target-arm: fix TTBCR write masking
[qemu.git] / target-arm / helper.c
blob5e5e5aad2bdd240cf01096f6dea679fb02418197
1 #include "cpu.h"
2 #include "exec/gdbstub.h"
3 #include "helper.h"
4 #include "qemu/host-utils.h"
5 #include "sysemu/arch_init.h"
6 #include "sysemu/sysemu.h"
7 #include "qemu/bitops.h"
9 #ifndef CONFIG_USER_ONLY
10 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
11 int access_type, int is_user,
12 hwaddr *phys_ptr, int *prot,
13 target_ulong *page_size);
14 #endif
16 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
18 int nregs;
20 /* VFP data registers are always little-endian. */
21 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
22 if (reg < nregs) {
23 stfq_le_p(buf, env->vfp.regs[reg]);
24 return 8;
26 if (arm_feature(env, ARM_FEATURE_NEON)) {
27 /* Aliases for Q regs. */
28 nregs += 16;
29 if (reg < nregs) {
30 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
31 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
32 return 16;
35 switch (reg - nregs) {
36 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
37 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
38 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
40 return 0;
43 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
45 int nregs;
47 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
48 if (reg < nregs) {
49 env->vfp.regs[reg] = ldfq_le_p(buf);
50 return 8;
52 if (arm_feature(env, ARM_FEATURE_NEON)) {
53 nregs += 16;
54 if (reg < nregs) {
55 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
56 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
57 return 16;
60 switch (reg - nregs) {
61 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
62 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
63 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
65 return 0;
68 static int raw_read(CPUARMState *env, const ARMCPRegInfo *ri,
69 uint64_t *value)
71 if (ri->type & ARM_CP_64BIT) {
72 *value = CPREG_FIELD64(env, ri);
73 } else {
74 *value = CPREG_FIELD32(env, ri);
76 return 0;
79 static int raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
80 uint64_t value)
82 if (ri->type & ARM_CP_64BIT) {
83 CPREG_FIELD64(env, ri) = value;
84 } else {
85 CPREG_FIELD32(env, ri) = value;
87 return 0;
90 static bool read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
91 uint64_t *v)
93 /* Raw read of a coprocessor register (as needed for migration, etc)
94 * return true on success, false if the read is impossible for some reason.
96 if (ri->type & ARM_CP_CONST) {
97 *v = ri->resetvalue;
98 } else if (ri->raw_readfn) {
99 return (ri->raw_readfn(env, ri, v) == 0);
100 } else if (ri->readfn) {
101 return (ri->readfn(env, ri, v) == 0);
102 } else {
103 if (ri->type & ARM_CP_64BIT) {
104 *v = CPREG_FIELD64(env, ri);
105 } else {
106 *v = CPREG_FIELD32(env, ri);
109 return true;
112 static bool write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
113 int64_t v)
115 /* Raw write of a coprocessor register (as needed for migration, etc).
116 * Return true on success, false if the write is impossible for some reason.
117 * Note that constant registers are treated as write-ignored; the
118 * caller should check for success by whether a readback gives the
119 * value written.
121 if (ri->type & ARM_CP_CONST) {
122 return true;
123 } else if (ri->raw_writefn) {
124 return (ri->raw_writefn(env, ri, v) == 0);
125 } else if (ri->writefn) {
126 return (ri->writefn(env, ri, v) == 0);
127 } else {
128 if (ri->type & ARM_CP_64BIT) {
129 CPREG_FIELD64(env, ri) = v;
130 } else {
131 CPREG_FIELD32(env, ri) = v;
134 return true;
137 bool write_cpustate_to_list(ARMCPU *cpu)
139 /* Write the coprocessor state from cpu->env to the (index,value) list. */
140 int i;
141 bool ok = true;
143 for (i = 0; i < cpu->cpreg_array_len; i++) {
144 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
145 const ARMCPRegInfo *ri;
146 uint64_t v;
147 ri = get_arm_cp_reginfo(cpu, regidx);
148 if (!ri) {
149 ok = false;
150 continue;
152 if (ri->type & ARM_CP_NO_MIGRATE) {
153 continue;
155 if (!read_raw_cp_reg(&cpu->env, ri, &v)) {
156 ok = false;
157 continue;
159 cpu->cpreg_values[i] = v;
161 return ok;
164 bool write_list_to_cpustate(ARMCPU *cpu)
166 int i;
167 bool ok = true;
169 for (i = 0; i < cpu->cpreg_array_len; i++) {
170 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
171 uint64_t v = cpu->cpreg_values[i];
172 uint64_t readback;
173 const ARMCPRegInfo *ri;
175 ri = get_arm_cp_reginfo(cpu, regidx);
176 if (!ri) {
177 ok = false;
178 continue;
180 if (ri->type & ARM_CP_NO_MIGRATE) {
181 continue;
183 /* Write value and confirm it reads back as written
184 * (to catch read-only registers and partially read-only
185 * registers where the incoming migration value doesn't match)
187 if (!write_raw_cp_reg(&cpu->env, ri, v) ||
188 !read_raw_cp_reg(&cpu->env, ri, &readback) ||
189 readback != v) {
190 ok = false;
193 return ok;
196 static void add_cpreg_to_list(gpointer key, gpointer opaque)
198 ARMCPU *cpu = opaque;
199 uint64_t regidx;
200 const ARMCPRegInfo *ri;
202 regidx = *(uint32_t *)key;
203 ri = get_arm_cp_reginfo(cpu, regidx);
205 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
206 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
207 /* The value array need not be initialized at this point */
208 cpu->cpreg_array_len++;
212 static void count_cpreg(gpointer key, gpointer opaque)
214 ARMCPU *cpu = opaque;
215 uint64_t regidx;
216 const ARMCPRegInfo *ri;
218 regidx = *(uint32_t *)key;
219 ri = get_arm_cp_reginfo(cpu, regidx);
221 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
222 cpu->cpreg_array_len++;
226 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
228 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
229 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
231 if (aidx > bidx) {
232 return 1;
234 if (aidx < bidx) {
235 return -1;
237 return 0;
240 static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
242 GList **plist = udata;
244 *plist = g_list_prepend(*plist, key);
247 void init_cpreg_list(ARMCPU *cpu)
249 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
250 * Note that we require cpreg_tuples[] to be sorted by key ID.
252 GList *keys = NULL;
253 int arraylen;
255 g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);
257 keys = g_list_sort(keys, cpreg_key_compare);
259 cpu->cpreg_array_len = 0;
261 g_list_foreach(keys, count_cpreg, cpu);
263 arraylen = cpu->cpreg_array_len;
264 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
265 cpu->cpreg_values = g_new(uint64_t, arraylen);
266 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
267 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
268 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
269 cpu->cpreg_array_len = 0;
271 g_list_foreach(keys, add_cpreg_to_list, cpu);
273 assert(cpu->cpreg_array_len == arraylen);
275 g_list_free(keys);
278 static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
280 env->cp15.c3 = value;
281 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
282 return 0;
285 static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
287 if (env->cp15.c13_fcse != value) {
288 /* Unlike real hardware the qemu TLB uses virtual addresses,
289 * not modified virtual addresses, so this causes a TLB flush.
291 tlb_flush(env, 1);
292 env->cp15.c13_fcse = value;
294 return 0;
296 static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
297 uint64_t value)
299 if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
300 /* For VMSA (when not using the LPAE long descriptor page table
301 * format) this register includes the ASID, so do a TLB flush.
302 * For PMSA it is purely a process ID and no action is needed.
304 tlb_flush(env, 1);
306 env->cp15.c13_context = value;
307 return 0;
310 static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
311 uint64_t value)
313 /* Invalidate all (TLBIALL) */
314 tlb_flush(env, 1);
315 return 0;
318 static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
319 uint64_t value)
321 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
322 tlb_flush_page(env, value & TARGET_PAGE_MASK);
323 return 0;
326 static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
327 uint64_t value)
329 /* Invalidate by ASID (TLBIASID) */
330 tlb_flush(env, value == 0);
331 return 0;
334 static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
335 uint64_t value)
337 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
338 tlb_flush_page(env, value & TARGET_PAGE_MASK);
339 return 0;
342 static const ARMCPRegInfo cp_reginfo[] = {
343 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
344 * version" bits will read as a reserved value, which should cause
345 * Linux to not try to use the debug hardware.
347 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
348 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
349 /* MMU Domain access control / MPU write buffer control */
350 { .name = "DACR", .cp = 15,
351 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
352 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
353 .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
354 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
355 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
356 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
357 { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
358 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
359 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
360 /* ??? This covers not just the impdef TLB lockdown registers but also
361 * some v7VMSA registers relating to TEX remap, so it is overly broad.
363 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
364 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
365 /* MMU TLB control. Note that the wildcarding means we cover not just
366 * the unified TLB ops but also the dside/iside/inner-shareable variants.
368 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
369 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
370 .type = ARM_CP_NO_MIGRATE },
371 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
372 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
373 .type = ARM_CP_NO_MIGRATE },
374 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
375 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
376 .type = ARM_CP_NO_MIGRATE },
377 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
378 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
379 .type = ARM_CP_NO_MIGRATE },
380 /* Cache maintenance ops; some of this space may be overridden later. */
381 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
382 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
383 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
384 REGINFO_SENTINEL
387 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
388 /* Not all pre-v6 cores implemented this WFI, so this is slightly
389 * over-broad.
391 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
392 .access = PL1_W, .type = ARM_CP_WFI },
393 REGINFO_SENTINEL
396 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
397 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
398 * is UNPREDICTABLE; we choose to NOP as most implementations do).
400 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
401 .access = PL1_W, .type = ARM_CP_WFI },
402 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
403 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
404 * OMAPCP will override this space.
406 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
407 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
408 .resetvalue = 0 },
409 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
410 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
411 .resetvalue = 0 },
412 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
413 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
414 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
415 .resetvalue = 0 },
416 REGINFO_SENTINEL
419 static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
421 if (env->cp15.c1_coproc != value) {
422 env->cp15.c1_coproc = value;
423 /* ??? Is this safe when called from within a TB? */
424 tb_flush(env);
426 return 0;
429 static const ARMCPRegInfo v6_cp_reginfo[] = {
430 /* prefetch by MVA in v6, NOP in v7 */
431 { .name = "MVA_prefetch",
432 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
433 .access = PL1_W, .type = ARM_CP_NOP },
434 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
435 .access = PL0_W, .type = ARM_CP_NOP },
436 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
437 .access = PL0_W, .type = ARM_CP_NOP },
438 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
439 .access = PL0_W, .type = ARM_CP_NOP },
440 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
441 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
442 .resetvalue = 0, },
443 /* Watchpoint Fault Address Register : should actually only be present
444 * for 1136, 1176, 11MPCore.
446 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
447 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
448 { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
449 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
450 .resetvalue = 0, .writefn = cpacr_write },
451 REGINFO_SENTINEL
455 static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri,
456 uint64_t *value)
458 /* Generic performance monitor register read function for where
459 * user access may be allowed by PMUSERENR.
461 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
462 return EXCP_UDEF;
464 *value = CPREG_FIELD32(env, ri);
465 return 0;
468 static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
469 uint64_t value)
471 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
472 return EXCP_UDEF;
474 /* only the DP, X, D and E bits are writable */
475 env->cp15.c9_pmcr &= ~0x39;
476 env->cp15.c9_pmcr |= (value & 0x39);
477 return 0;
480 static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
481 uint64_t value)
483 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
484 return EXCP_UDEF;
486 value &= (1 << 31);
487 env->cp15.c9_pmcnten |= value;
488 return 0;
491 static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
492 uint64_t value)
494 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
495 return EXCP_UDEF;
497 value &= (1 << 31);
498 env->cp15.c9_pmcnten &= ~value;
499 return 0;
502 static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
503 uint64_t value)
505 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
506 return EXCP_UDEF;
508 env->cp15.c9_pmovsr &= ~value;
509 return 0;
512 static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
513 uint64_t value)
515 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
516 return EXCP_UDEF;
518 env->cp15.c9_pmxevtyper = value & 0xff;
519 return 0;
522 static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
523 uint64_t value)
525 env->cp15.c9_pmuserenr = value & 1;
526 return 0;
529 static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
530 uint64_t value)
532 /* We have no event counters so only the C bit can be changed */
533 value &= (1 << 31);
534 env->cp15.c9_pminten |= value;
535 return 0;
538 static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
539 uint64_t value)
541 value &= (1 << 31);
542 env->cp15.c9_pminten &= ~value;
543 return 0;
546 static int vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
547 uint64_t value)
549 env->cp15.c12_vbar = value & ~0x1Ful;
550 return 0;
553 static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
554 uint64_t *value)
556 ARMCPU *cpu = arm_env_get_cpu(env);
557 *value = cpu->ccsidr[env->cp15.c0_cssel];
558 return 0;
561 static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
562 uint64_t value)
564 env->cp15.c0_cssel = value & 0xf;
565 return 0;
568 static const ARMCPRegInfo v7_cp_reginfo[] = {
569 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
570 * debug components
572 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
573 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
574 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
575 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
576 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
577 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
578 .access = PL1_W, .type = ARM_CP_NOP },
579 /* Performance monitors are implementation defined in v7,
580 * but with an ARM recommended set of registers, which we
581 * follow (although we don't actually implement any counters)
583 * Performance registers fall into three categories:
584 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
585 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
586 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
587 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
588 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
590 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
591 .access = PL0_RW, .resetvalue = 0,
592 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
593 .readfn = pmreg_read, .writefn = pmcntenset_write,
594 .raw_readfn = raw_read, .raw_writefn = raw_write },
595 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
596 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
597 .readfn = pmreg_read, .writefn = pmcntenclr_write,
598 .type = ARM_CP_NO_MIGRATE },
599 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
600 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
601 .readfn = pmreg_read, .writefn = pmovsr_write,
602 .raw_readfn = raw_read, .raw_writefn = raw_write },
603 /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
604 * respect PMUSERENR.
