Merge remote-tracking branch 'agraf/xen-next' into staging
[qemu.git] / target-i386 / kvm.c
blob1ae2d61740e1206b00d63e110cce3b5b7719d8ff
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
22 #include "qemu-common.h"
23 #include "sysemu.h"
24 #include "kvm.h"
25 #include "cpu.h"
26 #include "gdbstub.h"
27 #include "host-utils.h"
28 #include "hw/pc.h"
29 #include "hw/apic.h"
30 #include "ioport.h"
32 #ifdef CONFIG_KVM_PARA
33 #include <linux/kvm_para.h>
34 #endif
36 //#define DEBUG_KVM
38 #ifdef DEBUG_KVM
39 #define DPRINTF(fmt, ...) \
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41 #else
42 #define DPRINTF(fmt, ...) \
43 do { } while (0)
44 #endif
46 #define MSR_KVM_WALL_CLOCK 0x11
47 #define MSR_KVM_SYSTEM_TIME 0x12
49 #ifndef BUS_MCEERR_AR
50 #define BUS_MCEERR_AR 4
51 #endif
52 #ifndef BUS_MCEERR_AO
53 #define BUS_MCEERR_AO 5
54 #endif
56 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57 KVM_CAP_INFO(SET_TSS_ADDR),
58 KVM_CAP_INFO(EXT_CPUID),
59 KVM_CAP_INFO(MP_STATE),
60 KVM_CAP_LAST_INFO
63 static bool has_msr_star;
64 static bool has_msr_hsave_pa;
65 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
66 static bool has_msr_async_pf_en;
67 #endif
68 static int lm_capable_kernel;
70 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
72 struct kvm_cpuid2 *cpuid;
73 int r, size;
75 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
76 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
77 cpuid->nent = max;
78 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
79 if (r == 0 && cpuid->nent >= max) {
80 r = -E2BIG;
82 if (r < 0) {
83 if (r == -E2BIG) {
84 qemu_free(cpuid);
85 return NULL;
86 } else {
87 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
88 strerror(-r));
89 exit(1);
92 return cpuid;
95 #ifdef CONFIG_KVM_PARA
96 struct kvm_para_features {
97 int cap;
98 int feature;
99 } para_features[] = {
100 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
101 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
102 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
103 #ifdef KVM_CAP_ASYNC_PF
104 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
105 #endif
106 { -1, -1 }
109 static int get_para_features(CPUState *env)
111 int i, features = 0;
113 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
114 if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
115 features |= (1 << para_features[i].feature);
119 return features;
121 #endif
124 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
125 uint32_t index, int reg)
127 struct kvm_cpuid2 *cpuid;
128 int i, max;
129 uint32_t ret = 0;
130 uint32_t cpuid_1_edx;
131 #ifdef CONFIG_KVM_PARA
132 int has_kvm_features = 0;
133 #endif
135 max = 1;
136 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
137 max *= 2;
140 for (i = 0; i < cpuid->nent; ++i) {
141 if (cpuid->entries[i].function == function &&
142 cpuid->entries[i].index == index) {
143 #ifdef CONFIG_KVM_PARA
144 if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
145 has_kvm_features = 1;
147 #endif
148 switch (reg) {
149 case R_EAX:
150 ret = cpuid->entries[i].eax;
151 break;
152 case R_EBX:
153 ret = cpuid->entries[i].ebx;
154 break;
155 case R_ECX:
156 ret = cpuid->entries[i].ecx;
157 break;
158 case R_EDX:
159 ret = cpuid->entries[i].edx;
160 switch (function) {
161 case 1:
162 /* KVM before 2.6.30 misreports the following features */
163 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
164 break;
165 case 0x80000001:
166 /* On Intel, kvm returns cpuid according to the Intel spec,
167 * so add missing bits according to the AMD spec:
169 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
170 ret |= cpuid_1_edx & 0x183f7ff;
171 break;
173 break;
178 qemu_free(cpuid);
180 #ifdef CONFIG_KVM_PARA
181 /* fallback for older kernels */
182 if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
183 ret = get_para_features(env);
185 #endif
187 return ret;
190 typedef struct HWPoisonPage {
191 ram_addr_t ram_addr;
192 QLIST_ENTRY(HWPoisonPage) list;
193 } HWPoisonPage;
195 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
196 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
198 static void kvm_unpoison_all(void *param)
200 HWPoisonPage *page, *next_page;
202 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
203 QLIST_REMOVE(page, list);
204 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
205 qemu_free(page);
209 #ifdef KVM_CAP_MCE
210 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
212 HWPoisonPage *page;
214 QLIST_FOREACH(page, &hwpoison_page_list, list) {
215 if (page->ram_addr == ram_addr) {
216 return;
219 page = qemu_malloc(sizeof(HWPoisonPage));
220 page->ram_addr = ram_addr;
221 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
224 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
225 int *max_banks)
227 int r;
229 r = kvm_check_extension(s, KVM_CAP_MCE);
230 if (r > 0) {
231 *max_banks = r;
232 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
234 return -ENOSYS;
237 static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code)
239 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
240 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
241 uint64_t mcg_status = MCG_STATUS_MCIP;
243 if (code == BUS_MCEERR_AR) {
244 status |= MCI_STATUS_AR | 0x134;
245 mcg_status |= MCG_STATUS_EIPV;
246 } else {
247 status |= 0xc0;
248 mcg_status |= MCG_STATUS_RIPV;
250 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
251 (MCM_ADDR_PHYS << 6) | 0xc,
252 cpu_x86_support_mca_broadcast(env) ?
