m68k: is_mem is useless
[qemu.git] / target-i386 / arch_dump.c
blobeccd8031afb0883a1fd197e48170767b815bac57
1 /*
2 * i386 memory mapping
4 * Copyright Fujitsu, Corp. 2011, 2012
6 * Authors:
7 * Wen Congyang <wency@cn.fujitsu.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
14 #include "cpu.h"
15 #include "exec/cpu-all.h"
16 #include "sysemu/dump.h"
17 #include "elf.h"
18 #include "sysemu/memory_mapping.h"
20 #ifdef TARGET_X86_64
21 typedef struct {
22 target_ulong r15, r14, r13, r12, rbp, rbx, r11, r10;
23 target_ulong r9, r8, rax, rcx, rdx, rsi, rdi, orig_rax;
24 target_ulong rip, cs, eflags;
25 target_ulong rsp, ss;
26 target_ulong fs_base, gs_base;
27 target_ulong ds, es, fs, gs;
28 } x86_64_user_regs_struct;
30 typedef struct {
31 char pad1[32];
32 uint32_t pid;
33 char pad2[76];
34 x86_64_user_regs_struct regs;
35 char pad3[8];
36 } x86_64_elf_prstatus;
38 static int x86_64_write_elf64_note(WriteCoreDumpFunction f,
39 CPUX86State *env, int id,
40 void *opaque)
42 x86_64_user_regs_struct regs;
43 Elf64_Nhdr *note;
44 char *buf;
45 int descsz, note_size, name_size = 5;
46 const char *name = "CORE";
47 int ret;
49 regs.r15 = env->regs[15];
50 regs.r14 = env->regs[14];
51 regs.r13 = env->regs[13];
52 regs.r12 = env->regs[12];
53 regs.r11 = env->regs[11];
54 regs.r10 = env->regs[10];
55 regs.r9 = env->regs[9];
56 regs.r8 = env->regs[8];
57 regs.rbp = env->regs[R_EBP];
58 regs.rsp = env->regs[R_ESP];
59 regs.rdi = env->regs[R_EDI];
60 regs.rsi = env->regs[R_ESI];
61 regs.rdx = env->regs[R_EDX];
62 regs.rcx = env->regs[R_ECX];
63 regs.rbx = env->regs[R_EBX];
64 regs.rax = env->regs[R_EAX];
65 regs.rip = env->eip;
66 regs.eflags = env->eflags;
68 regs.orig_rax = 0; /* FIXME */
69 regs.cs = env->segs[R_CS].selector;
70 regs.ss = env->segs[R_SS].selector;
71 regs.fs_base = env->segs[R_FS].base;
72 regs.gs_base = env->segs[R_GS].base;
73 regs.ds = env->segs[R_DS].selector;
74 regs.es = env->segs[R_ES].selector;
75 regs.fs = env->segs[R_FS].selector;
76 regs.gs = env->segs[R_GS].selector;
78 descsz = sizeof(x86_64_elf_prstatus);
79 note_size = ((sizeof(Elf64_Nhdr) + 3) / 4 + (name_size + 3) / 4 +
80 (descsz + 3) / 4) * 4;
81 note = g_malloc0(note_size);
82 note->n_namesz = cpu_to_le32(name_size);
83 note->n_descsz = cpu_to_le32(descsz);
84 note->n_type = cpu_to_le32(NT_PRSTATUS);
85 buf = (char *)note;
86 buf += ((sizeof(Elf64_Nhdr) + 3) / 4) * 4;
87 memcpy(buf, name, name_size);
88 buf += ((name_size + 3) / 4) * 4;
89 memcpy(buf + 32, &id, 4); /* pr_pid */
90 buf += descsz - sizeof(x86_64_user_regs_struct)-sizeof(target_ulong);
91 memcpy(buf, &regs, sizeof(x86_64_user_regs_struct));
93 ret = f(note, note_size, opaque);
94 g_free(note);
95 if (ret < 0) {
96 return -1;
99 return 0;
101 #endif
103 typedef struct {
104 uint32_t ebx, ecx, edx, esi, edi, ebp, eax;
105 unsigned short ds, __ds, es, __es;
106 unsigned short fs, __fs, gs, __gs;
107 uint32_t orig_eax, eip;
108 unsigned short cs, __cs;
109 uint32_t eflags, esp;
