m68k: is_mem is useless
[qemu.git] / target-s390x / mmu_helper.c
blob815ff42dde36d55b5e51250f58fcca67d1bce8bd
1 /*
2 * S390x MMU related functions
4 * Copyright (c) 2011 Alexander Graf
5 * Copyright (c) 2015 Thomas Huth, IBM Corporation
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include "qemu/error-report.h"
19 #include "exec/address-spaces.h"
20 #include "sysemu/kvm.h"
21 #include "cpu.h"
23 /* #define DEBUG_S390 */
24 /* #define DEBUG_S390_PTE */
25 /* #define DEBUG_S390_STDOUT */
27 #ifdef DEBUG_S390
28 #ifdef DEBUG_S390_STDOUT
29 #define DPRINTF(fmt, ...) \
30 do { fprintf(stderr, fmt, ## __VA_ARGS__); \
31 qemu_log(fmt, ##__VA_ARGS__); } while (0)
32 #else
33 #define DPRINTF(fmt, ...) \
34 do { qemu_log(fmt, ## __VA_ARGS__); } while (0)
35 #endif
36 #else
37 #define DPRINTF(fmt, ...) \
38 do { } while (0)
39 #endif
41 #ifdef DEBUG_S390_PTE
42 #define PTE_DPRINTF DPRINTF
43 #else
44 #define PTE_DPRINTF(fmt, ...) \
45 do { } while (0)
46 #endif
48 /* Fetch/store bits in the translation exception code: */
49 #define FS_READ 0x800
50 #define FS_WRITE 0x400
52 static void trigger_access_exception(CPUS390XState *env, uint32_t type,
53 uint32_t ilen, uint64_t tec)
55 S390CPU *cpu = s390_env_get_cpu(env);
57 if (kvm_enabled()) {
58 kvm_s390_access_exception(cpu, type, tec);
59 } else {
60 CPUState *cs = CPU(cpu);
61 stq_phys(cs->as, env->psa + offsetof(LowCore, trans_exc_code), tec);
62 trigger_pgm_exception(env, type, ilen);
66 static void trigger_prot_fault(CPUS390XState *env, target_ulong vaddr,
67 uint64_t asc, int rw, bool exc)
69 uint64_t tec;
71 tec = vaddr | (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ) | 4 | asc >> 46;
73 DPRINTF("%s: trans_exc_code=%016" PRIx64 "\n", __func__, tec);
75 if (!exc) {
76 return;
79 trigger_access_exception(env, PGM_PROTECTION, ILEN_LATER_INC, tec);
82 static void trigger_page_fault(CPUS390XState *env, target_ulong vaddr,
83 uint32_t type, uint64_t asc, int rw, bool exc)
85 int ilen = ILEN_LATER;
86 uint64_t tec;
88 tec = vaddr | (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ) | asc >> 46;
90 DPRINTF("%s: vaddr=%016" PRIx64 " bits=%d\n", __func__, vaddr, bits);
92 if (!exc) {
93 return;
96 /* Code accesses have an undefined ilc. */
97 if (rw == MMU_INST_FETCH) {
98 ilen = 2;
101 trigger_access_exception(env, type, ilen, tec);
105 * Translate real address to absolute (= physical)
106 * address by taking care of the prefix mapping.
