so each size element
9459 * in the source becomes a 2*size element in the destination.
9460 * The only instruction like this is FCVTL.
9462 int pass;
9464 if (size == 3) {
9465 /* 32 -> 64 bit fp conversion */
9466 TCGv_i64 tcg_res[2];
9467 int srcelt = is_q ? 2 : 0;
9469 for (pass = 0; pass < 2; pass++) {
9470 TCGv_i32 tcg_op = tcg_temp_new_i32();
9471 tcg_res[pass] = tcg_temp_new_i64();
9473 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
9474 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
9475 tcg_temp_free_i32(tcg_op);
9477 for (pass = 0; pass < 2; pass++) {
9478 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9479 tcg_temp_free_i64(tcg_res[pass]);
9481 } else {
9482 /* 16 -> 32 bit fp conversion */
9483 int srcelt = is_q ? 4 : 0;
9484 TCGv_i32 tcg_res[4];
9486 for (pass = 0; pass < 4; pass++) {
9487 tcg_res[pass] = tcg_temp_new_i32();
9489 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
9490 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
9491 cpu_env);
9493 for (pass = 0; pass < 4; pass++) {
9494 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
9495 tcg_temp_free_i32(tcg_res[pass]);
9500 static void handle_rev(DisasContext *s, int opcode, bool u,
9501 bool is_q, int size, int rn, int rd)
9503 int op = (opcode << 1) | u;
9504 int opsz = op + size;
9505 int grp_size = 3 - opsz;
9506 int dsize = is_q ? 128 : 64;
9507 int i;
9509 if (opsz >= 3) {
9510 unallocated_encoding(s);
9511 return;
9514 if (!fp_access_check(s)) {
9515 return;
9518 if (size == 0) {
9519 /* Special case bytes, use bswap op on each group of elements */
9520 int groups = dsize / (8 << grp_size);
9522 for (i = 0; i < groups; i++) {
9523 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9525 read_vec_element(s, tcg_tmp, rn, i, grp_size);
9526 switch (grp_size) {
9527 case MO_16:
9528 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
9529 break;
9530 case MO_32:
9531 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
9532 break;
9533 case MO_64:
9534 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
9535 break;
9536 default:
9537 g_assert_not_reached();
9539 write_vec_element(s, tcg_tmp, rd, i, grp_size);
9540 tcg_temp_free_i64(tcg_tmp);
9542 if (!is_q) {
9543 clear_vec_high(s, rd);
9545 } else {
9546 int revmask = (1 << grp_size) - 1;
9547 int esize = 8 << size;
9548 int elements = dsize / esize;
9549 TCGv_i64 tcg_rn = tcg_temp_new_i64();
9550 TCGv_i64 tcg_rd = tcg_const_i64(0);
9551 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
9553 for (i = 0; i < elements; i++) {
9554 int e_rev = (i & 0xf) ^ revmask;
9555 int off = e_rev * esize;
9556 read_vec_element(s, tcg_rn, rn, i, size);
9557 if (off >= 64) {
9558 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
9559 tcg_rn, off - 64, esize);
9560 } else {
9561 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
9564 write_vec_element(s, tcg_rd, rd, 0, MO_64);
9565 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
9567 tcg_temp_free_i64(tcg_rd_hi);
9568 tcg_temp_free_i64(tcg_rd);
9569 tcg_temp_free_i64(tcg_rn);
9573 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
9574 bool is_q, int size, int rn, int rd)
9576 /* Implement the pairwise operations from 2-misc:
9577 * SADDLP, UADDLP, SADALP, UADALP.
9578 * These all add pairs of elements in the input to produce a
9579 * double-width result element in the output (possibly accumulating).
9581 bool accum = (opcode == 0x6);
9582 int maxpass = is_q ? 2 : 1;
9583 int pass;
9584 TCGv_i64 tcg_res[2];
9586 if (size == 2) {
9587 /* 32 + 32 -> 64 op */
9588 TCGMemOp memop = size + (u ? 0 : MO_SIGN);
9590 for (pass = 0; pass < maxpass; pass++) {
9591 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9592 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9594 tcg_res[pass] = tcg_temp_new_i64();
9596 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
9597 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
9598 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
9599 if (accum) {
9600 read_vec_element(s, tcg_op1, rd, pass, MO_64);
9601 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
9604 tcg_temp_free_i64(tcg_op1);
9605 tcg_temp_free_i64(tcg_op2);
9607 } else {
9608 for (pass = 0; pass < maxpass; pass++) {
9609 TCGv_i64 tcg_op = tcg_temp_new_i64();
9610 NeonGenOneOpFn *genfn;
9611 static NeonGenOneOpFn * const fns[2][2] = {
9612 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
9613 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
9616 genfn = fns[size][u];
9618 tcg_res[pass] = tcg_temp_new_i64();
9620 read_vec_element(s, tcg_op, rn, pass, MO_64);
9621 genfn(tcg_res[pass], tcg_op);
9623 if (accum) {
9624 read_vec_element(s, tcg_op, rd, pass, MO_64);
9625 if (size == 0) {
9626 gen_helper_neon_addl_u16(tcg_res[pass],
9627 tcg_res[pass], tcg_op);
9628 } else {
9629 gen_helper_neon_addl_u32(tcg_res[pass],
9630 tcg_res[pass], tcg_op);
9633 tcg_temp_free_i64(tcg_op);
9636 if (!is_q) {
9637 tcg_res[1] = tcg_const_i64(0);
9639 for (pass = 0; pass < 2; pass++) {
9640 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9641 tcg_temp_free_i64(tcg_res[pass]);
9645 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
9647 /* Implement SHLL and SHLL2 */
9648 int pass;
9649 int part = is_q ? 2 : 0;
9650 TCGv_i64 tcg_res[2];
9652 for (pass = 0; pass < 2; pass++) {
9653 static NeonGenWidenFn * const widenfns[3] = {
9654 gen_helper_neon_widen_u8,
9655 gen_helper_neon_widen_u16,
9656 tcg_gen_extu_i32_i64,
9658 NeonGenWidenFn *widenfn = widenfns[size];
9659 TCGv_i32 tcg_op = tcg_temp_new_i32();
9661 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