253 MCE_INJECT_BROADCAST : 0);
255 #endif /* KVM_CAP_MCE */
257 static void hardware_memory_error(void)
259 fprintf(stderr, "Hardware memory error!\n");
260 exit(1);
263 int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
265 #ifdef KVM_CAP_MCE
266 ram_addr_t ram_addr;
267 target_phys_addr_t paddr;
269 if ((env->mcg_cap & MCG_SER_P) && addr
270 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
271 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
272 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr,
273 &paddr)) {
274 fprintf(stderr, "Hardware memory error for memory used by "
275 "QEMU itself instead of guest system!\n");
276 /* Hope we are lucky for AO MCE */
277 if (code == BUS_MCEERR_AO) {
278 return 0;
279 } else {
280 hardware_memory_error();
283 kvm_hwpoison_page_add(ram_addr);
284 kvm_mce_inject(env, paddr, code);
285 } else
286 #endif /* KVM_CAP_MCE */
288 if (code == BUS_MCEERR_AO) {
289 return 0;
290 } else if (code == BUS_MCEERR_AR) {
291 hardware_memory_error();
292 } else {
293 return 1;
296 return 0;
299 int kvm_arch_on_sigbus(int code, void *addr)
301 #ifdef KVM_CAP_MCE
302 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
303 ram_addr_t ram_addr;
304 target_phys_addr_t paddr;
306 /* Hope we are lucky for AO MCE */
307 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
308 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr,
309 &paddr)) {
310 fprintf(stderr, "Hardware memory error for memory used by "
311 "QEMU itself instead of guest system!: %p\n", addr);
312 return 0;
314 kvm_hwpoison_page_add(ram_addr);
315 kvm_mce_inject(first_cpu, paddr, code);
316 } else
317 #endif /* KVM_CAP_MCE */
319 if (code == BUS_MCEERR_AO) {
320 return 0;
321 } else if (code == BUS_MCEERR_AR) {
322 hardware_memory_error();
323 } else {
324 return 1;
327 return 0;
330 static int kvm_inject_mce_oldstyle(CPUState *env)
332 #ifdef KVM_CAP_MCE
333 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
334 unsigned int bank, bank_num = env->mcg_cap & 0xff;
335 struct kvm_x86_mce mce;
337 env->exception_injected = -1;
340 * There must be at least one bank in use if an MCE is pending.
341 * Find it and use its values for the event injection.
343 for (bank = 0; bank < bank_num; bank++) {
344 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
345 break;
348 assert(bank < bank_num);
350 mce.bank = bank;
351 mce.status = env->mce_banks[bank * 4 + 1];
352 mce.mcg_status = env->mcg_status;
353 mce.addr = env->mce_banks[bank * 4 + 2];
354 mce.misc = env->mce_banks[bank * 4 + 3];
356 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
358 #endif /* KVM_CAP_MCE */
359 return 0;
362 static void cpu_update_state(void *opaque, int running, int reason)
364 CPUState *env = opaque;
366 if (running) {
367 env->tsc_valid = false;
371 int kvm_arch_init_vcpu(CPUState *env)
373 struct {
374 struct kvm_cpuid2 cpuid;
375 struct kvm_cpuid_entry2 entries[100];
376 } __attribute__((packed)) cpuid_data;
377 uint32_t limit, i, j, cpuid_i;
378 uint32_t unused;
379 struct kvm_cpuid_entry2 *c;
380 #ifdef CONFIG_KVM_PARA
381 uint32_t signature[3];
382 #endif
384 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
386 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
387 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
388 env->cpuid_ext_features |= i;
390 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
391 0, R_EDX);
392 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
393 0, R_ECX);
394 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
395 0, R_EDX);
398 cpuid_i = 0;
400 #ifdef CONFIG_KVM_PARA
401 /* Paravirtualization CPUIDs */
402 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
403 c = &cpuid_data.entries[cpuid_i++];
404 memset(c, 0, sizeof(*c));
405 c->function = KVM_CPUID_SIGNATURE;
406 c->eax = 0;
407 c->ebx = signature[0];
408 c->ecx = signature[1];
409 c->edx = signature[2];
411 c = &cpuid_data.entries[cpuid_i++];
412 memset(c, 0, sizeof(*c));
413 c->function = KVM_CPUID_FEATURES;
414 c->eax = env->cpuid_kvm_features & kvm_arch_get_supported_cpuid(env,
415 KVM_CPUID_FEATURES, 0, R_EAX);
417 #ifdef KVM_CAP_ASYNC_PF
418 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
419 #endif
421 #endif
423 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
425 for (i = 0; i <= limit; i++) {
426 c = &cpuid_data.entries[cpuid_i++];
428 switch (i) {
429 case 2: {
430 /* Keep reading function 2 till all the input is received */
431 int times;
433 c->function = i;
434 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
435 KVM_CPUID_FLAG_STATE_READ_NEXT;
436 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
437 times = c->eax & 0xff;
439 for (j = 1; j < times; ++j) {
440 c = &cpuid_data.entries[cpuid_i++];
441 c->function = i;
442 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
443 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
445 break;
447 case 4:
448 case 0xb:
449 case 0xd:
450 for (j = 0; ; j++) {
451 c->function = i;
452 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
453 c->index = j;
454 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
456 if (i == 4 && c->eax == 0) {
457 break;
459 if (i == 0xb && !(c->ecx & 0xff00)) {
460 break;
462 if (i == 0xd && c->eax == 0) {
463 break;
465 c = &cpuid_data.entries[cpuid_i++];
467 break;
468 default:
469 c->function = i;
470 c->flags = 0;
471 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
472 break;
475 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
477 for (i = 0x80000000; i <= limit; i++) {
478 c = &cpuid_data.entries[cpuid_i++];
480 c->function = i;
481 c->flags = 0;
482 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
485 /* Call Centaur's CPUID instructions they are supported. */
486 if (env->cpuid_xlevel2 > 0) {
487 env->cpuid_ext4_features &=
488 kvm_arch_get_supported_cpuid(env, 0xC0000001, 0, R_EDX);
489 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
491 for (i = 0xC0000000; i <= limit; i++) {