606 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
607 .access = PL0_W, .type = ARM_CP_NOP },
608 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
609 * We choose to RAZ/WI. XXX should respect PMUSERENR.
611 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
612 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
613 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
614 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
615 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
616 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
617 .access = PL0_RW,
618 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
619 .readfn = pmreg_read, .writefn = pmxevtyper_write,
620 .raw_readfn = raw_read, .raw_writefn = raw_write },
621 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
622 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
623 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
624 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
625 .access = PL0_R | PL1_RW,
626 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
627 .resetvalue = 0,
628 .writefn = pmuserenr_write, .raw_writefn = raw_write },
629 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
630 .access = PL1_RW,
631 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
632 .resetvalue = 0,
633 .writefn = pmintenset_write, .raw_writefn = raw_write },
634 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
635 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
636 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
637 .resetvalue = 0, .writefn = pmintenclr_write, },
638 { .name = "VBAR", .cp = 15, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
639 .access = PL1_RW, .writefn = vbar_write,
640 .fieldoffset = offsetof(CPUARMState, cp15.c12_vbar),
641 .resetvalue = 0 },
642 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
643 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
644 .resetvalue = 0, },
645 { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
646 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
647 { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
648 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
649 .writefn = csselr_write, .resetvalue = 0 },
650 /* Auxiliary ID register: this actually has an IMPDEF value but for now
651 * just RAZ for all cores:
653 { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
654 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
655 REGINFO_SENTINEL
658 static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
660 value &= 1;
661 env->teecr = value;
662 return 0;
665 static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri,
666 uint64_t *value)
668 /* This is a helper function because the user access rights
669 * depend on the value of the TEECR.
671 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
672 return EXCP_UDEF;
674 *value = env->teehbr;
675 return 0;
678 static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
679 uint64_t value)
681 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
682 return EXCP_UDEF;
684 env->teehbr = value;
685 return 0;
688 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
689 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
690 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
691 .resetvalue = 0,
692 .writefn = teecr_write },
693 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
694 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
695 .resetvalue = 0, .raw_readfn = raw_read, .raw_writefn = raw_write,
696 .readfn = teehbr_read, .writefn = teehbr_write },
697 REGINFO_SENTINEL
700 static const ARMCPRegInfo v6k_cp_reginfo[] = {
701 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
702 .access = PL0_RW,
703 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1),
704 .resetvalue = 0 },
705 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
706 .access = PL0_R|PL1_W,
707 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2),
708 .resetvalue = 0 },
709 { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4,
710 .access = PL1_RW,
711 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3),
712 .resetvalue = 0 },
713 REGINFO_SENTINEL
716 #ifndef CONFIG_USER_ONLY
718 static uint64_t gt_get_countervalue(CPUARMState *env)
720 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
723 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
725 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
727 if (gt->ctl & 1) {
728 /* Timer enabled: calculate and set current ISTATUS, irq, and
729 * reset timer to when ISTATUS next has to change
731 uint64_t count = gt_get_countervalue(&cpu->env);
732 /* Note that this must be unsigned 64 bit arithmetic: */
733 int istatus = count >= gt->cval;
734 uint64_t nexttick;
736 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
737 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
738 (istatus && !(gt->ctl & 2)));
739 if (istatus) {
740 /* Next transition is when count rolls back over to zero */
741 nexttick = UINT64_MAX;
742 } else {
743 /* Next transition is when we hit cval */
744 nexttick = gt->cval;
746 /* Note that the desired next expiry time might be beyond the
747 * signed-64-bit range of a QEMUTimer -- in this case we just
748 * set the timer for as far in the future as possible. When the
749 * timer expires we will reset the timer for any remaining period.
751 if (nexttick > INT64_MAX / GTIMER_SCALE) {
752 nexttick = INT64_MAX / GTIMER_SCALE;
754 timer_mod(cpu->gt_timer[timeridx], nexttick);
755 } else {
756 /* Timer disabled: ISTATUS and timer output always clear */
757 gt->ctl &= ~4;
758 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
759 timer_del(cpu->gt_timer[timeridx]);
763 static int gt_cntfrq_read(CPUARMState *env, const ARMCPRegInfo *ri,
764 uint64_t *value)
766 /* Not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
767 if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
768 return EXCP_UDEF;
770 *value = env->cp15.c14_cntfrq;
771 return 0;
774 static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
776 ARMCPU *cpu = arm_env_get_cpu(env);
777 int timeridx = ri->opc1 & 1;
779 timer_del(cpu->gt_timer[timeridx]);
782 static int gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri,
783 uint64_t *value)
785 int timeridx = ri->opc1 & 1;
787 if (arm_current_pl(env) == 0 &&
788 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
789 return EXCP_UDEF;
791 *value = gt_get_countervalue(env);
792 return 0;
795 static int gt_cval_read(CPUARMState *env, const ARMCPRegInfo *ri,
796 uint64_t *value)
798 int timeridx = ri->opc1 & 1;
800 if (arm_current_pl(env) == 0 &&
801 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
802 return EXCP_UDEF;
804 *value = env->cp15.c14_timer[timeridx].cval;
805 return 0;
808 static int gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
809 uint64_t value)
811 int timeridx = ri->opc1 & 1;
813 env->cp15.c14_timer[timeridx].cval = value;
814 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
815 return 0;
817 static int gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
818 uint64_t *value)
820 int timeridx = ri->crm & 1;
822 if (arm_current_pl(env) == 0 &&
823 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
824 return EXCP_UDEF;
826 *value = (uint32_t)(env->cp15.c14_timer[timeridx].cval -
827 gt_get_countervalue(env));
828 return 0;
831 static int gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
832 uint64_t value)
834 int timeridx = ri->crm & 1;
836 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
837 + sextract64(value, 0, 32);
838 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
839 return 0;
842 static int gt_ctl_read(CPUARMState *env, const ARMCPRegInfo *ri,
843 uint64_t *value)
845 int timeridx = ri->crm & 1;
847 if (arm_current_pl(env) == 0 &&
848 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
849 return EXCP_UDEF;
851 *value = env->cp15.c14_timer[timeridx].ctl;
852 return 0;
855 static int gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
856 uint64_t value)
858 ARMCPU *cpu = arm_env_get_cpu(env);
859 int timeridx = ri->crm & 1;
860 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
862 env->cp15.c14_timer[timeridx].ctl = value & 3;
863 if ((oldval ^ value) & 1) {
864 /* Enable toggled */
865 gt_recalc_timer(cpu, timeridx);
866 } else if ((oldval & value) & 2) {
867 /* IMASK toggled: don't need to recalculate,
868 * just set the interrupt line based on ISTATUS
870 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
871 (oldval & 4) && (value & 2));
873 return 0;
876 void arm_gt_ptimer_cb(void *opaque)
878 ARMCPU *cpu = opaque;
880 gt_recalc_timer(cpu, GTIMER_PHYS);
883 void arm_gt_vtimer_cb(void *opaque)
885 ARMCPU *cpu = opaque;
887 gt_recalc_timer(cpu, GTIMER_VIRT);
890 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
891 /* Note that CNTFRQ is purely reads-as-written for the benefit
892 * of software; writing it doesn't actually change the timer frequency.
893 * Our reset value matches the fixed frequency we implement the timer at.
895 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
896 .access = PL1_RW | PL0_R,
897 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
898 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
899 .readfn = gt_cntfrq_read, .raw_readfn = raw_read,
901 /* overall control: mostly access permissions */
902 { .name = "CNTKCTL", .cp = 15, .crn = 14, .crm = 1, .opc1 = 0, .opc2 = 0,
903 .access = PL1_RW,
904 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
905 .resetvalue = 0,
907 /* per-timer control */
908 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
909 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
910 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
911 .resetvalue = 0,
912 .readfn = gt_ctl_read, .writefn = gt_ctl_write,
913 .raw_readfn = raw_read, .raw_writefn = raw_write,
915 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
916 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
917 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
918 .resetvalue = 0,
919 .readfn = gt_ctl_read, .writefn = gt_ctl_write,
920 .raw_readfn = raw_read, .raw_writefn = raw_write,
922 /* TimerValue views: a 32 bit downcounting view of the underlying state */
923 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
924 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
925 .readfn = gt_tval_read, .writefn = gt_tval_write,
927 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
928 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
929 .readfn = gt_tval_read, .writefn = gt_tval_write,
931 /* The counter itself */
932 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
933 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
934 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
936 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
937 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
938 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
940 /* Comparison value, indicating when the timer goes off */
941 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
942 .access = PL1_RW | PL0_R,
943 .type = ARM_CP_64BIT | ARM_CP_IO,
944 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
945 .resetvalue = 0,
946 .readfn = gt_cval_read, .writefn = gt_cval_write,
947 .raw_readfn = raw_read, .raw_writefn = raw_write,
949 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
950 .access = PL1_RW | PL0_R,
951 .type = ARM_CP_64BIT | ARM_CP_IO,
952 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
953 .resetvalue = 0,
954 .readfn = gt_cval_read, .writefn = gt_cval_write,
955 .raw_readfn = raw_read, .raw_writefn = raw_write,
957 REGINFO_SENTINEL
960 #else
961 /* In user-mode none of the generic timer registers are accessible,
962 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
963 * so instead just don't register any of them.
965 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
966 REGINFO_SENTINEL
969 #endif
971 static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
973 if (arm_feature(env, ARM_FEATURE_LPAE)) {
974 env->cp15.c7_par = value;
975 } else if (arm_feature(env, ARM_FEATURE_V7)) {
976 env->cp15.c7_par = value & 0xfffff6ff;
977 } else {
978 env->cp15.c7_par = value & 0xfffff1ff;
980 return 0;
983 #ifndef CONFIG_USER_ONLY
984 /* get_phys_addr() isn't present for user-mode-only targets */
986 /* Return true if extended addresses are enabled, ie this is an
987 * LPAE implementation and we are using the long-descriptor translation
988 * table format because the TTBCR EAE bit is set.
990 static inline bool extended_addresses_enabled(CPUARMState *env)
992 return arm_feature(env, ARM_FEATURE_LPAE)
993 && (env->cp15.c2_control & (1U << 31));
996 static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
998 hwaddr phys_addr;
999 target_ulong page_size;
1000 int prot;
1001 int ret, is_user = ri->opc2 & 2;
1002 int access_type = ri->opc2 & 1;
1004 if (ri->opc2 & 4) {
1005 /* Other states are only available with TrustZone */
1006 return EXCP_UDEF;
1008 ret = get_phys_addr(env, value, access_type, is_user,
1009 &phys_addr, &prot, &page_size);
1010 if (extended_addresses_enabled(env)) {
1011 /* ret is a DFSR/IFSR value for the long descriptor
1012 * translation table format, but with WnR always clear.
1013 * Convert it to a 64-bit PAR.
1015 uint64_t par64 = (1 << 11); /* LPAE bit always set */
1016 if (ret == 0) {
1017 par64 |= phys_addr & ~0xfffULL;
1018 /* We don't set the ATTR or SH fields in the PAR. */
1019 } else {
1020 par64 |= 1; /* F */
1021 par64 |= (ret & 0x3f) << 1; /* FS */
1022 /* Note that S2WLK and FSTAGE are always zero, because we don't
1023 * implement virtualization and therefore there can't be a stage 2
1024 * fault.
1027 env->cp15.c7_par = par64;
1028 env->cp15.c7_par_hi = par64 >> 32;
1029 } else {
1030 /* ret is a DFSR/IFSR value for the short descriptor
1031 * translation table format (with WnR always clear).
1032 * Convert it to a 32-bit PAR.