110 unsigned short ss, __ss;
111 } x86_user_regs_struct;
113 typedef struct {
114 char pad1[24];
115 uint32_t pid;
116 char pad2[44];
117 x86_user_regs_struct regs;
118 char pad3[4];
119 } x86_elf_prstatus;
121 static void x86_fill_elf_prstatus(x86_elf_prstatus *prstatus, CPUX86State *env,
122 int id)
124 memset(prstatus, 0, sizeof(x86_elf_prstatus));
125 prstatus->regs.ebp = env->regs[R_EBP] & 0xffffffff;
126 prstatus->regs.esp = env->regs[R_ESP] & 0xffffffff;
127 prstatus->regs.edi = env->regs[R_EDI] & 0xffffffff;
128 prstatus->regs.esi = env->regs[R_ESI] & 0xffffffff;
129 prstatus->regs.edx = env->regs[R_EDX] & 0xffffffff;
130 prstatus->regs.ecx = env->regs[R_ECX] & 0xffffffff;
131 prstatus->regs.ebx = env->regs[R_EBX] & 0xffffffff;
132 prstatus->regs.eax = env->regs[R_EAX] & 0xffffffff;
133 prstatus->regs.eip = env->eip & 0xffffffff;
134 prstatus->regs.eflags = env->eflags & 0xffffffff;
136 prstatus->regs.cs = env->segs[R_CS].selector;
137 prstatus->regs.ss = env->segs[R_SS].selector;
138 prstatus->regs.ds = env->segs[R_DS].selector;
139 prstatus->regs.es = env->segs[R_ES].selector;
140 prstatus->regs.fs = env->segs[R_FS].selector;
141 prstatus->regs.gs = env->segs[R_GS].selector;
143 prstatus->pid = id;
146 static int x86_write_elf64_note(WriteCoreDumpFunction f, CPUX86State *env,
147 int id, void *opaque)
149 x86_elf_prstatus prstatus;
150 Elf64_Nhdr *note;
151 char *buf;
152 int descsz, note_size, name_size = 5;
153 const char *name = "CORE";
154 int ret;
156 x86_fill_elf_prstatus(&prstatus, env, id);
157 descsz = sizeof(x86_elf_prstatus);
158 note_size = ((sizeof(Elf64_Nhdr) + 3) / 4 + (name_size + 3) / 4 +
159 (descsz + 3) / 4) * 4;
160 note = g_malloc0(note_size);
161 note->n_namesz = cpu_to_le32(name_size);
162 note->n_descsz = cpu_to_le32(descsz);
163 note->n_type = cpu_to_le32(NT_PRSTATUS);
164 buf = (char *)note;
165 buf += ((sizeof(Elf64_Nhdr) + 3) / 4) * 4;
166 memcpy(buf, name, name_size);
167 buf += ((name_size + 3) / 4) * 4;
168 memcpy(buf, &prstatus, sizeof(prstatus));
170 ret = f(note, note_size, opaque);
171 g_free(note);
172 if (ret < 0) {
173 return -1;
176 return 0;
179 int x86_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
180 int cpuid, void *opaque)
182 X86CPU *cpu = X86_CPU(cs);
183 int ret;
184 #ifdef TARGET_X86_64
185 X86CPU *first_x86_cpu = X86_CPU(first_cpu);
186 bool lma = !!(first_x86_cpu->env.hflags & HF_LMA_MASK);
188 if (lma) {
189 ret = x86_64_write_elf64_note(f, &cpu->env, cpuid, opaque);
190 } else {
191 #endif
192 ret = x86_write_elf64_note(f, &cpu->env, cpuid, opaque);
193 #ifdef TARGET_X86_64
195 #endif
197 return ret;
200 int x86_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
201 int cpuid, void *opaque)
203 X86CPU *cpu = X86_CPU(cs);
204 x86_elf_prstatus prstatus;
205 Elf32_Nhdr *note;
206 char *buf;
207 int descsz, note_size, name_size = 5;
208 const char *name = "CORE";
209 int ret;
211 x86_fill_elf_prstatus(&prstatus, &cpu->env, cpuid);
