bulk: Rename TARGET_FMT_plx -> HWADDR_FMT_plx
[qemu.git] / target / sparc / mmu_helper.c
blob158ec2ae8f642a4a4da3b6f8c9b4eaf3db0c88d5
1 /*
2 * Sparc MMU helpers
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "qemu/qemu-print.h"
25 #include "trace.h"
27 /* Sparc MMU emulation */
29 #ifndef TARGET_SPARC64
31 * Sparc V8 Reference MMU (SRMMU)
33 static const int access_table[8][8] = {
34 { 0, 0, 0, 0, 8, 0, 12, 12 },
35 { 0, 0, 0, 0, 8, 0, 0, 0 },
36 { 8, 8, 0, 0, 0, 8, 12, 12 },
37 { 8, 8, 0, 0, 0, 8, 0, 0 },
38 { 8, 0, 8, 0, 8, 8, 12, 12 },
39 { 8, 0, 8, 0, 8, 0, 8, 0 },
40 { 8, 8, 8, 0, 8, 8, 12, 12 },
41 { 8, 8, 8, 0, 8, 8, 8, 0 }
44 static const int perm_table[2][8] = {
46 PAGE_READ,
47 PAGE_READ | PAGE_WRITE,
48 PAGE_READ | PAGE_EXEC,
49 PAGE_READ | PAGE_WRITE | PAGE_EXEC,
50 PAGE_EXEC,
51 PAGE_READ | PAGE_WRITE,
52 PAGE_READ | PAGE_EXEC,
53 PAGE_READ | PAGE_WRITE | PAGE_EXEC
56 PAGE_READ,
57 PAGE_READ | PAGE_WRITE,
58 PAGE_READ | PAGE_EXEC,
59 PAGE_READ | PAGE_WRITE | PAGE_EXEC,
60 PAGE_EXEC,
61 PAGE_READ,
67 static int get_physical_address(CPUSPARCState *env, hwaddr *physical,
68 int *prot, int *access_index, MemTxAttrs *attrs,
69 target_ulong address, int rw, int mmu_idx,
70 target_ulong *page_size)
72 int access_perms = 0;
73 hwaddr pde_ptr;
74 uint32_t pde;
75 int error_code = 0, is_dirty, is_user;
76 unsigned long page_offset;
77 CPUState *cs = env_cpu(env);
78 MemTxResult result;
80 is_user = mmu_idx == MMU_USER_IDX;
82 if (mmu_idx == MMU_PHYS_IDX) {
83 *page_size = TARGET_PAGE_SIZE;
84 /* Boot mode: instruction fetches are taken from PROM */
85 if (rw == 2 && (env->mmuregs[0] & env->def.mmu_bm)) {
86 *physical = env->prom_addr | (address & 0x7ffffULL);
87 *prot = PAGE_READ | PAGE_EXEC;
88 return 0;
90 *physical = address;
91 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
92 return 0;
95 *access_index = ((rw & 1) << 2) | (rw & 2) | (is_user ? 0 : 1);
96 *physical = 0xffffffffffff0000ULL;
98 /* SPARC reference MMU table walk: Context table->L1->L2->PTE */
99 /* Context base + context number */
100 pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2);
101 pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result);
102 if (result != MEMTX_OK) {
103 return 4 << 2; /* Translation fault, L = 0 */
106 /* Ctx pde */
107 switch (pde & PTE_ENTRYTYPE_MASK) {
108 default:
109 case 0: /* Invalid */
110 return 1 << 2;
111 case 2: /* L0 PTE, maybe should not happen? */
112 case 3: /* Reserved */
113 return 4 << 2;
114 case 1: /* L0 PDE */
115 pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
116 pde = address_space_ldl(cs->as, pde_ptr,
117 MEMTXATTRS_UNSPECIFIED, &result);
118 if (result != MEMTX_OK) {
119 return (1 << 8) | (4 << 2); /* Translation fault, L = 1 */
122 switch (pde & PTE_ENTRYTYPE_MASK) {
123 default:
124 case 0: /* Invalid */