108 static target_ulong mmu_real2abs(CPUS390XState *env, target_ulong raddr)
110 if (raddr < 0x2000) {
111 return raddr + env->psa; /* Map the lowcore. */
112 } else if (raddr >= env->psa && raddr < env->psa + 0x2000) {
113 return raddr - env->psa; /* Map the 0 page. */
115 return raddr;
118 /* Decode page table entry (normal 4KB page) */
119 static int mmu_translate_pte(CPUS390XState *env, target_ulong vaddr,
120 uint64_t asc, uint64_t pt_entry,
121 target_ulong *raddr, int *flags, int rw, bool exc)
123 if (pt_entry & _PAGE_INVALID) {
124 DPRINTF("%s: PTE=0x%" PRIx64 " invalid\n", __func__, pt_entry);
125 trigger_page_fault(env, vaddr, PGM_PAGE_TRANS, asc, rw, exc);
126 return -1;
128 if (pt_entry & _PAGE_RES0) {
129 trigger_page_fault(env, vaddr, PGM_TRANS_SPEC, asc, rw, exc);
130 return -1;
132 if (pt_entry & _PAGE_RO) {
133 *flags &= ~PAGE_WRITE;
136 *raddr = pt_entry & _ASCE_ORIGIN;
138 PTE_DPRINTF("%s: PTE=0x%" PRIx64 "\n", __func__, pt_entry);
140 return 0;
143 #define VADDR_PX 0xff000 /* Page index bits */
145 /* Decode segment table entry */
146 static int mmu_translate_segment(CPUS390XState *env, target_ulong vaddr,
147 uint64_t asc, uint64_t st_entry,
148 target_ulong *raddr, int *flags, int rw,
149 bool exc)
151 CPUState *cs = CPU(s390_env_get_cpu(env));
152 uint64_t origin, offs, pt_entry;
154 if (st_entry & _SEGMENT_ENTRY_RO) {
155 *flags &= ~PAGE_WRITE;
158 if ((st_entry & _SEGMENT_ENTRY_FC) && (env->cregs[0] & CR0_EDAT)) {
159 /* Decode EDAT1 segment frame absolute address (1MB page) */
160 *raddr = (st_entry & 0xfffffffffff00000ULL) | (vaddr & 0xfffff);
161 PTE_DPRINTF("%s: SEG=0x%" PRIx64 "\n", __func__, st_entry);
162 return 0;
165 /* Look up 4KB page entry */
166 origin = st_entry & _SEGMENT_ENTRY_ORIGIN;
167 offs = (vaddr & VADDR_PX) >> 9;
168 pt_entry = ldq_phys(cs->as, origin + offs);
169 PTE_DPRINTF("%s: 0x%" PRIx64 " + 0x%" PRIx64 " => 0x%016" PRIx64 "\n",
170 __func__, origin, offs, pt_entry);
171 return mmu_translate_pte(env, vaddr, asc, pt_entry, raddr, flags, rw, exc);
174 /* Decode region table entries */
175 static int mmu_translate_region(CPUS390XState *env, target_ulong vaddr,
176 uint64_t asc, uint64_t entry, int level,
177 target_ulong *raddr, int *flags, int rw,
178 bool exc)
180 CPUState *cs = CPU(s390_env_get_cpu(env));
181 uint64_t origin, offs, new_entry;
182 const int pchks[4] = {
183 PGM_SEGMENT_TRANS, PGM_REG_THIRD_TRANS,
184 PGM_REG_SEC_TRANS, PGM_REG_FIRST_TRANS
187 PTE_DPRINTF("%s: 0x%" PRIx64 "\n", __func__, entry);
189 origin = entry & _REGION_ENTRY_ORIGIN;
190 offs = (vaddr >> (17 + 11 * level / 4)) & 0x3ff8;
192 new_entry = ldq_phys(cs->as, origin + offs);
193 PTE_DPRINTF("%s: 0x%" PRIx64 " + 0x%" PRIx64 " => 0x%016" PRIx64 "\n",
194 __func__, origin, offs, new_entry);
196 if ((new_entry & _REGION_ENTRY_INV) != 0) {
197 DPRINTF("%s: invalid region\n", __func__);
198 trigger_page_fault(env, vaddr, pchks[level / 4], asc, rw, exc);
199 return -1;
202 if ((new_entry & _REGION_ENTRY_TYPE_MASK) != level) {
203 trigger_page_fault(env, vaddr, PGM_TRANS_SPEC, asc, rw, exc);
204 return -1;
207 if (level == _ASCE_TYPE_SEGMENT) {
208 return mmu_translate_segment(env, vaddr, asc, new_entry, raddr, flags,
209 rw, exc);
212 /* Check region table offset and length */
213 offs = (vaddr >> (28 + 11 * (level - 4) / 4)) & 3;
214 if (offs < ((new_entry & _REGION_ENTRY_TF) >> 6)
215 || offs > (new_entry & _REGION_ENTRY_LENGTH)) {
216 DPRINTF("%s: invalid offset or len (%lx)\n", __func__, new_entry);
217 trigger_page_fault(env, vaddr, pchks[level / 4 - 1], asc, rw, exc);
218 return -1;
221 if ((env->cregs[0] & CR0_EDAT) && (new_entry & _REGION_ENTRY_RO)) {
