add assertions on the owner of a QemuMutex
[qemu.git] / cpu-exec.c
blob70c3e5ae1bb04c5d4d46bbb9e0e68b2281d885ff
1 /*
2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "exec.h"
21 #include "disas.h"
22 #include "tcg.h"
23 #include "kvm.h"
24 #include "qemu-barrier.h"
26 #if !defined(CONFIG_SOFTMMU)
27 #undef EAX
28 #undef ECX
29 #undef EDX
30 #undef EBX
31 #undef ESP
32 #undef EBP
33 #undef ESI
34 #undef EDI
35 #undef EIP
36 #include <signal.h>
37 #ifdef __linux__
38 #include <sys/ucontext.h>
39 #endif
40 #endif
42 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
43 // Work around ugly bugs in glibc that mangle global register contents
44 #undef env
45 #define env cpu_single_env
46 #endif
48 int tb_invalidated_flag;
50 //#define CONFIG_DEBUG_EXEC
51 //#define DEBUG_SIGNAL
53 int qemu_cpu_has_work(CPUState *env)
55 return cpu_has_work(env);
58 void cpu_loop_exit(void)
60 env->current_tb = NULL;
61 longjmp(env->jmp_env, 1);
64 /* exit the current TB from a signal handler. The host registers are
65 restored in a state compatible with the CPU emulator
67 void cpu_resume_from_signal(CPUState *env1, void *puc)
69 #if !defined(CONFIG_SOFTMMU)
70 #ifdef __linux__
71 struct ucontext *uc = puc;
72 #elif defined(__OpenBSD__)
73 struct sigcontext *uc = puc;
74 #endif
75 #endif
77 env = env1;
79 /* XXX: restore cpu registers saved in host registers */
81 #if !defined(CONFIG_SOFTMMU)
82 if (puc) {
83 /* XXX: use siglongjmp ? */
84 #ifdef __linux__
85 #ifdef __ia64
86 sigprocmask(SIG_SETMASK, (sigset_t *)&uc->uc_sigmask, NULL);
87 #else
88 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
89 #endif
90 #elif defined(__OpenBSD__)
91 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
92 #endif
94 #endif
95 env->exception_index = -1;
96 longjmp(env->jmp_env, 1);
99 /* Execute the code without caching the generated code. An interpreter
100 could be used if available. */
101 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
103 unsigned long next_tb;
104 TranslationBlock *tb;
106 /* Should never happen.
107 We only end up here when an existing TB is too long. */
108 if (max_cycles > CF_COUNT_MASK)
109 max_cycles = CF_COUNT_MASK;
111 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
112 max_cycles);
113 env->current_tb = tb;
114 /* execute the generated code */
115 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
116 env->current_tb = NULL;
118 if ((next_tb & 3) == 2) {
119 /* Restore PC. This may happen if async event occurs before
120 the TB starts executing. */
121 cpu_pc_from_tb(env, tb);
123 tb_phys_invalidate(tb, -1);
124 tb_free(tb);
127 static TranslationBlock *tb_find_slow(target_ulong pc,
128 target_ulong cs_base,
129 uint64_t flags)
131 TranslationBlock *tb, **ptb1;
132 unsigned int h;
133 tb_page_addr_t phys_pc, phys_page1, phys_page2;
134 target_ulong virt_page2;
136 tb_invalidated_flag = 0;
138 /* find translated block using physical mappings */
139 phys_pc = get_page_addr_code(env, pc);
140 phys_page1 = phys_pc & TARGET_PAGE_MASK;
141 phys_page2 = -1;
142 h = tb_phys_hash_func(phys_pc);
143 ptb1 = &tb_phys_hash[h];
144 for(;;) {
145 tb = *ptb1;
146 if (!tb)
147 goto not_found;
148 if (tb->pc == pc &&
149 tb->page_addr[0] == phys_page1 &&
150 tb->cs_base == cs_base &&
151 tb->flags == flags) {
152 /* check next page if needed */
153 if (tb->page_addr[1] != -1) {
154 virt_page2 = (pc & TARGET_PAGE_MASK) +
155 TARGET_PAGE_SIZE;
156 phys_page2 = get_page_addr_code(env, virt_page2);
157 if (tb->page_addr[1] == phys_page2)
158 goto found;
159 } else {
160 goto found;
163 ptb1 = &tb->phys_hash_next;
165 not_found:
166 /* if no translated code available, then translate it now */
167 tb = tb_gen_code(env, pc, cs_base, flags, 0);
169 found:
170 /* Move the last found TB to the head of the list */
171 if (likely(*ptb1)) {
172 *ptb1 = tb->phys_hash_next;
173 tb->phys_hash_next = tb_phys_hash[h];
174 tb_phys_hash[h] = tb;
176 /* we add the TB in the virtual pc hash table */
177 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
178 return tb;
181 static inline TranslationBlock *tb_find_fast(void)
183 TranslationBlock *tb;
184 target_ulong cs_base, pc;
185 int flags;
187 /* we record a subset of the CPU state. It will
188 always be the same before a given translated block
189 is executed. */
190 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
191 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
192 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
