Merge tag 'qemu-macppc-20230206' of https://github.com/mcayland/qemu into staging
[qemu.git] / util / hbitmap.c
blob297db35fb11e1f02eee5e3a3ced40d44876ff20c
1 /*
2 * Hierarchical Bitmap Data Type
4 * Copyright Red Hat, Inc., 2012
6 * Author: Paolo Bonzini <pbonzini@redhat.com>
8 * This work is licensed under the terms of the GNU GPL, version 2 or
9 * later. See the COPYING file in the top-level directory.
12 #include "qemu/osdep.h"
13 #include "qemu/hbitmap.h"
14 #include "qemu/host-utils.h"
15 #include "trace.h"
16 #include "crypto/hash.h"
18 /* HBitmaps provides an array of bits. The bits are stored as usual in an
19 * array of unsigned longs, but HBitmap is also optimized to provide fast
20 * iteration over set bits; going from one bit to the next is O(logB n)
21 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
22 * that the number of levels is in fact fixed.
24 * In order to do this, it stacks multiple bitmaps with progressively coarser
25 * granularity; in all levels except the last, bit N is set iff the N-th
26 * unsigned long is nonzero in the immediately next level. When iteration
27 * completes on the last level it can examine the 2nd-last level to quickly
28 * skip entire words, and even do so recursively to skip blocks of 64 words or
29 * powers thereof (32 on 32-bit machines).
31 * Given an index in the bitmap, it can be split in group of bits like
32 * this (for the 64-bit case):
34 * bits 0-57 => word in the last bitmap | bits 58-63 => bit in the word
35 * bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
36 * bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
38 * So it is easy to move up simply by shifting the index right by
39 * log2(BITS_PER_LONG) bits. To move down, you shift the index left
40 * similarly, and add the word index within the group. Iteration uses
41 * ffs (find first set bit) to find the next word to examine; this
42 * operation can be done in constant time in most current architectures.
44 * Setting or clearing a range of m bits on all levels, the work to perform
45 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
47 * When iterating on a bitmap, each bit (on any level) is only visited
48 * once. Hence, The total cost of visiting a bitmap with m bits in it is
49 * the number of bits that are set in all bitmaps. Unless the bitmap is
50 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
51 * cost of advancing from one bit to the next is usually constant (worst case
52 * O(logB n) as in the non-amortized complexity).
55 struct HBitmap {
57 * Size of the bitmap, as requested in hbitmap_alloc or in hbitmap_truncate.
59 uint64_t orig_size;
61 /* Number of total bits in the bottom level. */
62 uint64_t size;
64 /* Number of set bits in the bottom level. */
65 uint64_t count;
67 /* A scaling factor. Given a granularity of G, each bit in the bitmap will
68 * will actually represent a group of 2^G elements. Each operation on a
69 * range of bits first rounds the bits to determine which group they land
70 * in, and then affect the entire page; iteration will only visit the first
71 * bit of each group. Here is an example of operations in a size-16,
72 * granularity-1 HBitmap:
74 * initial state 00000000
75 * set(start=0, count=9) 11111000 (iter: 0, 2, 4, 6, 8)
76 * reset(start=1, count=3) 00111000 (iter: 4, 6, 8)
77 * set(start=9, count=2) 00111100 (iter: 4, 6, 8, 10)
78 * reset(start=5, count=5) 00000000
80 * From an implementation point of view, when setting or resetting bits,
81 * the bitmap will scale bit numbers right by this amount of bits. When
82 * iterating, the bitmap will scale bit numbers left by this amount of
83 * bits.
85 int granularity;
87 /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */
88 HBitmap *meta;
90 /* A number of progressively less coarse bitmaps (i.e. level 0 is the
91 * coarsest). Each bit in level N represents a word in level N+1 that
92 * has a set bit, except the last level where each bit represents the
93 * actual bitmap.
95 * Note that all bitmaps have the same number of levels. Even a 1-bit
96 * bitmap will still allocate HBITMAP_LEVELS arrays.