1034 if (ret == 0) {
1035 /* We do not set any attribute bits in the PAR */
1036 if (page_size == (1 << 24)
1037 && arm_feature(env, ARM_FEATURE_V7)) {
1038 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1039 } else {
1040 env->cp15.c7_par = phys_addr & 0xfffff000;
1042 } else {
1043 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
1044 ((ret & (12 << 1)) >> 6) |
1045 ((ret & 0xf) << 1) | 1;
1047 env->cp15.c7_par_hi = 0;
1049 return 0;
1051 #endif
1053 static const ARMCPRegInfo vapa_cp_reginfo[] = {
1054 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1055 .access = PL1_RW, .resetvalue = 0,
1056 .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
1057 .writefn = par_write },
1058 #ifndef CONFIG_USER_ONLY
1059 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1060 .access = PL1_W, .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
1061 #endif
1062 REGINFO_SENTINEL
1065 /* Return basic MPU access permission bits. */
1066 static uint32_t simple_mpu_ap_bits(uint32_t val)
1068 uint32_t ret;
1069 uint32_t mask;
1070 int i;
1071 ret = 0;
1072 mask = 3;
1073 for (i = 0; i < 16; i += 2) {
1074 ret |= (val >> i) & mask;
1075 mask <<= 2;
1077 return ret;
1080 /* Pad basic MPU access permission bits to extended format. */
1081 static uint32_t extended_mpu_ap_bits(uint32_t val)
1083 uint32_t ret;
1084 uint32_t mask;
1085 int i;
1086 ret = 0;
1087 mask = 3;
1088 for (i = 0; i < 16; i += 2) {
1089 ret |= (val & mask) << i;
1090 mask <<= 2;
1092 return ret;
1095 static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1096 uint64_t value)
1098 env->cp15.c5_data = extended_mpu_ap_bits(value);
1099 return 0;
1102 static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
1103 uint64_t *value)
1105 *value = simple_mpu_ap_bits(env->cp15.c5_data);
1106 return 0;
1109 static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1110 uint64_t value)
1112 env->cp15.c5_insn = extended_mpu_ap_bits(value);
1113 return 0;
1116 static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
1117 uint64_t *value)
1119 *value = simple_mpu_ap_bits(env->cp15.c5_insn);
1120 return 0;
1123 static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri,
1124 uint64_t *value)
1126 if (ri->crm >= 8) {
1127 return EXCP_UDEF;
1129 *value = env->cp15.c6_region[ri->crm];
1130 return 0;
1133 static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
1134 uint64_t value)
1136 if (ri->crm >= 8) {
1137 return EXCP_UDEF;
1139 env->cp15.c6_region[ri->crm] = value;
1140 return 0;
1143 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
1144 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1145 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1146 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
1147 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
1148 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1149 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1150 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
1151 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
1152 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
1153 .access = PL1_RW,
1154 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1155 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
1156 .access = PL1_RW,
1157 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1158 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1159 .access = PL1_RW,
1160 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
1161 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1162 .access = PL1_RW,
1163 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
1164 /* Protection region base and size registers */
1165 { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0,
1166 .opc2 = CP_ANY, .access = PL1_RW,
1167 .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, },
1168 REGINFO_SENTINEL
1171 static int vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1172 uint64_t value)
1174 int maskshift = extract32(value, 0, 3);
1176 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & (1 << 31))) {
1177 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
1178 } else {
1179 value &= 7;
1181 /* Note that we always calculate c2_mask and c2_base_mask, but
1182 * they are only used for short-descriptor tables (ie if EAE is 0);
1183 * for long-descriptor tables the TTBCR fields are used differently
1184 * and the c2_mask and c2_base_mask values are meaningless.
1186 env->cp15.c2_control = value;
1187 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift);
1188 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift);
1189 return 0;
1192 static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1193 uint64_t value)
1195 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1196 /* With LPAE the TTBCR could result in a change of ASID
1197 * via the TTBCR.A1 bit, so do a TLB flush.
1199 tlb_flush(env, 1);
1201 return vmsa_ttbcr_raw_write(env, ri, value);
1204 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1206 env->cp15.c2_base_mask = 0xffffc000u;
1207 env->cp15.c2_control = 0;
1208 env->cp15.c2_mask = 0;
1211 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
1212 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1213 .access = PL1_RW,
1214 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1215 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1216 .access = PL1_RW,
1217 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1218 { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1219 .access = PL1_RW,
1220 .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
1221 { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1222 .access = PL1_RW,
1223 .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, },
1224 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1225 .access = PL1_RW, .writefn = vmsa_ttbcr_write,
1226 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
1227 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
1228 { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
1229 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
1230 .resetvalue = 0, },
1231 REGINFO_SENTINEL
1234 static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
1235 uint64_t value)
1237 env->cp15.c15_ticonfig = value & 0xe7;
1238 /* The OS_TYPE bit in this register changes the reported CPUID! */
1239 env->cp15.c0_cpuid = (value & (1 << 5)) ?
1240 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1241 return 0;
1244 static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1245 uint64_t value)
1247 env->cp15.c15_threadid = value & 0xffff;
1248 return 0;
1251 static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
1252 uint64_t value)
1254 /* Wait-for-interrupt (deprecated) */
1255 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1256 return 0;
1259 static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
1260 uint64_t value)
1262 /* On OMAP there are registers indicating the max/min index of dcache lines
1263 * containing a dirty line; cache flush operations have to reset these.
1265 env->cp15.c15_i_max = 0x000;
1266 env->cp15.c15_i_min = 0xff0;
1267 return 0;
1270 static const ARMCPRegInfo omap_cp_reginfo[] = {
1271 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
1272 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
1273 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1274 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1275 .access = PL1_RW, .type = ARM_CP_NOP },
1276 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1277 .access = PL1_RW,
1278 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
1279 .writefn = omap_ticonfig_write },
1280 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
1281 .access = PL1_RW,
1282 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
1283 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
1284 .access = PL1_RW, .resetvalue = 0xff0,
1285 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
1286 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
1287 .access = PL1_RW,
1288 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
1289 .writefn = omap_threadid_write },
1290 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
1291 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1292 .type = ARM_CP_NO_MIGRATE,
1293 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
1294 /* TODO: Peripheral port remap register:
1295 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1296 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1297 * when MMU is off.
1299 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1300 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1301 .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
1302 .writefn = omap_cachemaint_write },
1303 { .name = "C9", .cp = 15, .crn = 9,
1304 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
1305 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1306 REGINFO_SENTINEL
1309 static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1310 uint64_t value)
1312 value &= 0x3fff;
1313 if (env->cp15.c15_cpar != value) {
1314 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1315 tb_flush(env);
1316 env->cp15.c15_cpar = value;
1318 return 0;
1321 static const ARMCPRegInfo xscale_cp_reginfo[] = {
1322 { .name = "XSCALE_CPAR",
1323 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1324 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
1325 .writefn = xscale_cpar_write, },
1326 { .name = "XSCALE_AUXCR",
1327 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
1328 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
1329 .resetvalue = 0, },
1330 REGINFO_SENTINEL
1333 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
1334 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1335 * implementation of this implementation-defined space.
1336 * Ideally this should eventually disappear in favour of actually
1337 * implementing the correct behaviour for all cores.
1339 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
1340 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1341 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1342 .resetvalue = 0 },
1343 REGINFO_SENTINEL
1346 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
1347 /* Cache status: RAZ because we have no cache so it's always clean */
1348 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1349 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1350 .resetvalue = 0 },
1351 REGINFO_SENTINEL
1354 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
1355 /* We never have a a block transfer operation in progress */
1356 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1357 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1358 .resetvalue = 0 },
1359 /* The cache ops themselves: these all NOP for QEMU */
1360 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
1361 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1362 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
1363 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1364 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
1365 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1366 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
1367 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1368 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
1369 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1370 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
1371 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1372 REGINFO_SENTINEL
1375 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
1376 /* The cache test-and-clean instructions always return (1 << 30)
1377 * to indicate that there are no dirty cache lines.
1379 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
1380 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1381 .resetvalue = (1 << 30) },
1382 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
1383 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1384 .resetvalue = (1 << 30) },
1385 REGINFO_SENTINEL
1388 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
1389 /* Ignore ReadBuffer accesses */
1390 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
1391 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1392 .access = PL1_RW, .resetvalue = 0,
1393 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
1394 REGINFO_SENTINEL
1397 static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1398 uint64_t *value)
1400 CPUState *cs = CPU(arm_env_get_cpu(env));
1401 uint32_t mpidr = cs->cpu_index;
1402 /* We don't support setting cluster ID ([8..11])
1403 * so these bits always RAZ.
1405 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1406 mpidr |= (1U << 31);
1407 /* Cores which are uniprocessor (non-coherent)
1408 * but still implement the MP extensions set
1409 * bit 30. (For instance, A9UP.) However we do
1410 * not currently model any of those cores.
1413 *value = mpidr;
1414 return 0;
1417 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
1418 { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
1419 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
1420 REGINFO_SENTINEL
1423 static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1425 *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
1426 return 0;
1429 static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1431 env->cp15.c7_par_hi = value >> 32;
1432 env->cp15.c7_par = value;
1433 return 0;
1436 static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1438 env->cp15.c7_par_hi = 0;
1439 env->cp15.c7_par = 0;
1442 static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri,
1443 uint64_t *value)
1445 *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
1446 return 0;
1449 static int ttbr064_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1450 uint64_t value)
1452 env->cp15.c2_base0_hi = value >> 32;
1453 env->cp15.c2_base0 = value;
1454 return 0;
1457 static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri,
1458 uint64_t value)
1460 /* Writes to the 64 bit format TTBRs may change the ASID */
1461 tlb_flush(env, 1);
1462 return ttbr064_raw_write(env, ri, value);
1465 static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1467 env->cp15.c2_base0_hi = 0;
1468 env->cp15.c2_base0 = 0;
1471 static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri,
1472 uint64_t *value)
1474 *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
1475 return 0;
1478 static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri,
1479 uint64_t value)
1481 env->cp15.c2_base1_hi = value >> 32;
1482 env->cp15.c2_base1 = value;
1483 return 0;
1486 static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1488 env->cp15.c2_base1_hi = 0;
1489 env->cp15.c2_base1 = 0;
1492 static const ARMCPRegInfo lpae_cp_reginfo[] = {
1493 /* NOP AMAIR0/1: the override is because these clash with the rather
1494 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1496 { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
1497 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1498 .resetvalue = 0 },
1499 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
1500 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1501 .resetvalue = 0 },
1502 /* 64 bit access versions of the (dummy) debug registers */
1503 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1504 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1505 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1506 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1507 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
1508 .access = PL1_RW, .type = ARM_CP_64BIT,
1509 .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
1510 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1511 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read,
1512 .writefn = ttbr064_write, .raw_writefn = ttbr064_raw_write,
1513 .resetfn = ttbr064_reset },
1514 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1515 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read,
1516 .writefn = ttbr164_write, .resetfn = ttbr164_reset },
1517 REGINFO_SENTINEL
1520 static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1522 env->cp15.c1_sys = value;
1523 /* ??? Lots of these bits are not implemented. */
1524 /* This may enable/disable the MMU, so do a TLB flush. */
1525 tlb_flush(env, 1);
1526 return 0;
1529 void register_cp_regs_for_features(ARMCPU *cpu)
1531 /* Register all the coprocessor registers based on feature bits */
1532 CPUARMState *env = &cpu->env;
1533 if (arm_feature(env, ARM_FEATURE_M)) {
1534 /* M profile has no coprocessor registers */
1535 return;
1538 define_arm_cp_regs(cpu, cp_reginfo);
1539 if (arm_feature(env, ARM_FEATURE_V6)) {
1540 /* The ID registers all have impdef reset values */
1541 ARMCPRegInfo v6_idregs[] = {
1542 { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
1543 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1544 .resetvalue = cpu->id_pfr0 },
1545 { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
1546 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1547 .resetvalue = cpu->id_pfr1 },
1548 { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
1549 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1550 .resetvalue = cpu->id_dfr0 },
1551 { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
1552 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1553 .resetvalue = cpu->id_afr0 },
1554 { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
1555 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1556 .resetvalue = cpu->id_mmfr0 },
1557 { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
1558 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1559 .resetvalue = cpu->id_mmfr1 },
1560 { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
1561 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1562 .resetvalue = cpu->id_mmfr2 },
1563 { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
1564 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1565 .resetvalue = cpu->id_mmfr3 },
1566 { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
1567 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1568 .resetvalue = cpu->id_isar0 },
1569 { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
1570 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1571 .resetvalue = cpu->id_isar1 },
1572 { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
1573 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1574 .resetvalue = cpu->id_isar2 },
1575 { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
1576 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1577 .resetvalue = cpu->id_isar3 },
1578 { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
1579 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1580 .resetvalue = cpu->id_isar4 },
1581 { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
1582 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1583 .resetvalue = cpu->id_isar5 },
1584 /* 6..7 are as yet unallocated and must RAZ */
1585 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
1586 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1587 .resetvalue = 0 },
1588 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
1589 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1590 .resetvalue = 0 },
1591 REGINFO_SENTINEL
1593 define_arm_cp_regs(cpu, v6_idregs);
1594 define_arm_cp_regs(cpu, v6_cp_reginfo);
1595 } else {
1596 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
1598 if (arm_feature(env, ARM_FEATURE_V6K)) {
1599 define_arm_cp_regs(cpu, v6k_cp_reginfo);
1601 if (arm_feature(env, ARM_FEATURE_V7)) {
1602 /* v7 performance monitor control register: same implementor
1603 * field as main ID register, and we implement no event counters.
1605 ARMCPRegInfo pmcr = {
1606 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
1607 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
1608 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
1609 .readfn = pmreg_read, .writefn = pmcr_write,
1610 .raw_readfn = raw_read, .raw_writefn = raw_write,
1612 ARMCPRegInfo clidr = {
1613 .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
1614 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
1616 define_one_arm_cp_reg(cpu, &pmcr);
1617 define_one_arm_cp_reg(cpu, &clidr);
1618 define_arm_cp_regs(cpu, v7_cp_reginfo);
1619 } else {
1620 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
1622 if (arm_feature(env, ARM_FEATURE_MPU)) {
1623 /* These are the MPU registers prior to PMSAv6. Any new
1624 * PMSA core later than the ARM946 will require that we
1625 * implement the PMSAv6 or PMSAv7 registers, which are
1626 * completely different.
1628 assert(!arm_feature(env, ARM_FEATURE_V6));
1629 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
1630 } else {
1631 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
1633 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
1634 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
1636 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1637 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
1639 if (arm_feature(env, ARM_FEATURE_VAPA)) {
1640 define_arm_cp_regs(cpu, vapa_cp_reginfo);
1642 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
1643 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
1645 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
1646 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
1648 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
1649 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
1651 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1652 define_arm_cp_regs(cpu, omap_cp_reginfo);
1654 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
1655 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
1657 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1658 define_arm_cp_regs(cpu, xscale_cp_reginfo);
1660 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
1661 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
1663 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1664 define_arm_cp_regs(cpu, lpae_cp_reginfo);
1666 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
1667 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
1668 * be read-only (ie write causes UNDEF exception).
1671 ARMCPRegInfo id_cp_reginfo[] = {
1672 /* Note that the MIDR isn't a simple constant register because
1673 * of the TI925 behaviour where writes to another register can
1674 * cause the MIDR value to change.