193 tb->flags != flags)) {
194 tb = tb_find_slow(pc, cs_base, flags);
196 return tb;
199 /* main execution loop */
201 volatile sig_atomic_t exit_request;
203 int cpu_exec(CPUState *env1)
205 volatile host_reg_t saved_env_reg;
206 int ret, interrupt_request;
207 TranslationBlock *tb;
208 uint8_t *tc_ptr;
209 unsigned long next_tb;
211 if (cpu_halted(env1) == EXCP_HALTED)
212 return EXCP_HALTED;
214 cpu_single_env = env1;
216 /* the access to env below is actually saving the global register's
217 value, so that files not including target-xyz/exec.h are free to
218 use it. */
219 QEMU_BUILD_BUG_ON (sizeof (saved_env_reg) != sizeof (env));
220 saved_env_reg = (host_reg_t) env;
221 barrier();
222 env = env1;
224 if (unlikely(exit_request)) {
225 env->exit_request = 1;
228 #if defined(TARGET_I386)
229 /* put eflags in CPU temporary format */
230 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
231 DF = 1 - (2 * ((env->eflags >> 10) & 1));
232 CC_OP = CC_OP_EFLAGS;
233 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
234 #elif defined(TARGET_SPARC)
235 #elif defined(TARGET_M68K)
236 env->cc_op = CC_OP_FLAGS;
237 env->cc_dest = env->sr & 0xf;
238 env->cc_x = (env->sr >> 4) & 1;
239 #elif defined(TARGET_ALPHA)
240 #elif defined(TARGET_ARM)
241 #elif defined(TARGET_PPC)
242 #elif defined(TARGET_LM32)
243 #elif defined(TARGET_MICROBLAZE)
244 #elif defined(TARGET_MIPS)
245 #elif defined(TARGET_SH4)
246 #elif defined(TARGET_CRIS)
247 #elif defined(TARGET_S390X)
248 /* XXXXX */
249 #else
250 #error unsupported target CPU
251 #endif
252 env->exception_index = -1;
254 /* prepare setjmp context for exception handling */
255 for(;;) {
256 if (setjmp(env->jmp_env) == 0) {
257 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
258 #undef env
259 env = cpu_single_env;
260 #define env cpu_single_env
261 #endif
262 /* if an exception is pending, we execute it here */
263 if (env->exception_index >= 0) {
264 if (env->exception_index >= EXCP_INTERRUPT) {
265 /* exit request from the cpu execution loop */
266 ret = env->exception_index;
267 break;
268 } else {
269 #if defined(CONFIG_USER_ONLY)
270 /* if user mode only, we simulate a fake exception
271 which will be handled outside the cpu execution
272 loop */
273 #if defined(TARGET_I386)
274 do_interrupt_user(env->exception_index,
275 env->exception_is_int,
276 env->error_code,
277 env->exception_next_eip);
278 /* successfully delivered */
279 env->old_exception = -1;
280 #endif
281 ret = env->exception_index;
282 break;
283 #else
284 #if defined(TARGET_I386)
285 /* simulate a real cpu exception. On i386, it can
286 trigger new exceptions, but we do not handle
287 double or triple faults yet. */
288 do_interrupt(env->exception_index,
289 env->exception_is_int,
290 env->error_code,
291 env->exception_next_eip, 0);
292 /* successfully delivered */
293 env->old_exception = -1;
294 #elif defined(TARGET_PPC)
295 do_interrupt(env);
296 #elif defined(TARGET_LM32)
297 do_interrupt(env);
298 #elif defined(TARGET_MICROBLAZE)
299 do_interrupt(env);
300 #elif defined(TARGET_MIPS)
301 do_interrupt(env);
302 #elif defined(TARGET_SPARC)
303 do_interrupt(env);
304 #elif defined(TARGET_ARM)
305 do_interrupt(env);
306 #elif defined(TARGET_SH4)
307 do_interrupt(env);
308 #elif defined(TARGET_ALPHA)
309 do_interrupt(env);
310 #elif defined(TARGET_CRIS)
311 do_interrupt(env);
312 #elif defined(TARGET_M68K)
313 do_interrupt(0);
314 #endif
315 env->exception_index = -1;
316 #endif
320 next_tb = 0; /* force lookup of first TB */
321 for(;;) {
322 interrupt_request = env->interrupt_request;
323 if (unlikely(interrupt_request)) {
324 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
325 /* Mask out external interrupts for this step. */
326 interrupt_request &= ~(CPU_INTERRUPT_HARD |
327 CPU_INTERRUPT_FIQ |
328 CPU_INTERRUPT_SMI |
329 CPU_INTERRUPT_NMI);
331 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
332 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
333 env->exception_index = EXCP_DEBUG;
334 cpu_loop_exit();
336 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
337 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
338 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32)
339 if (interrupt_request & CPU_INTERRUPT_HALT) {
340 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
341 env->halted = 1;
342 env->exception_index = EXCP_HLT;
343 cpu_loop_exit();
345 #endif
346 #if defined(TARGET_I386)
347 if (interrupt_request & CPU_INTERRUPT_INIT) {
