acpi: add aml_increment() term
[qemu.git] / target-arm / kvm64.c
blob93c1ca8b211ce365494bbc1184ef1802bc162d41
1 /*
2 * ARM implementation of KVM hooks, 64 bit specific code
4 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 */
11 #include <stdio.h>
12 #include <sys/types.h>
13 #include <sys/ioctl.h>
14 #include <sys/mman.h>
16 #include <linux/kvm.h>
18 #include "config-host.h"
19 #include "qemu-common.h"
20 #include "qemu/timer.h"
21 #include "sysemu/sysemu.h"
22 #include "sysemu/kvm.h"
23 #include "kvm_arm.h"
24 #include "cpu.h"
25 #include "internals.h"
26 #include "hw/arm/arm.h"
28 static inline void set_feature(uint64_t *features, int feature)
30 *features |= 1ULL << feature;
33 bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
35 /* Identify the feature bits corresponding to the host CPU, and
36 * fill out the ARMHostCPUClass fields accordingly. To do this
37 * we have to create a scratch VM, create a single CPU inside it,
38 * and then query that CPU for the relevant ID registers.
39 * For AArch64 we currently don't care about ID registers at
40 * all; we just want to know the CPU type.
42 int fdarray[3];
43 uint64_t features = 0;
44 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
45 * we know these will only support creating one kind of guest CPU,
46 * which is its preferred CPU type. Fortunately these old kernels
47 * support only a very limited number of CPUs.
49 static const uint32_t cpus_to_try[] = {
50 KVM_ARM_TARGET_AEM_V8,
51 KVM_ARM_TARGET_FOUNDATION_V8,
52 KVM_ARM_TARGET_CORTEX_A57,
53 QEMU_KVM_ARM_TARGET_NONE
55 struct kvm_vcpu_init init;
57 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
58 return false;
61 ahcc->target = init.target;
62 ahcc->dtb_compatible = "arm,arm-v8";
64 kvm_arm_destroy_scratch_host_vcpu(fdarray);
66 /* We can assume any KVM supporting CPU is at least a v8
67 * with VFPv4+Neon; this in turn implies most of the other
68 * feature bits.
70 set_feature(&features, ARM_FEATURE_V8);
71 set_feature(&features, ARM_FEATURE_VFP4);
72 set_feature(&features, ARM_FEATURE_NEON);
73 set_feature(&features, ARM_FEATURE_AARCH64);
75 ahcc->features = features;
77 return true;
80 int kvm_arch_init_vcpu(CPUState *cs)
82 int ret;
83 ARMCPU *cpu = ARM_CPU(cs);
85 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
86 !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
87 fprintf(stderr, "KVM is not supported for this guest CPU type\n");
88 return -EINVAL;
91 /* Determine init features for this CPU */
92 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
93 if (cpu->start_powered_off) {
94 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
96 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
97 cpu->psci_version = 2;
98 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
100 if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
101 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
104 /* Do KVM_ARM_VCPU_INIT ioctl */
105 ret = kvm_arm_vcpu_init(cs);
106 if (ret) {
107 return ret;
110 return kvm_arm_init_cpreg_list(cpu);
113 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
115 /* Return true if the regidx is a register we should synchronize
116 * via the cpreg_tuples array (ie is not a core reg we sync by
117 * hand in kvm_arch_get/put_registers())
119 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
120 case KVM_REG_ARM_CORE:
121 return false;
122 default:
123 return true;
127 #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
128 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
130 #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
131 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
133 #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
134 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
136 int kvm_arch_put_registers(CPUState *cs, int level)
138 struct kvm_one_reg reg;
139 uint32_t fpr;
140 uint64_t val;
141 int i;
142 int ret;
143 unsigned int el;
145 ARMCPU *cpu = ARM_CPU(cs);
146 CPUARMState *env = &cpu->env;
148 /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
149 * AArch64 registers before pushing them out to 64-bit KVM.
151 if (!is_a64(env)) {
152 aarch64_sync_32_to_64(env);
155 for (i = 0; i < 31; i++) {
156 reg.id = AARCH64_CORE_REG(regs.regs[i]);
157 reg.addr = (uintptr_t) &env->xregs[i];
158 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
159 if (ret) {
160 return ret;
164 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
165 * QEMU side we keep the current SP in xregs[31] as well.
167 aarch64_save_sp(env, 1);
169 reg.id = AARCH64_CORE_REG(regs.sp);
170 reg.addr = (uintptr_t) &env->sp_el[0];
171 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
172 if (ret) {
173 return ret;
176 reg.id = AARCH64_CORE_REG(sp_el1);
177 reg.addr = (uintptr_t) &env->sp_el[1];
178 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
179 if (ret) {
180 return ret;
183 /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
184 if (is_a64(env)) {
185 val = pstate_read(env);
186 } else {
187 val = cpsr_read(env);
189 reg.id = AARCH64_CORE_REG(regs.pstate);
190 reg.addr = (uintptr_t) &val;
191 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
192 if (ret) {
193 return ret;
196 reg.id = AARCH64_CORE_REG(regs.pc);
197 reg.addr = (uintptr_t) &env->pc;
198 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
199 if (ret) {
200 return ret;
203 reg.id = AARCH64_CORE_REG(elr_el1);
204 reg.addr = (uintptr_t) &env->elr_el[1];
205 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
206 if (ret) {
207 return ret;
210 /* Saved Program State Registers
212 * Before we restore from the banked_spsr[] array we need to
213 * ensure that any modifications to env->spsr are correctly
214 * reflected in the banks.