9662 tcg_res[pass] = tcg_temp_new_i64();
9663 widenfn(tcg_res[pass], tcg_op);
9664 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
9666 tcg_temp_free_i32(tcg_op);
9669 for (pass = 0; pass < 2; pass++) {
9670 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9671 tcg_temp_free_i64(tcg_res[pass]);
9675 /* C3.6.17 AdvSIMD two reg misc
9676 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9677 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
9678 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
9679 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
9681 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
9683 int size = extract32(insn, 22, 2);
9684 int opcode = extract32(insn, 12, 5);
9685 bool u = extract32(insn, 29, 1);
9686 bool is_q = extract32(insn, 30, 1);
9687 int rn = extract32(insn, 5, 5);
9688 int rd = extract32(insn, 0, 5);
9689 bool need_fpstatus = false;
9690 bool need_rmode = false;
9691 int rmode = -1;
9692 TCGv_i32 tcg_rmode;
9693 TCGv_ptr tcg_fpstatus;
9695 switch (opcode) {
9696 case 0x0: /* REV64, REV32 */
9697 case 0x1: /* REV16 */
9698 handle_rev(s, opcode, u, is_q, size, rn, rd);
9699 return;
9700 case 0x5: /* CNT, NOT, RBIT */
9701 if (u && size == 0) {
9702 /* NOT: adjust size so we can use the 64-bits-at-a-time loop. */
9703 size = 3;
9704 break;
9705 } else if (u && size == 1) {
9706 /* RBIT */
9707 break;
9708 } else if (!u && size == 0) {
9709 /* CNT */
9710 break;
9712 unallocated_encoding(s);
9713 return;
9714 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
9715 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
9716 if (size == 3) {
9717 unallocated_encoding(s);
9718 return;
9720 if (!fp_access_check(s)) {
9721 return;
9724 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
9725 return;
9726 case 0x4: /* CLS, CLZ */
9727 if (size == 3) {
9728 unallocated_encoding(s);
9729 return;
9731 break;
9732 case 0x2: /* SADDLP, UADDLP */
9733 case 0x6: /* SADALP, UADALP */
9734 if (size == 3) {
9735 unallocated_encoding(s);
9736 return;
9738 if (!fp_access_check(s)) {
9739 return;
9741 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
9742 return;
9743 case 0x13: /* SHLL, SHLL2 */
9744 if (u == 0 || size == 3) {
9745 unallocated_encoding(s);
9746 return;
9748 if (!fp_access_check(s)) {
9749 return;
9751 handle_shll(s, is_q, size, rn, rd);
9752 return;
9753 case 0xa: /* CMLT */
9754 if (u == 1) {
9755 unallocated_encoding(s);
9756 return;
9758 /* fall through */
9759 case 0x8: /* CMGT, CMGE */
9760 case 0x9: /* CMEQ, CMLE */
9761 case 0xb: /* ABS, NEG */
9762 if (size == 3 && !is_q) {
9763 unallocated_encoding(s);
9764 return;
9766 break;
9767 case 0x3: /* SUQADD, USQADD */
9768 if (size == 3 && !is_q) {
9769 unallocated_encoding(s);
9770 return;
9772 if (!fp_access_check(s)) {
9773 return;
9775 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
9776 return;
9777 case 0x7: /* SQABS, SQNEG */
9778 if (size == 3 && !is_q) {
9779 unallocated_encoding(s);
9780 return;
9782 break;
9783 case 0xc ... 0xf:
9784 case 0x16 ... 0x1d:
9785 case 0x1f:
9787 /* Floating point: U, size[1] and opcode indicate operation;
9788 * size[0] indicates single or double precision.
9790 int is_double = extract32(size, 0, 1);
9791 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
9792 size = is_double ? 3 : 2;
9793 switch (opcode) {
9794 case 0x2f: /* FABS */
9795 case 0x6f: /* FNEG */
9796 if (size == 3 && !is_q) {
9797 unallocated_encoding(s);
9798 return;
9800 break;
9801 case 0x1d: /* SCVTF */
9802 case 0x5d: /* UCVTF */
9804 bool is_signed = (opcode == 0x1d) ? true : false;
9805 int elements = is_double ? 2 : is_q ? 4 : 2;
9806 if (is_double && !is_q) {
9807 unallocated_encoding(s);
9808 return;
9810 if (!fp_access_check(s)) {
9811 return;
9813 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
9814 return;
9816 case 0x2c: /* FCMGT (zero) */
9817 case 0x2d: /* FCMEQ (zero) */
9818 case 0x2e: /* FCMLT (zero) */
9819 case 0x6c: /* FCMGE (zero) */
9820 case 0x6d: /* FCMLE (zero) */
9821 if (size == 3 && !is_q) {
9822 unallocated_encoding(s);
9823 return;
9825 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
9826 return;
9827 case 0x7f: /* FSQRT */
9828 if (size == 3 && !is_q) {
9829 unallocated_encoding(s);
9830 return;
9832 break;
9833 case 0x1a: /* FCVTNS */
9834 case 0x1b: /* FCVTMS */
9835 case 0x3a: /* FCVTPS */
9836 case 0x3b: /* FCVTZS */
9837 case 0x5a: /* FCVTNU */
9838 case 0x5b: /* FCVTMU */
9839 case 0x7a: /* FCVTPU */
9840 case 0x7b: /* FCVTZU */
9841 need_fpstatus = true;
9842 need_rmode = true;
9843 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
9844 if (size == 3 && !is_q) {
9845 unallocated_encoding(s);
9846 return;
9848 break;
9849 case 0x5c: /* FCVTAU */
9850 case 0x1c: /* FCVTAS */
9851 need_fpstatus = true;
9852 need_rmode = true;
9853 rmode = FPROUNDING_TIEAWAY;
9854 if (size == 3 && !is_q) {
9855 unallocated_encoding(s);
9856 return;
9858 break;
9859 case 0x3c: /* URECPE */
9860 if (size == 3) {
9861 unallocated_encoding(s);
9862 return;
9864 /* fall through */
9865 case 0x3d: /* FRECPE */
9866 case 0x7d: /* FRSQRTE */
9867 if (size == 3 && !is_q) {
9868 unallocated_encoding(s);
9869 return;
9871 if (!fp_access_check(s)) {
9872 return;
9874 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
9875 return;
9876 case 0x56: /* FCVTXN, FCVTXN2 */
9877 if (size == 2) {
9878 unallocated_encoding(s);
9879 return;
9881 /* fall through */
9882 case 0x16: /* FCVTN, FCVTN2 */
9883 /* handle_2misc_narrow does a 2*size -> size operation, but these
9884 * instructions encode the source size rather than dest size.