125 return (1 << 8) | (1 << 2);
126 case 3: /* Reserved */
127 return (1 << 8) | (4 << 2);
128 case 1: /* L1 PDE */
129 pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
130 pde = address_space_ldl(cs->as, pde_ptr,
131 MEMTXATTRS_UNSPECIFIED, &result);
132 if (result != MEMTX_OK) {
133 return (2 << 8) | (4 << 2); /* Translation fault, L = 2 */
136 switch (pde & PTE_ENTRYTYPE_MASK) {
137 default:
138 case 0: /* Invalid */
139 return (2 << 8) | (1 << 2);
140 case 3: /* Reserved */
141 return (2 << 8) | (4 << 2);
142 case 1: /* L2 PDE */
143 pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
144 pde = address_space_ldl(cs->as, pde_ptr,
145 MEMTXATTRS_UNSPECIFIED, &result);
146 if (result != MEMTX_OK) {
147 return (3 << 8) | (4 << 2); /* Translation fault, L = 3 */
150 switch (pde & PTE_ENTRYTYPE_MASK) {
151 default:
152 case 0: /* Invalid */
153 return (3 << 8) | (1 << 2);
154 case 1: /* PDE, should not happen */
155 case 3: /* Reserved */
156 return (3 << 8) | (4 << 2);
157 case 2: /* L3 PTE */
158 page_offset = 0;
160 *page_size = TARGET_PAGE_SIZE;
161 break;
162 case 2: /* L2 PTE */
163 page_offset = address & 0x3f000;
164 *page_size = 0x40000;
166 break;
167 case 2: /* L1 PTE */
168 page_offset = address & 0xfff000;
169 *page_size = 0x1000000;
173 /* check access */
174 access_perms = (pde & PTE_ACCESS_MASK) >> PTE_ACCESS_SHIFT;
175 error_code = access_table[*access_index][access_perms];
176 if (error_code && !((env->mmuregs[0] & MMU_NF) && is_user)) {
177 return error_code;
180 /* update page modified and dirty bits */
181 is_dirty = (rw & 1) && !(pde & PG_MODIFIED_MASK);
182 if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
183 pde |= PG_ACCESSED_MASK;
184 if (is_dirty) {
185 pde |= PG_MODIFIED_MASK;
187 stl_phys_notdirty(cs->as, pde_ptr, pde);
190 /* the page can be put in the TLB */
191 *prot = perm_table[is_user][access_perms];
192 if (!(pde & PG_MODIFIED_MASK)) {
193 /* only set write access if already dirty... otherwise wait
194 for dirty access */
195 *prot &= ~PAGE_WRITE;
198 /* Even if large ptes, we map only one 4KB page in the cache to
199 avoid filling it too fast */
200 *physical = ((hwaddr)(pde & PTE_ADDR_MASK) << 4) + page_offset;
201 return error_code;
204 /* Perform address translation */
205 bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
206 MMUAccessType access_type, int mmu_idx,
207 bool probe, uintptr_t retaddr)
209 SPARCCPU *cpu = SPARC_CPU(cs);
210 CPUSPARCState *env = &cpu->env;
211 hwaddr paddr;
212 target_ulong vaddr;
213 target_ulong page_size;
214 int error_code = 0, prot, access_index;
215 MemTxAttrs attrs = {};
218 * TODO: If we ever need tlb_vaddr_to_host for this target,
219 * then we must figure out how to manipulate FSR and FAR
220 * when both MMU_NF and probe are set. In the meantime,
221 * do not support this use case.