348 svm_check_intercept(SVM_EXIT_INIT);
349 do_cpu_init(env);
350 env->exception_index = EXCP_HALTED;
351 cpu_loop_exit();
352 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
353 do_cpu_sipi(env);
354 } else if (env->hflags2 & HF2_GIF_MASK) {
355 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
356 !(env->hflags & HF_SMM_MASK)) {
357 svm_check_intercept(SVM_EXIT_SMI);
358 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
359 do_smm_enter();
360 next_tb = 0;
361 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
362 !(env->hflags2 & HF2_NMI_MASK)) {
363 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
364 env->hflags2 |= HF2_NMI_MASK;
365 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
366 next_tb = 0;
367 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
368 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
369 do_interrupt(EXCP12_MCHK, 0, 0, 0, 0);
370 next_tb = 0;
371 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
372 (((env->hflags2 & HF2_VINTR_MASK) &&
373 (env->hflags2 & HF2_HIF_MASK)) ||
374 (!(env->hflags2 & HF2_VINTR_MASK) &&
375 (env->eflags & IF_MASK &&
376 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
377 int intno;
378 svm_check_intercept(SVM_EXIT_INTR);
379 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
380 intno = cpu_get_pic_interrupt(env);
381 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
382 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
383 #undef env
384 env = cpu_single_env;
385 #define env cpu_single_env
386 #endif
387 do_interrupt(intno, 0, 0, 0, 1);
388 /* ensure that no TB jump will be modified as
389 the program flow was changed */
390 next_tb = 0;
391 #if !defined(CONFIG_USER_ONLY)
392 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
393 (env->eflags & IF_MASK) &&
394 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
395 int intno;
396 /* FIXME: this should respect TPR */
397 svm_check_intercept(SVM_EXIT_VINTR);
398 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
399 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
400 do_interrupt(intno, 0, 0, 0, 1);
401 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
402 next_tb = 0;
403 #endif
406 #elif defined(TARGET_PPC)
407 #if 0
408 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
409 cpu_reset(env);
411 #endif
412 if (interrupt_request & CPU_INTERRUPT_HARD) {
413 ppc_hw_interrupt(env);
414 if (env->pending_interrupts == 0)
415 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
416 next_tb = 0;
418 #elif defined(TARGET_LM32)
419 if ((interrupt_request & CPU_INTERRUPT_HARD)
420 && (env->ie & IE_IE)) {
421 env->exception_index = EXCP_IRQ;
422 do_interrupt(env);
423 next_tb = 0;
425 #elif defined(TARGET_MICROBLAZE)
426 if ((interrupt_request & CPU_INTERRUPT_HARD)
427 && (env->sregs[SR_MSR] & MSR_IE)
428 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
429 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
430 env->exception_index = EXCP_IRQ;
431 do_interrupt(env);
432 next_tb = 0;
434 #elif defined(TARGET_MIPS)
435 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
436 cpu_mips_hw_interrupts_pending(env)) {
437 /* Raise it */
438 env->exception_index = EXCP_EXT_INTERRUPT;
439 env->error_code = 0;
440 do_interrupt(env);
441 next_tb = 0;
443 #elif defined(TARGET_SPARC)
444 if (interrupt_request & CPU_INTERRUPT_HARD) {
445 if (cpu_interrupts_enabled(env) &&
446 env->interrupt_index > 0) {
447 int pil = env->interrupt_index & 0xf;
448 int type = env->interrupt_index & 0xf0;
450 if (((type == TT_EXTINT) &&
451 cpu_pil_allowed(env, pil)) ||
452 type != TT_EXTINT) {
453 env->exception_index = env->interrupt_index;
454 do_interrupt(env);
455 next_tb = 0;
458 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
459 //do_interrupt(0, 0, 0, 0, 0);
460 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
462 #elif defined(TARGET_ARM)
463 if (interrupt_request & CPU_INTERRUPT_FIQ
464 && !(env->uncached_cpsr & CPSR_F)) {
465 env->exception_index = EXCP_FIQ;
466 do_interrupt(env);
467 next_tb = 0;
469 /* ARMv7-M interrupt return works by loading a magic value
470 into the PC. On real hardware the load causes the
471 return to occur. The qemu implementation performs the
472 jump normally, then does the exception return when the
473 CPU tries to execute code at the magic address.
474 This will cause the magic PC value to be pushed to
475 the stack if an interrupt occured at the wrong time.
