change all other clock references to use nanosecond resolution accessors
[qemu.git] / qemu-timer.c
blobbc818aeaedfbd4d40dc41667d8fe9be2e9fbc24d
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "sysemu.h"
26 #include "net.h"
27 #include "monitor.h"
28 #include "console.h"
30 #include "hw/hw.h"
32 #include <unistd.h>
33 #include <fcntl.h>
34 #include <time.h>
35 #include <errno.h>
36 #include <sys/time.h>
37 #include <signal.h>
38 #ifdef __FreeBSD__
39 #include <sys/param.h>
40 #endif
42 #ifdef __linux__
43 #include <sys/ioctl.h>
44 #include <linux/rtc.h>
45 /* For the benefit of older linux systems which don't supply it,
46 we use a local copy of hpet.h. */
47 /* #include <linux/hpet.h> */
48 #include "hpet.h"
49 #endif
51 #ifdef _WIN32
52 #include <windows.h>
53 #include <mmsystem.h>
54 #endif
56 #include "qemu-timer.h"
58 /* Conversion factor from emulated instructions to virtual clock ticks. */
59 int icount_time_shift;
60 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
61 #define MAX_ICOUNT_SHIFT 10
62 /* Compensate for varying guest execution speed. */
63 int64_t qemu_icount_bias;
64 static QEMUTimer *icount_rt_timer;
65 static QEMUTimer *icount_vm_timer;
67 /***********************************************************/
68 /* guest cycle counter */
70 typedef struct TimersState {
71 int64_t cpu_ticks_prev;
72 int64_t cpu_ticks_offset;
73 int64_t cpu_clock_offset;
74 int32_t cpu_ticks_enabled;
75 int64_t dummy;
76 } TimersState;
78 TimersState timers_state;
80 /* return the host CPU cycle counter and handle stop/restart */
81 int64_t cpu_get_ticks(void)
83 if (use_icount) {
84 return cpu_get_icount();
86 if (!timers_state.cpu_ticks_enabled) {
87 return timers_state.cpu_ticks_offset;
88 } else {
89 int64_t ticks;
90 ticks = cpu_get_real_ticks();
91 if (timers_state.cpu_ticks_prev > ticks) {
92 /* Note: non increasing ticks may happen if the host uses
93 software suspend */
94 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
96 timers_state.cpu_ticks_prev = ticks;
97 return ticks + timers_state.cpu_ticks_offset;
101 /* return the host CPU monotonic timer and handle stop/restart */
102 static int64_t cpu_get_clock(void)
104 int64_t ti;
105 if (!timers_state.cpu_ticks_enabled) {
106 return timers_state.cpu_clock_offset;
107 } else {
108 ti = get_clock();
109 return ti + timers_state.cpu_clock_offset;
113 static int64_t qemu_icount_delta(void)
115 if (use_icount == 1) {
116 /* When not using an adaptive execution frequency
117 we tend to get badly out of sync with real time,
118 so just delay for a reasonable amount of time. */
119 return 0;
120 } else {
121 return cpu_get_icount() - cpu_get_clock();
125 /* enable cpu_get_ticks() */
126 void cpu_enable_ticks(void)
128 if (!timers_state.cpu_ticks_enabled) {
129 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
130 timers_state.cpu_clock_offset -= get_clock();
131 timers_state.cpu_ticks_enabled = 1;
135 /* disable cpu_get_ticks() : the clock is stopped. You must not call
136 cpu_get_ticks() after that. */
137 void cpu_disable_ticks(void)
139 if (timers_state.cpu_ticks_enabled) {
140 timers_state.cpu_ticks_offset = cpu_get_ticks();
141 timers_state.cpu_clock_offset = cpu_get_clock();
142 timers_state.cpu_ticks_enabled = 0;
146 /***********************************************************/
147 /* timers */
149 #define QEMU_CLOCK_REALTIME 0
150 #define QEMU_CLOCK_VIRTUAL 1