492 c = &cpuid_data.entries[cpuid_i++];
494 c->function = i;
495 c->flags = 0;
496 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
500 cpuid_data.cpuid.nent = cpuid_i;
502 #ifdef KVM_CAP_MCE
503 if (((env->cpuid_version >> 8)&0xF) >= 6
504 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
505 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
506 uint64_t mcg_cap;
507 int banks;
508 int ret;
510 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
511 if (ret < 0) {
512 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
513 return ret;
516 if (banks > MCE_BANKS_DEF) {
517 banks = MCE_BANKS_DEF;
519 mcg_cap &= MCE_CAP_DEF;
520 mcg_cap |= banks;
521 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
522 if (ret < 0) {
523 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
524 return ret;
527 env->mcg_cap = mcg_cap;
529 #endif
531 qemu_add_vm_change_state_handler(cpu_update_state, env);
533 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
536 void kvm_arch_reset_vcpu(CPUState *env)
538 env->exception_injected = -1;
539 env->interrupt_injected = -1;
540 env->xcr0 = 1;
541 if (kvm_irqchip_in_kernel()) {
542 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
543 KVM_MP_STATE_UNINITIALIZED;
544 } else {
545 env->mp_state = KVM_MP_STATE_RUNNABLE;
549 static int kvm_get_supported_msrs(KVMState *s)
551 static int kvm_supported_msrs;
552 int ret = 0;
554 /* first time */
555 if (kvm_supported_msrs == 0) {
556 struct kvm_msr_list msr_list, *kvm_msr_list;
558 kvm_supported_msrs = -1;
560 /* Obtain MSR list from KVM. These are the MSRs that we must
561 * save/restore */
562 msr_list.nmsrs = 0;
563 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
564 if (ret < 0 && ret != -E2BIG) {
565 return ret;
567 /* Old kernel modules had a bug and could write beyond the provided
568 memory. Allocate at least a safe amount of 1K. */
569 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
570 msr_list.nmsrs *
571 sizeof(msr_list.indices[0])));
573 kvm_msr_list->nmsrs = msr_list.nmsrs;
574 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
575 if (ret >= 0) {
576 int i;
578 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
579 if (kvm_msr_list->indices[i] == MSR_STAR) {
580 has_msr_star = true;
581 continue;
583 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
584 has_msr_hsave_pa = true;
585 continue;
590 qemu_free(kvm_msr_list);
593 return ret;
596 int kvm_arch_init(KVMState *s)
598 uint64_t identity_base = 0xfffbc000;
599 int ret;
600 struct utsname utsname;
602 ret = kvm_get_supported_msrs(s);
603 if (ret < 0) {
604 return ret;
607 uname(&utsname);
608 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
611 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
612 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
613 * Since these must be part of guest physical memory, we need to allocate
614 * them, both by setting their start addresses in the kernel and by
615 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
617 * Older KVM versions may not support setting the identity map base. In
618 * that case we need to stick with the default, i.e. a 256K maximum BIOS
619 * size.
621 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
622 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
623 /* Allows up to 16M BIOSes. */
624 identity_base = 0xfeffc000;
626 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
627 if (ret < 0) {
628 return ret;
631 #endif
632 /* Set TSS base one page after EPT identity map. */
633 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
634 if (ret < 0) {
635 return ret;
638 /* Tell fw_cfg to notify the BIOS to reserve the range. */
639 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
640 if (ret < 0) {
641 fprintf(stderr, "e820_add_entry() table is full\n");
642 return ret;
644 qemu_register_reset(kvm_unpoison_all, NULL);
646 return 0;
649 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
651 lhs->selector = rhs->selector;
652 lhs->base = rhs->base;
653 lhs->limit = rhs->limit;
654 lhs->type = 3;
655 lhs->present = 1;
656 lhs->dpl = 3;
657 lhs->db = 0;
658 lhs->s = 1;
659 lhs->l = 0;
660 lhs->g = 0;
661 lhs->avl = 0;
662 lhs->unusable = 0;
665 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
667 unsigned flags = rhs->flags;
668 lhs->selector = rhs->selector;
669 lhs->base = rhs->base;
670 lhs->limit = rhs->limit;
671 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
672 lhs->present = (flags & DESC_P_MASK) != 0;
673 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
674 lhs->db = (flags >> DESC_B_SHIFT) & 1;
675 lhs->s = (flags & DESC_S_MASK) != 0;
676 lhs->l = (flags >> DESC_L_SHIFT) & 1;
677 lhs->g = (flags & DESC_G_MASK) != 0;
678 lhs->avl = (flags & DESC_AVL_MASK) != 0;
679 lhs->unusable = 0;
682 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
684 lhs->selector = rhs->selector;
685 lhs->base = rhs->base;
686 lhs->limit = rhs->limit;
687 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
688 (rhs->present * DESC_P_MASK) |
689 (rhs->dpl << DESC_DPL_SHIFT) |
690 (rhs->db << DESC_B_SHIFT) |
691 (rhs->s * DESC_S_MASK) |
692 (rhs->l << DESC_L_SHIFT) |
693 (rhs->g * DESC_G_MASK) |
694 (rhs->avl * DESC_AVL_MASK);
697 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
699 if (set) {
700 *kvm_reg = *qemu_reg;
701 } else {
702 *qemu_reg = *kvm_reg;
706 static int kvm_getput_regs(CPUState *env, int set)
708 struct kvm_regs regs;
709 int ret = 0;
711 if (!set) {
712 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
713 if (ret < 0) {
714 return ret;
718 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
719 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
720 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
721 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
722 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
723 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
724 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