9886 if (!fp_access_check(s)) {
9887 return;
9889 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
9890 return;
9891 case 0x17: /* FCVTL, FCVTL2 */
9892 if (!fp_access_check(s)) {
9893 return;
9895 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
9896 return;
9897 case 0x18: /* FRINTN */
9898 case 0x19: /* FRINTM */
9899 case 0x38: /* FRINTP */
9900 case 0x39: /* FRINTZ */
9901 need_rmode = true;
9902 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
9903 /* fall through */
9904 case 0x59: /* FRINTX */
9905 case 0x79: /* FRINTI */
9906 need_fpstatus = true;
9907 if (size == 3 && !is_q) {
9908 unallocated_encoding(s);
9909 return;
9911 break;
9912 case 0x58: /* FRINTA */
9913 need_rmode = true;
9914 rmode = FPROUNDING_TIEAWAY;
9915 need_fpstatus = true;
9916 if (size == 3 && !is_q) {
9917 unallocated_encoding(s);
9918 return;
9920 break;
9921 case 0x7c: /* URSQRTE */
9922 if (size == 3) {
9923 unallocated_encoding(s);
9924 return;
9926 need_fpstatus = true;
9927 break;
9928 default:
9929 unallocated_encoding(s);
9930 return;
9932 break;
9934 default:
9935 unallocated_encoding(s);
9936 return;
9939 if (!fp_access_check(s)) {
9940 return;
9943 if (need_fpstatus) {
9944 tcg_fpstatus = get_fpstatus_ptr();
9945 } else {
9946 TCGV_UNUSED_PTR(tcg_fpstatus);
9948 if (need_rmode) {
9949 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
9950 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
9951 } else {
9952 TCGV_UNUSED_I32(tcg_rmode);
9955 if (size == 3) {
9956 /* All 64-bit element operations can be shared with scalar 2misc */
9957 int pass;
9959 for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
9960 TCGv_i64 tcg_op = tcg_temp_new_i64();
9961 TCGv_i64 tcg_res = tcg_temp_new_i64();
9963 read_vec_element(s, tcg_op, rn, pass, MO_64);
9965 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
9966 tcg_rmode, tcg_fpstatus);
9968 write_vec_element(s, tcg_res, rd, pass, MO_64);
9970 tcg_temp_free_i64(tcg_res);
9971 tcg_temp_free_i64(tcg_op);
9973 } else {
9974 int pass;
9976 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
9977 TCGv_i32 tcg_op = tcg_temp_new_i32();
9978 TCGv_i32 tcg_res = tcg_temp_new_i32();
9979 TCGCond cond;
9981 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9983 if (size == 2) {
9984 /* Special cases for 32 bit elements */
9985 switch (opcode) {
9986 case 0xa: /* CMLT */
9987 /* 32 bit integer comparison against zero, result is
9988 * test ? (2^32 - 1) : 0. We implement via setcond(test)
9989 * and inverting.
9991 cond = TCG_COND_LT;
9992 do_cmop:
9993 tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0);
9994 tcg_gen_neg_i32(tcg_res, tcg_res);
9995 break;
9996 case 0x8: /* CMGT, CMGE */
9997 cond = u ? TCG_COND_GE : TCG_COND_GT;
9998 goto do_cmop;
9999 case 0x9: /* CMEQ, CMLE */
10000 cond = u ? TCG_COND_LE : TCG_COND_EQ;
10001 goto do_cmop;
10002 case 0x4: /* CLS */
10003 if (u) {
10004 gen_helper_clz32(tcg_res, tcg_op);
10005 } else {
10006 gen_helper_cls32(tcg_res, tcg_op);
10008 break;
10009 case 0x7: /* SQABS, SQNEG */
10010 if (u) {
10011 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
10012 } else {
10013 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
10015 break;
10016 case 0xb: /* ABS, NEG */
10017 if (u) {
10018 tcg_gen_neg_i32(tcg_res, tcg_op);
10019 } else {
10020 TCGv_i32 tcg_zero = tcg_const_i32(0);
10021 tcg_gen_neg_i32(tcg_res, tcg_op);
10022 tcg_gen_movcond_i32(TCG_COND_GT, tcg_res, tcg_op,
10023 tcg_zero, tcg_op, tcg_res);
10024 tcg_temp_free_i32(tcg_zero);
10026 break;
10027 case 0x2f: /* FABS */
10028 gen_helper_vfp_abss(tcg_res, tcg_op);
10029 break;
10030 case 0x6f: /* FNEG */
10031 gen_helper_vfp_negs(tcg_res, tcg_op);
10032 break;
10033 case 0x7f: /* FSQRT */
10034 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
10035 break;
10036 case 0x1a: /* FCVTNS */
10037 case 0x1b: /* FCVTMS */
10038 case 0x1c: /* FCVTAS */
10039 case 0x3a: /* FCVTPS */
10040 case 0x3b: /* FCVTZS */
10042 TCGv_i32 tcg_shift = tcg_const_i32(0);
10043 gen_helper_vfp_tosls(tcg_res, tcg_op,
10044 tcg_shift, tcg_fpstatus);
10045 tcg_temp_free_i32(tcg_shift);
10046 break;
10048 case 0x5a: /* FCVTNU */
10049 case 0x5b: /* FCVTMU */
10050 case 0x5c: /* FCVTAU */
10051 case 0x7a: /* FCVTPU */
10052 case 0x7b: /* FCVTZU */
10054 TCGv_i32 tcg_shift = tcg_const_i32(0);
10055 gen_helper_vfp_touls(tcg_res, tcg_op,
10056 tcg_shift, tcg_fpstatus);
10057 tcg_temp_free_i32(tcg_shift);
10058 break;
10060 case 0x18: /* FRINTN */
10061 case 0x19: /* FRINTM */
10062 case 0x38: /* FRINTP */
10063 case 0x39: /* FRINTZ */
10064 case 0x58: /* FRINTA */
10065 case 0x79: /* FRINTI */
10066 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
10067 break;
10068 case 0x59: /* FRINTX */
10069 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
10070 break;
10071 case 0x7c: /* URSQRTE */
10072 gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus);
10073 break;
10074 default:
10075 g_assert_not_reached();
10077 } else {
10078 /* Use helpers for 8 and 16 bit elements */
10079 switch (opcode) {
10080 case 0x5: /* CNT, RBIT */
10081 /* For these two insns size is part of the opcode specifier
10082 * (handled earlier); they always operate on byte elements.