223 assert(!probe);
225 address &= TARGET_PAGE_MASK;
226 error_code = get_physical_address(env, &paddr, &prot, &access_index, &attrs,
227 address, access_type,
228 mmu_idx, &page_size);
229 vaddr = address;
230 if (likely(error_code == 0)) {
231 qemu_log_mask(CPU_LOG_MMU,
232 "Translate at %" VADDR_PRIx " -> "
233 HWADDR_FMT_plx ", vaddr " TARGET_FMT_lx "\n",
234 address, paddr, vaddr);
235 tlb_set_page(cs, vaddr, paddr, prot, mmu_idx, page_size);
236 return true;
239 if (env->mmuregs[3]) { /* Fault status register */
240 env->mmuregs[3] = 1; /* overflow (not read before another fault) */
242 env->mmuregs[3] |= (access_index << 5) | error_code | 2;
243 env->mmuregs[4] = address; /* Fault address register */
245 if ((env->mmuregs[0] & MMU_NF) || env->psret == 0) {
246 /* No fault mode: if a mapping is available, just override
247 permissions. If no mapping is available, redirect accesses to
248 neverland. Fake/overridden mappings will be flushed when
249 switching to normal mode. */
250 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
251 tlb_set_page(cs, vaddr, paddr, prot, mmu_idx, TARGET_PAGE_SIZE);
252 return true;
253 } else {
254 if (access_type == MMU_INST_FETCH) {
255 cs->exception_index = TT_TFAULT;
256 } else {
257 cs->exception_index = TT_DFAULT;
259 cpu_loop_exit_restore(cs, retaddr);
263 target_ulong mmu_probe(CPUSPARCState *env, target_ulong address, int mmulev)
265 CPUState *cs = env_cpu(env);
266 hwaddr pde_ptr;
267 uint32_t pde;
268 MemTxResult result;
271 * TODO: MMU probe operations are supposed to set the fault
272 * status registers, but we don't do this.
275 /* Context base + context number */
276 pde_ptr = (hwaddr)(env->mmuregs[1] << 4) +
277 (env->mmuregs[2] << 2);
278 pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result);
279 if (result != MEMTX_OK) {
280 return 0;
283 switch (pde & PTE_ENTRYTYPE_MASK) {
284 default:
285 case 0: /* Invalid */
286 case 2: /* PTE, maybe should not happen? */
287 case 3: /* Reserved */
288 return 0;
289 case 1: /* L1 PDE */
290 if (mmulev == 3) {
291 return pde;
293 pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
294 pde = address_space_ldl(cs->as, pde_ptr,
295 MEMTXATTRS_UNSPECIFIED, &result);
296 if (result != MEMTX_OK) {
297 return 0;
300 switch (pde & PTE_ENTRYTYPE_MASK) {
301 default:
302 case 0: /* Invalid */
303 case 3: /* Reserved */
304 return 0;
305 case 2: /* L1 PTE */
306 return pde;
307 case 1: /* L2 PDE */
308 if (mmulev == 2) {
309 return pde;
311 pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
312 pde = address_space_ldl(cs->as, pde_ptr,
313 MEMTXATTRS_UNSPECIFIED, &result);
314 if (result != MEMTX_OK) {
315 return 0;
318 switch (pde & PTE_ENTRYTYPE_MASK) {
319 default:
320 case 0: /* Invalid */
321 case 3: /* Reserved */
322 return 0;
323 case 2: /* L2 PTE */