476 We avoid this by disabling interrupts when
477 pc contains a magic address. */
478 if (interrupt_request & CPU_INTERRUPT_HARD
479 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
480 || !(env->uncached_cpsr & CPSR_I))) {
481 env->exception_index = EXCP_IRQ;
482 do_interrupt(env);
483 next_tb = 0;
485 #elif defined(TARGET_SH4)
486 if (interrupt_request & CPU_INTERRUPT_HARD) {
487 do_interrupt(env);
488 next_tb = 0;
490 #elif defined(TARGET_ALPHA)
491 if (interrupt_request & CPU_INTERRUPT_HARD) {
492 do_interrupt(env);
493 next_tb = 0;
495 #elif defined(TARGET_CRIS)
496 if (interrupt_request & CPU_INTERRUPT_HARD
497 && (env->pregs[PR_CCS] & I_FLAG)
498 && !env->locked_irq) {
499 env->exception_index = EXCP_IRQ;
500 do_interrupt(env);
501 next_tb = 0;
503 if (interrupt_request & CPU_INTERRUPT_NMI
504 && (env->pregs[PR_CCS] & M_FLAG)) {
505 env->exception_index = EXCP_NMI;
506 do_interrupt(env);
507 next_tb = 0;
509 #elif defined(TARGET_M68K)
510 if (interrupt_request & CPU_INTERRUPT_HARD
511 && ((env->sr & SR_I) >> SR_I_SHIFT)
512 < env->pending_level) {
513 /* Real hardware gets the interrupt vector via an
514 IACK cycle at this point. Current emulated
515 hardware doesn't rely on this, so we
516 provide/save the vector when the interrupt is
517 first signalled. */
518 env->exception_index = env->pending_vector;
519 do_interrupt(1);
520 next_tb = 0;
522 #endif
523 /* Don't use the cached interupt_request value,
524 do_interrupt may have updated the EXITTB flag. */
525 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
526 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
527 /* ensure that no TB jump will be modified as
528 the program flow was changed */
529 next_tb = 0;
532 if (unlikely(env->exit_request)) {
533 env->exit_request = 0;
534 env->exception_index = EXCP_INTERRUPT;
535 cpu_loop_exit();
537 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
538 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
539 /* restore flags in standard format */
540 #if defined(TARGET_I386)
541 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
542 log_cpu_state(env, X86_DUMP_CCOP);
543 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
544 #elif defined(TARGET_M68K)
545 cpu_m68k_flush_flags(env, env->cc_op);
546 env->cc_op = CC_OP_FLAGS;
547 env->sr = (env->sr & 0xffe0)
548 | env->cc_dest | (env->cc_x << 4);
549 log_cpu_state(env, 0);
550 #else
551 log_cpu_state(env, 0);
552 #endif
554 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
555 spin_lock(&tb_lock);
556 tb = tb_find_fast();
557 /* Note: we do it here to avoid a gcc bug on Mac OS X when
558 doing it in tb_find_slow */
559 if (tb_invalidated_flag) {
560 /* as some TB could have been invalidated because
561 of memory exceptions while generating the code, we
562 must recompute the hash index here */
563 next_tb = 0;
564 tb_invalidated_flag = 0;
566 #ifdef CONFIG_DEBUG_EXEC
567 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
568 (long)tb->tc_ptr, tb->pc,
569 lookup_symbol(tb->pc));
570 #endif
571 /* see if we can patch the calling TB. When the TB
572 spans two pages, we cannot safely do a direct
573 jump. */
574 if (next_tb != 0 && tb->page_addr[1] == -1) {
575 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
577 spin_unlock(&tb_lock);
579 /* cpu_interrupt might be called while translating the
580 TB, but before it is linked into a potentially
581 infinite loop and becomes env->current_tb. Avoid
582 starting execution if there is a pending interrupt. */
583 env->current_tb = tb;
584 barrier();
585 if (likely(!env->exit_request)) {
586 tc_ptr = tb->tc_ptr;
587 /* execute the generated code */
588 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
589 #undef env
590 env = cpu_single_env;
591 #define env cpu_single_env
592 #endif
593 next_tb = tcg_qemu_tb_exec(tc_ptr);
594 if ((next_tb & 3) == 2) {
595 /* Instruction counter expired. */
596 int insns_left;
597 tb = (TranslationBlock *)(long)(next_tb & ~3);
598 /* Restore PC. */
599 cpu_pc_from_tb(env, tb);
600 insns_left = env->icount_decr.u32;
601 if (env->icount_extra && insns_left >= 0) {
602 /* Refill decrementer and continue execution. */
603 env->icount_extra += insns_left;
604 if (env->icount_extra > 0xffff) {
605 insns_left = 0xffff;
606 } else {
607 insns_left = env->icount_extra;
609 env->icount_extra -= insns_left;
610 env->icount_decr.u16.low = insns_left;
611 } else {
612 if (insns_left > 0) {
613 /* Execute remaining instructions. */
614 cpu_exec_nocache(insns_left, tb);
616 env->exception_index = EXCP_INTERRUPT;