98 unsigned long *levels[HBITMAP_LEVELS];
100 /* The length of each levels[] array. */
101 uint64_t sizes[HBITMAP_LEVELS];
104 /* Advance hbi to the next nonzero word and return it. hbi->pos
105 * is updated. Returns zero if we reach the end of the bitmap.
107 static unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
109 size_t pos = hbi->pos;
110 const HBitmap *hb = hbi->hb;
111 unsigned i = HBITMAP_LEVELS - 1;
113 unsigned long cur;
114 do {
115 i--;
116 pos >>= BITS_PER_LEVEL;
117 cur = hbi->cur[i] & hb->levels[i][pos];
118 } while (cur == 0);
120 /* Check for end of iteration. We always use fewer than BITS_PER_LONG
121 * bits in the level 0 bitmap; thus we can repurpose the most significant
122 * bit as a sentinel. The sentinel is set in hbitmap_alloc and ensures
123 * that the above loop ends even without an explicit check on i.
126 if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
127 return 0;
129 for (; i < HBITMAP_LEVELS - 1; i++) {
130 /* Shift back pos to the left, matching the right shifts above.
131 * The index of this word's least significant set bit provides
132 * the low-order bits.
134 assert(cur);
135 pos = (pos << BITS_PER_LEVEL) + ctzl(cur);
136 hbi->cur[i] = cur & (cur - 1);
138 /* Set up next level for iteration. */
139 cur = hb->levels[i + 1][pos];
142 hbi->pos = pos;
143 trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);
145 assert(cur);
146 return cur;
149 int64_t hbitmap_iter_next(HBitmapIter *hbi)
151 unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1] &
152 hbi->hb->levels[HBITMAP_LEVELS - 1][hbi->pos];
153 int64_t item;
155 if (cur == 0) {
156 cur = hbitmap_iter_skip_words(hbi);
157 if (cur == 0) {
158 return -1;
162 /* The next call will resume work from the next bit. */
163 hbi->cur[HBITMAP_LEVELS - 1] = cur & (cur - 1);
164 item = ((uint64_t)hbi->pos << BITS_PER_LEVEL) + ctzl(cur);
166 return item << hbi->granularity;
169 void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
171 unsigned i, bit;
172 uint64_t pos;
174 hbi->hb = hb;
175 pos = first >> hb->granularity;
176 assert(pos < hb->size);
177 hbi->pos = pos >> BITS_PER_LEVEL;
178 hbi->granularity = hb->granularity;
180 for (i = HBITMAP_LEVELS; i-- > 0; ) {
181 bit = pos & (BITS_PER_LONG - 1);
182 pos >>= BITS_PER_LEVEL;
184 /* Drop bits representing items before first. */
185 hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);
187 /* We have already added level i+1, so the lowest set bit has
188 * been processed. Clear it.
190 if (i != HBITMAP_LEVELS - 1) {
191 hbi->cur[i] &= ~(1UL << bit);
196 int64_t hbitmap_next_dirty(const HBitmap *hb, int64_t start, int64_t count)
198 HBitmapIter hbi;
199 int64_t first_dirty_off;
200 uint64_t end;
202 assert(start >= 0 && count >= 0);
204 if (start >= hb->orig_size || count == 0) {
205 return -1;
208 end = count > hb->orig_size - start ? hb->orig_size : start + count;
210 hbitmap_iter_init(&hbi, hb, start);
211 first_dirty_off = hbitmap_iter_next(&hbi);
213 if (first_dirty_off < 0 || first_dirty_off >= end) {
214 return -1;
217 return MAX(start, first_dirty_off);
220 int64_t hbitmap_next_zero(const HBitmap *hb, int64_t start, int64_t count)
222 size_t pos = (start >> hb->granularity) >> BITS_PER_LEVEL;
223 unsigned long *last_lev = hb->levels[HBITMAP_LEVELS - 1];
224 unsigned long cur = last_lev[pos];
225 unsigned start_bit_offset;
226 uint64_t end_bit, sz;
227 int64_t res;
229 assert(start >= 0 && count >= 0);
231 if (start >= hb->orig_size || count == 0) {
232 return -1;
235 end_bit = count > hb->orig_size - start ?