725 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
726 #ifdef TARGET_X86_64
727 kvm_getput_reg(&regs.r8, &env->regs[8], set);
728 kvm_getput_reg(&regs.r9, &env->regs[9], set);
729 kvm_getput_reg(&regs.r10, &env->regs[10], set);
730 kvm_getput_reg(&regs.r11, &env->regs[11], set);
731 kvm_getput_reg(&regs.r12, &env->regs[12], set);
732 kvm_getput_reg(&regs.r13, &env->regs[13], set);
733 kvm_getput_reg(&regs.r14, &env->regs[14], set);
734 kvm_getput_reg(&regs.r15, &env->regs[15], set);
735 #endif
737 kvm_getput_reg(&regs.rflags, &env->eflags, set);
738 kvm_getput_reg(&regs.rip, &env->eip, set);
740 if (set) {
741 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
744 return ret;
747 static int kvm_put_fpu(CPUState *env)
749 struct kvm_fpu fpu;
750 int i;
752 memset(&fpu, 0, sizeof fpu);
753 fpu.fsw = env->fpus & ~(7 << 11);
754 fpu.fsw |= (env->fpstt & 7) << 11;
755 fpu.fcw = env->fpuc;
756 for (i = 0; i < 8; ++i) {
757 fpu.ftwx |= (!env->fptags[i]) << i;
759 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
760 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
761 fpu.mxcsr = env->mxcsr;
763 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
766 #ifdef KVM_CAP_XSAVE
767 #define XSAVE_CWD_RIP 2
768 #define XSAVE_CWD_RDP 4
769 #define XSAVE_MXCSR 6
770 #define XSAVE_ST_SPACE 8
771 #define XSAVE_XMM_SPACE 40
772 #define XSAVE_XSTATE_BV 128
773 #define XSAVE_YMMH_SPACE 144
774 #endif
776 static int kvm_put_xsave(CPUState *env)
778 #ifdef KVM_CAP_XSAVE
779 int i, r;
780 struct kvm_xsave* xsave;
781 uint16_t cwd, swd, twd, fop;
783 if (!kvm_has_xsave()) {
784 return kvm_put_fpu(env);
787 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
788 memset(xsave, 0, sizeof(struct kvm_xsave));
789 cwd = swd = twd = fop = 0;
790 swd = env->fpus & ~(7 << 11);
791 swd |= (env->fpstt & 7) << 11;
792 cwd = env->fpuc;
793 for (i = 0; i < 8; ++i) {
794 twd |= (!env->fptags[i]) << i;
796 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
797 xsave->region[1] = (uint32_t)(fop << 16) + twd;
798 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
799 sizeof env->fpregs);
800 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
801 sizeof env->xmm_regs);
802 xsave->region[XSAVE_MXCSR] = env->mxcsr;
803 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
804 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
805 sizeof env->ymmh_regs);
806 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
807 qemu_free(xsave);
808 return r;
809 #else
810 return kvm_put_fpu(env);
811 #endif
814 static int kvm_put_xcrs(CPUState *env)
816 #ifdef KVM_CAP_XCRS
817 struct kvm_xcrs xcrs;
819 if (!kvm_has_xcrs()) {
820 return 0;
823 xcrs.nr_xcrs = 1;
824 xcrs.flags = 0;
825 xcrs.xcrs[0].xcr = 0;
826 xcrs.xcrs[0].value = env->xcr0;
827 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
828 #else
829 return 0;
830 #endif
833 static int kvm_put_sregs(CPUState *env)
835 struct kvm_sregs sregs;
837 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
838 if (env->interrupt_injected >= 0) {
839 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
840 (uint64_t)1 << (env->interrupt_injected % 64);
843 if ((env->eflags & VM_MASK)) {
844 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
845 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
846 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
847 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
848 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
849 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
850 } else {
851 set_seg(&sregs.cs, &env->segs[R_CS]);
852 set_seg(&sregs.ds, &env->segs[R_DS]);
853 set_seg(&sregs.es, &env->segs[R_ES]);
854 set_seg(&sregs.fs, &env->segs[R_FS]);
855 set_seg(&sregs.gs, &env->segs[R_GS]);
856 set_seg(&sregs.ss, &env->segs[R_SS]);
859 set_seg(&sregs.tr, &env->tr);
860 set_seg(&sregs.ldt, &env->ldt);
862 sregs.idt.limit = env->idt.limit;
863 sregs.idt.base = env->idt.base;
864 sregs.gdt.limit = env->gdt.limit;
865 sregs.gdt.base = env->gdt.base;
867 sregs.cr0 = env->cr[0];
868 sregs.cr2 = env->cr[2];
869 sregs.cr3 = env->cr[3];
870 sregs.cr4 = env->cr[4];
872 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
873 sregs.apic_base = cpu_get_apic_base(env->apic_state);
875 sregs.efer = env->efer;
877 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
880 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
881 uint32_t index, uint64_t value)
883 entry->index = index;
884 entry->data = value;
887 static int kvm_put_msrs(CPUState *env, int level)
889 struct {
890 struct kvm_msrs info;
891 struct kvm_msr_entry entries[100];
892 } msr_data;
893 struct kvm_msr_entry *msrs = msr_data.entries;
894 int n = 0;
896 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
897 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
898 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
899 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
900 if (has_msr_star) {
901 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
903 if (has_msr_hsave_pa) {
904 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
906 #ifdef TARGET_X86_64
907 if (lm_capable_kernel) {
908 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
909 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
910 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
911 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
913 #endif
914 if (level == KVM_PUT_FULL_STATE) {
916 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
917 * writeback. Until this is fixed, we only write the offset to SMP
918 * guests after migration, desynchronizing the VCPUs, but avoiding
919 * huge jump-backs that would occur without any writeback at all.
921 if (smp_cpus == 1 || env->tsc != 0) {
922 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
926 * The following paravirtual MSRs have side effects on the guest or are
927 * too heavy for normal writeback. Limit them to reset or full state
928 * updates.