151 #define QEMU_CLOCK_HOST 2
153 struct QEMUClock {
154 int type;
155 int enabled;
156 /* XXX: add frequency */
159 struct QEMUTimer {
160 QEMUClock *clock;
161 int64_t expire_time;
162 QEMUTimerCB *cb;
163 void *opaque;
164 struct QEMUTimer *next;
167 struct qemu_alarm_timer {
168 char const *name;
169 int (*start)(struct qemu_alarm_timer *t);
170 void (*stop)(struct qemu_alarm_timer *t);
171 void (*rearm)(struct qemu_alarm_timer *t);
172 void *priv;
174 char expired;
175 char pending;
178 static struct qemu_alarm_timer *alarm_timer;
180 int qemu_alarm_pending(void)
182 return alarm_timer->pending;
185 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
187 return !!t->rearm;
190 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
192 if (!alarm_has_dynticks(t))
193 return;
195 t->rearm(t);
198 /* TODO: MIN_TIMER_REARM_NS should be optimized */
199 #define MIN_TIMER_REARM_NS 250000
201 #ifdef _WIN32
203 static int win32_start_timer(struct qemu_alarm_timer *t);
204 static void win32_stop_timer(struct qemu_alarm_timer *t);
205 static void win32_rearm_timer(struct qemu_alarm_timer *t);
207 #else
209 static int unix_start_timer(struct qemu_alarm_timer *t);
210 static void unix_stop_timer(struct qemu_alarm_timer *t);
212 #ifdef __linux__
214 static int dynticks_start_timer(struct qemu_alarm_timer *t);
215 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
216 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
218 static int hpet_start_timer(struct qemu_alarm_timer *t);
219 static void hpet_stop_timer(struct qemu_alarm_timer *t);
221 static int rtc_start_timer(struct qemu_alarm_timer *t);
222 static void rtc_stop_timer(struct qemu_alarm_timer *t);
224 #endif /* __linux__ */
226 #endif /* _WIN32 */
228 /* Correlation between real and virtual time is always going to be
229 fairly approximate, so ignore small variation.
230 When the guest is idle real and virtual time will be aligned in
231 the IO wait loop. */
232 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
234 static void icount_adjust(void)
236 int64_t cur_time;
237 int64_t cur_icount;
238 int64_t delta;
239 static int64_t last_delta;
240 /* If the VM is not running, then do nothing. */
241 if (!vm_running)
242 return;
244 cur_time = cpu_get_clock();
245 cur_icount = qemu_get_clock_ns(vm_clock);
246 delta = cur_icount - cur_time;
247 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
248 if (delta > 0
249 && last_delta + ICOUNT_WOBBLE < delta * 2
250 && icount_time_shift > 0) {
251 /* The guest is getting too far ahead. Slow time down. */
252 icount_time_shift--;
254 if (delta < 0
255 && last_delta - ICOUNT_WOBBLE > delta * 2
256 && icount_time_shift < MAX_ICOUNT_SHIFT) {
257 /* The guest is getting too far behind. Speed time up. */
258 icount_time_shift++;
260 last_delta = delta;
261 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
264 static void icount_adjust_rt(void * opaque)
266 qemu_mod_timer(icount_rt_timer,
267 qemu_get_clock_ms(rt_clock) + 1000);
268 icount_adjust();
271 static void icount_adjust_vm(void * opaque)
273 qemu_mod_timer(icount_vm_timer,
274 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
275 icount_adjust();
278 int64_t qemu_icount_round(int64_t count)
280 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
283 static struct qemu_alarm_timer alarm_timers[] = {
284 #ifndef _WIN32
285 #ifdef __linux__
286 {"dynticks", dynticks_start_timer,