10084 if (u) {
10085 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
10086 } else {
10087 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
10089 break;
10090 case 0x7: /* SQABS, SQNEG */
10092 NeonGenOneOpEnvFn *genfn;
10093 static NeonGenOneOpEnvFn * const fns[2][2] = {
10094 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10095 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10097 genfn = fns[size][u];
10098 genfn(tcg_res, cpu_env, tcg_op);
10099 break;
10101 case 0x8: /* CMGT, CMGE */
10102 case 0x9: /* CMEQ, CMLE */
10103 case 0xa: /* CMLT */
10105 static NeonGenTwoOpFn * const fns[3][2] = {
10106 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
10107 { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
10108 { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
10110 NeonGenTwoOpFn *genfn;
10111 int comp;
10112 bool reverse;
10113 TCGv_i32 tcg_zero = tcg_const_i32(0);
10115 /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
10116 comp = (opcode - 0x8) * 2 + u;
10117 /* ...but LE, LT are implemented as reverse GE, GT */
10118 reverse = (comp > 2);
10119 if (reverse) {
10120 comp = 4 - comp;
10122 genfn = fns[comp][size];
10123 if (reverse) {
10124 genfn(tcg_res, tcg_zero, tcg_op);
10125 } else {
10126 genfn(tcg_res, tcg_op, tcg_zero);
10128 tcg_temp_free_i32(tcg_zero);
10129 break;
10131 case 0xb: /* ABS, NEG */
10132 if (u) {
10133 TCGv_i32 tcg_zero = tcg_const_i32(0);
10134 if (size) {
10135 gen_helper_neon_sub_u16(tcg_res, tcg_zero, tcg_op);
10136 } else {
10137 gen_helper_neon_sub_u8(tcg_res, tcg_zero, tcg_op);
10139 tcg_temp_free_i32(tcg_zero);
10140 } else {
10141 if (size) {
10142 gen_helper_neon_abs_s16(tcg_res, tcg_op);
10143 } else {
10144 gen_helper_neon_abs_s8(tcg_res, tcg_op);
10147 break;
10148 case 0x4: /* CLS, CLZ */
10149 if (u) {
10150 if (size == 0) {
10151 gen_helper_neon_clz_u8(tcg_res, tcg_op);
10152 } else {
10153 gen_helper_neon_clz_u16(tcg_res, tcg_op);
10155 } else {
10156 if (size == 0) {
10157 gen_helper_neon_cls_s8(tcg_res, tcg_op);
10158 } else {
10159 gen_helper_neon_cls_s16(tcg_res, tcg_op);
10162 break;
10163 default:
10164 g_assert_not_reached();
10168 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10170 tcg_temp_free_i32(tcg_res);
10171 tcg_temp_free_i32(tcg_op);
10174 if (!is_q) {
10175 clear_vec_high(s, rd);
10178 if (need_rmode) {
10179 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
10180 tcg_temp_free_i32(tcg_rmode);
10182 if (need_fpstatus) {
10183 tcg_temp_free_ptr(tcg_fpstatus);
10187 /* C3.6.13 AdvSIMD scalar x indexed element
10188 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
10189 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
10190 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
10191 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
10192 * C3.6.18 AdvSIMD vector x indexed element
10193 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
10194 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
10195 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
10196 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
10198 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
10200 /* This encoding has two kinds of instruction:
10201 * normal, where we perform elt x idxelt => elt for each
10202 * element in the vector
10203 * long, where we perform elt x idxelt and generate a result of
10204 * double the width of the input element
10205 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
10207 bool is_scalar = extract32(insn, 28, 1);
10208 bool is_q = extract32(insn, 30, 1);
10209 bool u = extract32(insn, 29, 1);
10210 int size = extract32(insn, 22, 2);
10211 int l = extract32(insn, 21, 1);
10212 int m = extract32(insn, 20, 1);
10213 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
10214 int rm = extract32(insn, 16, 4);
10215 int opcode = extract32(insn, 12, 4);
10216 int h = extract32(insn, 11, 1);
10217 int rn = extract32(insn, 5, 5);
10218 int rd = extract32(insn, 0, 5);
10219 bool is_long = false;
10220 bool is_fp = false;
10221 int index;
10222 TCGv_ptr fpst;
10224 switch (opcode) {
10225 case 0x0: /* MLA */
10226 case 0x4: /* MLS */
10227 if (!u || is_scalar) {
10228 unallocated_encoding(s);
10229 return;
10231 break;
10232 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10233 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10234 case 0xa: /* SMULL, SMULL2, UMULL, UMULL2 */
10235 if (is_scalar) {
10236 unallocated_encoding(s);
10237 return;
10239 is_long = true;
10240 break;
10241 case 0x3: /* SQDMLAL, SQDMLAL2 */
10242 case 0x7: /* SQDMLSL, SQDMLSL2 */
10243 case 0xb: /* SQDMULL, SQDMULL2 */
10244 is_long = true;
10245 /* fall through */
10246 case 0xc: /* SQDMULH */
10247 case 0xd: /* SQRDMULH */
10248 if (u) {
10249 unallocated_encoding(s);
10250 return;
10252 break;
10253 case 0x8: /* MUL */
10254 if (u || is_scalar) {
10255 unallocated_encoding(s);
10256 return;
10258 break;
10259 case 0x1: /* FMLA */
10260 case 0x5: /* FMLS */
10261 if (u) {
10262 unallocated_encoding(s);
10263 return;
10265 /* fall through */
10266 case 0x9: /* FMUL, FMULX */
10267 if (!extract32(size, 1, 1)) {
10268 unallocated_encoding(s);
10269 return;
10271 is_fp = true;
10272 break;
10273 default:
10274 unallocated_encoding(s);
10275 return;
10278 if (is_fp) {
10279 /* low bit of size indicates single/double */
10280 size = extract32(size, 0, 1) ? 3 : 2;
10281 if (size == 2) {
10282 index = h << 1 | l;
10283 } else {
10284 if (l || !is_q) {
10285 unallocated_encoding(s);
10286 return;
10288 index = h;
10290 rm |= (m << 4);
10291 } else {
10292 switch (size) {
10293 case 1:
10294 index = h << 2 | l << 1 | m;
10295 break;
10296 case 2:
10297 index = h << 1 | l;
10298 rm |= (m << 4);
10299 break;
10300 default:
10301 unallocated_encoding(s);
10302 return;
10306 if (!fp_access_check(s)) {
10307 return;
10310 if (is_fp) {
10311 fpst = get_fpstatus_ptr();
10312 } else {
10313 TCGV_UNUSED_PTR(fpst);
10316 if (size == 3) {
10317 TCGv_i64 tcg_idx = tcg_temp_new_i64();
10318 int pass;
10320 assert(is_fp && is_q && !is_long);
10322 read_vec_element(s, tcg_idx, rm, index, MO_64);
10324 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10325 TCGv_i64 tcg_op = tcg_temp_new_i64();
10326 TCGv_i64 tcg_res = tcg_temp_new_i64();
10328 read_vec_element(s, tcg_op, rn, pass, MO_64);
10330 switch (opcode) {
10331 case 0x5: /* FMLS */
10332 /* As usual for ARM, separate negation for fused multiply-add */
10333 gen_helper_vfp_negd(tcg_op, tcg_op);
10334 /* fall through */
10335 case 0x1: /* FMLA */
10336 read_vec_element(s, tcg_res, rd, pass, MO_64);
10337 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
10338 break;
10339 case 0x9: /* FMUL, FMULX */
10340 if (u) {
10341 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
10342 } else {
10343 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
10345 break;
10346 default:
10347 g_assert_not_reached();
10350 write_vec_element(s, tcg_res, rd, pass, MO_64);
10351 tcg_temp_free_i64(tcg_op);
10352 tcg_temp_free_i64(tcg_res);
10355 if (is_scalar) {
10356 clear_vec_high(s, rd);
10359 tcg_temp_free_i64(tcg_idx);
10360 } else if (!is_long) {
10361 /* 32 bit floating point, or 16 or 32 bit integer.