930 if (level >= KVM_PUT_RESET_STATE) {
931 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
932 env->system_time_msr);
933 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
934 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
935 if (has_msr_async_pf_en) {
936 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
937 env->async_pf_en_msr);
939 #endif
941 #ifdef KVM_CAP_MCE
942 if (env->mcg_cap) {
943 int i;
945 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
946 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
947 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
948 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
951 #endif
953 msr_data.info.nmsrs = n;
955 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
960 static int kvm_get_fpu(CPUState *env)
962 struct kvm_fpu fpu;
963 int i, ret;
965 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
966 if (ret < 0) {
967 return ret;
970 env->fpstt = (fpu.fsw >> 11) & 7;
971 env->fpus = fpu.fsw;
972 env->fpuc = fpu.fcw;
973 for (i = 0; i < 8; ++i) {
974 env->fptags[i] = !((fpu.ftwx >> i) & 1);
976 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
977 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
978 env->mxcsr = fpu.mxcsr;
980 return 0;
983 static int kvm_get_xsave(CPUState *env)
985 #ifdef KVM_CAP_XSAVE
986 struct kvm_xsave* xsave;
987 int ret, i;
988 uint16_t cwd, swd, twd, fop;
990 if (!kvm_has_xsave()) {
991 return kvm_get_fpu(env);
994 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
995 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
996 if (ret < 0) {
997 qemu_free(xsave);
998 return ret;
1001 cwd = (uint16_t)xsave->region[0];
1002 swd = (uint16_t)(xsave->region[0] >> 16);
1003 twd = (uint16_t)xsave->region[1];
1004 fop = (uint16_t)(xsave->region[1] >> 16);
1005 env->fpstt = (swd >> 11) & 7;
1006 env->fpus = swd;
1007 env->fpuc = cwd;
1008 for (i = 0; i < 8; ++i) {
1009 env->fptags[i] = !((twd >> i) & 1);
1011 env->mxcsr = xsave->region[XSAVE_MXCSR];
1012 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1013 sizeof env->fpregs);
1014 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1015 sizeof env->xmm_regs);
1016 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1017 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1018 sizeof env->ymmh_regs);
1019 qemu_free(xsave);
1020 return 0;
1021 #else
1022 return kvm_get_fpu(env);
1023 #endif
1026 static int kvm_get_xcrs(CPUState *env)
1028 #ifdef KVM_CAP_XCRS
1029 int i, ret;
1030 struct kvm_xcrs xcrs;
1032 if (!kvm_has_xcrs()) {
1033 return 0;
1036 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1037 if (ret < 0) {
1038 return ret;
1041 for (i = 0; i < xcrs.nr_xcrs; i++) {
1042 /* Only support xcr0 now */
1043 if (xcrs.xcrs[0].xcr == 0) {
1044 env->xcr0 = xcrs.xcrs[0].value;
1045 break;
1048 return 0;
1049 #else
1050 return 0;
1051 #endif
1054 static int kvm_get_sregs(CPUState *env)
1056 struct kvm_sregs sregs;
1057 uint32_t hflags;
1058 int bit, i, ret;
1060 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1061 if (ret < 0) {
1062 return ret;
1065 /* There can only be one pending IRQ set in the bitmap at a time, so try
1066 to find it and save its number instead (-1 for none). */
1067 env->interrupt_injected = -1;
1068 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1069 if (sregs.interrupt_bitmap[i]) {
1070 bit = ctz64(sregs.interrupt_bitmap[i]);
1071 env->interrupt_injected = i * 64 + bit;
1072 break;
1076 get_seg(&env->segs[R_CS], &sregs.cs);
1077 get_seg(&env->segs[R_DS], &sregs.ds);
1078 get_seg(&env->segs[R_ES], &sregs.es);
1079 get_seg(&env->segs[R_FS], &sregs.fs);
1080 get_seg(&env->segs[R_GS], &sregs.gs);
1081 get_seg(&env->segs[R_SS], &sregs.ss);
1083 get_seg(&env->tr, &sregs.tr);
1084 get_seg(&env->ldt, &sregs.ldt);
1086 env->idt.limit = sregs.idt.limit;
1087 env->idt.base = sregs.idt.base;
1088 env->gdt.limit = sregs.gdt.limit;
1089 env->gdt.base = sregs.gdt.base;
1091 env->cr[0] = sregs.cr0;
1092 env->cr[2] = sregs.cr2;
1093 env->cr[3] = sregs.cr3;
1094 env->cr[4] = sregs.cr4;
1096 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1098 env->efer = sregs.efer;
1099 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1101 #define HFLAG_COPY_MASK \
1102 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1103 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1104 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1105 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1107 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1108 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1109 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1110 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1111 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1112 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1113 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1115 if (env->efer & MSR_EFER_LMA) {
1116 hflags |= HF_LMA_MASK;
1119 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1120 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1121 } else {
1122 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1123 (DESC_B_SHIFT - HF_CS32_SHIFT);
1124 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1125 (DESC_B_SHIFT - HF_SS32_SHIFT);
1126 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1127 !(hflags & HF_CS32_MASK)) {
1128 hflags |= HF_ADDSEG_MASK;
1129 } else {
1130 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1131 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1134 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1136 return 0;
1139 static int kvm_get_msrs(CPUState *env)
1141 struct {
1142 struct kvm_msrs info;
1143 struct kvm_msr_entry entries[100];
1144 } msr_data;
1145 struct kvm_msr_entry *msrs = msr_data.entries;
1146 int ret, i, n;
1148 n = 0;
1149 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1150 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1151 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1152 msrs[n++].index = MSR_PAT;