236 hb->size :
237 ((start + count - 1) >> hb->granularity) + 1;
238 sz = (end_bit + BITS_PER_LONG - 1) >> BITS_PER_LEVEL;
240 /* There may be some zero bits in @cur before @start. We are not interested
241 * in them, let's set them.
243 start_bit_offset = (start >> hb->granularity) & (BITS_PER_LONG - 1);
244 cur |= (1UL << start_bit_offset) - 1;
245 assert((start >> hb->granularity) < hb->size);
247 if (cur == (unsigned long)-1) {
248 do {
249 pos++;
250 } while (pos < sz && last_lev[pos] == (unsigned long)-1);
252 if (pos >= sz) {
253 return -1;
256 cur = last_lev[pos];
259 res = (pos << BITS_PER_LEVEL) + ctol(cur);
260 if (res >= end_bit) {
261 return -1;
264 res = res << hb->granularity;
265 if (res < start) {
266 assert(((start - res) >> hb->granularity) == 0);
267 return start;
270 return res;
273 bool hbitmap_next_dirty_area(const HBitmap *hb, int64_t start, int64_t end,
274 int64_t max_dirty_count,
275 int64_t *dirty_start, int64_t *dirty_count)
277 int64_t next_zero;
279 assert(start >= 0 && end >= 0 && max_dirty_count > 0);
281 end = MIN(end, hb->orig_size);
282 if (start >= end) {
283 return false;
286 start = hbitmap_next_dirty(hb, start, end - start);
287 if (start < 0) {
288 return false;
291 end = start + MIN(end - start, max_dirty_count);
293 next_zero = hbitmap_next_zero(hb, start, end - start);
294 if (next_zero >= 0) {
295 end = next_zero;
298 *dirty_start = start;
299 *dirty_count = end - start;
301 return true;
304 bool hbitmap_status(const HBitmap *hb, int64_t start, int64_t count,
305 int64_t *pnum)
307 int64_t next_dirty, next_zero;
309 assert(start >= 0);
310 assert(count > 0);
311 assert(start + count <= hb->orig_size);
313 next_dirty = hbitmap_next_dirty(hb, start, count);
314 if (next_dirty == -1) {
315 *pnum = count;
316 return false;
319 if (next_dirty > start) {
320 *pnum = next_dirty - start;
321 return false;
324 assert(next_dirty == start);
326 next_zero = hbitmap_next_zero(hb, start, count);
327 if (next_zero == -1) {
328 *pnum = count;
329 return true;
332 assert(next_zero > start);
333 *pnum = next_zero - start;
334 return false;
337 bool hbitmap_empty(const HBitmap *hb)
339 return hb->count == 0;
342 int hbitmap_granularity(const HBitmap *hb)
344 return hb->granularity;
347 uint64_t hbitmap_count(const HBitmap *hb)
349 return hb->count << hb->granularity;
353 * hbitmap_iter_next_word:
354 * @hbi: HBitmapIter to operate on.
355 * @p_cur: Location where to store the next non-zero word.
357 * Return the index of the next nonzero word that is set in @hbi's
358 * associated HBitmap, and set *p_cur to the content of that word
359 * (bits before the index that was passed to hbitmap_iter_init are
360 * trimmed on the first call). Return -1, and set *p_cur to zero,
361 * if all remaining words are zero.
363 static size_t hbitmap_iter_next_word(HBitmapIter *hbi, unsigned long *p_cur)
365 unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1];
367 if (cur == 0) {
368 cur = hbitmap_iter_skip_words(hbi);
369 if (cur == 0) {
370 *p_cur = 0;
371 return -1;
375 /* The next call will resume work from the next word. */
376 hbi->cur[HBITMAP_LEVELS - 1] = 0;
377 *p_cur = cur;
378 return hbi->pos;
381 /* Count the number of set bits between start and end, not accounting for
382 * the granularity. Also an example of how to use hbitmap_iter_next_word.