212 descsz = sizeof(x86_elf_prstatus);
213 note_size = ((sizeof(Elf32_Nhdr) + 3) / 4 + (name_size + 3) / 4 +
214 (descsz + 3) / 4) * 4;
215 note = g_malloc0(note_size);
216 note->n_namesz = cpu_to_le32(name_size);
217 note->n_descsz = cpu_to_le32(descsz);
218 note->n_type = cpu_to_le32(NT_PRSTATUS);
219 buf = (char *)note;
220 buf += ((sizeof(Elf32_Nhdr) + 3) / 4) * 4;
221 memcpy(buf, name, name_size);
222 buf += ((name_size + 3) / 4) * 4;
223 memcpy(buf, &prstatus, sizeof(prstatus));
225 ret = f(note, note_size, opaque);
226 g_free(note);
227 if (ret < 0) {
228 return -1;
231 return 0;
235 * please count up QEMUCPUSTATE_VERSION if you have changed definition of
236 * QEMUCPUState, and modify the tools using this information accordingly.
238 #define QEMUCPUSTATE_VERSION (1)
240 struct QEMUCPUSegment {
241 uint32_t selector;
242 uint32_t limit;
243 uint32_t flags;
244 uint32_t pad;
245 uint64_t base;
248 typedef struct QEMUCPUSegment QEMUCPUSegment;
250 struct QEMUCPUState {
251 uint32_t version;
252 uint32_t size;
253 uint64_t rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp;
254 uint64_t r8, r9, r10, r11, r12, r13, r14, r15;
255 uint64_t rip, rflags;
256 QEMUCPUSegment cs, ds, es, fs, gs, ss;
257 QEMUCPUSegment ldt, tr, gdt, idt;
258 uint64_t cr[5];
261 typedef struct QEMUCPUState QEMUCPUState;
263 static void copy_segment(QEMUCPUSegment *d, SegmentCache *s)
265 d->pad = 0;
266 d->selector = s->selector;
267 d->limit = s->limit;
268 d->flags = s->flags;
269 d->base = s->base;
272 static void qemu_get_cpustate(QEMUCPUState *s, CPUX86State *env)
274 memset(s, 0, sizeof(QEMUCPUState));
276 s->version = QEMUCPUSTATE_VERSION;
277 s->size = sizeof(QEMUCPUState);
279 s->rax = env->regs[R_EAX];
280 s->rbx = env->regs[R_EBX];
281 s->rcx = env->regs[R_ECX];
282 s->rdx = env->regs[R_EDX];
283 s->rsi = env->regs[R_ESI];
284 s->rdi = env->regs[R_EDI];
285 s->rsp = env->regs[R_ESP];
286 s->rbp = env->regs[R_EBP];
287 #ifdef TARGET_X86_64
288 s->r8 = env->regs[8];
289 s->r9 = env->regs[9];
290 s->r10 = env->regs[10];
291 s->r11 = env->regs[11];
292 s->r12 = env->regs[12];
293 s->r13 = env->regs[13];
294 s->r14 = env->regs[14];
295 s->r15 = env->regs[15];
296 #endif
297 s->rip = env->eip;
298 s->rflags = env->eflags;
300 copy_segment(&s->cs, &env->segs[R_CS]);
301 copy_segment(&s->ds, &env->segs[R_DS]);
302 copy_segment(&s->es, &env->segs[R_ES]);
303 copy_segment(&s->fs, &env->segs[R_FS]);
304 copy_segment(&s->gs, &env->segs[R_GS]);
305 copy_segment(&s->ss, &env->segs[R_SS]);
306 copy_segment(&s->ldt, &env->ldt);
307 copy_segment(&s->tr, &env->tr);
308 copy_segment(&s->gdt, &env->gdt);
309 copy_segment(&s->idt, &env->idt);
311 s->cr[0] = env->cr[0];
312 s->cr[1] = env->cr[1];
313 s->cr[2] = env->cr[2];
314 s->cr[3] = env->cr[3];
315 s->cr[4] = env->cr[4];
318 static inline int cpu_write_qemu_note(WriteCoreDumpFunction f,
319 CPUX86State *env,
320 void *opaque,
321 int type)
323 QEMUCPUState state;