324 return pde;
325 case 1: /* L3 PDE */
326 if (mmulev == 1) {
327 return pde;
329 pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
330 pde = address_space_ldl(cs->as, pde_ptr,
331 MEMTXATTRS_UNSPECIFIED, &result);
332 if (result != MEMTX_OK) {
333 return 0;
336 switch (pde & PTE_ENTRYTYPE_MASK) {
337 default:
338 case 0: /* Invalid */
339 case 1: /* PDE, should not happen */
340 case 3: /* Reserved */
341 return 0;
342 case 2: /* L3 PTE */
343 return pde;
348 return 0;
351 void dump_mmu(CPUSPARCState *env)
353 CPUState *cs = env_cpu(env);
354 target_ulong va, va1, va2;
355 unsigned int n, m, o;
356 hwaddr pa;
357 uint32_t pde;
359 qemu_printf("Root ptr: " HWADDR_FMT_plx ", ctx: %d\n",
360 (hwaddr)env->mmuregs[1] << 4, env->mmuregs[2]);
361 for (n = 0, va = 0; n < 256; n++, va += 16 * 1024 * 1024) {
362 pde = mmu_probe(env, va, 2);
363 if (pde) {
364 pa = cpu_get_phys_page_debug(cs, va);
365 qemu_printf("VA: " TARGET_FMT_lx ", PA: " HWADDR_FMT_plx
366 " PDE: " TARGET_FMT_lx "\n", va, pa, pde);
367 for (m = 0, va1 = va; m < 64; m++, va1 += 256 * 1024) {
368 pde = mmu_probe(env, va1, 1);
369 if (pde) {
370 pa = cpu_get_phys_page_debug(cs, va1);
371 qemu_printf(" VA: " TARGET_FMT_lx ", PA: "
372 HWADDR_FMT_plx " PDE: " TARGET_FMT_lx "\n",
373 va1, pa, pde);
374 for (o = 0, va2 = va1; o < 64; o++, va2 += 4 * 1024) {
375 pde = mmu_probe(env, va2, 0);
376 if (pde) {
377 pa = cpu_get_phys_page_debug(cs, va2);
378 qemu_printf(" VA: " TARGET_FMT_lx ", PA: "
379 HWADDR_FMT_plx " PTE: "
380 TARGET_FMT_lx "\n",
381 va2, pa, pde);
390 /* Gdb expects all registers windows to be flushed in ram. This function handles
391 * reads (and only reads) in stack frames as if windows were flushed. We assume
392 * that the sparc ABI is followed.
394 int sparc_cpu_memory_rw_debug(CPUState *cs, vaddr address,
395 uint8_t *buf, int len, bool is_write)
397 SPARCCPU *cpu = SPARC_CPU(cs);
398 CPUSPARCState *env = &cpu->env;
399 target_ulong addr = address;
400 int i;
401 int len1;
402 int cwp = env->cwp;
404 if (!is_write) {
405 for (i = 0; i < env->nwindows; i++) {
406 int off;
407 target_ulong fp = env->regbase[cwp * 16 + 22];
409 /* Assume fp == 0 means end of frame. */
410 if (fp == 0) {
411 break;
414 cwp = cpu_cwp_inc(env, cwp + 1);
416 /* Invalid window ? */
417 if (env->wim & (1 << cwp)) {
418 break;
421 /* According to the ABI, the stack is growing downward. */
422 if (addr + len < fp) {
423 break;
426 /* Not in this frame. */
427 if (addr > fp + 64) {
428 continue;
431 /* Handle access before this window. */
432 if (addr < fp) {
433 len1 = fp - addr;
434 if (cpu_memory_rw_debug(cs, addr, buf, len1, is_write) != 0) {
435 return -1;
437 addr += len1;
438 len -= len1;
439 buf += len1;
442 /* Access byte per byte to registers. Not very efficient but speed
443 * is not critical.