287 dynticks_stop_timer, dynticks_rearm_timer, NULL},
288 /* HPET - if available - is preferred */
289 {"hpet", hpet_start_timer, hpet_stop_timer, NULL, NULL},
290 /* ...otherwise try RTC */
291 {"rtc", rtc_start_timer, rtc_stop_timer, NULL, NULL},
292 #endif
293 {"unix", unix_start_timer, unix_stop_timer, NULL, NULL},
294 #else
295 {"dynticks", win32_start_timer,
296 win32_stop_timer, win32_rearm_timer, NULL},
297 {"win32", win32_start_timer,
298 win32_stop_timer, NULL, NULL},
299 #endif
300 {NULL, }
303 static void show_available_alarms(void)
305 int i;
307 printf("Available alarm timers, in order of precedence:\n");
308 for (i = 0; alarm_timers[i].name; i++)
309 printf("%s\n", alarm_timers[i].name);
312 void configure_alarms(char const *opt)
314 int i;
315 int cur = 0;
316 int count = ARRAY_SIZE(alarm_timers) - 1;
317 char *arg;
318 char *name;
319 struct qemu_alarm_timer tmp;
321 if (!strcmp(opt, "?")) {
322 show_available_alarms();
323 exit(0);
326 arg = qemu_strdup(opt);
328 /* Reorder the array */
329 name = strtok(arg, ",");
330 while (name) {
331 for (i = 0; i < count && alarm_timers[i].name; i++) {
332 if (!strcmp(alarm_timers[i].name, name))
333 break;
336 if (i == count) {
337 fprintf(stderr, "Unknown clock %s\n", name);
338 goto next;
341 if (i < cur)
342 /* Ignore */
343 goto next;
345 /* Swap */
346 tmp = alarm_timers[i];
347 alarm_timers[i] = alarm_timers[cur];
348 alarm_timers[cur] = tmp;
350 cur++;
351 next:
352 name = strtok(NULL, ",");
355 qemu_free(arg);
357 if (cur) {
358 /* Disable remaining timers */
359 for (i = cur; i < count; i++)
360 alarm_timers[i].name = NULL;
361 } else {
362 show_available_alarms();
363 exit(1);
367 #define QEMU_NUM_CLOCKS 3
369 QEMUClock *rt_clock;
370 QEMUClock *vm_clock;
371 QEMUClock *host_clock;
373 static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];
375 static QEMUClock *qemu_new_clock(int type)
377 QEMUClock *clock;
378 clock = qemu_mallocz(sizeof(QEMUClock));
379 clock->type = type;
380 clock->enabled = 1;
381 return clock;
384 void qemu_clock_enable(QEMUClock *clock, int enabled)
386 clock->enabled = enabled;
389 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
391 QEMUTimer *ts;
393 ts = qemu_mallocz(sizeof(QEMUTimer));
394 ts->clock = clock;
395 ts->cb = cb;
396 ts->opaque = opaque;
397 return ts;
400 void qemu_free_timer(QEMUTimer *ts)
402 qemu_free(ts);
405 /* stop a timer, but do not dealloc it */
406 void qemu_del_timer(QEMUTimer *ts)
408 QEMUTimer **pt, *t;
410 /* NOTE: this code must be signal safe because
411 qemu_timer_expired() can be called from a signal. */
412 pt = &active_timers[ts->clock->type];
413 for(;;) {
414 t = *pt;
415 if (!t)
416 break;
417 if (t == ts) {
418 *pt = t->next;
419 break;
421 pt = &t->next;
425 /* modify the current timer so that it will be fired when current_time
426 >= expire_time. The corresponding callback will be called. */
427 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
429 QEMUTimer **pt, *t;
431 qemu_del_timer(ts);
433 /* add the timer in the sorted list */
434 /* NOTE: this code must be signal safe because
435 qemu_timer_expired() can be called from a signal. */
436 pt = &active_timers[ts->clock->type];
437 for(;;) {
438 t = *pt;
439 if (!t)
440 break;
441 if (t->expire_time > expire_time)
442 break;
443 pt = &t->next;
445 ts->expire_time = expire_time;
446 ts->next = *pt;
447 *pt = ts;
449 /* Rearm if necessary */