384 static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
386 HBitmapIter hbi;
387 uint64_t count = 0;
388 uint64_t end = last + 1;
389 unsigned long cur;
390 size_t pos;
392 hbitmap_iter_init(&hbi, hb, start << hb->granularity);
393 for (;;) {
394 pos = hbitmap_iter_next_word(&hbi, &cur);
395 if (pos >= (end >> BITS_PER_LEVEL)) {
396 break;
398 count += ctpopl(cur);
401 if (pos == (end >> BITS_PER_LEVEL)) {
402 /* Drop bits representing the END-th and subsequent items. */
403 int bit = end & (BITS_PER_LONG - 1);
404 cur &= (1UL << bit) - 1;
405 count += ctpopl(cur);
408 return count;
411 /* Setting starts at the last layer and propagates up if an element
412 * changes.
414 static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
416 unsigned long mask;
417 unsigned long old;
419 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
420 assert(start <= last);
422 mask = 2UL << (last & (BITS_PER_LONG - 1));
423 mask -= 1UL << (start & (BITS_PER_LONG - 1));
424 old = *elem;
425 *elem |= mask;
426 return old != *elem;
429 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
430 * Returns true if at least one bit is changed. */
431 static bool hb_set_between(HBitmap *hb, int level, uint64_t start,
432 uint64_t last)
434 size_t pos = start >> BITS_PER_LEVEL;
435 size_t lastpos = last >> BITS_PER_LEVEL;
436 bool changed = false;
437 size_t i;
439 i = pos;
440 if (i < lastpos) {
441 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
442 changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
443 for (;;) {
444 start = next;
445 next += BITS_PER_LONG;
446 if (++i == lastpos) {
447 break;
449 changed |= (hb->levels[level][i] == 0);
450 hb->levels[level][i] = ~0UL;
453 changed |= hb_set_elem(&hb->levels[level][i], start, last);
455 /* If there was any change in this layer, we may have to update
456 * the one above.
458 if (level > 0 && changed) {
459 hb_set_between(hb, level - 1, pos, lastpos);
461 return changed;
464 void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
466 /* Compute range in the last layer. */
467 uint64_t first, n;
468 uint64_t last = start + count - 1;
470 if (count == 0) {
471 return;
474 trace_hbitmap_set(hb, start, count,
475 start >> hb->granularity, last >> hb->granularity);
477 first = start >> hb->granularity;
478 last >>= hb->granularity;
479 assert(last < hb->size);
480 n = last - first + 1;
482 hb->count += n - hb_count_between(hb, first, last);
483 if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) &&
484 hb->meta) {
485 hbitmap_set(hb->meta, start, count);
489 /* Resetting works the other way round: propagate up if the new
490 * value is zero.
492 static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
494 unsigned long mask;
495 bool blanked;
497 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
498 assert(start <= last);
500 mask = 2UL << (last & (BITS_PER_LONG - 1));
501 mask -= 1UL << (start & (BITS_PER_LONG - 1));
502 blanked = *elem != 0 && ((*elem & ~mask) == 0);
503 *elem &= ~mask;
504 return blanked;
507 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
508 * Returns true if at least one bit is changed. */
509 static bool hb_reset_between(HBitmap *hb, int level, uint64_t start,
510 uint64_t last)
512 size_t pos = start >> BITS_PER_LEVEL;
513 size_t lastpos = last >> BITS_PER_LEVEL;
514 bool changed = false;
515 size_t i;
517 i = pos;
518 if (i < lastpos) {
519 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
521 /* Here we need a more complex test than when setting bits. Even if
522 * something was changed, we must not blank bits in the upper level
523 * unless the lower-level word became entirely zero. So, remove pos
524 * from the upper-level range if bits remain set.