445 off = addr - fp;
446 len1 = 64 - off;
448 if (len1 > len) {
449 len1 = len;
452 for (; len1; len1--) {
453 int reg = cwp * 16 + 8 + (off >> 2);
454 union {
455 uint32_t v;
456 uint8_t c[4];
457 } u;
458 u.v = cpu_to_be32(env->regbase[reg]);
459 *buf++ = u.c[off & 3];
460 addr++;
461 len--;
462 off++;
465 if (len == 0) {
466 return 0;
470 return cpu_memory_rw_debug(cs, addr, buf, len, is_write);
473 #else /* !TARGET_SPARC64 */
475 /* 41 bit physical address space */
476 static inline hwaddr ultrasparc_truncate_physical(uint64_t x)
478 return x & 0x1ffffffffffULL;
482 * UltraSparc IIi I/DMMUs
485 /* Returns true if TTE tag is valid and matches virtual address value
486 in context requires virtual address mask value calculated from TTE
487 entry size */
488 static inline int ultrasparc_tag_match(SparcTLBEntry *tlb,
489 uint64_t address, uint64_t context,
490 hwaddr *physical)
492 uint64_t mask = -(8192ULL << 3 * TTE_PGSIZE(tlb->tte));
494 /* valid, context match, virtual address match? */
495 if (TTE_IS_VALID(tlb->tte) &&
496 (TTE_IS_GLOBAL(tlb->tte) || tlb_compare_context(tlb, context))
497 && compare_masked(address, tlb->tag, mask)) {
498 /* decode physical address */
499 *physical = ((tlb->tte & mask) | (address & ~mask)) & 0x1ffffffe000ULL;
500 return 1;
503 return 0;
506 static uint64_t build_sfsr(CPUSPARCState *env, int mmu_idx, int rw)
508 uint64_t sfsr = SFSR_VALID_BIT;
510 switch (mmu_idx) {
511 case MMU_PHYS_IDX:
512 sfsr |= SFSR_CT_NOTRANS;
513 break;
514 case MMU_USER_IDX:
515 case MMU_KERNEL_IDX:
516 sfsr |= SFSR_CT_PRIMARY;
517 break;
518 case MMU_USER_SECONDARY_IDX:
519 case MMU_KERNEL_SECONDARY_IDX:
520 sfsr |= SFSR_CT_SECONDARY;
521 break;
522 case MMU_NUCLEUS_IDX:
523 sfsr |= SFSR_CT_NUCLEUS;
524 break;
525 default:
526 g_assert_not_reached();
529 if (rw == 1) {
530 sfsr |= SFSR_WRITE_BIT;
531 } else if (rw == 4) {
532 sfsr |= SFSR_NF_BIT;
535 if (env->pstate & PS_PRIV) {
536 sfsr |= SFSR_PR_BIT;
539 if (env->dmmu.sfsr & SFSR_VALID_BIT) { /* Fault status register */
540 sfsr |= SFSR_OW_BIT; /* overflow (not read before another fault) */
543 /* FIXME: ASI field in SFSR must be set */
545 return sfsr;
548 static int get_physical_address_data(CPUSPARCState *env, hwaddr *physical,
549 int *prot, MemTxAttrs *attrs,
550 target_ulong address, int rw, int mmu_idx)
552 CPUState *cs = env_cpu(env);
553 unsigned int i;
554 uint64_t sfsr;
555 uint64_t context;
556 bool is_user = false;
558 sfsr = build_sfsr(env, mmu_idx, rw);
560 switch (mmu_idx) {
561 case MMU_PHYS_IDX:
562 g_assert_not_reached();
563 case MMU_USER_IDX:
564 is_user = true;
565 /* fallthru */
566 case MMU_KERNEL_IDX:
567 context = env->dmmu.mmu_primary_context & 0x1fff;
568 break;
569 case MMU_USER_SECONDARY_IDX:
570 is_user = true;
571 /* fallthru */
572 case MMU_KERNEL_SECONDARY_IDX:
573 context = env->dmmu.mmu_secondary_context & 0x1fff;
574 break;
575 default:
576 context = 0;
577 break;
580 for (i = 0; i < 64; i++) {
581 /* ctx match, vaddr match, valid? */
582 if (ultrasparc_tag_match(&env->dtlb[i], address, context, physical)) {
583 int do_fault = 0;