450 if (pt == &active_timers[ts->clock->type]) {
451 if (!alarm_timer->pending) {
452 qemu_rearm_alarm_timer(alarm_timer);
454 /* Interrupt execution to force deadline recalculation. */
455 if (use_icount)
456 qemu_notify_event();
460 int qemu_timer_pending(QEMUTimer *ts)
462 QEMUTimer *t;
463 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
464 if (t == ts)
465 return 1;
467 return 0;
470 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
472 if (!timer_head)
473 return 0;
474 return (timer_head->expire_time <= current_time);
477 static void qemu_run_timers(QEMUClock *clock)
479 QEMUTimer **ptimer_head, *ts;
480 int64_t current_time;
482 if (!clock->enabled)
483 return;
485 current_time = qemu_get_clock (clock);
486 ptimer_head = &active_timers[clock->type];
487 for(;;) {
488 ts = *ptimer_head;
489 if (!ts || ts->expire_time > current_time)
490 break;
491 /* remove timer from the list before calling the callback */
492 *ptimer_head = ts->next;
493 ts->next = NULL;
495 /* run the callback (the timer list can be modified) */
496 ts->cb(ts->opaque);
500 int64_t qemu_get_clock(QEMUClock *clock)
502 switch(clock->type) {
503 case QEMU_CLOCK_REALTIME:
504 return get_clock() / 1000000;
505 default:
506 case QEMU_CLOCK_VIRTUAL:
507 if (use_icount) {
508 return cpu_get_icount();
509 } else {
510 return cpu_get_clock();
512 case QEMU_CLOCK_HOST:
513 return get_clock_realtime();
517 int64_t qemu_get_clock_ns(QEMUClock *clock)
519 switch(clock->type) {
520 case QEMU_CLOCK_REALTIME:
521 return get_clock();
522 default:
523 case QEMU_CLOCK_VIRTUAL:
524 if (use_icount) {
525 return cpu_get_icount();
526 } else {
527 return cpu_get_clock();
529 case QEMU_CLOCK_HOST:
530 return get_clock_realtime();
534 void init_clocks(void)
536 rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
537 vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
538 host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
540 rtc_clock = host_clock;
543 /* save a timer */
544 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
546 uint64_t expire_time;
548 if (qemu_timer_pending(ts)) {
549 expire_time = ts->expire_time;
550 } else {
551 expire_time = -1;
553 qemu_put_be64(f, expire_time);
556 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
558 uint64_t expire_time;
560 expire_time = qemu_get_be64(f);
561 if (expire_time != -1) {
562 qemu_mod_timer(ts, expire_time);
563 } else {
564 qemu_del_timer(ts);
568 static const VMStateDescription vmstate_timers = {
569 .name = "timer",
570 .version_id = 2,
571 .minimum_version_id = 1,
572 .minimum_version_id_old = 1,
573 .fields = (VMStateField []) {
574 VMSTATE_INT64(cpu_ticks_offset, TimersState),
575 VMSTATE_INT64(dummy, TimersState),
576 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
577 VMSTATE_END_OF_LIST()
581 void configure_icount(const char *option)
583 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
584 if (!option)
585 return;
587 if (strcmp(option, "auto") != 0) {
588 icount_time_shift = strtol(option, NULL, 0);
589 use_icount = 1;
590 return;
593 use_icount = 2;
595 /* 125MIPS seems a reasonable initial guess at the guest speed.
596 It will be corrected fairly quickly anyway. */
597 icount_time_shift = 3;
599 /* Have both realtime and virtual time triggers for speed adjustment.
600 The realtime trigger catches emulated time passing too slowly,
601 the virtual time trigger catches emulated time passing too fast.