1676 * Unimplemented registers in the c15 0 0 0 space default to
1677 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
1678 * and friends override accordingly.
1680 { .name = "MIDR",
1681 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
1682 .access = PL1_R, .resetvalue = cpu->midr,
1683 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
1684 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
1685 .type = ARM_CP_OVERRIDE },
1686 { .name = "CTR",
1687 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
1688 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
1689 { .name = "TCMTR",
1690 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
1691 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1692 { .name = "TLBTR",
1693 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
1694 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1695 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
1696 { .name = "DUMMY",
1697 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
1698 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1699 { .name = "DUMMY",
1700 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
1701 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1702 { .name = "DUMMY",
1703 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
1704 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1705 { .name = "DUMMY",
1706 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
1707 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1708 { .name = "DUMMY",
1709 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
1710 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1711 REGINFO_SENTINEL
1713 ARMCPRegInfo crn0_wi_reginfo = {
1714 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
1715 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
1716 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
1718 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
1719 arm_feature(env, ARM_FEATURE_STRONGARM)) {
1720 ARMCPRegInfo *r;
1721 /* Register the blanket "writes ignored" value first to cover the
1722 * whole space. Then update the specific ID registers to allow write
1723 * access, so that they ignore writes rather than causing them to
1724 * UNDEF.
1726 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
1727 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
1728 r->access = PL1_RW;
1731 define_arm_cp_regs(cpu, id_cp_reginfo);
1734 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
1735 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
1738 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
1739 ARMCPRegInfo auxcr = {
1740 .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
1741 .access = PL1_RW, .type = ARM_CP_CONST,
1742 .resetvalue = cpu->reset_auxcr
1744 define_one_arm_cp_reg(cpu, &auxcr);
1747 /* Generic registers whose values depend on the implementation */
1749 ARMCPRegInfo sctlr = {
1750 .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
1751 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
1752 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
1753 .raw_writefn = raw_write,
1755 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1756 /* Normally we would always end the TB on an SCTLR write, but Linux
1757 * arch/arm/mach-pxa/sleep.S expects two instructions following
1758 * an MMU enable to execute from cache. Imitate this behaviour.
1760 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
1762 define_one_arm_cp_reg(cpu, &sctlr);
1766 ARMCPU *cpu_arm_init(const char *cpu_model)
1768 ARMCPU *cpu;
1769 ObjectClass *oc;
1771 oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
1772 if (!oc) {
1773 return NULL;
1775 cpu = ARM_CPU(object_new(object_class_get_name(oc)));
1777 /* TODO this should be set centrally, once possible */
1778 object_property_set_bool(OBJECT(cpu), true, "realized", NULL);
1780 return cpu;
1783 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
1785 CPUState *cs = CPU(cpu);
1786 CPUARMState *env = &cpu->env;
1788 if (arm_feature(env, ARM_FEATURE_NEON)) {
1789 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
1790 51, "arm-neon.xml", 0);
1791 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
1792 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
1793 35, "arm-vfp3.xml", 0);
1794 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
1795 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
1796 19, "arm-vfp.xml", 0);
1800 /* Sort alphabetically by type name, except for "any". */
1801 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
1803 ObjectClass *class_a = (ObjectClass *)a;
1804 ObjectClass *class_b = (ObjectClass *)b;
1805 const char *name_a, *name_b;
1807 name_a = object_class_get_name(class_a);
1808 name_b = object_class_get_name(class_b);
1809 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
1810 return 1;
1811 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
1812 return -1;
1813 } else {
1814 return strcmp(name_a, name_b);
1818 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
1820 ObjectClass *oc = data;
1821 CPUListState *s = user_data;
1822 const char *typename;
1823 char *name;
1825 typename = object_class_get_name(oc);
1826 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
1827 (*s->cpu_fprintf)(s->file, " %s\n",
1828 name);
1829 g_free(name);
1832 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
1834 CPUListState s = {
1835 .file = f,
1836 .cpu_fprintf = cpu_fprintf,
1838 GSList *list;
1840 list = object_class_get_list(TYPE_ARM_CPU, false);
1841 list = g_slist_sort(list, arm_cpu_list_compare);
1842 (*cpu_fprintf)(f, "Available CPUs:\n");
1843 g_slist_foreach(list, arm_cpu_list_entry, &s);
1844 g_slist_free(list);
1845 #ifdef CONFIG_KVM
1846 /* The 'host' CPU type is dynamically registered only if KVM is
1847 * enabled, so we have to special-case it here:
1849 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
1850 #endif
1853 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
1855 ObjectClass *oc = data;
1856 CpuDefinitionInfoList **cpu_list = user_data;
1857 CpuDefinitionInfoList *entry;
1858 CpuDefinitionInfo *info;
1859 const char *typename;
1861 typename = object_class_get_name(oc);
1862 info = g_malloc0(sizeof(*info));
1863 info->name = g_strndup(typename,
1864 strlen(typename) - strlen("-" TYPE_ARM_CPU));
1866 entry = g_malloc0(sizeof(*entry));
1867 entry->value = info;
1868 entry->next = *cpu_list;
1869 *cpu_list = entry;
1872 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
1874 CpuDefinitionInfoList *cpu_list = NULL;
1875 GSList *list;
1877 list = object_class_get_list(TYPE_ARM_CPU, false);
1878 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
1879 g_slist_free(list);
1881 return cpu_list;
1884 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1885 const ARMCPRegInfo *r, void *opaque)
1887 /* Define implementations of coprocessor registers.
1888 * We store these in a hashtable because typically
1889 * there are less than 150 registers in a space which
1890 * is 16*16*16*8*8 = 262144 in size.
1891 * Wildcarding is supported for the crm, opc1 and opc2 fields.
1892 * If a register is defined twice then the second definition is
1893 * used, so this can be used to define some generic registers and
1894 * then override them with implementation specific variations.
1895 * At least one of the original and the second definition should
1896 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
1897 * against accidental use.
1899 int crm, opc1, opc2;
1900 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
1901 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
1902 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
1903 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
1904 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
1905 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
1906 /* 64 bit registers have only CRm and Opc1 fields */
1907 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
1908 /* Check that the register definition has enough info to handle
1909 * reads and writes if they are permitted.
1911 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
1912 if (r->access & PL3_R) {
1913 assert(r->fieldoffset || r->readfn);
1915 if (r->access & PL3_W) {
1916 assert(r->fieldoffset || r->writefn);
1919 /* Bad type field probably means missing sentinel at end of reg list */
1920 assert(cptype_valid(r->type));
1921 for (crm = crmmin; crm <= crmmax; crm++) {
1922 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
1923 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
1924 uint32_t *key = g_new(uint32_t, 1);
1925 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
1926 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
1927 *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2);
1928 if (opaque) {
1929 r2->opaque = opaque;
1931 /* Make sure reginfo passed to helpers for wildcarded regs
1932 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
1934 r2->crm = crm;
1935 r2->opc1 = opc1;
1936 r2->opc2 = opc2;
1937 /* By convention, for wildcarded registers only the first
1938 * entry is used for migration; the others are marked as
1939 * NO_MIGRATE so we don't try to transfer the register
1940 * multiple times. Special registers (ie NOP/WFI) are
1941 * never migratable.
1943 if ((r->type & ARM_CP_SPECIAL) ||
1944 ((r->crm == CP_ANY) && crm != 0) ||
1945 ((r->opc1 == CP_ANY) && opc1 != 0) ||
1946 ((r->opc2 == CP_ANY) && opc2 != 0)) {
1947 r2->type |= ARM_CP_NO_MIGRATE;
1950 /* Overriding of an existing definition must be explicitly
1951 * requested.
1953 if (!(r->type & ARM_CP_OVERRIDE)) {
1954 ARMCPRegInfo *oldreg;
1955 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
1956 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
1957 fprintf(stderr, "Register redefined: cp=%d %d bit "
1958 "crn=%d crm=%d opc1=%d opc2=%d, "
1959 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
1960 r2->crn, r2->crm, r2->opc1, r2->opc2,
1961 oldreg->name, r2->name);
1962 g_assert_not_reached();
1965 g_hash_table_insert(cpu->cp_regs, key, r2);
1971 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1972 const ARMCPRegInfo *regs, void *opaque)
1974 /* Define a whole list of registers */
1975 const ARMCPRegInfo *r;
1976 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
1977 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
1981 const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp)
1983 return g_hash_table_lookup(cpu->cp_regs, &encoded_cp);
1986 int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1987 uint64_t value)
1989 /* Helper coprocessor write function for write-ignore registers */
1990 return 0;
1993 int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1995 /* Helper coprocessor write function for read-as-zero registers */
1996 *value = 0;
1997 return 0;
2000 static int bad_mode_switch(CPUARMState *env, int mode)
2002 /* Return true if it is not valid for us to switch to
2003 * this CPU mode (ie all the UNPREDICTABLE cases in
2004 * the ARM ARM CPSRWriteByInstr pseudocode).
2006 switch (mode) {
2007 case ARM_CPU_MODE_USR:
2008 case ARM_CPU_MODE_SYS:
2009 case ARM_CPU_MODE_SVC:
2010 case ARM_CPU_MODE_ABT:
2011 case ARM_CPU_MODE_UND:
2012 case ARM_CPU_MODE_IRQ:
2013 case ARM_CPU_MODE_FIQ:
2014 return 0;
2015 default:
2016 return 1;
2020 uint32_t cpsr_read(CPUARMState *env)
2022 int ZF;
2023 ZF = (env->ZF == 0);
2024 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2025 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
2026 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
2027 | ((env->condexec_bits & 0xfc) << 8)
2028 | (env->GE << 16);
2031 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
2033 if (mask & CPSR_NZCV) {
2034 env->ZF = (~val) & CPSR_Z;
2035 env->NF = val;
2036 env->CF = (val >> 29) & 1;
2037 env->VF = (val << 3) & 0x80000000;
2039 if (mask & CPSR_Q)
2040 env->QF = ((val & CPSR_Q) != 0);
2041 if (mask & CPSR_T)
2042 env->thumb = ((val & CPSR_T) != 0);
2043 if (mask & CPSR_IT_0_1) {
2044 env->condexec_bits &= ~3;
2045 env->condexec_bits |= (val >> 25) & 3;
2047 if (mask & CPSR_IT_2_7) {
2048 env->condexec_bits &= 3;
2049 env->condexec_bits |= (val >> 8) & 0xfc;
2051 if (mask & CPSR_GE) {
2052 env->GE = (val >> 16) & 0xf;
2055 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
2056 if (bad_mode_switch(env, val & CPSR_M)) {
2057 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
2058 * We choose to ignore the attempt and leave the CPSR M field
2059 * untouched.