1153 if (has_msr_star) {
1154 msrs[n++].index = MSR_STAR;
1156 if (has_msr_hsave_pa) {
1157 msrs[n++].index = MSR_VM_HSAVE_PA;
1160 if (!env->tsc_valid) {
1161 msrs[n++].index = MSR_IA32_TSC;
1162 env->tsc_valid = !vm_running;
1165 #ifdef TARGET_X86_64
1166 if (lm_capable_kernel) {
1167 msrs[n++].index = MSR_CSTAR;
1168 msrs[n++].index = MSR_KERNELGSBASE;
1169 msrs[n++].index = MSR_FMASK;
1170 msrs[n++].index = MSR_LSTAR;
1172 #endif
1173 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1174 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1175 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1176 if (has_msr_async_pf_en) {
1177 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1179 #endif
1181 #ifdef KVM_CAP_MCE
1182 if (env->mcg_cap) {
1183 msrs[n++].index = MSR_MCG_STATUS;
1184 msrs[n++].index = MSR_MCG_CTL;
1185 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1186 msrs[n++].index = MSR_MC0_CTL + i;
1189 #endif
1191 msr_data.info.nmsrs = n;
1192 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1193 if (ret < 0) {
1194 return ret;
1197 for (i = 0; i < ret; i++) {
1198 switch (msrs[i].index) {
1199 case MSR_IA32_SYSENTER_CS:
1200 env->sysenter_cs = msrs[i].data;
1201 break;
1202 case MSR_IA32_SYSENTER_ESP:
1203 env->sysenter_esp = msrs[i].data;
1204 break;
1205 case MSR_IA32_SYSENTER_EIP:
1206 env->sysenter_eip = msrs[i].data;
1207 break;
1208 case MSR_PAT:
1209 env->pat = msrs[i].data;
1210 break;
1211 case MSR_STAR:
1212 env->star = msrs[i].data;
1213 break;
1214 #ifdef TARGET_X86_64
1215 case MSR_CSTAR:
1216 env->cstar = msrs[i].data;
1217 break;
1218 case MSR_KERNELGSBASE:
1219 env->kernelgsbase = msrs[i].data;
1220 break;
1221 case MSR_FMASK:
1222 env->fmask = msrs[i].data;
1223 break;
1224 case MSR_LSTAR:
1225 env->lstar = msrs[i].data;
1226 break;
1227 #endif
1228 case MSR_IA32_TSC:
1229 env->tsc = msrs[i].data;
1230 break;
1231 case MSR_VM_HSAVE_PA:
1232 env->vm_hsave = msrs[i].data;
1233 break;
1234 case MSR_KVM_SYSTEM_TIME:
1235 env->system_time_msr = msrs[i].data;
1236 break;
1237 case MSR_KVM_WALL_CLOCK:
1238 env->wall_clock_msr = msrs[i].data;
1239 break;
1240 #ifdef KVM_CAP_MCE
1241 case MSR_MCG_STATUS:
1242 env->mcg_status = msrs[i].data;
1243 break;
1244 case MSR_MCG_CTL:
1245 env->mcg_ctl = msrs[i].data;
1246 break;
1247 #endif
1248 default:
1249 #ifdef KVM_CAP_MCE
1250 if (msrs[i].index >= MSR_MC0_CTL &&
1251 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1252 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1254 #endif
1255 break;
1256 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1257 case MSR_KVM_ASYNC_PF_EN:
1258 env->async_pf_en_msr = msrs[i].data;
1259 break;
1260 #endif
1264 return 0;
1267 static int kvm_put_mp_state(CPUState *env)
1269 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1271 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1274 static int kvm_get_mp_state(CPUState *env)
1276 struct kvm_mp_state mp_state;
1277 int ret;
1279 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1280 if (ret < 0) {
1281 return ret;
1283 env->mp_state = mp_state.mp_state;
1284 if (kvm_irqchip_in_kernel()) {
1285 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1287 return 0;
1290 static int kvm_put_vcpu_events(CPUState *env, int level)
1292 #ifdef KVM_CAP_VCPU_EVENTS
1293 struct kvm_vcpu_events events;
1295 if (!kvm_has_vcpu_events()) {
1296 return 0;
1299 events.exception.injected = (env->exception_injected >= 0);
1300 events.exception.nr = env->exception_injected;
1301 events.exception.has_error_code = env->has_error_code;
1302 events.exception.error_code = env->error_code;
1304 events.interrupt.injected = (env->interrupt_injected >= 0);
1305 events.interrupt.nr = env->interrupt_injected;
1306 events.interrupt.soft = env->soft_interrupt;
1308 events.nmi.injected = env->nmi_injected;
1309 events.nmi.pending = env->nmi_pending;
1310 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1312 events.sipi_vector = env->sipi_vector;
1314 events.flags = 0;
1315 if (level >= KVM_PUT_RESET_STATE) {
1316 events.flags |=
1317 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1320 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1321 #else
1322 return 0;
1323 #endif
1326 static int kvm_get_vcpu_events(CPUState *env)
1328 #ifdef KVM_CAP_VCPU_EVENTS
1329 struct kvm_vcpu_events events;
1330 int ret;
1332 if (!kvm_has_vcpu_events()) {
1333 return 0;
1336 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1337 if (ret < 0) {
1338 return ret;
1340 env->exception_injected =
1341 events.exception.injected ? events.exception.nr : -1;
1342 env->has_error_code = events.exception.has_error_code;
1343 env->error_code = events.exception.error_code;
1345 env->interrupt_injected =
1346 events.interrupt.injected ? events.interrupt.nr : -1;
1347 env->soft_interrupt = events.interrupt.soft;
1349 env->nmi_injected = events.nmi.injected;
1350 env->nmi_pending = events.nmi.pending;
1351 if (events.nmi.masked) {
1352 env->hflags2 |= HF2_NMI_MASK;
1353 } else {
1354 env->hflags2 &= ~HF2_NMI_MASK;
1357 env->sipi_vector = events.sipi_vector;
1358 #endif
1360 return 0;
1363 static int kvm_guest_debug_workarounds(CPUState *env)
1365 int ret = 0;
1366 #ifdef KVM_CAP_SET_GUEST_DEBUG
1367 unsigned long reinject_trap = 0;
1369 if (!kvm_has_vcpu_events()) {
1370 if (env->exception_injected == 1) {
1371 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1372 } else if (env->exception_injected == 3) {
1373 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1375 env->exception_injected = -1;
1379 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1380 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1381 * by updating the debug state once again if single-stepping is on.
1382 * Another reason to call kvm_update_guest_debug here is a pending debug
1383 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1384 * reinject them via SET_GUEST_DEBUG.