602 Realtime triggers occur even when idle, so use them less frequently
603 than VM triggers. */
604 icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
605 qemu_mod_timer(icount_rt_timer,
606 qemu_get_clock_ms(rt_clock) + 1000);
607 icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
608 qemu_mod_timer(icount_vm_timer,
609 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
612 void qemu_run_all_timers(void)
614 alarm_timer->pending = 0;
616 /* rearm timer, if not periodic */
617 if (alarm_timer->expired) {
618 alarm_timer->expired = 0;
619 qemu_rearm_alarm_timer(alarm_timer);
622 /* vm time timers */
623 if (vm_running) {
624 qemu_run_timers(vm_clock);
627 qemu_run_timers(rt_clock);
628 qemu_run_timers(host_clock);
631 static int64_t qemu_next_alarm_deadline(void);
633 #ifdef _WIN32
634 static void CALLBACK host_alarm_handler(PVOID lpParam, BOOLEAN unused)
635 #else
636 static void host_alarm_handler(int host_signum)
637 #endif
639 struct qemu_alarm_timer *t = alarm_timer;
640 if (!t)
641 return;
643 #if 0
644 #define DISP_FREQ 1000
646 static int64_t delta_min = INT64_MAX;
647 static int64_t delta_max, delta_cum, last_clock, delta, ti;
648 static int count;
649 ti = qemu_get_clock_ns(vm_clock);
650 if (last_clock != 0) {
651 delta = ti - last_clock;
652 if (delta < delta_min)
653 delta_min = delta;
654 if (delta > delta_max)
655 delta_max = delta;
656 delta_cum += delta;
657 if (++count == DISP_FREQ) {
658 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
659 muldiv64(delta_min, 1000000, get_ticks_per_sec()),
660 muldiv64(delta_max, 1000000, get_ticks_per_sec()),
661 muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
662 (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
663 count = 0;
664 delta_min = INT64_MAX;
665 delta_max = 0;
666 delta_cum = 0;
669 last_clock = ti;
671 #endif
672 if (alarm_has_dynticks(t) ||
673 qemu_next_alarm_deadline () <= 0) {
674 t->expired = alarm_has_dynticks(t);
675 t->pending = 1;
676 qemu_notify_event();
680 int64_t qemu_next_deadline(void)
682 /* To avoid problems with overflow limit this to 2^32. */
683 int64_t delta = INT32_MAX;
685 if (active_timers[QEMU_CLOCK_VIRTUAL]) {
686 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
687 qemu_get_clock_ns(vm_clock);
689 if (active_timers[QEMU_CLOCK_HOST]) {
690 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
691 qemu_get_clock_ns(host_clock);
692 if (hdelta < delta)
693 delta = hdelta;
696 if (delta < 0)
697 delta = 0;
699 return delta;
702 static int64_t qemu_next_alarm_deadline(void)
704 int64_t delta;
705 int64_t rtdelta;
707 if (!use_icount && active_timers[QEMU_CLOCK_VIRTUAL]) {
708 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
709 qemu_get_clock_ns(vm_clock);
710 } else {
711 delta = INT32_MAX;
713 if (active_timers[QEMU_CLOCK_HOST]) {
714 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
715 qemu_get_clock_ns(host_clock);
716 if (hdelta < delta)
717 delta = hdelta;
719 if (active_timers[QEMU_CLOCK_REALTIME]) {
720 rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time * 1000000 -
721 qemu_get_clock_ns(rt_clock));
722 if (rtdelta < delta)
723 delta = rtdelta;
726 return delta;
729 #if defined(__linux__)
731 #define RTC_FREQ 1024
733 static void enable_sigio_timer(int fd)
735 struct sigaction act;
737 /* timer signal */
738 sigfillset(&act.sa_mask);
739 act.sa_flags = 0;
740 act.sa_handler = host_alarm_handler;
742 sigaction(SIGIO, &act, NULL);
743 fcntl_setfl(fd, O_ASYNC);
744 fcntl(fd, F_SETOWN, getpid());
747 static int hpet_start_timer(struct qemu_alarm_timer *t)
749 struct hpet_info info;
750 int r, fd;
752 fd = qemu_open("/dev/hpet", O_RDONLY);
753 if (fd < 0)
754 return -1;
756 /* Set frequency */
757 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
758 if (r < 0) {
759 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