2061 mask &= ~CPSR_M;
2062 } else {
2063 switch_mode(env, val & CPSR_M);
2066 mask &= ~CACHED_CPSR_BITS;
2067 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
2070 /* Sign/zero extend */
2071 uint32_t HELPER(sxtb16)(uint32_t x)
2073 uint32_t res;
2074 res = (uint16_t)(int8_t)x;
2075 res |= (uint32_t)(int8_t)(x >> 16) << 16;
2076 return res;
2079 uint32_t HELPER(uxtb16)(uint32_t x)
2081 uint32_t res;
2082 res = (uint16_t)(uint8_t)x;
2083 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
2084 return res;
2087 uint32_t HELPER(clz)(uint32_t x)
2089 return clz32(x);
2092 int32_t HELPER(sdiv)(int32_t num, int32_t den)
2094 if (den == 0)
2095 return 0;
2096 if (num == INT_MIN && den == -1)
2097 return INT_MIN;
2098 return num / den;
2101 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
2103 if (den == 0)
2104 return 0;
2105 return num / den;
2108 uint32_t HELPER(rbit)(uint32_t x)
2110 x = ((x & 0xff000000) >> 24)
2111 | ((x & 0x00ff0000) >> 8)
2112 | ((x & 0x0000ff00) << 8)
2113 | ((x & 0x000000ff) << 24);
2114 x = ((x & 0xf0f0f0f0) >> 4)
2115 | ((x & 0x0f0f0f0f) << 4);
2116 x = ((x & 0x88888888) >> 3)
2117 | ((x & 0x44444444) >> 1)
2118 | ((x & 0x22222222) << 1)
2119 | ((x & 0x11111111) << 3);
2120 return x;
2123 #if defined(CONFIG_USER_ONLY)
2125 void arm_cpu_do_interrupt(CPUState *cs)
2127 ARMCPU *cpu = ARM_CPU(cs);
2128 CPUARMState *env = &cpu->env;
2130 env->exception_index = -1;
2133 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
2134 int mmu_idx)
2136 if (rw == 2) {
2137 env->exception_index = EXCP_PREFETCH_ABORT;
2138 env->cp15.c6_insn = address;
2139 } else {
2140 env->exception_index = EXCP_DATA_ABORT;
2141 env->cp15.c6_data = address;
2143 return 1;
2146 /* These should probably raise undefined insn exceptions. */
2147 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2149 cpu_abort(env, "v7m_mrs %d\n", reg);
2152 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2154 cpu_abort(env, "v7m_mrs %d\n", reg);
2155 return 0;
2158 void switch_mode(CPUARMState *env, int mode)
2160 if (mode != ARM_CPU_MODE_USR)
2161 cpu_abort(env, "Tried to switch out of user mode\n");
2164 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2166 cpu_abort(env, "banked r13 write\n");
2169 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2171 cpu_abort(env, "banked r13 read\n");
2172 return 0;
2175 #else
2177 /* Map CPU modes onto saved register banks. */
2178 int bank_number(int mode)
2180 switch (mode) {
2181 case ARM_CPU_MODE_USR:
2182 case ARM_CPU_MODE_SYS:
2183 return 0;
2184 case ARM_CPU_MODE_SVC:
2185 return 1;
2186 case ARM_CPU_MODE_ABT:
2187 return 2;
2188 case ARM_CPU_MODE_UND:
2189 return 3;
2190 case ARM_CPU_MODE_IRQ:
2191 return 4;
2192 case ARM_CPU_MODE_FIQ:
2193 return 5;
2195 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
2198 void switch_mode(CPUARMState *env, int mode)
2200 int old_mode;
2201 int i;
2203 old_mode = env->uncached_cpsr & CPSR_M;
2204 if (mode == old_mode)
2205 return;
2207 if (old_mode == ARM_CPU_MODE_FIQ) {
2208 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
2209 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
2210 } else if (mode == ARM_CPU_MODE_FIQ) {
2211 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
2212 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
2215 i = bank_number(old_mode);
2216 env->banked_r13[i] = env->regs[13];
2217 env->banked_r14[i] = env->regs[14];
2218 env->banked_spsr[i] = env->spsr;
2220 i = bank_number(mode);
2221 env->regs[13] = env->banked_r13[i];
2222 env->regs[14] = env->banked_r14[i];
2223 env->spsr = env->banked_spsr[i];
2226 static void v7m_push(CPUARMState *env, uint32_t val)
2228 env->regs[13] -= 4;
2229 stl_phys(env->regs[13], val);
2232 static uint32_t v7m_pop(CPUARMState *env)
2234 uint32_t val;
2235 val = ldl_phys(env->regs[13]);
2236 env->regs[13] += 4;
2237 return val;
2240 /* Switch to V7M main or process stack pointer. */
2241 static void switch_v7m_sp(CPUARMState *env, int process)
2243 uint32_t tmp;
2244 if (env->v7m.current_sp != process) {
2245 tmp = env->v7m.other_sp;
2246 env->v7m.other_sp = env->regs[13];
2247 env->regs[13] = tmp;
2248 env->v7m.current_sp = process;
2252 static void do_v7m_exception_exit(CPUARMState *env)
2254 uint32_t type;
2255 uint32_t xpsr;
2257 type = env->regs[15];
2258 if (env->v7m.exception != 0)
2259 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
2261 /* Switch to the target stack. */
2262 switch_v7m_sp(env, (type & 4) != 0);
2263 /* Pop registers. */
2264 env->regs[0] = v7m_pop(env);
2265 env->regs[1] = v7m_pop(env);
2266 env->regs[2] = v7m_pop(env);
2267 env->regs[3] = v7m_pop(env);
2268 env->regs[12] = v7m_pop(env);
2269 env->regs[14] = v7m_pop(env);
2270 env->regs[15] = v7m_pop(env);
2271 xpsr = v7m_pop(env);
2272 xpsr_write(env, xpsr, 0xfffffdff);
2273 /* Undo stack alignment. */
2274 if (xpsr & 0x200)
2275 env->regs[13] |= 4;
2276 /* ??? The exception return type specifies Thread/Handler mode. However
2277 this is also implied by the xPSR value. Not sure what to do
2278 if there is a mismatch. */
2279 /* ??? Likewise for mismatches between the CONTROL register and the stack
2280 pointer. */
2283 /* Exception names for debug logging; note that not all of these
2284 * precisely correspond to architectural exceptions.
2286 static const char * const excnames[] = {
2287 [EXCP_UDEF] = "Undefined Instruction",
2288 [EXCP_SWI] = "SVC",
2289 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
2290 [EXCP_DATA_ABORT] = "Data Abort",
2291 [EXCP_IRQ] = "IRQ",
2292 [EXCP_FIQ] = "FIQ",
2293 [EXCP_BKPT] = "Breakpoint",
2294 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
2295 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
2296 [EXCP_STREX] = "QEMU intercept of STREX",
2299 static inline void arm_log_exception(int idx)
2301 if (qemu_loglevel_mask(CPU_LOG_INT)) {
2302 const char *exc = NULL;
2304 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
2305 exc = excnames[idx];
2307 if (!exc) {
2308 exc = "unknown";
2310 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
2314 void arm_v7m_cpu_do_interrupt(CPUState *cs)
2316 ARMCPU *cpu = ARM_CPU(cs);
2317 CPUARMState *env = &cpu->env;
2318 uint32_t xpsr = xpsr_read(env);
2319 uint32_t lr;
2320 uint32_t addr;
2322 arm_log_exception(env->exception_index);
2324 lr = 0xfffffff1;
2325 if (env->v7m.current_sp)
2326 lr |= 4;
2327 if (env->v7m.exception == 0)
2328 lr |= 8;
2330 /* For exceptions we just mark as pending on the NVIC, and let that
2331 handle it. */
2332 /* TODO: Need to escalate if the current priority is higher than the
2333 one we're raising. */
2334 switch (env->exception_index) {
2335 case EXCP_UDEF:
2336 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
2337 return;
2338 case EXCP_SWI:
2339 /* The PC already points to the next instruction. */
2340 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
2341 return;
2342 case EXCP_PREFETCH_ABORT:
2343 case EXCP_DATA_ABORT:
2344 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
2345 return;
2346 case EXCP_BKPT:
2347 if (semihosting_enabled) {
2348 int nr;
2349 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2350 if (nr == 0xab) {
2351 env->regs[15] += 2;
2352 env->regs[0] = do_arm_semihosting(env);
2353 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2354 return;
2357 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
2358 return;
2359 case EXCP_IRQ:
2360 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
2361 break;
2362 case EXCP_EXCEPTION_EXIT:
2363 do_v7m_exception_exit(env);
2364 return;
2365 default:
2366 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2367 return; /* Never happens. Keep compiler happy. */
2370 /* Align stack pointer. */
2371 /* ??? Should only do this if Configuration Control Register
2372 STACKALIGN bit is set. */
2373 if (env->regs[13] & 4) {
2374 env->regs[13] -= 4;
2375 xpsr |= 0x200;
2377 /* Switch to the handler mode. */
2378 v7m_push(env, xpsr);
2379 v7m_push(env, env->regs[15]);
2380 v7m_push(env, env->regs[14]);
2381 v7m_push(env, env->regs[12]);
2382 v7m_push(env, env->regs[3]);
2383 v7m_push(env, env->regs[2]);
2384 v7m_push(env, env->regs[1]);
2385 v7m_push(env, env->regs[0]);
2386 switch_v7m_sp(env, 0);
2387 /* Clear IT bits */
2388 env->condexec_bits = 0;
2389 env->regs[14] = lr;
2390 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
2391 env->regs[15] = addr & 0xfffffffe;
2392 env->thumb = addr & 1;
2395 /* Handle a CPU exception. */
2396 void arm_cpu_do_interrupt(CPUState *cs)
2398 ARMCPU *cpu = ARM_CPU(cs);
2399 CPUARMState *env = &cpu->env;
2400 uint32_t addr;
2401 uint32_t mask;
2402 int new_mode;
2403 uint32_t offset;
2405 assert(!IS_M(env));
2407 arm_log_exception(env->exception_index);
2409 /* TODO: Vectored interrupt controller. */
2410 switch (env->exception_index) {
2411 case EXCP_UDEF:
2412 new_mode = ARM_CPU_MODE_UND;
2413 addr = 0x04;
2414 mask = CPSR_I;
2415 if (env->thumb)
2416 offset = 2;
2417 else
2418 offset = 4;
2419 break;
2420 case EXCP_SWI:
2421 if (semihosting_enabled) {
2422 /* Check for semihosting interrupt. */
2423 if (env->thumb) {
2424 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
2425 & 0xff;
2426 } else {
2427 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
2428 & 0xffffff;
2430 /* Only intercept calls from privileged modes, to provide some
2431 semblance of security. */
2432 if (((mask == 0x123456 && !env->thumb)
2433 || (mask == 0xab && env->thumb))
2434 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2435 env->regs[0] = do_arm_semihosting(env);
2436 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2437 return;
2440 new_mode = ARM_CPU_MODE_SVC;
2441 addr = 0x08;
2442 mask = CPSR_I;
2443 /* The PC already points to the next instruction. */
2444 offset = 0;
2445 break;
2446 case EXCP_BKPT:
2447 /* See if this is a semihosting syscall. */
2448 if (env->thumb && semihosting_enabled) {
2449 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2450 if (mask == 0xab
2451 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2452 env->regs[15] += 2;
2453 env->regs[0] = do_arm_semihosting(env);
2454 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2455 return;
2458 env->cp15.c5_insn = 2;
2459 /* Fall through to prefetch abort. */
2460 case EXCP_PREFETCH_ABORT:
2461 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
2462 env->cp15.c5_insn, env->cp15.c6_insn);
2463 new_mode = ARM_CPU_MODE_ABT;
2464 addr = 0x0c;
2465 mask = CPSR_A | CPSR_I;
2466 offset = 4;
2467 break;
2468 case EXCP_DATA_ABORT:
2469 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
2470 env->cp15.c5_data, env->cp15.c6_data);
2471 new_mode = ARM_CPU_MODE_ABT;
2472 addr = 0x10;
2473 mask = CPSR_A | CPSR_I;
2474 offset = 8;
2475 break;
2476 case EXCP_IRQ:
2477 new_mode = ARM_CPU_MODE_IRQ;
2478 addr = 0x18;
2479 /* Disable IRQ and imprecise data aborts. */
2480 mask = CPSR_A | CPSR_I;
2481 offset = 4;
2482 break;
2483 case EXCP_FIQ:
2484 new_mode = ARM_CPU_MODE_FIQ;
2485 addr = 0x1c;
2486 /* Disable FIQ, IRQ and imprecise data aborts. */
2487 mask = CPSR_A | CPSR_I | CPSR_F;
2488 offset = 4;
2489 break;
2490 default:
2491 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2492 return; /* Never happens. Keep compiler happy. */
2494 /* High vectors. */
2495 if (env->cp15.c1_sys & (1 << 13)) {
2496 /* when enabled, base address cannot be remapped. */
2497 addr += 0xffff0000;
2498 } else {
2499 /* ARM v7 architectures provide a vector base address register to remap
2500 * the interrupt vector table.
2501 * This register is only followed in non-monitor mode, and has a secure
2502 * and un-secure copy. Since the cpu is always in a un-secure operation
2503 * and is never in monitor mode this feature is always active.
2504 * Note: only bits 31:5 are valid.
2506 addr += env->cp15.c12_vbar;
2508 switch_mode (env, new_mode);
2509 env->spsr = cpsr_read(env);
2510 /* Clear IT bits. */
2511 env->condexec_bits = 0;
2512 /* Switch to the new mode, and to the correct instruction set. */
2513 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
2514 env->uncached_cpsr |= mask;
2515 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
2516 * and we should just guard the thumb mode on V4 */
2517 if (arm_feature(env, ARM_FEATURE_V4T)) {
2518 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
2520 env->regs[14] = env->regs[15] + offset;
2521 env->regs[15] = addr;
2522 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
2525 /* Check section/page access permissions.
2526 Returns the page protection flags, or zero if the access is not
2527 permitted. */
2528 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
2529 int access_type, int is_user)
2531 int prot_ro;
2533 if (domain_prot == 3) {
2534 return PAGE_READ | PAGE_WRITE;
2537 if (access_type == 1)
2538 prot_ro = 0;
2539 else
2540 prot_ro = PAGE_READ;
2542 switch (ap) {
2543 case 0:
2544 if (access_type == 1)
2545 return 0;
2546 switch ((env->cp15.c1_sys >> 8) & 3) {
2547 case 1:
2548 return is_user ? 0 : PAGE_READ;
2549 case 2:
2550 return PAGE_READ;
2551 default:
2552 return 0;
2554 case 1:
2555 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
2556 case 2:
2557 if (is_user)
2558 return prot_ro;
2559 else
2560 return PAGE_READ | PAGE_WRITE;
2561 case 3:
2562 return PAGE_READ | PAGE_WRITE;
2563 case 4: /* Reserved. */
2564 return 0;
2565 case 5:
2566 return is_user ? 0 : prot_ro;
2567 case 6:
2568 return prot_ro;
2569 case 7:
2570 if (!arm_feature (env, ARM_FEATURE_V6K))
2571 return 0;
2572 return prot_ro;
2573 default:
2574 abort();
2578 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
2580 uint32_t table;
2582 if (address & env->cp15.c2_mask)
2583 table = env->cp15.c2_base1 & 0xffffc000;
2584 else
2585 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
2587 table |= (address >> 18) & 0x3ffc;
2588 return table;
2591 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
2592 int is_user, hwaddr *phys_ptr,
2593 int *prot, target_ulong *page_size)
2595 int code;
2596 uint32_t table;
2597 uint32_t desc;
2598 int type;
2599 int ap;
2600 int domain;
2601 int domain_prot;
2602 hwaddr phys_addr;
2604 /* Pagetable walk. */
2605 /* Lookup l1 descriptor. */
2606 table = get_level1_table_address(env, address);
2607 desc = ldl_phys(table);
2608 type = (desc & 3);
2609 domain = (desc >> 5) & 0x0f;
2610 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2611 if (type == 0) {
2612 /* Section translation fault. */
2613 code = 5;
2614 goto do_fault;
2616 if (domain_prot == 0 || domain_prot == 2) {
2617 if (type == 2)
2618 code = 9; /* Section domain fault. */
2619 else
2620 code = 11; /* Page domain fault. */
2621 goto do_fault;
2623 if (type == 2) {
2624 /* 1Mb section. */
2625 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2626 ap = (desc >> 10) & 3;
2627 code = 13;
2628 *page_size = 1024 * 1024;
2629 } else {
2630 /* Lookup l2 entry. */
2631 if (type == 1) {
2632 /* Coarse pagetable. */
2633 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2634 } else {
2635 /* Fine pagetable. */
2636 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
2638 desc = ldl_phys(table);
2639 switch (desc & 3) {
2640 case 0: /* Page translation fault. */
2641 code = 7;
2642 goto do_fault;
2643 case 1: /* 64k page. */
2644 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2645 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2646 *page_size = 0x10000;
2647 break;
2648 case 2: /* 4k page. */
2649 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2650 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2651 *page_size = 0x1000;
2652 break;
2653 case 3: /* 1k page. */
2654 if (type == 1) {
2655 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2656 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2657 } else {
2658 /* Page translation fault. */
2659 code = 7;
2660 goto do_fault;
2662 } else {
2663 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
2665 ap = (desc >> 4) & 3;
2666 *page_size = 0x400;
2667 break;
2668 default:
2669 /* Never happens, but compiler isn't smart enough to tell. */
2670 abort();
2672 code = 15;
2674 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2675 if (!*prot) {
2676 /* Access permission fault. */
2677 goto do_fault;
2679 *prot |= PAGE_EXEC;
2680 *phys_ptr = phys_addr;
2681 return 0;
2682 do_fault:
2683 return code | (domain << 4);
2686 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
2687 int is_user, hwaddr *phys_ptr,
2688 int *prot, target_ulong *page_size)
2690 int code;
2691 uint32_t table;
2692 uint32_t desc;
2693 uint32_t xn;
2694 uint32_t pxn = 0;
2695 int type;
2696 int ap;
2697 int domain = 0;
2698 int domain_prot;
2699 hwaddr phys_addr;
2701 /* Pagetable walk. */
2702 /* Lookup l1 descriptor. */
2703 table = get_level1_table_address(env, address);
2704 desc = ldl_phys(table);
2705 type = (desc & 3);
2706 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
2707 /* Section translation fault, or attempt to use the encoding
2708 * which is Reserved on implementations without PXN.