1386 if (reinject_trap ||
1387 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1388 ret = kvm_update_guest_debug(env, reinject_trap);
1390 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1391 return ret;
1394 static int kvm_put_debugregs(CPUState *env)
1396 #ifdef KVM_CAP_DEBUGREGS
1397 struct kvm_debugregs dbgregs;
1398 int i;
1400 if (!kvm_has_debugregs()) {
1401 return 0;
1404 for (i = 0; i < 4; i++) {
1405 dbgregs.db[i] = env->dr[i];
1407 dbgregs.dr6 = env->dr[6];
1408 dbgregs.dr7 = env->dr[7];
1409 dbgregs.flags = 0;
1411 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1412 #else
1413 return 0;
1414 #endif
1417 static int kvm_get_debugregs(CPUState *env)
1419 #ifdef KVM_CAP_DEBUGREGS
1420 struct kvm_debugregs dbgregs;
1421 int i, ret;
1423 if (!kvm_has_debugregs()) {
1424 return 0;
1427 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1428 if (ret < 0) {
1429 return ret;
1431 for (i = 0; i < 4; i++) {
1432 env->dr[i] = dbgregs.db[i];
1434 env->dr[4] = env->dr[6] = dbgregs.dr6;
1435 env->dr[5] = env->dr[7] = dbgregs.dr7;
1436 #endif
1438 return 0;
1441 int kvm_arch_put_registers(CPUState *env, int level)
1443 int ret;
1445 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1447 ret = kvm_getput_regs(env, 1);
1448 if (ret < 0) {
1449 return ret;
1451 ret = kvm_put_xsave(env);
1452 if (ret < 0) {
1453 return ret;
1455 ret = kvm_put_xcrs(env);
1456 if (ret < 0) {
1457 return ret;
1459 ret = kvm_put_sregs(env);
1460 if (ret < 0) {
1461 return ret;
1463 /* must be before kvm_put_msrs */
1464 ret = kvm_inject_mce_oldstyle(env);
1465 if (ret < 0) {
1466 return ret;
1468 ret = kvm_put_msrs(env, level);
1469 if (ret < 0) {
1470 return ret;
1472 if (level >= KVM_PUT_RESET_STATE) {
1473 ret = kvm_put_mp_state(env);
1474 if (ret < 0) {
1475 return ret;
1478 ret = kvm_put_vcpu_events(env, level);
1479 if (ret < 0) {
1480 return ret;
1482 ret = kvm_put_debugregs(env);
1483 if (ret < 0) {
1484 return ret;
1486 /* must be last */
1487 ret = kvm_guest_debug_workarounds(env);
1488 if (ret < 0) {
1489 return ret;
1491 return 0;
1494 int kvm_arch_get_registers(CPUState *env)
1496 int ret;
1498 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1500 ret = kvm_getput_regs(env, 0);
1501 if (ret < 0) {
1502 return ret;
1504 ret = kvm_get_xsave(env);
1505 if (ret < 0) {
1506 return ret;
1508 ret = kvm_get_xcrs(env);
1509 if (ret < 0) {
1510 return ret;
1512 ret = kvm_get_sregs(env);
1513 if (ret < 0) {
1514 return ret;
1516 ret = kvm_get_msrs(env);
1517 if (ret < 0) {
1518 return ret;
1520 ret = kvm_get_mp_state(env);
1521 if (ret < 0) {
1522 return ret;
1524 ret = kvm_get_vcpu_events(env);
1525 if (ret < 0) {
1526 return ret;
1528 ret = kvm_get_debugregs(env);
1529 if (ret < 0) {
1530 return ret;
1532 return 0;
1535 void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1537 int ret;
1539 /* Inject NMI */
1540 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1541 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1542 DPRINTF("injected NMI\n");
1543 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1544 if (ret < 0) {
1545 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1546 strerror(-ret));
1550 if (!kvm_irqchip_in_kernel()) {
1551 /* Force the VCPU out of its inner loop to process the INIT request */
1552 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1553 env->exit_request = 1;
1556 /* Try to inject an interrupt if the guest can accept it */
1557 if (run->ready_for_interrupt_injection &&
1558 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1559 (env->eflags & IF_MASK)) {
1560 int irq;
1562 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1563 irq = cpu_get_pic_interrupt(env);
1564 if (irq >= 0) {
1565 struct kvm_interrupt intr;
1567 intr.irq = irq;
1568 DPRINTF("injected interrupt %d\n", irq);
1569 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1570 if (ret < 0) {
1571 fprintf(stderr,
1572 "KVM: injection failed, interrupt lost (%s)\n",
1573 strerror(-ret));
1578 /* If we have an interrupt but the guest is not ready to receive an
1579 * interrupt, request an interrupt window exit. This will
1580 * cause a return to userspace as soon as the guest is ready to
1581 * receive interrupts. */
1582 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1583 run->request_interrupt_window = 1;
1584 } else {
1585 run->request_interrupt_window = 0;
1588 DPRINTF("setting tpr\n");
1589 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1593 void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1595 if (run->if_flag) {
1596 env->eflags |= IF_MASK;
1597 } else {
1598 env->eflags &= ~IF_MASK;
1600 cpu_set_apic_tpr(env->apic_state, run->cr8);
1601 cpu_set_apic_base(env->apic_state, run->apic_base);
1604 int kvm_arch_process_async_events(CPUState *env)
1606 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1607 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1608 assert(env->mcg_cap);
1610 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1612 kvm_cpu_synchronize_state(env);
1614 if (env->exception_injected == EXCP08_DBLE) {
1615 /* this means triple fault */
1616 qemu_system_reset_request();
1617 env->exit_request = 1;
1618 return 0;
1620 env->exception_injected = EXCP12_MCHK;
1621 env->has_error_code = 0;
1623 env->halted = 0;
1624 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1625 env->mp_state = KVM_MP_STATE_RUNNABLE;
1629 if (kvm_irqchip_in_kernel()) {
1630 return 0;
1633 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1634 (env->eflags & IF_MASK)) ||
1635 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1636 env->halted = 0;
1638 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1639 kvm_cpu_synchronize_state(env);
1640 do_cpu_init(env);
1642 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1643 kvm_cpu_synchronize_state(env);
1644 do_cpu_sipi(env);
1647 return env->halted;
1650 static int kvm_handle_halt(CPUState *env)
1652 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1653 (env->eflags & IF_MASK)) &&