10362 * For the 16 bit scalar case we use the usual Neon helpers and
10363 * rely on the fact that 0 op 0 == 0 with no side effects.
10365 TCGv_i32 tcg_idx = tcg_temp_new_i32();
10366 int pass, maxpasses;
10368 if (is_scalar) {
10369 maxpasses = 1;
10370 } else {
10371 maxpasses = is_q ? 4 : 2;
10374 read_vec_element_i32(s, tcg_idx, rm, index, size);
10376 if (size == 1 && !is_scalar) {
10377 /* The simplest way to handle the 16x16 indexed ops is to duplicate
10378 * the index into both halves of the 32 bit tcg_idx and then use
10379 * the usual Neon helpers.
10381 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
10384 for (pass = 0; pass < maxpasses; pass++) {
10385 TCGv_i32 tcg_op = tcg_temp_new_i32();
10386 TCGv_i32 tcg_res = tcg_temp_new_i32();
10388 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
10390 switch (opcode) {
10391 case 0x0: /* MLA */
10392 case 0x4: /* MLS */
10393 case 0x8: /* MUL */
10395 static NeonGenTwoOpFn * const fns[2][2] = {
10396 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
10397 { tcg_gen_add_i32, tcg_gen_sub_i32 },
10399 NeonGenTwoOpFn *genfn;
10400 bool is_sub = opcode == 0x4;
10402 if (size == 1) {
10403 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
10404 } else {
10405 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
10407 if (opcode == 0x8) {
10408 break;
10410 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
10411 genfn = fns[size - 1][is_sub];
10412 genfn(tcg_res, tcg_op, tcg_res);
10413 break;
10415 case 0x5: /* FMLS */
10416 /* As usual for ARM, separate negation for fused multiply-add */
10417 gen_helper_vfp_negs(tcg_op, tcg_op);
10418 /* fall through */
10419 case 0x1: /* FMLA */
10420 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10421 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
10422 break;
10423 case 0x9: /* FMUL, FMULX */
10424 if (u) {
10425 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
10426 } else {
10427 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
10429 break;
10430 case 0xc: /* SQDMULH */
10431 if (size == 1) {
10432 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
10433 tcg_op, tcg_idx);
10434 } else {
10435 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
10436 tcg_op, tcg_idx);
10438 break;
10439 case 0xd: /* SQRDMULH */
10440 if (size == 1) {
10441 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
10442 tcg_op, tcg_idx);
10443 } else {
10444 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
10445 tcg_op, tcg_idx);
10447 break;
10448 default:
10449 g_assert_not_reached();
10452 if (is_scalar) {
10453 write_fp_sreg(s, rd, tcg_res);
10454 } else {
10455 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10458 tcg_temp_free_i32(tcg_op);
10459 tcg_temp_free_i32(tcg_res);
10462 tcg_temp_free_i32(tcg_idx);
10464 if (!is_q) {
10465 clear_vec_high(s, rd);
10467 } else {
10468 /* long ops: 16x16->32 or 32x32->64 */
10469 TCGv_i64 tcg_res[2];
10470 int pass;
10471 bool satop = extract32(opcode, 0, 1);
10472 TCGMemOp memop = MO_32;
10474 if (satop || !u) {
10475 memop |= MO_SIGN;
10478 if (size == 2) {
10479 TCGv_i64 tcg_idx = tcg_temp_new_i64();
10481 read_vec_element(s, tcg_idx, rm, index, memop);
10483 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10484 TCGv_i64 tcg_op = tcg_temp_new_i64();
10485 TCGv_i64 tcg_passres;
10486 int passelt;
10488 if (is_scalar) {
10489 passelt = 0;
10490 } else {
10491 passelt = pass + (is_q * 2);
10494 read_vec_element(s, tcg_op, rn, passelt, memop);
10496 tcg_res[pass] = tcg_temp_new_i64();
10498 if (opcode == 0xa || opcode == 0xb) {
10499 /* Non-accumulating ops */
10500 tcg_passres = tcg_res[pass];
10501 } else {
10502 tcg_passres = tcg_temp_new_i64();
10505 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
10506 tcg_temp_free_i64(tcg_op);
10508 if (satop) {
10509 /* saturating, doubling */
10510 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10511 tcg_passres, tcg_passres);
10514 if (opcode == 0xa || opcode == 0xb) {
10515 continue;
10518 /* Accumulating op: handle accumulate step */
10519 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10521 switch (opcode) {
10522 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10523 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10524 break;
10525 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10526 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10527 break;
10528 case 0x7: /* SQDMLSL, SQDMLSL2 */
10529 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10530 /* fall through */
10531 case 0x3: /* SQDMLAL, SQDMLAL2 */
10532 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10533 tcg_res[pass],
10534 tcg_passres);
10535 break;
10536 default:
10537 g_assert_not_reached();
10539 tcg_temp_free_i64(tcg_passres);
10541 tcg_temp_free_i64(tcg_idx);
10543 if (is_scalar) {
10544 clear_vec_high(s, rd);
10546 } else {
10547 TCGv_i32 tcg_idx = tcg_temp_new_i32();
10549 assert(size == 1);
10550 read_vec_element_i32(s, tcg_idx, rm, index, size);
10552 if (!is_scalar) {
10553 /* The simplest way to handle the 16x16 indexed ops is to
10554 * duplicate the index into both halves of the 32 bit tcg_idx
10555 * and then use the usual Neon helpers.