2710 code = 5;
2711 goto do_fault;
2713 if ((type == 1) || !(desc & (1 << 18))) {
2714 /* Page or Section. */
2715 domain = (desc >> 5) & 0x0f;
2717 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2718 if (domain_prot == 0 || domain_prot == 2) {
2719 if (type != 1) {
2720 code = 9; /* Section domain fault. */
2721 } else {
2722 code = 11; /* Page domain fault. */
2724 goto do_fault;
2726 if (type != 1) {
2727 if (desc & (1 << 18)) {
2728 /* Supersection. */
2729 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
2730 *page_size = 0x1000000;
2731 } else {
2732 /* Section. */
2733 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2734 *page_size = 0x100000;
2736 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
2737 xn = desc & (1 << 4);
2738 pxn = desc & 1;
2739 code = 13;
2740 } else {
2741 if (arm_feature(env, ARM_FEATURE_PXN)) {
2742 pxn = (desc >> 2) & 1;
2744 /* Lookup l2 entry. */
2745 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2746 desc = ldl_phys(table);
2747 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
2748 switch (desc & 3) {
2749 case 0: /* Page translation fault. */
2750 code = 7;
2751 goto do_fault;
2752 case 1: /* 64k page. */
2753 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2754 xn = desc & (1 << 15);
2755 *page_size = 0x10000;
2756 break;
2757 case 2: case 3: /* 4k page. */
2758 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2759 xn = desc & 1;
2760 *page_size = 0x1000;
2761 break;
2762 default:
2763 /* Never happens, but compiler isn't smart enough to tell. */
2764 abort();
2766 code = 15;
2768 if (domain_prot == 3) {
2769 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2770 } else {
2771 if (pxn && !is_user) {
2772 xn = 1;
2774 if (xn && access_type == 2)
2775 goto do_fault;
2777 /* The simplified model uses AP[0] as an access control bit. */
2778 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
2779 /* Access flag fault. */
2780 code = (code == 15) ? 6 : 3;
2781 goto do_fault;
2783 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2784 if (!*prot) {
2785 /* Access permission fault. */
2786 goto do_fault;
2788 if (!xn) {
2789 *prot |= PAGE_EXEC;
2792 *phys_ptr = phys_addr;
2793 return 0;
2794 do_fault:
2795 return code | (domain << 4);
2798 /* Fault type for long-descriptor MMU fault reporting; this corresponds
2799 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
2801 typedef enum {
2802 translation_fault = 1,
2803 access_fault = 2,
2804 permission_fault = 3,
2805 } MMUFaultType;
2807 static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
2808 int access_type, int is_user,
2809 hwaddr *phys_ptr, int *prot,
2810 target_ulong *page_size_ptr)
2812 /* Read an LPAE long-descriptor translation table. */
2813 MMUFaultType fault_type = translation_fault;
2814 uint32_t level = 1;
2815 uint32_t epd;
2816 uint32_t tsz;
2817 uint64_t ttbr;
2818 int ttbr_select;
2819 int n;
2820 hwaddr descaddr;
2821 uint32_t tableattrs;
2822 target_ulong page_size;
2823 uint32_t attrs;
2825 /* Determine whether this address is in the region controlled by
2826 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
2827 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
2828 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
2830 uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
2831 uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
2832 if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
2833 /* there is a ttbr0 region and we are in it (high bits all zero) */
2834 ttbr_select = 0;
2835 } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
2836 /* there is a ttbr1 region and we are in it (high bits all one) */
2837 ttbr_select = 1;
2838 } else if (!t0sz) {
2839 /* ttbr0 region is "everything not in the ttbr1 region" */
2840 ttbr_select = 0;
2841 } else if (!t1sz) {
2842 /* ttbr1 region is "everything not in the ttbr0 region" */
2843 ttbr_select = 1;
2844 } else {
2845 /* in the gap between the two regions, this is a Translation fault */
2846 fault_type = translation_fault;
2847 goto do_fault;
2850 /* Note that QEMU ignores shareability and cacheability attributes,
2851 * so we don't need to do anything with the SH, ORGN, IRGN fields
2852 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
2853 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
2854 * implement any ASID-like capability so we can ignore it (instead
2855 * we will always flush the TLB any time the ASID is changed).
2857 if (ttbr_select == 0) {
2858 ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
2859 epd = extract32(env->cp15.c2_control, 7, 1);
2860 tsz = t0sz;
2861 } else {
2862 ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
2863 epd = extract32(env->cp15.c2_control, 23, 1);
2864 tsz = t1sz;
2867 if (epd) {
2868 /* Translation table walk disabled => Translation fault on TLB miss */
2869 goto do_fault;
2872 /* If the region is small enough we will skip straight to a 2nd level
2873 * lookup. This affects the number of bits of the address used in
2874 * combination with the TTBR to find the first descriptor. ('n' here
2875 * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
2876 * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
2878 if (tsz > 1) {
2879 level = 2;
2880 n = 14 - tsz;
2881 } else {
2882 n = 5 - tsz;
2885 /* Clear the vaddr bits which aren't part of the within-region address,
2886 * so that we don't have to special case things when calculating the
2887 * first descriptor address.
2889 address &= (0xffffffffU >> tsz);
2891 /* Now we can extract the actual base address from the TTBR */
2892 descaddr = extract64(ttbr, 0, 40);
2893 descaddr &= ~((1ULL << n) - 1);
2895 tableattrs = 0;
2896 for (;;) {
2897 uint64_t descriptor;
2899 descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
2900 descriptor = ldq_phys(descaddr);
2901 if (!(descriptor & 1) ||
2902 (!(descriptor & 2) && (level == 3))) {
2903 /* Invalid, or the Reserved level 3 encoding */
2904 goto do_fault;
2906 descaddr = descriptor & 0xfffffff000ULL;
2908 if ((descriptor & 2) && (level < 3)) {
2909 /* Table entry. The top five bits are attributes which may
2910 * propagate down through lower levels of the table (and
2911 * which are all arranged so that 0 means "no effect", so
2912 * we can gather them up by ORing in the bits at each level).
2914 tableattrs |= extract64(descriptor, 59, 5);
2915 level++;
2916 continue;
2918 /* Block entry at level 1 or 2, or page entry at level 3.
2919 * These are basically the same thing, although the number
2920 * of bits we pull in from the vaddr varies.
2922 page_size = (1 << (39 - (9 * level)));
2923 descaddr |= (address & (page_size - 1));
2924 /* Extract attributes from the descriptor and merge with table attrs */
2925 attrs = extract64(descriptor, 2, 10)
2926 | (extract64(descriptor, 52, 12) << 10);
2927 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
2928 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
2929 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
2930 * means "force PL1 access only", which means forcing AP[1] to 0.
2932 if (extract32(tableattrs, 2, 1)) {
2933 attrs &= ~(1 << 4);
2935 /* Since we're always in the Non-secure state, NSTable is ignored. */
2936 break;
2938 /* Here descaddr is the final physical address, and attributes
2939 * are all in attrs.
2941 fault_type = access_fault;
2942 if ((attrs & (1 << 8)) == 0) {
2943 /* Access flag */
2944 goto do_fault;
2946 fault_type = permission_fault;
2947 if (is_user && !(attrs & (1 << 4))) {
2948 /* Unprivileged access not enabled */
2949 goto do_fault;
2951 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2952 if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
2953 /* XN or PXN */
2954 if (access_type == 2) {
2955 goto do_fault;
2957 *prot &= ~PAGE_EXEC;
2959 if (attrs & (1 << 5)) {
2960 /* Write access forbidden */
2961 if (access_type == 1) {
2962 goto do_fault;
2964 *prot &= ~PAGE_WRITE;
2967 *phys_ptr = descaddr;
2968 *page_size_ptr = page_size;
2969 return 0;
2971 do_fault:
2972 /* Long-descriptor format IFSR/DFSR value */
2973 return (1 << 9) | (fault_type << 2) | level;
2976 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
2977 int access_type, int is_user,
2978 hwaddr *phys_ptr, int *prot)
2980 int n;
2981 uint32_t mask;
2982 uint32_t base;
2984 *phys_ptr = address;
2985 for (n = 7; n >= 0; n--) {
2986 base = env->cp15.c6_region[n];
2987 if ((base & 1) == 0)
2988 continue;
2989 mask = 1 << ((base >> 1) & 0x1f);
2990 /* Keep this shift separate from the above to avoid an
2991 (undefined) << 32. */
2992 mask = (mask << 1) - 1;
2993 if (((base ^ address) & ~mask) == 0)
2994 break;
2996 if (n < 0)
2997 return 2;
2999 if (access_type == 2) {
3000 mask = env->cp15.c5_insn;
3001 } else {
3002 mask = env->cp15.c5_data;
3004 mask = (mask >> (n * 4)) & 0xf;
3005 switch (mask) {
3006 case 0:
3007 return 1;
3008 case 1:
3009 if (is_user)
3010 return 1;
3011 *prot = PAGE_READ | PAGE_WRITE;
3012 break;
3013 case 2:
3014 *prot = PAGE_READ;
3015 if (!is_user)
3016 *prot |= PAGE_WRITE;
3017 break;
3018 case 3:
3019 *prot = PAGE_READ | PAGE_WRITE;
3020 break;
3021 case 5:
3022 if (is_user)
3023 return 1;
3024 *prot = PAGE_READ;
3025 break;
3026 case 6:
3027 *prot = PAGE_READ;
3028 break;
3029 default:
3030 /* Bad permission. */
3031 return 1;
3033 *prot |= PAGE_EXEC;
3034 return 0;
3037 /* get_phys_addr - get the physical address for this virtual address
3039 * Find the physical address corresponding to the given virtual address,
3040 * by doing a translation table walk on MMU based systems or using the
3041 * MPU state on MPU based systems.
3043 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
3044 * prot and page_size are not filled in, and the return value provides
3045 * information on why the translation aborted, in the format of a
3046 * DFSR/IFSR fault register, with the following caveats:
3047 * * we honour the short vs long DFSR format differences.
3048 * * the WnR bit is never set (the caller must do this).
3049 * * for MPU based systems we don't bother to return a full FSR format
3050 * value.