526 if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
527 changed = true;
528 } else {
529 pos++;
532 for (;;) {
533 start = next;
534 next += BITS_PER_LONG;
535 if (++i == lastpos) {
536 break;
538 changed |= (hb->levels[level][i] != 0);
539 hb->levels[level][i] = 0UL;
543 /* Same as above, this time for lastpos. */
544 if (hb_reset_elem(&hb->levels[level][i], start, last)) {
545 changed = true;
546 } else {
547 lastpos--;
550 if (level > 0 && changed) {
551 hb_reset_between(hb, level - 1, pos, lastpos);
554 return changed;
558 void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
560 /* Compute range in the last layer. */
561 uint64_t first;
562 uint64_t last = start + count - 1;
563 uint64_t gran = 1ULL << hb->granularity;
565 if (count == 0) {
566 return;
569 assert(QEMU_IS_ALIGNED(start, gran));
570 assert(QEMU_IS_ALIGNED(count, gran) || (start + count == hb->orig_size));
572 trace_hbitmap_reset(hb, start, count,
573 start >> hb->granularity, last >> hb->granularity);
575 first = start >> hb->granularity;
576 last >>= hb->granularity;
577 assert(last < hb->size);
579 hb->count -= hb_count_between(hb, first, last);
580 if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) &&
581 hb->meta) {
582 hbitmap_set(hb->meta, start, count);
586 void hbitmap_reset_all(HBitmap *hb)
588 unsigned int i;
590 /* Same as hbitmap_alloc() except for memset() instead of malloc() */
591 for (i = HBITMAP_LEVELS; --i >= 1; ) {
592 memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long));
595 hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1);
596 hb->count = 0;
599 bool hbitmap_is_serializable(const HBitmap *hb)
601 /* Every serialized chunk must be aligned to 64 bits so that endianness
602 * requirements can be fulfilled on both 64 bit and 32 bit hosts.
603 * We have hbitmap_serialization_align() which converts this
604 * alignment requirement from bitmap bits to items covered (e.g. sectors).
605 * That value is:
606 * 64 << hb->granularity
607 * Since this value must not exceed UINT64_MAX, hb->granularity must be
608 * less than 58 (== 64 - 6, where 6 is ld(64), i.e. 1 << 6 == 64).
610 * In order for hbitmap_serialization_align() to always return a
611 * meaningful value, bitmaps that are to be serialized must have a
612 * granularity of less than 58. */
614 return hb->granularity < 58;
617 bool hbitmap_get(const HBitmap *hb, uint64_t item)
619 /* Compute position and bit in the last layer. */
620 uint64_t pos = item >> hb->granularity;
621 unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
622 assert(pos < hb->size);
624 return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
627 uint64_t hbitmap_serialization_align(const HBitmap *hb)
629 assert(hbitmap_is_serializable(hb));
631 /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit
632 * hosts. */
633 return UINT64_C(64) << hb->granularity;
636 /* Start should be aligned to serialization granularity, chunk size should be
637 * aligned to serialization granularity too, except for last chunk.