585 if (TTE_IS_IE(env->dtlb[i].tte)) {
586 attrs->byte_swap = true;
589 /* access ok? */
590 /* multiple bits in SFSR.FT may be set on TT_DFAULT */
591 if (TTE_IS_PRIV(env->dtlb[i].tte) && is_user) {
592 do_fault = 1;
593 sfsr |= SFSR_FT_PRIV_BIT; /* privilege violation */
594 trace_mmu_helper_dfault(address, context, mmu_idx, env->tl);
596 if (rw == 4) {
597 if (TTE_IS_SIDEEFFECT(env->dtlb[i].tte)) {
598 do_fault = 1;
599 sfsr |= SFSR_FT_NF_E_BIT;
601 } else {
602 if (TTE_IS_NFO(env->dtlb[i].tte)) {
603 do_fault = 1;
604 sfsr |= SFSR_FT_NFO_BIT;
608 if (do_fault) {
609 /* faults above are reported with TT_DFAULT. */
610 cs->exception_index = TT_DFAULT;
611 } else if (!TTE_IS_W_OK(env->dtlb[i].tte) && (rw == 1)) {
612 do_fault = 1;
613 cs->exception_index = TT_DPROT;
615 trace_mmu_helper_dprot(address, context, mmu_idx, env->tl);
618 if (!do_fault) {
619 *prot = PAGE_READ;
620 if (TTE_IS_W_OK(env->dtlb[i].tte)) {
621 *prot |= PAGE_WRITE;
624 TTE_SET_USED(env->dtlb[i].tte);
626 return 0;
629 env->dmmu.sfsr = sfsr;
630 env->dmmu.sfar = address; /* Fault address register */
631 env->dmmu.tag_access = (address & ~0x1fffULL) | context;
632 return 1;
636 trace_mmu_helper_dmiss(address, context);
639 * On MMU misses:
640 * - UltraSPARC IIi: SFSR and SFAR unmodified
641 * - JPS1: SFAR updated and some fields of SFSR updated
643 env->dmmu.tag_access = (address & ~0x1fffULL) | context;
644 cs->exception_index = TT_DMISS;
645 return 1;
648 static int get_physical_address_code(CPUSPARCState *env, hwaddr *physical,
649 int *prot, MemTxAttrs *attrs,
650 target_ulong address, int mmu_idx)
652 CPUState *cs = env_cpu(env);
653 unsigned int i;
654 uint64_t context;
655 bool is_user = false;
657 switch (mmu_idx) {
658 case MMU_PHYS_IDX:
659 case MMU_USER_SECONDARY_IDX:
660 case MMU_KERNEL_SECONDARY_IDX:
661 g_assert_not_reached();
662 case MMU_USER_IDX:
663 is_user = true;
664 /* fallthru */
665 case MMU_KERNEL_IDX:
666 context = env->dmmu.mmu_primary_context & 0x1fff;
667 break;
668 default:
669 context = 0;
670 break;
673 if (env->tl == 0) {
674 /* PRIMARY context */
675 context = env->dmmu.mmu_primary_context & 0x1fff;
676 } else {
677 /* NUCLEUS context */
678 context = 0;
681 for (i = 0; i < 64; i++) {
682 /* ctx match, vaddr match, valid? */
683 if (ultrasparc_tag_match(&env->itlb[i],
684 address, context, physical)) {
685 /* access ok? */
686 if (TTE_IS_PRIV(env->itlb[i].tte) && is_user) {
687 /* Fault status register */
688 if (env->immu.sfsr & SFSR_VALID_BIT) {
689 env->immu.sfsr = SFSR_OW_BIT; /* overflow (not read before
690 another fault) */
691 } else {
692 env->immu.sfsr = 0;
694 if (env->pstate & PS_PRIV) {
695 env->immu.sfsr |= SFSR_PR_BIT;
697 if (env->tl > 0) {
698 env->immu.sfsr |= SFSR_CT_NUCLEUS;
701 /* FIXME: ASI field in SFSR must be set */
702 env->immu.sfsr |= SFSR_FT_PRIV_BIT | SFSR_VALID_BIT;
703 cs->exception_index = TT_TFAULT;
705 env->immu.tag_access = (address & ~0x1fffULL) | context;
707 trace_mmu_helper_tfault(address, context);
709 return 1;
711 *prot = PAGE_EXEC;
712 TTE_SET_USED(env->itlb[i].tte);