10557 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
10560 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10561 TCGv_i32 tcg_op = tcg_temp_new_i32();
10562 TCGv_i64 tcg_passres;
10564 if (is_scalar) {
10565 read_vec_element_i32(s, tcg_op, rn, pass, size);
10566 } else {
10567 read_vec_element_i32(s, tcg_op, rn,
10568 pass + (is_q * 2), MO_32);
10571 tcg_res[pass] = tcg_temp_new_i64();
10573 if (opcode == 0xa || opcode == 0xb) {
10574 /* Non-accumulating ops */
10575 tcg_passres = tcg_res[pass];
10576 } else {
10577 tcg_passres = tcg_temp_new_i64();
10580 if (memop & MO_SIGN) {
10581 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
10582 } else {
10583 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
10585 if (satop) {
10586 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10587 tcg_passres, tcg_passres);
10589 tcg_temp_free_i32(tcg_op);
10591 if (opcode == 0xa || opcode == 0xb) {
10592 continue;
10595 /* Accumulating op: handle accumulate step */
10596 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10598 switch (opcode) {
10599 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10600 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
10601 tcg_passres);
10602 break;
10603 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10604 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
10605 tcg_passres);
10606 break;
10607 case 0x7: /* SQDMLSL, SQDMLSL2 */
10608 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10609 /* fall through */
10610 case 0x3: /* SQDMLAL, SQDMLAL2 */
10611 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10612 tcg_res[pass],
10613 tcg_passres);
10614 break;
10615 default:
10616 g_assert_not_reached();
10618 tcg_temp_free_i64(tcg_passres);
10620 tcg_temp_free_i32(tcg_idx);
10622 if (is_scalar) {
10623 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
10627 if (is_scalar) {
10628 tcg_res[1] = tcg_const_i64(0);
10631 for (pass = 0; pass < 2; pass++) {
10632 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10633 tcg_temp_free_i64(tcg_res[pass]);
10637 if (!TCGV_IS_UNUSED_PTR(fpst)) {
10638 tcg_temp_free_ptr(fpst);
10642 /* C3.6.19 Crypto AES
10643 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
10644 * +-----------------+------+-----------+--------+-----+------+------+
10645 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
10646 * +-----------------+------+-----------+--------+-----+------+------+
10648 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
10650 int size = extract32(insn, 22, 2);
10651 int opcode = extract32(insn, 12, 5);
10652 int rn = extract32(insn, 5, 5);
10653 int rd = extract32(insn, 0, 5);
10654 int decrypt;
10655 TCGv_i32 tcg_rd_regno, tcg_rn_regno, tcg_decrypt;
10656 CryptoThreeOpEnvFn *genfn;
10658 if (!arm_dc_feature(s, ARM_FEATURE_V8_AES)
10659 || size != 0) {
10660 unallocated_encoding(s);
10661 return;
10664 switch (opcode) {
10665 case 0x4: /* AESE */
10666 decrypt = 0;
10667 genfn = gen_helper_crypto_aese;
10668 break;
10669 case 0x6: /* AESMC */
10670 decrypt = 0;
10671 genfn = gen_helper_crypto_aesmc;
10672 break;
10673 case 0x5: /* AESD */
10674 decrypt = 1;
10675 genfn = gen_helper_crypto_aese;
10676 break;
10677 case 0x7: /* AESIMC */
10678 decrypt = 1;
10679 genfn = gen_helper_crypto_aesmc;
10680 break;
10681 default:
10682 unallocated_encoding(s);
10683 return;
10686 /* Note that we convert the Vx register indexes into the
10687 * index within the vfp.regs[] array, so we can share the
10688 * helper with the AArch32 instructions.
10690 tcg_rd_regno = tcg_const_i32(rd << 1);
10691 tcg_rn_regno = tcg_const_i32(rn << 1);
10692 tcg_decrypt = tcg_const_i32(decrypt);
10694 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno, tcg_decrypt);
10696 tcg_temp_free_i32(tcg_rd_regno);
10697 tcg_temp_free_i32(tcg_rn_regno);
10698 tcg_temp_free_i32(tcg_decrypt);
10701 /* C3.6.20 Crypto three-reg SHA
10702 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
10703 * +-----------------+------+---+------+---+--------+-----+------+------+
10704 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
10705 * +-----------------+------+---+------+---+--------+-----+------+------+
10707 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
10709 int size = extract32(insn, 22, 2);
10710 int opcode = extract32(insn, 12, 3);
10711 int rm = extract32(insn, 16, 5);
10712 int rn = extract32(insn, 5, 5);
10713 int rd = extract32(insn, 0, 5);
10714 CryptoThreeOpEnvFn *genfn;
10715 TCGv_i32 tcg_rd_regno, tcg_rn_regno, tcg_rm_regno;
10716 int feature = ARM_FEATURE_V8_SHA256;
10718 if (size != 0) {
10719 unallocated_encoding(s);
10720 return;
10723 switch (opcode) {
10724 case 0: /* SHA1C */
10725 case 1: /* SHA1P */
10726 case 2: /* SHA1M */
10727 case 3: /* SHA1SU0 */
10728 genfn = NULL;
10729 feature = ARM_FEATURE_V8_SHA1;
10730 break;
10731 case 4: /* SHA256H */
10732 genfn = gen_helper_crypto_sha256h;
10733 break;
10734 case 5: /* SHA256H2 */
10735 genfn = gen_helper_crypto_sha256h2;
10736 break;
10737 case 6: /* SHA256SU1 */
10738 genfn = gen_helper_crypto_sha256su1;
10739 break;
10740 default:
10741 unallocated_encoding(s);
10742 return;
10745 if (!arm_dc_feature(s, feature)) {
10746 unallocated_encoding(s);
10747 return;
10750 tcg_rd_regno = tcg_const_i32(rd << 1);
10751 tcg_rn_regno = tcg_const_i32(rn << 1);
10752 tcg_rm_regno = tcg_const_i32(rm << 1);
10754 if (genfn) {
10755 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno, tcg_rm_regno);
10756 } else {
10757 TCGv_i32 tcg_opcode = tcg_const_i32(opcode);
10759 gen_helper_crypto_sha1_3reg(cpu_env, tcg_rd_regno,
10760 tcg_rn_regno, tcg_rm_regno, tcg_opcode);
10761 tcg_temp_free_i32(tcg_opcode);
10764 tcg_temp_free_i32(tcg_rd_regno);
10765 tcg_temp_free_i32(tcg_rn_regno);
10766 tcg_temp_free_i32(tcg_rm_regno);
10769 /* C3.6.21 Crypto two-reg SHA
10770 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
10771 * +-----------------+------+-----------+--------+-----+------+------+
10772 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
10773 * +-----------------+------+-----------+--------+-----+------+------+