617 next_tb = 0;
618 cpu_loop_exit();
622 env->current_tb = NULL;
623 /* reset soft MMU for next block (it can currently
624 only be set by a memory fault) */
625 } /* for(;;) */
627 } /* for(;;) */
630 #if defined(TARGET_I386)
631 /* restore flags in standard format */
632 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
633 #elif defined(TARGET_ARM)
634 /* XXX: Save/restore host fpu exception state?. */
635 #elif defined(TARGET_SPARC)
636 #elif defined(TARGET_PPC)
637 #elif defined(TARGET_LM32)
638 #elif defined(TARGET_M68K)
639 cpu_m68k_flush_flags(env, env->cc_op);
640 env->cc_op = CC_OP_FLAGS;
641 env->sr = (env->sr & 0xffe0)
642 | env->cc_dest | (env->cc_x << 4);
643 #elif defined(TARGET_MICROBLAZE)
644 #elif defined(TARGET_MIPS)
645 #elif defined(TARGET_SH4)
646 #elif defined(TARGET_ALPHA)
647 #elif defined(TARGET_CRIS)
648 #elif defined(TARGET_S390X)
649 /* XXXXX */
650 #else
651 #error unsupported target CPU
652 #endif
654 /* restore global registers */
655 barrier();
656 env = (void *) saved_env_reg;
658 /* fail safe : never use cpu_single_env outside cpu_exec() */
659 cpu_single_env = NULL;
660 return ret;
663 /* must only be called from the generated code as an exception can be
664 generated */
665 void tb_invalidate_page_range(target_ulong start, target_ulong end)
667 /* XXX: cannot enable it yet because it yields to MMU exception
668 where NIP != read address on PowerPC */
669 #if 0
670 target_ulong phys_addr;
671 phys_addr = get_phys_addr_code(env, start);
672 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
673 #endif
676 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
678 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
680 CPUX86State *saved_env;
682 saved_env = env;
683 env = s;
684 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
685 selector &= 0xffff;
686 cpu_x86_load_seg_cache(env, seg_reg, selector,
687 (selector << 4), 0xffff, 0);
688 } else {
689 helper_load_seg(seg_reg, selector);
691 env = saved_env;
694 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
696 CPUX86State *saved_env;
698 saved_env = env;
699 env = s;
701 helper_fsave(ptr, data32);
703 env = saved_env;
706 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
708 CPUX86State *saved_env;
710 saved_env = env;
711 env = s;
713 helper_frstor(ptr, data32);
715 env = saved_env;
718 #endif /* TARGET_I386 */
720 #if !defined(CONFIG_SOFTMMU)
722 #if defined(TARGET_I386)
723 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
724 #else
725 #define EXCEPTION_ACTION cpu_loop_exit()
726 #endif
728 /* 'pc' is the host PC at which the exception was raised. 'address' is
729 the effective address of the memory exception. 'is_write' is 1 if a
730 write caused the exception and otherwise 0'. 'old_set' is the
731 signal set which should be restored */
732 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
733 int is_write, sigset_t *old_set,
734 void *puc)
736 TranslationBlock *tb;
737 int ret;
739 if (cpu_single_env)
740 env = cpu_single_env; /* XXX: find a correct solution for multithread */
741 #if defined(DEBUG_SIGNAL)
742 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
743 pc, address, is_write, *(unsigned long *)old_set);
744 #endif
745 /* XXX: locking issue */
746 if (is_write && page_unprotect(h2g(address), pc, puc)) {
747 return 1;
750 /* see if it is an MMU fault */
751 ret = cpu_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
752 if (ret < 0)
753 return 0; /* not an MMU fault */
754 if (ret == 0)
755 return 1; /* the MMU fault was handled without causing real CPU fault */
756 /* now we have a real cpu fault */
757 tb = tb_find_pc(pc);
758 if (tb) {
759 /* the PC is inside the translated code. It means that we have
760 a virtual CPU fault */
761 cpu_restore_state(tb, env, pc, puc);
764 /* we restore the process signal mask as the sigreturn should
765 do it (XXX: use sigsetjmp) */
766 sigprocmask(SIG_SETMASK, old_set, NULL);
767 EXCEPTION_ACTION;
769 /* never comes here */
770 return 1;
773 #if defined(__i386__)
775 #if defined(__APPLE__)
776 # include <sys/ucontext.h>
778 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
779 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
780 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
781 # define MASK_sig(context) ((context)->uc_sigmask)
782 #elif defined (__NetBSD__)
783 # include <ucontext.h>
785 # define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
786 # define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
787 # define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