713 return 0;
717 trace_mmu_helper_tmiss(address, context);
719 /* Context is stored in DMMU (dmmuregs[1]) also for IMMU */
720 env->immu.tag_access = (address & ~0x1fffULL) | context;
721 cs->exception_index = TT_TMISS;
722 return 1;
725 static int get_physical_address(CPUSPARCState *env, hwaddr *physical,
726 int *prot, int *access_index, MemTxAttrs *attrs,
727 target_ulong address, int rw, int mmu_idx,
728 target_ulong *page_size)
730 /* ??? We treat everything as a small page, then explicitly flush
731 everything when an entry is evicted. */
732 *page_size = TARGET_PAGE_SIZE;
734 /* safety net to catch wrong softmmu index use from dynamic code */
735 if (env->tl > 0 && mmu_idx != MMU_NUCLEUS_IDX) {
736 if (rw == 2) {
737 trace_mmu_helper_get_phys_addr_code(env->tl, mmu_idx,
738 env->dmmu.mmu_primary_context,
739 env->dmmu.mmu_secondary_context,
740 address);
741 } else {
742 trace_mmu_helper_get_phys_addr_data(env->tl, mmu_idx,
743 env->dmmu.mmu_primary_context,
744 env->dmmu.mmu_secondary_context,
745 address);
749 if (mmu_idx == MMU_PHYS_IDX) {
750 *physical = ultrasparc_truncate_physical(address);
751 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
752 return 0;
755 if (rw == 2) {
756 return get_physical_address_code(env, physical, prot, attrs, address,
757 mmu_idx);
758 } else {
759 return get_physical_address_data(env, physical, prot, attrs, address,
760 rw, mmu_idx);
764 /* Perform address translation */
765 bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
766 MMUAccessType access_type, int mmu_idx,
767 bool probe, uintptr_t retaddr)
769 SPARCCPU *cpu = SPARC_CPU(cs);
770 CPUSPARCState *env = &cpu->env;
771 target_ulong vaddr;
772 hwaddr paddr;
773 target_ulong page_size;
774 MemTxAttrs attrs = {};
775 int error_code = 0, prot, access_index;
777 address &= TARGET_PAGE_MASK;
778 error_code = get_physical_address(env, &paddr, &prot, &access_index, &attrs,
779 address, access_type,
780 mmu_idx, &page_size);
781 if (likely(error_code == 0)) {
782 vaddr = address;
784 trace_mmu_helper_mmu_fault(address, paddr, mmu_idx, env->tl,
785 env->dmmu.mmu_primary_context,
786 env->dmmu.mmu_secondary_context);
788 tlb_set_page_with_attrs(cs, vaddr, paddr, attrs, prot, mmu_idx,
789 page_size);
790 return true;
792 if (probe) {
793 return false;
795 cpu_loop_exit_restore(cs, retaddr);
798 void dump_mmu(CPUSPARCState *env)
800 unsigned int i;
801 const char *mask;
803 qemu_printf("MMU contexts: Primary: %" PRId64 ", Secondary: %"
804 PRId64 "\n",
805 env->dmmu.mmu_primary_context,
806 env->dmmu.mmu_secondary_context);
807 qemu_printf("DMMU Tag Access: %" PRIx64 ", TSB Tag Target: %" PRIx64
808 "\n", env->dmmu.tag_access, env->dmmu.tsb_tag_target);
809 if ((env->lsu & DMMU_E) == 0) {
810 qemu_printf("DMMU disabled\n");
811 } else {
812 qemu_printf("DMMU dump\n");
813 for (i = 0; i < 64; i++) {
814 switch (TTE_PGSIZE(env->dtlb[i].tte)) {
815 default:
816 case 0x0:
817 mask = " 8k";
818 break;
819 case 0x1:
820 mask = " 64k";
821 break;
822 case 0x2:
823 mask = "512k";
824 break;
825 case 0x3:
826 mask = " 4M";
827 break;