3052 * @env: CPUARMState
3053 * @address: virtual address to get physical address for
3054 * @access_type: 0 for read, 1 for write, 2 for execute
3055 * @is_user: 0 for privileged access, 1 for user
3056 * @phys_ptr: set to the physical address corresponding to the virtual address
3057 * @prot: set to the permissions for the page containing phys_ptr
3058 * @page_size: set to the size of the page containing phys_ptr
3060 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
3061 int access_type, int is_user,
3062 hwaddr *phys_ptr, int *prot,
3063 target_ulong *page_size)
3065 /* Fast Context Switch Extension. */
3066 if (address < 0x02000000)
3067 address += env->cp15.c13_fcse;
3069 if ((env->cp15.c1_sys & 1) == 0) {
3070 /* MMU/MPU disabled. */
3071 *phys_ptr = address;
3072 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3073 *page_size = TARGET_PAGE_SIZE;
3074 return 0;
3075 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
3076 *page_size = TARGET_PAGE_SIZE;
3077 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
3078 prot);
3079 } else if (extended_addresses_enabled(env)) {
3080 return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
3081 prot, page_size);
3082 } else if (env->cp15.c1_sys & (1 << 23)) {
3083 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
3084 prot, page_size);
3085 } else {
3086 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
3087 prot, page_size);
3091 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
3092 int access_type, int mmu_idx)
3094 hwaddr phys_addr;
3095 target_ulong page_size;
3096 int prot;
3097 int ret, is_user;
3099 is_user = mmu_idx == MMU_USER_IDX;
3100 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
3101 &page_size);
3102 if (ret == 0) {
3103 /* Map a single [sub]page. */
3104 phys_addr &= ~(hwaddr)0x3ff;
3105 address &= ~(uint32_t)0x3ff;
3106 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
3107 return 0;
3110 if (access_type == 2) {
3111 env->cp15.c5_insn = ret;
3112 env->cp15.c6_insn = address;
3113 env->exception_index = EXCP_PREFETCH_ABORT;
3114 } else {
3115 env->cp15.c5_data = ret;
3116 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
3117 env->cp15.c5_data |= (1 << 11);
3118 env->cp15.c6_data = address;
3119 env->exception_index = EXCP_DATA_ABORT;
3121 return 1;
3124 hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
3126 ARMCPU *cpu = ARM_CPU(cs);
3127 hwaddr phys_addr;
3128 target_ulong page_size;
3129 int prot;
3130 int ret;
3132 ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size);
3134 if (ret != 0) {
3135 return -1;
3138 return phys_addr;
3141 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
3143 if ((env->uncached_cpsr & CPSR_M) == mode) {
3144 env->regs[13] = val;
3145 } else {
3146 env->banked_r13[bank_number(mode)] = val;
3150 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
3152 if ((env->uncached_cpsr & CPSR_M) == mode) {
3153 return env->regs[13];
3154 } else {
3155 return env->banked_r13[bank_number(mode)];
3159 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
3161 switch (reg) {
3162 case 0: /* APSR */
3163 return xpsr_read(env) & 0xf8000000;
3164 case 1: /* IAPSR */
3165 return xpsr_read(env) & 0xf80001ff;
3166 case 2: /* EAPSR */
3167 return xpsr_read(env) & 0xff00fc00;
3168 case 3: /* xPSR */
3169 return xpsr_read(env) & 0xff00fdff;
3170 case 5: /* IPSR */
3171 return xpsr_read(env) & 0x000001ff;
3172 case 6: /* EPSR */
3173 return xpsr_read(env) & 0x0700fc00;
3174 case 7: /* IEPSR */
3175 return xpsr_read(env) & 0x0700edff;
3176 case 8: /* MSP */
3177 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
3178 case 9: /* PSP */
3179 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
3180 case 16: /* PRIMASK */
3181 return (env->uncached_cpsr & CPSR_I) != 0;
3182 case 17: /* BASEPRI */
3183 case 18: /* BASEPRI_MAX */
3184 return env->v7m.basepri;
3185 case 19: /* FAULTMASK */
3186 return (env->uncached_cpsr & CPSR_F) != 0;
3187 case 20: /* CONTROL */
3188 return env->v7m.control;
3189 default:
3190 /* ??? For debugging only. */
3191 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
3192 return 0;
3196 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
3198 switch (reg) {
3199 case 0: /* APSR */
3200 xpsr_write(env, val, 0xf8000000);
3201 break;
3202 case 1: /* IAPSR */
3203 xpsr_write(env, val, 0xf8000000);
3204 break;
3205 case 2: /* EAPSR */
3206 xpsr_write(env, val, 0xfe00fc00);
3207 break;
3208 case 3: /* xPSR */
3209 xpsr_write(env, val, 0xfe00fc00);
3210 break;
3211 case 5: /* IPSR */
3212 /* IPSR bits are readonly. */
3213 break;
3214 case 6: /* EPSR */
3215 xpsr_write(env, val, 0x0600fc00);
3216 break;
3217 case 7: /* IEPSR */
3218 xpsr_write(env, val, 0x0600fc00);
3219 break;
3220 case 8: /* MSP */
3221 if (env->v7m.current_sp)
3222 env->v7m.other_sp = val;
3223 else
3224 env->regs[13] = val;
3225 break;
3226 case 9: /* PSP */
3227 if (env->v7m.current_sp)
3228 env->regs[13] = val;
3229 else
3230 env->v7m.other_sp = val;
3231 break;
3232 case 16: /* PRIMASK */
3233 if (val & 1)
3234 env->uncached_cpsr |= CPSR_I;
3235 else
3236 env->uncached_cpsr &= ~CPSR_I;
3237 break;
3238 case 17: /* BASEPRI */
3239 env->v7m.basepri = val & 0xff;
3240 break;
3241 case 18: /* BASEPRI_MAX */
3242 val &= 0xff;
3243 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
3244 env->v7m.basepri = val;
3245 break;
3246 case 19: /* FAULTMASK */
3247 if (val & 1)
3248 env->uncached_cpsr |= CPSR_F;
3249 else
3250 env->uncached_cpsr &= ~CPSR_F;
3251 break;
3252 case 20: /* CONTROL */
3253 env->v7m.control = val & 3;
3254 switch_v7m_sp(env, (val & 2) != 0);
3255 break;
3256 default:
3257 /* ??? For debugging only. */
3258 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
3259 return;
3263 #endif
3265 /* Note that signed overflow is undefined in C. The following routines are
3266 careful to use unsigned types where modulo arithmetic is required.
3267 Failure to do so _will_ break on newer gcc. */
3269 /* Signed saturating arithmetic. */
3271 /* Perform 16-bit signed saturating addition. */
3272 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
3274 uint16_t res;
3276 res = a + b;
3277 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
3278 if (a & 0x8000)
3279 res = 0x8000;
3280 else
3281 res = 0x7fff;
3283 return res;
3286 /* Perform 8-bit signed saturating addition. */
3287 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
3289 uint8_t res;
3291 res = a + b;
3292 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
3293 if (a & 0x80)
3294 res = 0x80;
3295 else
3296 res = 0x7f;
3298 return res;
3301 /* Perform 16-bit signed saturating subtraction. */
3302 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
3304 uint16_t res;
3306 res = a - b;
3307 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
3308 if (a & 0x8000)
3309 res = 0x8000;
3310 else
3311 res = 0x7fff;
3313 return res;
3316 /* Perform 8-bit signed saturating subtraction. */
3317 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
3319 uint8_t res;
3321 res = a - b;
3322 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
3323 if (a & 0x80)
3324 res = 0x80;
3325 else
3326 res = 0x7f;
3328 return res;
3331 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
3332 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
3333 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
3334 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
3335 #define PFX q
3337 #include "op_addsub.h"
3339 /* Unsigned saturating arithmetic. */
3340 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
3342 uint16_t res;
3343 res = a + b;
3344 if (res < a)
3345 res = 0xffff;
3346 return res;
3349 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
3351 if (a > b)
3352 return a - b;
3353 else
3354 return 0;
3357 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
3359 uint8_t res;
3360 res = a + b;
3361 if (res < a)
3362 res = 0xff;
3363 return res;
3366 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
3368 if (a > b)
3369 return a - b;
3370 else
3371 return 0;
3374 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
3375 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
3376 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
3377 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
3378 #define PFX uq
3380 #include "op_addsub.h"
3382 /* Signed modulo arithmetic. */
3383 #define SARITH16(a, b, n, op) do { \
3384 int32_t sum; \
3385 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
3386 RESULT(sum, n, 16); \
3387 if (sum >= 0) \
3388 ge |= 3 << (n * 2); \
3389 } while(0)
3391 #define SARITH8(a, b, n, op) do { \
3392 int32_t sum; \
3393 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
3394 RESULT(sum, n, 8); \
3395 if (sum >= 0) \
3396 ge |= 1 << n; \
3397 } while(0)
3400 #define ADD16(a, b, n) SARITH16(a, b, n, +)
3401 #define SUB16(a, b, n) SARITH16(a, b, n, -)
3402 #define ADD8(a, b, n) SARITH8(a, b, n, +)
3403 #define SUB8(a, b, n) SARITH8(a, b, n, -)
3404 #define PFX s
3405 #define ARITH_GE
3407 #include "op_addsub.h"
3409 /* Unsigned modulo arithmetic. */
3410 #define ADD16(a, b, n) do { \
3411 uint32_t sum; \
3412 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
3413 RESULT(sum, n, 16); \
3414 if ((sum >> 16) == 1) \
3415 ge |= 3 << (n * 2); \
3416 } while(0)
3418 #define ADD8(a, b, n) do { \
3419 uint32_t sum; \
3420 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
3421 RESULT(sum, n, 8); \
3422 if ((sum >> 8) == 1) \
3423 ge |= 1 << n; \
3424 } while(0)
3426 #define SUB16(a, b, n) do { \
3427 uint32_t sum; \
3428 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
3429 RESULT(sum, n, 16); \
3430 if ((sum >> 16) == 0) \
3431 ge |= 3 << (n * 2); \
3432 } while(0)
3434 #define SUB8(a, b, n) do { \
3435 uint32_t sum; \
3436 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
3437 RESULT(sum, n, 8); \
3438 if ((sum >> 8) == 0) \
3439 ge |= 1 << n; \
3440 } while(0)
3442 #define PFX u
3443 #define ARITH_GE
3445 #include "op_addsub.h"
3447 /* Halved signed arithmetic. */
3448 #define ADD16(a, b, n) \
3449 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
3450 #define SUB16(a, b, n) \
3451 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
3452 #define ADD8(a, b, n) \
3453 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
3454 #define SUB8(a, b, n) \
3455 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
3456 #define PFX sh
3458 #include "op_addsub.h"
3460 /* Halved unsigned arithmetic. */
3461 #define ADD16(a, b, n) \
3462 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3463 #define SUB16(a, b, n) \
3464 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3465 #define ADD8(a, b, n) \
3466 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3467 #define SUB8(a, b, n) \
3468 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3469 #define PFX uh
3471 #include "op_addsub.h"
3473 static inline uint8_t do_usad(uint8_t a, uint8_t b)
3475 if (a > b)
3476 return a - b;
3477 else
3478 return b - a;
3481 /* Unsigned sum of absolute byte differences. */
3482 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
3484 uint32_t sum;
3485 sum = do_usad(a, b);
3486 sum += do_usad(a >> 8, b >> 8);
3487 sum += do_usad(a >> 16, b >>16);
3488 sum += do_usad(a >> 24, b >> 24);
3489 return sum;
3492 /* For ARMv6 SEL instruction. */
3493 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
3495 uint32_t mask;
3497 mask = 0;
3498 if (flags & 1)
3499 mask |= 0xff;
3500 if (flags & 2)
3501 mask |= 0xff00;
3502 if (flags & 4)
3503 mask |= 0xff0000;
3504 if (flags & 8)
3505 mask |= 0xff000000;
3506 return (a & mask) | (b & ~mask);
3509 /* VFP support. We follow the convention used for VFP instructions:
3510 Single precision routines have a "s" suffix, double precision a
3511 "d" suffix. */
3513 /* Convert host exception flags to vfp form. */
3514 static inline int vfp_exceptbits_from_host(int host_bits)
3516 int target_bits = 0;
3518 if (host_bits & float_flag_invalid)
3519 target_bits |= 1;
3520 if (host_bits & float_flag_divbyzero)
3521 target_bits |= 2;
3522 if (host_bits & float_flag_overflow)
3523 target_bits |= 4;
3524 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
3525 target_bits |= 8;
3526 if (host_bits & float_flag_inexact)
3527 target_bits |= 0x10;
3528 if (host_bits & float_flag_input_denormal)
3529 target_bits |= 0x80;
3530 return target_bits;
3533 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
3535 int i;
3536 uint32_t fpscr;
3538 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
3539 | (env->vfp.vec_len << 16)
3540 | (env->vfp.vec_stride << 20);
3541 i = get_float_exception_flags(&env->vfp.fp_status);
3542 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
3543 fpscr |= vfp_exceptbits_from_host(i);
3544 return fpscr;
3547 uint32_t vfp_get_fpscr(CPUARMState *env)
3549 return HELPER(vfp_get_fpscr)(env);
3552 /* Convert vfp exception flags to target form. */
3553 static inline int vfp_exceptbits_to_host(int target_bits)
3555 int host_bits = 0;
3557 if (target_bits & 1)
3558 host_bits |= float_flag_invalid;
3559 if (target_bits & 2)
3560 host_bits |= float_flag_divbyzero;
3561 if (target_bits & 4)
3562 host_bits |= float_flag_overflow;
3563 if (target_bits & 8)
3564 host_bits |= float_flag_underflow;
3565 if (target_bits & 0x10)
3566 host_bits |= float_flag_inexact;
3567 if (target_bits & 0x80)
3568 host_bits |= float_flag_input_denormal;
3569 return host_bits;
3572 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
3574 int i;
3575 uint32_t changed;
3577 changed = env->vfp.xregs[ARM_VFP_FPSCR];
3578 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
3579 env->vfp.vec_len = (val >> 16) & 7;
3580 env->vfp.vec_stride = (val >> 20) & 3;
3582 changed ^= val;
3583 if (changed & (3 << 22)) {
3584 i = (val >> 22) & 3;
3585 switch (i) {
3586 case 0:
3587 i = float_round_nearest_even;
3588 break;
3589 case 1:
3590 i = float_round_up;
3591 break;
3592 case 2:
3593 i = float_round_down;
3594 break;
3595 case 3:
3596 i = float_round_to_zero;
3597 break;
3599 set_float_rounding_mode(i, &env->vfp.fp_status);
3601 if (changed & (1 << 24)) {
3602 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
3603 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
3605 if (changed & (1 << 25))
3606 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
3608 i = vfp_exceptbits_to_host(val);
3609 set_float_exception_flags(i, &env->vfp.fp_status);
3610 set_float_exception_flags(0, &env->vfp.standard_fp_status);
3613 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
3615 HELPER(vfp_set_fpscr)(env, val);
3618 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
3620 #define VFP_BINOP(name) \
3621 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
3623 float_status *fpst = fpstp; \
3624 return float32_ ## name(a, b, fpst); \
3626 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
3628 float_status *fpst = fpstp; \
3629 return float64_ ## name(a, b, fpst); \
3631 VFP_BINOP(add)
3632 VFP_BINOP(sub)
3633 VFP_BINOP(mul)
3634 VFP_BINOP(div)
3635 #undef VFP_BINOP
3637 float32 VFP_HELPER(neg, s)(float32 a)
3639 return float32_chs(a);
3642 float64 VFP_HELPER(neg, d)(float64 a)
3644 return float64_chs(a);
3647 float32 VFP_HELPER(abs, s)(float32 a)
3649 return float32_abs(a);
3652 float64 VFP_HELPER(abs, d)(float64 a)
3654 return float64_abs(a);
3657 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
3659 return float32_sqrt(a, &env->vfp.fp_status);
3662 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
3664 return float64_sqrt(a, &env->vfp.fp_status);
3667 /* XXX: check quiet/signaling case */
3668 #define DO_VFP_cmp(p, type) \
3669 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
3671 uint32_t flags; \
3672 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
3673 case 0: flags = 0x6; break; \
3674 case -1: flags = 0x8; break; \
3675 case 1: flags = 0x2; break; \
3676 default: case 2: flags = 0x3; break; \
3678 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3679 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3681 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
3683 uint32_t flags; \
3684 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
3685 case 0: flags = 0x6; break; \
3686 case -1: flags = 0x8; break; \
3687 case 1: flags = 0x2; break; \
3688 default: case 2: flags = 0x3; break; \
3690 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3691 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3693 DO_VFP_cmp(s, float32)
3694 DO_VFP_cmp(d, float64)
3695 #undef DO_VFP_cmp
3697 /* Integer to float and float to integer conversions */
3699 #define CONV_ITOF(name, fsz, sign) \
3700 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
3702 float_status *fpst = fpstp; \
3703 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
3706 #define CONV_FTOI(name, fsz, sign, round) \
3707 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
3709 float_status *fpst = fpstp; \
3710 if (float##fsz##_is_any_nan(x)) { \
3711 float_raise(float_flag_invalid, fpst); \
3712 return 0; \
3714 return float##fsz##_to_##sign##int32##round(x, fpst); \
3717 #define FLOAT_CONVS(name, p, fsz, sign) \
3718 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
3719 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
3720 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
3722 FLOAT_CONVS(si, s, 32, )
3723 FLOAT_CONVS(si, d, 64, )
3724 FLOAT_CONVS(ui, s, 32, u)
3725 FLOAT_CONVS(ui, d, 64, u)
3727 #undef CONV_ITOF
3728 #undef CONV_FTOI
3729 #undef FLOAT_CONVS
3731 /* floating point conversion */
3732 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
3734 float64 r = float32_to_float64(x, &env->vfp.fp_status);
3735 /* ARM requires that S<->D conversion of any kind of NaN generates
3736 * a quiet NaN by forcing the most significant frac bit to 1.