639 static void serialization_chunk(const HBitmap *hb,
640 uint64_t start, uint64_t count,
641 unsigned long **first_el, uint64_t *el_count)
643 uint64_t last = start + count - 1;
644 uint64_t gran = hbitmap_serialization_align(hb);
646 assert((start & (gran - 1)) == 0);
647 assert((last >> hb->granularity) < hb->size);
648 if ((last >> hb->granularity) != hb->size - 1) {
649 assert((count & (gran - 1)) == 0);
652 start = (start >> hb->granularity) >> BITS_PER_LEVEL;
653 last = (last >> hb->granularity) >> BITS_PER_LEVEL;
655 *first_el = &hb->levels[HBITMAP_LEVELS - 1][start];
656 *el_count = last - start + 1;
659 uint64_t hbitmap_serialization_size(const HBitmap *hb,
660 uint64_t start, uint64_t count)
662 uint64_t el_count;
663 unsigned long *cur;
665 if (!count) {
666 return 0;
668 serialization_chunk(hb, start, count, &cur, &el_count);
670 return el_count * sizeof(unsigned long);
673 void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf,
674 uint64_t start, uint64_t count)
676 uint64_t el_count;
677 unsigned long *cur, *end;
679 if (!count) {
680 return;
682 serialization_chunk(hb, start, count, &cur, &el_count);
683 end = cur + el_count;
685 while (cur != end) {
686 unsigned long el =
687 (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur));
689 memcpy(buf, &el, sizeof(el));
690 buf += sizeof(el);
691 cur++;
695 void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf,
696 uint64_t start, uint64_t count,
697 bool finish)
699 uint64_t el_count;
700 unsigned long *cur, *end;
702 if (!count) {
703 return;
705 serialization_chunk(hb, start, count, &cur, &el_count);
706 end = cur + el_count;
708 while (cur != end) {
709 memcpy(cur, buf, sizeof(*cur));
711 if (BITS_PER_LONG == 32) {
712 le32_to_cpus((uint32_t *)cur);
713 } else {
714 le64_to_cpus((uint64_t *)cur);
717 buf += sizeof(unsigned long);
718 cur++;
720 if (finish) {
721 hbitmap_deserialize_finish(hb);
725 void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count,
726 bool finish)
728 uint64_t el_count;
729 unsigned long *first;
731 if (!count) {
732 return;
734 serialization_chunk(hb, start, count, &first, &el_count);
736 memset(first, 0, el_count * sizeof(unsigned long));
737 if (finish) {
738 hbitmap_deserialize_finish(hb);
742 void hbitmap_deserialize_ones(HBitmap *hb, uint64_t start, uint64_t count,
743 bool finish)
745 uint64_t el_count;
746 unsigned long *first;
748 if (!count) {
749 return;
751 serialization_chunk(hb, start, count, &first, &el_count);
753 memset(first, 0xff, el_count * sizeof(unsigned long));
754 if (finish) {
755 hbitmap_deserialize_finish(hb);
759 void hbitmap_deserialize_finish(HBitmap *bitmap)
761 int64_t i, size, prev_size;
762 int lev;
764 /* restore levels starting from penultimate to zero level, assuming
765 * that the last level is ok */
766 size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
767 for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) {
768 prev_size = size;
769 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
770 memset(bitmap->levels[lev], 0, size * sizeof(unsigned long));
772 for (i = 0; i < prev_size; ++i) {
773 if (bitmap->levels[lev + 1][i]) {
774 bitmap->levels[lev][i >> BITS_PER_LEVEL] |=
775 1UL << (i & (BITS_PER_LONG - 1));
780 bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
781 bitmap->count = hb_count_between(bitmap, 0, bitmap->size - 1);
784 void hbitmap_free(HBitmap *hb)
786 unsigned i;
787 assert(!hb->meta);
788 for (i = HBITMAP_LEVELS; i-- > 0; ) {
789 g_free(hb->levels[i]);
791 g_free(hb);
794 HBitmap *hbitmap_alloc(uint64_t size, int granularity)
796 HBitmap *hb = g_new0(struct HBitmap, 1);
797 unsigned i;
799 assert(size <= INT64_MAX);
800 hb->orig_size = size;
802 assert(granularity >= 0 && granularity < 64);
803 size = (size + (1ULL << granularity) - 1) >> granularity;
804 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
806 hb->size = size;
807 hb->granularity = granularity;
808 for (i = HBITMAP_LEVELS; i-- > 0; ) {
809 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
810 hb->sizes[i] = size;
811 hb->levels[i] = g_new0(unsigned long, size);
814 /* We necessarily have free bits in level 0 due to the definition
815 * of HBITMAP_LEVELS, so use one for a sentinel. This speeds up
816 * hbitmap_iter_skip_words.