829 if (TTE_IS_VALID(env->dtlb[i].tte)) {
830 qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
831 ", %s, %s, %s, %s, ie %s, ctx %" PRId64 " %s\n",
833 env->dtlb[i].tag & (uint64_t)~0x1fffULL,
834 TTE_PA(env->dtlb[i].tte),
835 mask,
836 TTE_IS_PRIV(env->dtlb[i].tte) ? "priv" : "user",
837 TTE_IS_W_OK(env->dtlb[i].tte) ? "RW" : "RO",
838 TTE_IS_LOCKED(env->dtlb[i].tte) ?
839 "locked" : "unlocked",
840 TTE_IS_IE(env->dtlb[i].tte) ?
841 "yes" : "no",
842 env->dtlb[i].tag & (uint64_t)0x1fffULL,
843 TTE_IS_GLOBAL(env->dtlb[i].tte) ?
844 "global" : "local");
848 if ((env->lsu & IMMU_E) == 0) {
849 qemu_printf("IMMU disabled\n");
850 } else {
851 qemu_printf("IMMU dump\n");
852 for (i = 0; i < 64; i++) {
853 switch (TTE_PGSIZE(env->itlb[i].tte)) {
854 default:
855 case 0x0:
856 mask = " 8k";
857 break;
858 case 0x1:
859 mask = " 64k";
860 break;
861 case 0x2:
862 mask = "512k";
863 break;
864 case 0x3:
865 mask = " 4M";
866 break;
868 if (TTE_IS_VALID(env->itlb[i].tte)) {
869 qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
870 ", %s, %s, %s, ctx %" PRId64 " %s\n",
872 env->itlb[i].tag & (uint64_t)~0x1fffULL,
873 TTE_PA(env->itlb[i].tte),
874 mask,
875 TTE_IS_PRIV(env->itlb[i].tte) ? "priv" : "user",
876 TTE_IS_LOCKED(env->itlb[i].tte) ?
877 "locked" : "unlocked",
878 env->itlb[i].tag & (uint64_t)0x1fffULL,
879 TTE_IS_GLOBAL(env->itlb[i].tte) ?
880 "global" : "local");
886 #endif /* TARGET_SPARC64 */
888 static int cpu_sparc_get_phys_page(CPUSPARCState *env, hwaddr *phys,
889 target_ulong addr, int rw, int mmu_idx)
891 target_ulong page_size;
892 int prot, access_index;
893 MemTxAttrs attrs = {};
895 return get_physical_address(env, phys, &prot, &access_index, &attrs, addr,
896 rw, mmu_idx, &page_size);
899 #if defined(TARGET_SPARC64)
900 hwaddr cpu_get_phys_page_nofault(CPUSPARCState *env, target_ulong addr,
901 int mmu_idx)
903 hwaddr phys_addr;
905 if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 4, mmu_idx) != 0) {
906 return -1;
908 return phys_addr;
910 #endif
912 hwaddr sparc_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
914 SPARCCPU *cpu = SPARC_CPU(cs);
915 CPUSPARCState *env = &cpu->env;
916 hwaddr phys_addr;
917 int mmu_idx = cpu_mmu_index(env, false);
919 if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 2, mmu_idx) != 0) {
920 if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 0, mmu_idx) != 0) {
921 return -1;
924 return phys_addr;
927 #ifndef CONFIG_USER_ONLY
928 G_NORETURN void sparc_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
929 MMUAccessType access_type,
930 int mmu_idx,
931 uintptr_t retaddr)
933 SPARCCPU *cpu = SPARC_CPU(cs);
934 CPUSPARCState *env = &cpu->env;
936 #ifdef TARGET_SPARC64
937 env->dmmu.sfsr = build_sfsr(env, mmu_idx, access_type);
938 env->dmmu.sfar = addr;
939 #else
940 env->mmuregs[4] = addr;
941 #endif
943 cpu_raise_exception_ra(env, TT_UNALIGNED, retaddr);
945 #endif /* !CONFIG_USER_ONLY */