222 *flags &= ~PAGE_WRITE;
225 /* yet another region */
226 return mmu_translate_region(env, vaddr, asc, new_entry, level - 4,
227 raddr, flags, rw, exc);
230 static int mmu_translate_asce(CPUS390XState *env, target_ulong vaddr,
231 uint64_t asc, uint64_t asce, target_ulong *raddr,
232 int *flags, int rw, bool exc)
234 int level;
235 int r;
237 if (asce & _ASCE_REAL_SPACE) {
238 /* direct mapping */
239 *raddr = vaddr;
240 return 0;
243 level = asce & _ASCE_TYPE_MASK;
244 switch (level) {
245 case _ASCE_TYPE_REGION1:
246 if ((vaddr >> 62) > (asce & _ASCE_TABLE_LENGTH)) {
247 trigger_page_fault(env, vaddr, PGM_REG_FIRST_TRANS, asc, rw, exc);
248 return -1;
250 break;
251 case _ASCE_TYPE_REGION2:
252 if (vaddr & 0xffe0000000000000ULL) {
253 DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64
254 " 0xffe0000000000000ULL\n", __func__, vaddr);
255 trigger_page_fault(env, vaddr, PGM_ASCE_TYPE, asc, rw, exc);
256 return -1;
258 if ((vaddr >> 51 & 3) > (asce & _ASCE_TABLE_LENGTH)) {
259 trigger_page_fault(env, vaddr, PGM_REG_SEC_TRANS, asc, rw, exc);
260 return -1;
262 break;
263 case _ASCE_TYPE_REGION3:
264 if (vaddr & 0xfffffc0000000000ULL) {
265 DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64
266 " 0xfffffc0000000000ULL\n", __func__, vaddr);
267 trigger_page_fault(env, vaddr, PGM_ASCE_TYPE, asc, rw, exc);
268 return -1;
270 if ((vaddr >> 40 & 3) > (asce & _ASCE_TABLE_LENGTH)) {
271 trigger_page_fault(env, vaddr, PGM_REG_THIRD_TRANS, asc, rw, exc);
272 return -1;
274 break;
275 case _ASCE_TYPE_SEGMENT:
276 if (vaddr & 0xffffffff80000000ULL) {
277 DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64
278 " 0xffffffff80000000ULL\n", __func__, vaddr);
279 trigger_page_fault(env, vaddr, PGM_ASCE_TYPE, asc, rw, exc);
280 return -1;
282 if ((vaddr >> 29 & 3) > (asce & _ASCE_TABLE_LENGTH)) {
283 trigger_page_fault(env, vaddr, PGM_SEGMENT_TRANS, asc, rw, exc);
284 return -1;
286 break;
289 r = mmu_translate_region(env, vaddr, asc, asce, level, raddr, flags, rw,
290 exc);
291 if (rw == MMU_DATA_STORE && !(*flags & PAGE_WRITE)) {
292 trigger_prot_fault(env, vaddr, asc, rw, exc);
293 return -1;
296 return r;
300 * Translate a virtual (logical) address into a physical (absolute) address.
301 * @param vaddr the virtual address
302 * @param rw 0 = read, 1 = write, 2 = code fetch
303 * @param asc address space control (one of the PSW_ASC_* modes)
304 * @param raddr the translated address is stored to this pointer
305 * @param flags the PAGE_READ/WRITE/EXEC flags are stored to this pointer
306 * @param exc true = inject a program check if a fault occurred
307 * @return 0 if the translation was successful, -1 if a fault occurred
309 int mmu_translate(CPUS390XState *env, target_ulong vaddr, int rw, uint64_t asc,
310 target_ulong *raddr, int *flags, bool exc)
312 int r = -1;
313 uint8_t *sk;
315 *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
316 vaddr &= TARGET_PAGE_MASK;
318 if (!(env->psw.mask & PSW_MASK_DAT)) {
319 *raddr = vaddr;
320 r = 0;
321 goto out;
324 switch (asc) {
325 case PSW_ASC_PRIMARY:
326 PTE_DPRINTF("%s: asc=primary\n", __func__);
327 r = mmu_translate_asce(env, vaddr, asc, env->cregs[1], raddr, flags,
328 rw, exc);
329 break;
330 case PSW_ASC_HOME:
331 PTE_DPRINTF("%s: asc=home\n", __func__);
332 r = mmu_translate_asce(env, vaddr, asc, env->cregs[13], raddr, flags,
333 rw, exc);
334 break;
335 case PSW_ASC_SECONDARY:
336 PTE_DPRINTF("%s: asc=secondary\n", __func__);
338 * Instruction: Primary
339 * Data: Secondary
341 if (rw == MMU_INST_FETCH) {
342 r = mmu_translate_asce(env, vaddr, PSW_ASC_PRIMARY, env->cregs[1],
343 raddr, flags, rw, exc);