788 # define MASK_sig(context) ((context)->uc_sigmask)
789 #elif defined (__FreeBSD__) || defined(__DragonFly__)
790 # include <ucontext.h>
792 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_eip))
793 # define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
794 # define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
795 # define MASK_sig(context) ((context)->uc_sigmask)
796 #elif defined(__OpenBSD__)
797 # define EIP_sig(context) ((context)->sc_eip)
798 # define TRAP_sig(context) ((context)->sc_trapno)
799 # define ERROR_sig(context) ((context)->sc_err)
800 # define MASK_sig(context) ((context)->sc_mask)
801 #else
802 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
803 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
804 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
805 # define MASK_sig(context) ((context)->uc_sigmask)
806 #endif
808 int cpu_signal_handler(int host_signum, void *pinfo,
809 void *puc)
811 siginfo_t *info = pinfo;
812 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
813 ucontext_t *uc = puc;
814 #elif defined(__OpenBSD__)
815 struct sigcontext *uc = puc;
816 #else
817 struct ucontext *uc = puc;
818 #endif
819 unsigned long pc;
820 int trapno;
822 #ifndef REG_EIP
823 /* for glibc 2.1 */
824 #define REG_EIP EIP
825 #define REG_ERR ERR
826 #define REG_TRAPNO TRAPNO
827 #endif
828 pc = EIP_sig(uc);
829 trapno = TRAP_sig(uc);
830 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
831 trapno == 0xe ?
832 (ERROR_sig(uc) >> 1) & 1 : 0,
833 &MASK_sig(uc), puc);
836 #elif defined(__x86_64__)
838 #ifdef __NetBSD__
839 #define PC_sig(context) _UC_MACHINE_PC(context)
840 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
841 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
842 #define MASK_sig(context) ((context)->uc_sigmask)
843 #elif defined(__OpenBSD__)
844 #define PC_sig(context) ((context)->sc_rip)
845 #define TRAP_sig(context) ((context)->sc_trapno)
846 #define ERROR_sig(context) ((context)->sc_err)
847 #define MASK_sig(context) ((context)->sc_mask)
848 #elif defined (__FreeBSD__) || defined(__DragonFly__)
849 #include <ucontext.h>
851 #define PC_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_rip))
852 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
853 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
854 #define MASK_sig(context) ((context)->uc_sigmask)
855 #else
856 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
857 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
858 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
859 #define MASK_sig(context) ((context)->uc_sigmask)
860 #endif
862 int cpu_signal_handler(int host_signum, void *pinfo,
863 void *puc)
865 siginfo_t *info = pinfo;
866 unsigned long pc;
867 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
868 ucontext_t *uc = puc;
869 #elif defined(__OpenBSD__)
870 struct sigcontext *uc = puc;
871 #else
872 struct ucontext *uc = puc;
873 #endif
875 pc = PC_sig(uc);
876 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
877 TRAP_sig(uc) == 0xe ?
878 (ERROR_sig(uc) >> 1) & 1 : 0,
879 &MASK_sig(uc), puc);
882 #elif defined(_ARCH_PPC)
884 /***********************************************************************
885 * signal context platform-specific definitions
886 * From Wine
888 #ifdef linux
889 /* All Registers access - only for local access */
890 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
891 /* Gpr Registers access */
892 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
893 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
894 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
895 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
896 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
897 # define LR_sig(context) REG_sig(link, context) /* Link register */
898 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
899 /* Float Registers access */
900 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
901 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
902 /* Exception Registers access */
903 # define DAR_sig(context) REG_sig(dar, context)
904 # define DSISR_sig(context) REG_sig(dsisr, context)
905 # define TRAP_sig(context) REG_sig(trap, context)
906 #endif /* linux */
908 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
909 #include <ucontext.h>
910 # define IAR_sig(context) ((context)->uc_mcontext.mc_srr0)
911 # define MSR_sig(context) ((context)->uc_mcontext.mc_srr1)
912 # define CTR_sig(context) ((context)->uc_mcontext.mc_ctr)