10775 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
10777 int size = extract32(insn, 22, 2);
10778 int opcode = extract32(insn, 12, 5);
10779 int rn = extract32(insn, 5, 5);
10780 int rd = extract32(insn, 0, 5);
10781 CryptoTwoOpEnvFn *genfn;
10782 int feature;
10783 TCGv_i32 tcg_rd_regno, tcg_rn_regno;
10785 if (size != 0) {
10786 unallocated_encoding(s);
10787 return;
10790 switch (opcode) {
10791 case 0: /* SHA1H */
10792 feature = ARM_FEATURE_V8_SHA1;
10793 genfn = gen_helper_crypto_sha1h;
10794 break;
10795 case 1: /* SHA1SU1 */
10796 feature = ARM_FEATURE_V8_SHA1;
10797 genfn = gen_helper_crypto_sha1su1;
10798 break;
10799 case 2: /* SHA256SU0 */
10800 feature = ARM_FEATURE_V8_SHA256;
10801 genfn = gen_helper_crypto_sha256su0;
10802 break;
10803 default:
10804 unallocated_encoding(s);
10805 return;
10808 if (!arm_dc_feature(s, feature)) {
10809 unallocated_encoding(s);
10810 return;
10813 tcg_rd_regno = tcg_const_i32(rd << 1);
10814 tcg_rn_regno = tcg_const_i32(rn << 1);
10816 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno);
10818 tcg_temp_free_i32(tcg_rd_regno);
10819 tcg_temp_free_i32(tcg_rn_regno);
10822 /* C3.6 Data processing - SIMD, inc Crypto
10824 * As the decode gets a little complex we are using a table based
10825 * approach for this part of the decode.
10827 static const AArch64DecodeTable data_proc_simd[] = {
10828 /* pattern , mask , fn */
10829 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
10830 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
10831 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
10832 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
10833 { 0x0e000400, 0x9fe08400, disas_simd_copy },
10834 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
10835 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
10836 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
10837 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
10838 { 0x0e000000, 0xbf208c00, disas_simd_tb },
10839 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
10840 { 0x2e000000, 0xbf208400, disas_simd_ext },
10841 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
10842 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
10843 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
10844 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
10845 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
10846 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
10847 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
10848 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
10849 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
10850 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
10851 { 0x00000000, 0x00000000, NULL }
10854 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
10856 /* Note that this is called with all non-FP cases from
10857 * table C3-6 so it must UNDEF for entries not specifically
10858 * allocated to instructions in that table.
10860 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
10861 if (fn) {
10862 fn(s, insn);
10863 } else {
10864 unallocated_encoding(s);
10868 /* C3.6 Data processing - SIMD and floating point */
10869 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
10871 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
10872 disas_data_proc_fp(s, insn);
10873 } else {
10874 /* SIMD, including crypto */
10875 disas_data_proc_simd(s, insn);
10879 /* C3.1 A64 instruction index by encoding */
10880 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
10882 uint32_t insn;
10884 insn = arm_ldl_code(env, s->pc, s->bswap_code);
10885 s->insn = insn;
10886 s->pc += 4;
10888 s->fp_access_checked = false;
10890 switch (extract32(insn, 25, 4)) {
10891 case 0x0: case 0x1: case 0x2: case 0x3: /* UNALLOCATED */
10892 unallocated_encoding(s);
10893 break;
10894 case 0x8: case 0x9: /* Data processing - immediate */
10895 disas_data_proc_imm(s, insn);
10896 break;
10897 case 0xa: case 0xb: /* Branch, exception generation and system insns */
10898 disas_b_exc_sys(s, insn);
10899 break;
10900 case 0x4:
10901 case 0x6:
10902 case 0xc:
10903 case 0xe: /* Loads and stores */
10904 disas_ldst(s, insn);
10905 break;
10906 case 0x5:
10907 case 0xd: /* Data processing - register */
10908 disas_data_proc_reg(s, insn);
10909 break;
10910 case 0x7:
10911 case 0xf: /* Data processing - SIMD and floating point */
10912 disas_data_proc_simd_fp(s, insn);
10913 break;
10914 default:
10915 assert(FALSE); /* all 15 cases should be handled above */
10916 break;
10919 /* if we allocated any temporaries, free them here */
10920 free_tmp_a64(s);
10923 void gen_intermediate_code_internal_a64(ARMCPU *cpu,
10924 TranslationBlock *tb,
10925 bool search_pc)
10927 CPUState *cs = CPU(cpu);
10928 CPUARMState *env = &cpu->env;
10929 DisasContext dc1, *dc = &dc1;
10930 CPUBreakpoint *bp;
10931 int j, lj;
10932 target_ulong pc_start;
10933 target_ulong next_page_start;
10934 int num_insns;
10935 int max_insns;
10937 pc_start = tb->pc;
10939 dc->tb = tb;
10941 dc->is_jmp = DISAS_NEXT;
10942 dc->pc = pc_start;
10943 dc->singlestep_enabled = cs->singlestep_enabled;
10944 dc->condjmp = 0;
10946 dc->aarch64 = 1;
10947 dc->el3_is_aa64 = arm_el_is_aa64(env, 3);
10948 dc->thumb = 0;
10949 dc->bswap_code = 0;
10950 dc->condexec_mask = 0;
10951 dc->condexec_cond = 0;
10952 dc->mmu_idx = ARM_TBFLAG_MMUIDX(tb->flags);
10953 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
10954 #if !defined(CONFIG_USER_ONLY)
10955 dc->user = (dc->current_el == 0);
10956 #endif
10957 dc->fp_excp_el = ARM_TBFLAG_FPEXC_EL(tb->flags);
10958 dc->vec_len = 0;
10959 dc->vec_stride = 0;
10960 dc->cp_regs = cpu->cp_regs;
10961 dc->features = env->features;
10963 /* Single step state. The code-generation logic here is:
10964 * SS_ACTIVE == 0:
10965 * generate code with no special handling for single-stepping (except
10966 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
10967 * this happens anyway because those changes are all system register or
10968 * PSTATE writes).