818 assert(size == 1);
819 hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
820 return hb;
823 void hbitmap_truncate(HBitmap *hb, uint64_t size)
825 bool shrink;
826 unsigned i;
827 uint64_t num_elements = size;
828 uint64_t old;
830 assert(size <= INT64_MAX);
831 hb->orig_size = size;
833 /* Size comes in as logical elements, adjust for granularity. */
834 size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity;
835 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
836 shrink = size < hb->size;
838 /* bit sizes are identical; nothing to do. */
839 if (size == hb->size) {
840 return;
843 /* If we're losing bits, let's clear those bits before we invalidate all of
844 * our invariants. This helps keep the bitcount consistent, and will prevent
845 * us from carrying around garbage bits beyond the end of the map.
847 if (shrink) {
848 /* Don't clear partial granularity groups;
849 * start at the first full one. */
850 uint64_t start = ROUND_UP(num_elements, UINT64_C(1) << hb->granularity);
851 uint64_t fix_count = (hb->size << hb->granularity) - start;
853 assert(fix_count);
854 hbitmap_reset(hb, start, fix_count);
857 hb->size = size;
858 for (i = HBITMAP_LEVELS; i-- > 0; ) {
859 size = MAX(BITS_TO_LONGS(size), 1);
860 if (hb->sizes[i] == size) {
861 break;
863 old = hb->sizes[i];
864 hb->sizes[i] = size;
865 hb->levels[i] = g_renew(unsigned long, hb->levels[i], size);
866 if (!shrink) {
867 memset(&hb->levels[i][old], 0x00,
868 (size - old) * sizeof(*hb->levels[i]));
871 if (hb->meta) {
872 hbitmap_truncate(hb->meta, hb->size << hb->granularity);
877 * hbitmap_sparse_merge: performs dst = dst | src
878 * works with differing granularities.
879 * best used when src is sparsely populated.
881 static void hbitmap_sparse_merge(HBitmap *dst, const HBitmap *src)
883 int64_t offset;
884 int64_t count;
886 for (offset = 0;
887 hbitmap_next_dirty_area(src, offset, src->orig_size, INT64_MAX,
888 &offset, &count);
889 offset += count)
891 hbitmap_set(dst, offset, count);
896 * Given HBitmaps A and B, let R := A (BITOR) B.
897 * Bitmaps A and B will not be modified,
898 * except when bitmap R is an alias of A or B.
899 * Bitmaps must have same size.
901 void hbitmap_merge(const HBitmap *a, const HBitmap *b, HBitmap *result)
903 int i;
904 uint64_t j;
906 assert(a->orig_size == result->orig_size);
907 assert(b->orig_size == result->orig_size);
909 if ((!hbitmap_count(a) && result == b) ||
910 (!hbitmap_count(b) && result == a)) {
911 return;
914 if (!hbitmap_count(a) && !hbitmap_count(b)) {
915 hbitmap_reset_all(result);
916 return;
919 if (a->granularity != b->granularity) {
920 if ((a != result) && (b != result)) {
921 hbitmap_reset_all(result);
923 if (a != result) {
924 hbitmap_sparse_merge(result, a);
926 if (b != result) {
927 hbitmap_sparse_merge(result, b);
929 return;
932 /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant.
933 * It may be possible to improve running times for sparsely populated maps
934 * by using hbitmap_iter_next, but this is suboptimal for dense maps.
936 assert(a->size == b->size);
937 for (i = HBITMAP_LEVELS - 1; i >= 0; i--) {
938 for (j = 0; j < a->sizes[i]; j++) {
939 result->levels[i][j] = a->levels[i][j] | b->levels[i][j];
943 /* Recompute the dirty count */
944 result->count = hb_count_between(result, 0, result->size - 1);
947 char *hbitmap_sha256(const HBitmap *bitmap, Error **errp)
949 size_t size = bitmap->sizes[HBITMAP_LEVELS - 1] * sizeof(unsigned long);
950 char *data = (char *)bitmap->levels[HBITMAP_LEVELS - 1];
951 char *hash = NULL;
952 qcrypto_hash_digest(QCRYPTO_HASH_ALG_SHA256, data, size, &hash, errp);
954 return hash;