3738 return float64_maybe_silence_nan(r);
3741 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
3743 float32 r = float64_to_float32(x, &env->vfp.fp_status);
3744 /* ARM requires that S<->D conversion of any kind of NaN generates
3745 * a quiet NaN by forcing the most significant frac bit to 1.
3747 return float32_maybe_silence_nan(r);
3750 /* VFP3 fixed point conversion. */
3751 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
3752 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
3753 void *fpstp) \
3755 float_status *fpst = fpstp; \
3756 float##fsz tmp; \
3757 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
3758 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
3760 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
3761 void *fpstp) \
3763 float_status *fpst = fpstp; \
3764 float##fsz tmp; \
3765 if (float##fsz##_is_any_nan(x)) { \
3766 float_raise(float_flag_invalid, fpst); \
3767 return 0; \
3769 tmp = float##fsz##_scalbn(x, shift, fpst); \
3770 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
3773 VFP_CONV_FIX(sh, d, 64, int16, )
3774 VFP_CONV_FIX(sl, d, 64, int32, )
3775 VFP_CONV_FIX(uh, d, 64, uint16, u)
3776 VFP_CONV_FIX(ul, d, 64, uint32, u)
3777 VFP_CONV_FIX(sh, s, 32, int16, )
3778 VFP_CONV_FIX(sl, s, 32, int32, )
3779 VFP_CONV_FIX(uh, s, 32, uint16, u)
3780 VFP_CONV_FIX(ul, s, 32, uint32, u)
3781 #undef VFP_CONV_FIX
3783 /* Half precision conversions. */
3784 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
3786 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3787 float32 r = float16_to_float32(make_float16(a), ieee, s);
3788 if (ieee) {
3789 return float32_maybe_silence_nan(r);
3791 return r;
3794 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
3796 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3797 float16 r = float32_to_float16(a, ieee, s);
3798 if (ieee) {
3799 r = float16_maybe_silence_nan(r);
3801 return float16_val(r);
3804 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3806 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
3809 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3811 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
3814 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3816 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
3819 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3821 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
3824 #define float32_two make_float32(0x40000000)
3825 #define float32_three make_float32(0x40400000)
3826 #define float32_one_point_five make_float32(0x3fc00000)
3828 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
3830 float_status *s = &env->vfp.standard_fp_status;
3831 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3832 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3833 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3834 float_raise(float_flag_input_denormal, s);
3836 return float32_two;
3838 return float32_sub(float32_two, float32_mul(a, b, s), s);
3841 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
3843 float_status *s = &env->vfp.standard_fp_status;
3844 float32 product;
3845 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3846 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3847 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3848 float_raise(float_flag_input_denormal, s);
3850 return float32_one_point_five;
3852 product = float32_mul(a, b, s);
3853 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
3856 /* NEON helpers. */
3858 /* Constants 256 and 512 are used in some helpers; we avoid relying on
3859 * int->float conversions at run-time. */
3860 #define float64_256 make_float64(0x4070000000000000LL)
3861 #define float64_512 make_float64(0x4080000000000000LL)
3863 /* The algorithm that must be used to calculate the estimate
3864 * is specified by the ARM ARM.
3866 static float64 recip_estimate(float64 a, CPUARMState *env)
3868 /* These calculations mustn't set any fp exception flags,
3869 * so we use a local copy of the fp_status.
3871 float_status dummy_status = env->vfp.standard_fp_status;
3872 float_status *s = &dummy_status;
3873 /* q = (int)(a * 512.0) */
3874 float64 q = float64_mul(float64_512, a, s);
3875 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3877 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3878 q = int64_to_float64(q_int, s);
3879 q = float64_add(q, float64_half, s);
3880 q = float64_div(q, float64_512, s);
3881 q = float64_div(float64_one, q, s);
3883 /* s = (int)(256.0 * r + 0.5) */
3884 q = float64_mul(q, float64_256, s);
3885 q = float64_add(q, float64_half, s);
3886 q_int = float64_to_int64_round_to_zero(q, s);
3888 /* return (double)s / 256.0 */
3889 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3892 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
3894 float_status *s = &env->vfp.standard_fp_status;
3895 float64 f64;
3896 uint32_t val32 = float32_val(a);
3898 int result_exp;
3899 int a_exp = (val32 & 0x7f800000) >> 23;
3900 int sign = val32 & 0x80000000;
3902 if (float32_is_any_nan(a)) {
3903 if (float32_is_signaling_nan(a)) {
3904 float_raise(float_flag_invalid, s);
3906 return float32_default_nan;
3907 } else if (float32_is_infinity(a)) {
3908 return float32_set_sign(float32_zero, float32_is_neg(a));
3909 } else if (float32_is_zero_or_denormal(a)) {
3910 if (!float32_is_zero(a)) {
3911 float_raise(float_flag_input_denormal, s);
3913 float_raise(float_flag_divbyzero, s);
3914 return float32_set_sign(float32_infinity, float32_is_neg(a));
3915 } else if (a_exp >= 253) {
3916 float_raise(float_flag_underflow, s);
3917 return float32_set_sign(float32_zero, float32_is_neg(a));
3920 f64 = make_float64((0x3feULL << 52)
3921 | ((int64_t)(val32 & 0x7fffff) << 29));
3923 result_exp = 253 - a_exp;
3925 f64 = recip_estimate(f64, env);
3927 val32 = sign
3928 | ((result_exp & 0xff) << 23)
3929 | ((float64_val(f64) >> 29) & 0x7fffff);
3930 return make_float32(val32);
3933 /* The algorithm that must be used to calculate the estimate
3934 * is specified by the ARM ARM.
3936 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
3938 /* These calculations mustn't set any fp exception flags,
3939 * so we use a local copy of the fp_status.
3941 float_status dummy_status = env->vfp.standard_fp_status;
3942 float_status *s = &dummy_status;
3943 float64 q;
3944 int64_t q_int;
3946 if (float64_lt(a, float64_half, s)) {
3947 /* range 0.25 <= a < 0.5 */
3949 /* a in units of 1/512 rounded down */
3950 /* q0 = (int)(a * 512.0); */
3951 q = float64_mul(float64_512, a, s);
3952 q_int = float64_to_int64_round_to_zero(q, s);
3954 /* reciprocal root r */
3955 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
3956 q = int64_to_float64(q_int, s);
3957 q = float64_add(q, float64_half, s);
3958 q = float64_div(q, float64_512, s);
3959 q = float64_sqrt(q, s);
3960 q = float64_div(float64_one, q, s);
3961 } else {
3962 /* range 0.5 <= a < 1.0 */
3964 /* a in units of 1/256 rounded down */
3965 /* q1 = (int)(a * 256.0); */
3966 q = float64_mul(float64_256, a, s);
3967 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3969 /* reciprocal root r */
3970 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3971 q = int64_to_float64(q_int, s);
3972 q = float64_add(q, float64_half, s);
3973 q = float64_div(q, float64_256, s);
3974 q = float64_sqrt(q, s);
3975 q = float64_div(float64_one, q, s);
3977 /* r in units of 1/256 rounded to nearest */
3978 /* s = (int)(256.0 * r + 0.5); */
3980 q = float64_mul(q, float64_256,s );
3981 q = float64_add(q, float64_half, s);
3982 q_int = float64_to_int64_round_to_zero(q, s);
3984 /* return (double)s / 256.0;*/
3985 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3988 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
3990 float_status *s = &env->vfp.standard_fp_status;
3991 int result_exp;
3992 float64 f64;
3993 uint32_t val;
3994 uint64_t val64;
3996 val = float32_val(a);
3998 if (float32_is_any_nan(a)) {
3999 if (float32_is_signaling_nan(a)) {
4000 float_raise(float_flag_invalid, s);
4002 return float32_default_nan;
4003 } else if (float32_is_zero_or_denormal(a)) {
4004 if (!float32_is_zero(a)) {
4005 float_raise(float_flag_input_denormal, s);
4007 float_raise(float_flag_divbyzero, s);
4008 return float32_set_sign(float32_infinity, float32_is_neg(a));
4009 } else if (float32_is_neg(a)) {
4010 float_raise(float_flag_invalid, s);
4011 return float32_default_nan;
4012 } else if (float32_is_infinity(a)) {
4013 return float32_zero;
4016 /* Normalize to a double-precision value between 0.25 and 1.0,
4017 * preserving the parity of the exponent. */
4018 if ((val & 0x800000) == 0) {
4019 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
4020 | (0x3feULL << 52)
4021 | ((uint64_t)(val & 0x7fffff) << 29));
4022 } else {
4023 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
4024 | (0x3fdULL << 52)
4025 | ((uint64_t)(val & 0x7fffff) << 29));
4028 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
4030 f64 = recip_sqrt_estimate(f64, env);
4032 val64 = float64_val(f64);
4034 val = ((result_exp & 0xff) << 23)
4035 | ((val64 >> 29) & 0x7fffff);
4036 return make_float32(val);
4039 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
4041 float64 f64;
4043 if ((a & 0x80000000) == 0) {
4044 return 0xffffffff;
4047 f64 = make_float64((0x3feULL << 52)
4048 | ((int64_t)(a & 0x7fffffff) << 21));
4050 f64 = recip_estimate (f64, env);
4052 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4055 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
4057 float64 f64;
4059 if ((a & 0xc0000000) == 0) {
4060 return 0xffffffff;
4063 if (a & 0x80000000) {
4064 f64 = make_float64((0x3feULL << 52)
4065 | ((uint64_t)(a & 0x7fffffff) << 21));
4066 } else { /* bits 31-30 == '01' */
4067 f64 = make_float64((0x3fdULL << 52)
4068 | ((uint64_t)(a & 0x3fffffff) << 22));
4071 f64 = recip_sqrt_estimate(f64, env);
4073 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4076 /* VFPv4 fused multiply-accumulate */
4077 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
4079 float_status *fpst = fpstp;
4080 return float32_muladd(a, b, c, 0, fpst);
4083 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
4085 float_status *fpst = fpstp;
4086 return float64_muladd(a, b, c, 0, fpst);
4089 /* ARMv8 VMAXNM/VMINNM */
4090 float32 VFP_HELPER(maxnm, s)(float32 a, float32 b, void *fpstp)
4092 float_status *fpst = fpstp;
4093 return float32_maxnum(a, b, fpst);
4096 float64 VFP_HELPER(maxnm, d)(float64 a, float64 b, void *fpstp)
4098 float_status *fpst = fpstp;
4099 return float64_maxnum(a, b, fpst);
4102 float32 VFP_HELPER(minnm, s)(float32 a, float32 b, void *fpstp)
4104 float_status *fpst = fpstp;
4105 return float32_minnum(a, b, fpst);
4108 float64 VFP_HELPER(minnm, d)(float64 a, float64 b, void *fpstp)
4110 float_status *fpst = fpstp;
4111 return float64_minnum(a, b, fpst);