324 Elf64_Nhdr *note64;
325 Elf32_Nhdr *note32;
326 void *note;
327 char *buf;
328 int descsz, note_size, name_size = 5, note_head_size;
329 const char *name = "QEMU";
330 int ret;
332 qemu_get_cpustate(&state, env);
334 descsz = sizeof(state);
335 if (type == 0) {
336 note_head_size = sizeof(Elf32_Nhdr);
337 } else {
338 note_head_size = sizeof(Elf64_Nhdr);
340 note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 +
341 (descsz + 3) / 4) * 4;
342 note = g_malloc0(note_size);
343 if (type == 0) {
344 note32 = note;
345 note32->n_namesz = cpu_to_le32(name_size);
346 note32->n_descsz = cpu_to_le32(descsz);
347 note32->n_type = 0;
348 } else {
349 note64 = note;
350 note64->n_namesz = cpu_to_le32(name_size);
351 note64->n_descsz = cpu_to_le32(descsz);
352 note64->n_type = 0;
354 buf = note;
355 buf += ((note_head_size + 3) / 4) * 4;
356 memcpy(buf, name, name_size);
357 buf += ((name_size + 3) / 4) * 4;
358 memcpy(buf, &state, sizeof(state));
360 ret = f(note, note_size, opaque);
361 g_free(note);
362 if (ret < 0) {
363 return -1;
366 return 0;
369 int x86_cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cs,
370 void *opaque)
372 X86CPU *cpu = X86_CPU(cs);
374 return cpu_write_qemu_note(f, &cpu->env, opaque, 1);
377 int x86_cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cs,
378 void *opaque)
380 X86CPU *cpu = X86_CPU(cs);
382 return cpu_write_qemu_note(f, &cpu->env, opaque, 0);
385 int cpu_get_dump_info(ArchDumpInfo *info,
386 const GuestPhysBlockList *guest_phys_blocks)
388 bool lma = false;
389 GuestPhysBlock *block;
391 #ifdef TARGET_X86_64
392 X86CPU *first_x86_cpu = X86_CPU(first_cpu);
394 lma = !!(first_x86_cpu->env.hflags & HF_LMA_MASK);
395 #endif
397 if (lma) {
398 info->d_machine = EM_X86_64;
399 } else {
400 info->d_machine = EM_386;
402 info->d_endian = ELFDATA2LSB;
404 if (lma) {
405 info->d_class = ELFCLASS64;
406 } else {
407 info->d_class = ELFCLASS32;
409 QTAILQ_FOREACH(block, &guest_phys_blocks->head, next) {
410 if (block->target_end > UINT_MAX) {
411 /* The memory size is greater than 4G */
412 info->d_class = ELFCLASS64;
413 break;
418 return 0;
421 ssize_t cpu_get_note_size(int class, int machine, int nr_cpus)
423 int name_size = 5; /* "CORE" or "QEMU" */
424 size_t elf_note_size = 0;
425 size_t qemu_note_size = 0;
426 int elf_desc_size = 0;
427 int qemu_desc_size = 0;
428 int note_head_size;
430 if (class == ELFCLASS32) {
431 note_head_size = sizeof(Elf32_Nhdr);
432 } else {
433 note_head_size = sizeof(Elf64_Nhdr);
436 if (machine == EM_386) {
437 elf_desc_size = sizeof(x86_elf_prstatus);
439 #ifdef TARGET_X86_64
440 else {
441 elf_desc_size = sizeof(x86_64_elf_prstatus);
443 #endif
444 qemu_desc_size = sizeof(QEMUCPUState);
446 elf_note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 +
447 (elf_desc_size + 3) / 4) * 4;
448 qemu_note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 +
449 (qemu_desc_size + 3) / 4) * 4;
451 return (elf_note_size + qemu_note_size) * nr_cpus;