1654 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1655 env->halted = 1;
1656 return EXCP_HLT;
1659 return 0;
1662 #ifdef KVM_CAP_SET_GUEST_DEBUG
1663 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1665 static const uint8_t int3 = 0xcc;
1667 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1668 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1669 return -EINVAL;
1671 return 0;
1674 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1676 uint8_t int3;
1678 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1679 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1680 return -EINVAL;
1682 return 0;
1685 static struct {
1686 target_ulong addr;
1687 int len;
1688 int type;
1689 } hw_breakpoint[4];
1691 static int nb_hw_breakpoint;
1693 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1695 int n;
1697 for (n = 0; n < nb_hw_breakpoint; n++) {
1698 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1699 (hw_breakpoint[n].len == len || len == -1)) {
1700 return n;
1703 return -1;
1706 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1707 target_ulong len, int type)
1709 switch (type) {
1710 case GDB_BREAKPOINT_HW:
1711 len = 1;
1712 break;
1713 case GDB_WATCHPOINT_WRITE:
1714 case GDB_WATCHPOINT_ACCESS:
1715 switch (len) {
1716 case 1:
1717 break;
1718 case 2:
1719 case 4:
1720 case 8:
1721 if (addr & (len - 1)) {
1722 return -EINVAL;
1724 break;
1725 default:
1726 return -EINVAL;
1728 break;
1729 default:
1730 return -ENOSYS;
1733 if (nb_hw_breakpoint == 4) {
1734 return -ENOBUFS;
1736 if (find_hw_breakpoint(addr, len, type) >= 0) {
1737 return -EEXIST;
1739 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1740 hw_breakpoint[nb_hw_breakpoint].len = len;
1741 hw_breakpoint[nb_hw_breakpoint].type = type;
1742 nb_hw_breakpoint++;
1744 return 0;
1747 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1748 target_ulong len, int type)
1750 int n;
1752 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1753 if (n < 0) {
1754 return -ENOENT;
1756 nb_hw_breakpoint--;
1757 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1759 return 0;
1762 void kvm_arch_remove_all_hw_breakpoints(void)
1764 nb_hw_breakpoint = 0;
1767 static CPUWatchpoint hw_watchpoint;
1769 static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
1771 int ret = 0;
1772 int n;
1774 if (arch_info->exception == 1) {
1775 if (arch_info->dr6 & (1 << 14)) {
1776 if (cpu_single_env->singlestep_enabled) {
1777 ret = EXCP_DEBUG;
1779 } else {
1780 for (n = 0; n < 4; n++) {
1781 if (arch_info->dr6 & (1 << n)) {
1782 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1783 case 0x0:
1784 ret = EXCP_DEBUG;
1785 break;
1786 case 0x1:
1787 ret = EXCP_DEBUG;
1788 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1789 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1790 hw_watchpoint.flags = BP_MEM_WRITE;
1791 break;
1792 case 0x3:
1793 ret = EXCP_DEBUG;
1794 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1795 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1796 hw_watchpoint.flags = BP_MEM_ACCESS;
1797 break;
1802 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1803 ret = EXCP_DEBUG;
1805 if (ret == 0) {
1806 cpu_synchronize_state(cpu_single_env);
1807 assert(cpu_single_env->exception_injected == -1);
1809 /* pass to guest */
1810 cpu_single_env->exception_injected = arch_info->exception;
1811 cpu_single_env->has_error_code = 0;
1814 return ret;
1817 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1819 const uint8_t type_code[] = {
1820 [GDB_BREAKPOINT_HW] = 0x0,
1821 [GDB_WATCHPOINT_WRITE] = 0x1,
1822 [GDB_WATCHPOINT_ACCESS] = 0x3
1824 const uint8_t len_code[] = {
1825 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1827 int n;
1829 if (kvm_sw_breakpoints_active(env)) {
1830 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1832 if (nb_hw_breakpoint > 0) {
1833 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1834 dbg->arch.debugreg[7] = 0x0600;
1835 for (n = 0; n < nb_hw_breakpoint; n++) {
1836 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1837 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1838 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1839 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1843 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1845 static bool host_supports_vmx(void)
1847 uint32_t ecx, unused;
1849 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1850 return ecx & CPUID_EXT_VMX;
1853 #define VMX_INVALID_GUEST_STATE 0x80000021
1855 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1857 uint64_t code;
1858 int ret;
1860 switch (run->exit_reason) {
1861 case KVM_EXIT_HLT:
1862 DPRINTF("handle_hlt\n");
1863 ret = kvm_handle_halt(env);
1864 break;
1865 case KVM_EXIT_SET_TPR:
1866 ret = 0;
1867 break;
1868 case KVM_EXIT_FAIL_ENTRY:
1869 code = run->fail_entry.hardware_entry_failure_reason;
1870 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1871 code);
1872 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1873 fprintf(stderr,
1874 "\nIf you're runnning a guest on an Intel machine without "
1875 "unrestricted mode\n"
1876 "support, the failure can be most likely due to the guest "
1877 "entering an invalid\n"
1878 "state for Intel VT. For example, the guest maybe running "
1879 "in big real mode\n"
1880 "which is not supported on less recent Intel processors."
1881 "\n\n");
1883 ret = -1;
1884 break;
1885 case KVM_EXIT_EXCEPTION:
1886 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1887 run->ex.exception, run->ex.error_code);
1888 ret = -1;
1889 break;
1890 #ifdef KVM_CAP_SET_GUEST_DEBUG
1891 case KVM_EXIT_DEBUG:
1892 DPRINTF("kvm_exit_debug\n");
1893 ret = kvm_handle_debug(&run->debug.arch);
1894 break;
1895 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1896 default:
1897 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1898 ret = -1;
1899 break;
1902 return ret;
1905 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1907 return !(env->cr[0] & CR0_PE_MASK) ||
1908 ((env->segs[R_CS].selector & 3) != 3);