913 # define XER_sig(context) ((context)->uc_mcontext.mc_xer)
914 # define LR_sig(context) ((context)->uc_mcontext.mc_lr)
915 # define CR_sig(context) ((context)->uc_mcontext.mc_cr)
916 /* Exception Registers access */
917 # define DAR_sig(context) ((context)->uc_mcontext.mc_dar)
918 # define DSISR_sig(context) ((context)->uc_mcontext.mc_dsisr)
919 # define TRAP_sig(context) ((context)->uc_mcontext.mc_exc)
920 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */
922 #ifdef __APPLE__
923 # include <sys/ucontext.h>
924 typedef struct ucontext SIGCONTEXT;
925 /* All Registers access - only for local access */
926 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
927 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
928 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
929 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
930 /* Gpr Registers access */
931 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
932 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
933 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
934 # define CTR_sig(context) REG_sig(ctr, context)
935 # define XER_sig(context) REG_sig(xer, context) /* Link register */
936 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
937 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
938 /* Float Registers access */
939 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
940 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
941 /* Exception Registers access */
942 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
943 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
944 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
945 #endif /* __APPLE__ */
947 int cpu_signal_handler(int host_signum, void *pinfo,
948 void *puc)
950 siginfo_t *info = pinfo;
951 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
952 ucontext_t *uc = puc;
953 #else
954 struct ucontext *uc = puc;
955 #endif
956 unsigned long pc;
957 int is_write;
959 pc = IAR_sig(uc);
960 is_write = 0;
961 #if 0
962 /* ppc 4xx case */
963 if (DSISR_sig(uc) & 0x00800000)
964 is_write = 1;
965 #else
966 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
967 is_write = 1;
968 #endif
969 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
970 is_write, &uc->uc_sigmask, puc);
973 #elif defined(__alpha__)
975 int cpu_signal_handler(int host_signum, void *pinfo,
976 void *puc)
978 siginfo_t *info = pinfo;
979 struct ucontext *uc = puc;
980 uint32_t *pc = uc->uc_mcontext.sc_pc;
981 uint32_t insn = *pc;
982 int is_write = 0;
984 /* XXX: need kernel patch to get write flag faster */
985 switch (insn >> 26) {
986 case 0x0d: // stw
987 case 0x0e: // stb
988 case 0x0f: // stq_u
989 case 0x24: // stf
990 case 0x25: // stg
991 case 0x26: // sts
992 case 0x27: // stt
993 case 0x2c: // stl
994 case 0x2d: // stq
995 case 0x2e: // stl_c
996 case 0x2f: // stq_c
997 is_write = 1;
1000 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1001 is_write, &uc->uc_sigmask, puc);
1003 #elif defined(__sparc__)
1005 int cpu_signal_handler(int host_signum, void *pinfo,
1006 void *puc)
1008 siginfo_t *info = pinfo;
1009 int is_write;
1010 uint32_t insn;
1011 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1012 uint32_t *regs = (uint32_t *)(info + 1);
1013 void *sigmask = (regs + 20);
1014 /* XXX: is there a standard glibc define ? */
1015 unsigned long pc = regs[1];
1016 #else
1017 #ifdef __linux__
1018 struct sigcontext *sc = puc;
1019 unsigned long pc = sc->sigc_regs.tpc;
1020 void *sigmask = (void *)sc->sigc_mask;
1021 #elif defined(__OpenBSD__)
1022 struct sigcontext *uc = puc;
1023 unsigned long pc = uc->sc_pc;
1024 void *sigmask = (void *)(long)uc->sc_mask;
1025 #endif
1026 #endif
1028 /* XXX: need kernel patch to get write flag faster */
1029 is_write = 0;
1030 insn = *(uint32_t *)pc;
1031 if ((insn >> 30) == 3) {
1032 switch((insn >> 19) & 0x3f) {
1033 case 0x05: // stb
1034 case 0x15: // stba
1035 case 0x06: // sth
1036 case 0x16: // stha
1037 case 0x04: // st
1038 case 0x14: // sta
1039 case 0x07: // std
1040 case 0x17: // stda
1041 case 0x0e: // stx
1042 case 0x1e: // stxa
1043 case 0x24: // stf
1044 case 0x34: // stfa
1045 case 0x27: // stdf
1046 case 0x37: // stdfa
1047 case 0x26: // stqf
1048 case 0x36: // stqfa
1049 case 0x25: // stfsr
1050 case 0x3c: // casa
1051 case 0x3e: // casxa
1052 is_write = 1;
1053 break;
1056 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1057 is_write, sigmask, NULL);
1060 #elif defined(__arm__)
1062 int cpu_signal_handler(int host_signum, void *pinfo,
1063 void *puc)