760 "error, but for better emulation accuracy type:\n"
761 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
762 goto fail;
765 /* Check capabilities */
766 r = ioctl(fd, HPET_INFO, &info);
767 if (r < 0)
768 goto fail;
770 /* Enable periodic mode */
771 r = ioctl(fd, HPET_EPI, 0);
772 if (info.hi_flags && (r < 0))
773 goto fail;
775 /* Enable interrupt */
776 r = ioctl(fd, HPET_IE_ON, 0);
777 if (r < 0)
778 goto fail;
780 enable_sigio_timer(fd);
781 t->priv = (void *)(long)fd;
783 return 0;
784 fail:
785 close(fd);
786 return -1;
789 static void hpet_stop_timer(struct qemu_alarm_timer *t)
791 int fd = (long)t->priv;
793 close(fd);
796 static int rtc_start_timer(struct qemu_alarm_timer *t)
798 int rtc_fd;
799 unsigned long current_rtc_freq = 0;
801 TFR(rtc_fd = qemu_open("/dev/rtc", O_RDONLY));
802 if (rtc_fd < 0)
803 return -1;
804 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
805 if (current_rtc_freq != RTC_FREQ &&
806 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
807 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
808 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
809 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
810 goto fail;
812 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
813 fail:
814 close(rtc_fd);
815 return -1;
818 enable_sigio_timer(rtc_fd);
820 t->priv = (void *)(long)rtc_fd;
822 return 0;
825 static void rtc_stop_timer(struct qemu_alarm_timer *t)
827 int rtc_fd = (long)t->priv;
829 close(rtc_fd);
832 static int dynticks_start_timer(struct qemu_alarm_timer *t)
834 struct sigevent ev;
835 timer_t host_timer;
836 struct sigaction act;
838 sigfillset(&act.sa_mask);
839 act.sa_flags = 0;
840 act.sa_handler = host_alarm_handler;
842 sigaction(SIGALRM, &act, NULL);
845 * Initialize ev struct to 0 to avoid valgrind complaining
846 * about uninitialized data in timer_create call
848 memset(&ev, 0, sizeof(ev));
849 ev.sigev_value.sival_int = 0;
850 ev.sigev_notify = SIGEV_SIGNAL;
851 ev.sigev_signo = SIGALRM;
853 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
854 perror("timer_create");
856 /* disable dynticks */
857 fprintf(stderr, "Dynamic Ticks disabled\n");
859 return -1;
862 t->priv = (void *)(long)host_timer;
864 return 0;
867 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
869 timer_t host_timer = (timer_t)(long)t->priv;
871 timer_delete(host_timer);
874 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
876 timer_t host_timer = (timer_t)(long)t->priv;
877 struct itimerspec timeout;
878 int64_t nearest_delta_ns = INT64_MAX;
879 int64_t current_ns;
881 assert(alarm_has_dynticks(t));
882 if (!active_timers[QEMU_CLOCK_REALTIME] &&
883 !active_timers[QEMU_CLOCK_VIRTUAL] &&
884 !active_timers[QEMU_CLOCK_HOST])
885 return;
887 nearest_delta_ns = qemu_next_alarm_deadline();
888 if (nearest_delta_ns < MIN_TIMER_REARM_NS)
889 nearest_delta_ns = MIN_TIMER_REARM_NS;
891 /* check whether a timer is already running */
892 if (timer_gettime(host_timer, &timeout)) {
893 perror("gettime");
894 fprintf(stderr, "Internal timer error: aborting\n");
895 exit(1);
897 current_ns = timeout.it_value.tv_sec * 1000000000LL + timeout.it_value.tv_nsec;
898 if (current_ns && current_ns <= nearest_delta_ns)
899 return;
901 timeout.it_interval.tv_sec = 0;
902 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
903 timeout.it_value.tv_sec = nearest_delta_ns / 1000000000;
904 timeout.it_value.tv_nsec = nearest_delta_ns % 1000000000;
905 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
906 perror("settime");
907 fprintf(stderr, "Internal timer error: aborting\n");
908 exit(1);
912 #endif /* defined(__linux__) */
914 #if !defined(_WIN32)
916 static int unix_start_timer(struct qemu_alarm_timer *t)
918 struct sigaction act;
919 struct itimerval itv;
920 int err;
922 /* timer signal */
923 sigfillset(&act.sa_mask);
924 act.sa_flags = 0;