216 el = arm_current_el(env);
217 if (el > 0 && !is_a64(env)) {
218 i = bank_number(env->uncached_cpsr & CPSR_M);
219 env->banked_spsr[i] = env->spsr;
222 /* KVM 0-4 map to QEMU banks 1-5 */
223 for (i = 0; i < KVM_NR_SPSR; i++) {
224 reg.id = AARCH64_CORE_REG(spsr[i]);
225 reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
226 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
227 if (ret) {
228 return ret;
232 /* Advanced SIMD and FP registers
233 * We map Qn = regs[2n+1]:regs[2n]
235 for (i = 0; i < 32; i++) {
236 int rd = i << 1;
237 uint64_t fp_val[2];
238 #ifdef HOST_WORDS_BIGENDIAN
239 fp_val[0] = env->vfp.regs[rd + 1];
240 fp_val[1] = env->vfp.regs[rd];
241 #else
242 fp_val[1] = env->vfp.regs[rd + 1];
243 fp_val[0] = env->vfp.regs[rd];
244 #endif
245 reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
246 reg.addr = (uintptr_t)(&fp_val);
247 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
248 if (ret) {
249 return ret;
253 reg.addr = (uintptr_t)(&fpr);
254 fpr = vfp_get_fpsr(env);
255 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
256 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
257 if (ret) {
258 return ret;
261 fpr = vfp_get_fpcr(env);
262 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
263 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
264 if (ret) {
265 return ret;
268 if (!write_list_to_kvmstate(cpu)) {
269 return EINVAL;
272 kvm_arm_sync_mpstate_to_kvm(cpu);
274 return ret;
277 int kvm_arch_get_registers(CPUState *cs)
279 struct kvm_one_reg reg;
280 uint64_t val;
281 uint32_t fpr;
282 unsigned int el;
283 int i;
284 int ret;
286 ARMCPU *cpu = ARM_CPU(cs);
287 CPUARMState *env = &cpu->env;
289 for (i = 0; i < 31; i++) {
290 reg.id = AARCH64_CORE_REG(regs.regs[i]);
291 reg.addr = (uintptr_t) &env->xregs[i];
292 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
293 if (ret) {
294 return ret;
298 reg.id = AARCH64_CORE_REG(regs.sp);
299 reg.addr = (uintptr_t) &env->sp_el[0];
300 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
301 if (ret) {
302 return ret;
305 reg.id = AARCH64_CORE_REG(sp_el1);
306 reg.addr = (uintptr_t) &env->sp_el[1];
307 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
308 if (ret) {
309 return ret;
312 reg.id = AARCH64_CORE_REG(regs.pstate);
313 reg.addr = (uintptr_t) &val;
314 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
315 if (ret) {
316 return ret;
319 env->aarch64 = ((val & PSTATE_nRW) == 0);
320 if (is_a64(env)) {
321 pstate_write(env, val);
322 } else {
323 env->uncached_cpsr = val & CPSR_M;
324 cpsr_write(env, val, 0xffffffff);
327 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
328 * QEMU side we keep the current SP in xregs[31] as well.
330 aarch64_restore_sp(env, 1);
332 reg.id = AARCH64_CORE_REG(regs.pc);
333 reg.addr = (uintptr_t) &env->pc;
334 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
335 if (ret) {
336 return ret;
339 /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
340 * incoming AArch64 regs received from 64-bit KVM.
341 * We must perform this after all of the registers have been acquired from
342 * the kernel.
344 if (!is_a64(env)) {
345 aarch64_sync_64_to_32(env);
348 reg.id = AARCH64_CORE_REG(elr_el1);
349 reg.addr = (uintptr_t) &env->elr_el[1];
350 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
351 if (ret) {
352 return ret;
355 /* Fetch the SPSR registers
357 * KVM SPSRs 0-4 map to QEMU banks 1-5
359 for (i = 0; i < KVM_NR_SPSR; i++) {
360 reg.id = AARCH64_CORE_REG(spsr[i]);
361 reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
362 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
363 if (ret) {
364 return ret;
368 el = arm_current_el(env);
369 if (el > 0 && !is_a64(env)) {
370 i = bank_number(env->uncached_cpsr & CPSR_M);
371 env->spsr = env->banked_spsr[i];
374 /* Advanced SIMD and FP registers
375 * We map Qn = regs[2n+1]:regs[2n]
377 for (i = 0; i < 32; i++) {
378 uint64_t fp_val[2];
379 reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
380 reg.addr = (uintptr_t)(&fp_val);
381 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
382 if (ret) {
383 return ret;
384 } else {
385 int rd = i << 1;
386 #ifdef HOST_WORDS_BIGENDIAN
387 env->vfp.regs[rd + 1] = fp_val[0];
388 env->vfp.regs[rd] = fp_val[1];
389 #else
390 env->vfp.regs[rd + 1] = fp_val[1];
391 env->vfp.regs[rd] = fp_val[0];
392 #endif
396 reg.addr = (uintptr_t)(&fpr);
397 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
398 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
399 if (ret) {
400 return ret;
402 vfp_set_fpsr(env, fpr);
404 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
405 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
406 if (ret) {
407 return ret;
409 vfp_set_fpcr(env, fpr);
411 if (!write_kvmstate_to_list(cpu)) {
412 return EINVAL;
414 /* Note that it's OK to have registers which aren't in CPUState,
415 * so we can ignore a failure return here.
417 write_list_to_cpustate(cpu);
419 kvm_arm_sync_mpstate_to_qemu(cpu);
421 /* TODO: other registers */
422 return ret;