10969 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
10970 * emit code for one insn
10971 * emit code to clear PSTATE.SS
10972 * emit code to generate software step exception for completed step
10973 * end TB (as usual for having generated an exception)
10974 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
10975 * emit code to generate a software step exception
10976 * end the TB
10978 dc->ss_active = ARM_TBFLAG_SS_ACTIVE(tb->flags);
10979 dc->pstate_ss = ARM_TBFLAG_PSTATE_SS(tb->flags);
10980 dc->is_ldex = false;
10981 dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el);
10983 init_tmp_a64_array(dc);
10985 next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
10986 lj = -1;
10987 num_insns = 0;
10988 max_insns = tb->cflags & CF_COUNT_MASK;
10989 if (max_insns == 0) {
10990 max_insns = CF_COUNT_MASK;
10993 gen_tb_start(tb);
10995 tcg_clear_temp_count();
10997 do {
10998 if (unlikely(!QTAILQ_EMPTY(&cs->breakpoints))) {
10999 QTAILQ_FOREACH(bp, &cs->breakpoints, entry) {
11000 if (bp->pc == dc->pc) {
11001 gen_exception_internal_insn(dc, 0, EXCP_DEBUG);
11002 /* Advance PC so that clearing the breakpoint will
11003 invalidate this TB. */
11004 dc->pc += 2;
11005 goto done_generating;
11010 if (search_pc) {
11011 j = tcg_op_buf_count();
11012 if (lj < j) {
11013 lj++;
11014 while (lj < j) {
11015 tcg_ctx.gen_opc_instr_start[lj++] = 0;
11018 tcg_ctx.gen_opc_pc[lj] = dc->pc;
11019 tcg_ctx.gen_opc_instr_start[lj] = 1;
11020 tcg_ctx.gen_opc_icount[lj] = num_insns;
11023 if (num_insns + 1 == max_insns && (tb->cflags & CF_LAST_IO)) {
11024 gen_io_start();
11027 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT))) {
11028 tcg_gen_debug_insn_start(dc->pc);
11031 if (dc->ss_active && !dc->pstate_ss) {
11032 /* Singlestep state is Active-pending.
11033 * If we're in this state at the start of a TB then either
11034 * a) we just took an exception to an EL which is being debugged
11035 * and this is the first insn in the exception handler
11036 * b) debug exceptions were masked and we just unmasked them
11037 * without changing EL (eg by clearing PSTATE.D)
11038 * In either case we're going to take a swstep exception in the
11039 * "did not step an insn" case, and so the syndrome ISV and EX
11040 * bits should be zero.
11042 assert(num_insns == 0);
11043 gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0),
11044 default_exception_el(dc));
11045 dc->is_jmp = DISAS_EXC;
11046 break;
11049 disas_a64_insn(env, dc);
11051 if (tcg_check_temp_count()) {
11052 fprintf(stderr, "TCG temporary leak before "TARGET_FMT_lx"\n",
11053 dc->pc);
11056 /* Translation stops when a conditional branch is encountered.
11057 * Otherwise the subsequent code could get translated several times.
11058 * Also stop translation when a page boundary is reached. This
11059 * ensures prefetch aborts occur at the right place.
11061 num_insns++;
11062 } while (!dc->is_jmp && !tcg_op_buf_full() &&
11063 !cs->singlestep_enabled &&
11064 !singlestep &&
11065 !dc->ss_active &&
11066 dc->pc < next_page_start &&
11067 num_insns < max_insns);
11069 if (tb->cflags & CF_LAST_IO) {
11070 gen_io_end();
11073 if (unlikely(cs->singlestep_enabled || dc->ss_active)
11074 && dc->is_jmp != DISAS_EXC) {
11075 /* Note that this means single stepping WFI doesn't halt the CPU.
11076 * For conditional branch insns this is harmless unreachable code as
11077 * gen_goto_tb() has already handled emitting the debug exception
11078 * (and thus a tb-jump is not possible when singlestepping).
11080 assert(dc->is_jmp != DISAS_TB_JUMP);
11081 if (dc->is_jmp != DISAS_JUMP) {
11082 gen_a64_set_pc_im(dc->pc);
11084 if (cs->singlestep_enabled) {
11085 gen_exception_internal(EXCP_DEBUG);
11086 } else {
11087 gen_step_complete_exception(dc);
11089 } else {
11090 switch (dc->is_jmp) {
11091 case DISAS_NEXT:
11092 gen_goto_tb(dc, 1, dc->pc);
11093 break;
11094 default:
11095 case DISAS_UPDATE:
11096 gen_a64_set_pc_im(dc->pc);
11097 /* fall through */
11098 case DISAS_JUMP:
11099 /* indicate that the hash table must be used to find the next TB */
11100 tcg_gen_exit_tb(0);
11101 break;
11102 case DISAS_TB_JUMP:
11103 case DISAS_EXC:
11104 case DISAS_SWI:
11105 break;
11106 case DISAS_WFE:
11107 gen_a64_set_pc_im(dc->pc);
11108 gen_helper_wfe(cpu_env);
11109 break;
11110 case DISAS_WFI:
11111 /* This is a special case because we don't want to just halt the CPU
11112 * if trying to debug across a WFI.
11114 gen_a64_set_pc_im(dc->pc);
11115 gen_helper_wfi(cpu_env);
11116 /* The helper doesn't necessarily throw an exception, but we
11117 * must go back to the main loop to check for interrupts anyway.
11119 tcg_gen_exit_tb(0);
11120 break;
11124 done_generating:
11125 gen_tb_end(tb, num_insns);
11127 #ifdef DEBUG_DISAS
11128 if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)) {
11129 qemu_log("----------------\n");
11130 qemu_log("IN: %s\n", lookup_symbol(pc_start));
11131 log_target_disas(env, pc_start, dc->pc - pc_start,
11132 4 | (dc->bswap_code << 1));
11133 qemu_log("\n");
11135 #endif
11136 if (search_pc) {
11137 j = tcg_op_buf_count();
11138 lj++;
11139 while (lj <= j) {
11140 tcg_ctx.gen_opc_instr_start[lj++] = 0;
11142 } else {
11143 tb->size = dc->pc - pc_start;
11144 tb->icount = num_insns;