344 *flags &= ~(PAGE_READ | PAGE_WRITE);
345 } else {
346 r = mmu_translate_asce(env, vaddr, PSW_ASC_SECONDARY, env->cregs[7],
347 raddr, flags, rw, exc);
348 *flags &= ~(PAGE_EXEC);
350 break;
351 case PSW_ASC_ACCREG:
352 default:
353 hw_error("guest switched to unknown asc mode\n");
354 break;
357 out:
358 /* Convert real address -> absolute address */
359 *raddr = mmu_real2abs(env, *raddr);
361 if (*raddr < ram_size) {
362 sk = &env->storage_keys[*raddr / TARGET_PAGE_SIZE];
363 if (*flags & PAGE_READ) {
364 *sk |= SK_R;
367 if (*flags & PAGE_WRITE) {
368 *sk |= SK_C;
372 return r;
376 * lowprot_enabled: Check whether low-address protection is enabled
378 static bool lowprot_enabled(const CPUS390XState *env)
380 if (!(env->cregs[0] & CR0_LOWPROT)) {
381 return false;
383 if (!(env->psw.mask & PSW_MASK_DAT)) {
384 return true;
387 /* Check the private-space control bit */
388 switch (env->psw.mask & PSW_MASK_ASC) {
389 case PSW_ASC_PRIMARY:
390 return !(env->cregs[1] & _ASCE_PRIVATE_SPACE);
391 case PSW_ASC_SECONDARY:
392 return !(env->cregs[7] & _ASCE_PRIVATE_SPACE);
393 case PSW_ASC_HOME:
394 return !(env->cregs[13] & _ASCE_PRIVATE_SPACE);
395 default:
396 /* We don't support access register mode */
397 error_report("unsupported addressing mode");
398 exit(1);
403 * translate_pages: Translate a set of consecutive logical page addresses
404 * to absolute addresses
406 static int translate_pages(S390CPU *cpu, vaddr addr, int nr_pages,
407 target_ulong *pages, bool is_write)
409 bool lowprot = is_write && lowprot_enabled(&cpu->env);
410 uint64_t asc = cpu->env.psw.mask & PSW_MASK_ASC;
411 CPUS390XState *env = &cpu->env;
412 int ret, i, pflags;
414 for (i = 0; i < nr_pages; i++) {
415 /* Low-address protection? */
416 if (lowprot && (addr < 512 || (addr >= 4096 && addr < 4096 + 512))) {
417 trigger_access_exception(env, PGM_PROTECTION, ILEN_LATER_INC, 0);
418 return -EACCES;
420 ret = mmu_translate(env, addr, is_write, asc, &pages[i], &pflags, true);
421 if (ret) {
422 return ret;
424 if (!address_space_access_valid(&address_space_memory, pages[i],
425 TARGET_PAGE_SIZE, is_write)) {
426 program_interrupt(env, PGM_ADDRESSING, 0);
427 return -EFAULT;
429 addr += TARGET_PAGE_SIZE;
432 return 0;
436 * s390_cpu_virt_mem_rw:
437 * @laddr: the logical start address
438 * @ar: the access register number
439 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
440 * @len: length that should be transferred
441 * @is_write: true = write, false = read
442 * Returns: 0 on success, non-zero if an exception occurred
444 * Copy from/to guest memory using logical addresses. Note that we inject a
445 * program interrupt in case there is an error while accessing the memory.
447 int s390_cpu_virt_mem_rw(S390CPU *cpu, vaddr laddr, uint8_t ar, void *hostbuf,
448 int len, bool is_write)
450 int currlen, nr_pages, i;
451 target_ulong *pages;
452 int ret;
454 if (kvm_enabled()) {
455 ret = kvm_s390_mem_op(cpu, laddr, ar, hostbuf, len, is_write);
456 if (ret >= 0) {
457 return ret;
461 nr_pages = (((laddr & ~TARGET_PAGE_MASK) + len - 1) >> TARGET_PAGE_BITS)
462 + 1;
463 pages = g_malloc(nr_pages * sizeof(*pages));
465 ret = translate_pages(cpu, laddr, nr_pages, pages, is_write);
466 if (ret == 0 && hostbuf != NULL) {
467 /* Copy data by stepping through the area page by page */
468 for (i = 0; i < nr_pages; i++) {
469 currlen = MIN(len, TARGET_PAGE_SIZE - (laddr % TARGET_PAGE_SIZE));
470 cpu_physical_memory_rw(pages[i] | (laddr & ~TARGET_PAGE_MASK),
471 hostbuf, currlen, is_write);
472 laddr += currlen;
473 hostbuf += currlen;
474 len -= currlen;
478 g_free(pages);
479 return ret;