925 act.sa_handler = host_alarm_handler;
927 sigaction(SIGALRM, &act, NULL);
929 itv.it_interval.tv_sec = 0;
930 /* for i386 kernel 2.6 to get 1 ms */
931 itv.it_interval.tv_usec = 999;
932 itv.it_value.tv_sec = 0;
933 itv.it_value.tv_usec = 10 * 1000;
935 err = setitimer(ITIMER_REAL, &itv, NULL);
936 if (err)
937 return -1;
939 return 0;
942 static void unix_stop_timer(struct qemu_alarm_timer *t)
944 struct itimerval itv;
946 memset(&itv, 0, sizeof(itv));
947 setitimer(ITIMER_REAL, &itv, NULL);
950 #endif /* !defined(_WIN32) */
953 #ifdef _WIN32
955 static int win32_start_timer(struct qemu_alarm_timer *t)
957 HANDLE hTimer;
958 BOOLEAN success;
960 /* If you call ChangeTimerQueueTimer on a one-shot timer (its period
961 is zero) that has already expired, the timer is not updated. Since
962 creating a new timer is relatively expensive, set a bogus one-hour
963 interval in the dynticks case. */
964 success = CreateTimerQueueTimer(&hTimer,
965 NULL,
966 host_alarm_handler,
969 alarm_has_dynticks(t) ? 3600000 : 1,
970 WT_EXECUTEINTIMERTHREAD);
972 if (!success) {
973 fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
974 GetLastError());
975 return -1;
978 t->priv = (PVOID) hTimer;
979 return 0;
982 static void win32_stop_timer(struct qemu_alarm_timer *t)
984 HANDLE hTimer = t->priv;
986 if (hTimer) {
987 DeleteTimerQueueTimer(NULL, hTimer, NULL);
991 static void win32_rearm_timer(struct qemu_alarm_timer *t)
993 HANDLE hTimer = t->priv;
994 int nearest_delta_ms;
995 BOOLEAN success;
997 assert(alarm_has_dynticks(t));
998 if (!active_timers[QEMU_CLOCK_REALTIME] &&
999 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1000 !active_timers[QEMU_CLOCK_HOST])
1001 return;
1003 nearest_delta_ms = (qemu_next_alarm_deadline() + 999999) / 1000000;
1004 if (nearest_delta_ms < 1) {
1005 nearest_delta_ms = 1;
1007 success = ChangeTimerQueueTimer(NULL,
1008 hTimer,
1009 nearest_delta_ms,
1010 3600000);
1012 if (!success) {
1013 fprintf(stderr, "Failed to rearm win32 alarm timer: %ld\n",
1014 GetLastError());
1015 exit(-1);
1020 #endif /* _WIN32 */
1022 static void alarm_timer_on_change_state_rearm(void *opaque, int running, int reason)
1024 if (running)
1025 qemu_rearm_alarm_timer((struct qemu_alarm_timer *) opaque);
1028 int init_timer_alarm(void)
1030 struct qemu_alarm_timer *t = NULL;
1031 int i, err = -1;
1033 for (i = 0; alarm_timers[i].name; i++) {
1034 t = &alarm_timers[i];
1036 err = t->start(t);
1037 if (!err)
1038 break;
1041 if (err) {
1042 err = -ENOENT;
1043 goto fail;
1046 /* first event is at time 0 */
1047 t->pending = 1;
1048 alarm_timer = t;
1049 qemu_add_vm_change_state_handler(alarm_timer_on_change_state_rearm, t);
1051 return 0;
1053 fail:
1054 return err;
1057 void quit_timers(void)
1059 struct qemu_alarm_timer *t = alarm_timer;
1060 alarm_timer = NULL;
1061 t->stop(t);
1064 int qemu_calculate_timeout(void)
1066 int timeout;
1067 int64_t add;
1068 int64_t delta;
1070 /* When using icount, making forward progress with qemu_icount when the
1071 guest CPU is idle is critical. We only use the static io-thread timeout
1072 for non icount runs. */
1073 if (!use_icount || !vm_running) {
1074 return 5000;
1077 /* Advance virtual time to the next event. */
1078 delta = qemu_icount_delta();
1079 if (delta > 0) {
1080 /* If virtual time is ahead of real time then just
1081 wait for IO. */
1082 timeout = (delta + 999999) / 1000000;
1083 } else {
1084 /* Wait for either IO to occur or the next
1085 timer event. */
1086 add = qemu_next_deadline();
1087 /* We advance the timer before checking for IO.
1088 Limit the amount we advance so that early IO
1089 activity won't get the guest too far ahead. */
1090 if (add > 10000000)
1091 add = 10000000;
1092 delta += add;
1093 qemu_icount += qemu_icount_round (add);
1094 timeout = delta / 1000000;
1095 if (timeout < 0)
1096 timeout = 0;
1099 return timeout;