1065 siginfo_t *info = pinfo;
1066 struct ucontext *uc = puc;
1067 unsigned long pc;
1068 int is_write;
1070 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1071 pc = uc->uc_mcontext.gregs[R15];
1072 #else
1073 pc = uc->uc_mcontext.arm_pc;
1074 #endif
1075 /* XXX: compute is_write */
1076 is_write = 0;
1077 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1078 is_write,
1079 &uc->uc_sigmask, puc);
1082 #elif defined(__mc68000)
1084 int cpu_signal_handler(int host_signum, void *pinfo,
1085 void *puc)
1087 siginfo_t *info = pinfo;
1088 struct ucontext *uc = puc;
1089 unsigned long pc;
1090 int is_write;
1092 pc = uc->uc_mcontext.gregs[16];
1093 /* XXX: compute is_write */
1094 is_write = 0;
1095 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1096 is_write,
1097 &uc->uc_sigmask, puc);
1100 #elif defined(__ia64)
1102 #ifndef __ISR_VALID
1103 /* This ought to be in <bits/siginfo.h>... */
1104 # define __ISR_VALID 1
1105 #endif
1107 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1109 siginfo_t *info = pinfo;
1110 struct ucontext *uc = puc;
1111 unsigned long ip;
1112 int is_write = 0;
1114 ip = uc->uc_mcontext.sc_ip;
1115 switch (host_signum) {
1116 case SIGILL:
1117 case SIGFPE:
1118 case SIGSEGV:
1119 case SIGBUS:
1120 case SIGTRAP:
1121 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1122 /* ISR.W (write-access) is bit 33: */
1123 is_write = (info->si_isr >> 33) & 1;
1124 break;
1126 default:
1127 break;
1129 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1130 is_write,
1131 (sigset_t *)&uc->uc_sigmask, puc);
1134 #elif defined(__s390__)
1136 int cpu_signal_handler(int host_signum, void *pinfo,
1137 void *puc)
1139 siginfo_t *info = pinfo;
1140 struct ucontext *uc = puc;
1141 unsigned long pc;
1142 uint16_t *pinsn;
1143 int is_write = 0;
1145 pc = uc->uc_mcontext.psw.addr;
1147 /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead
1148 of the normal 2 arguments. The 3rd argument contains the "int_code"
1149 from the hardware which does in fact contain the is_write value.
1150 The rt signal handler, as far as I can tell, does not give this value
1151 at all. Not that we could get to it from here even if it were. */
1152 /* ??? This is not even close to complete, since it ignores all
1153 of the read-modify-write instructions. */
1154 pinsn = (uint16_t *)pc;
1155 switch (pinsn[0] >> 8) {
1156 case 0x50: /* ST */
1157 case 0x42: /* STC */
1158 case 0x40: /* STH */
1159 is_write = 1;
1160 break;
1161 case 0xc4: /* RIL format insns */
1162 switch (pinsn[0] & 0xf) {
1163 case 0xf: /* STRL */
1164 case 0xb: /* STGRL */
1165 case 0x7: /* STHRL */
1166 is_write = 1;
1168 break;
1169 case 0xe3: /* RXY format insns */
1170 switch (pinsn[2] & 0xff) {
1171 case 0x50: /* STY */
1172 case 0x24: /* STG */
1173 case 0x72: /* STCY */
1174 case 0x70: /* STHY */
1175 case 0x8e: /* STPQ */
1176 case 0x3f: /* STRVH */
1177 case 0x3e: /* STRV */
1178 case 0x2f: /* STRVG */
1179 is_write = 1;
1181 break;
1183 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1184 is_write, &uc->uc_sigmask, puc);
1187 #elif defined(__mips__)
1189 int cpu_signal_handler(int host_signum, void *pinfo,
1190 void *puc)
1192 siginfo_t *info = pinfo;
1193 struct ucontext *uc = puc;
1194 greg_t pc = uc->uc_mcontext.pc;
1195 int is_write;
1197 /* XXX: compute is_write */
1198 is_write = 0;
1199 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1200 is_write, &uc->uc_sigmask, puc);
1203 #elif defined(__hppa__)
1205 int cpu_signal_handler(int host_signum, void *pinfo,
1206 void *puc)
1208 struct siginfo *info = pinfo;
1209 struct ucontext *uc = puc;
1210 unsigned long pc = uc->uc_mcontext.sc_iaoq[0];
1211 uint32_t insn = *(uint32_t *)pc;
1212 int is_write = 0;
1214 /* XXX: need kernel patch to get write flag faster. */
1215 switch (insn >> 26) {
1216 case 0x1a: /* STW */
1217 case 0x19: /* STH */
1218 case 0x18: /* STB */
1219 case 0x1b: /* STWM */
1220 is_write = 1;
1221 break;
1223 case 0x09: /* CSTWX, FSTWX, FSTWS */
1224 case 0x0b: /* CSTDX, FSTDX, FSTDS */
1225 /* Distinguish from coprocessor load ... */
1226 is_write = (insn >> 9) & 1;
1227 break;
1229 case 0x03:
1230 switch ((insn >> 6) & 15) {
1231 case 0xa: /* STWS */
1232 case 0x9: /* STHS */
1233 case 0x8: /* STBS */
1234 case 0xe: /* STWAS */
1235 case 0xc: /* STBYS */
1236 is_write = 1;
1238 break;
1241 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1242 is_write, &uc->uc_sigmask, puc);
1245 #else
1247 #error host CPU specific signal handler needed
1249 #endif
1251 #endif /* !defined(CONFIG_SOFTMMU) */