e1000: check buffer availability
[qemu.git] / hw / e1000.c
blob55daae0eba5e75902b5d6fd4c71bda3f507d6a3c
1 /*
2 * QEMU e1000 emulation
4 * Software developer's manual:
5 * http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf
7 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
8 * Copyright (c) 2008 Qumranet
9 * Based on work done by:
10 * Copyright (c) 2007 Dan Aloni
11 * Copyright (c) 2004 Antony T Curtis
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2 of the License, or (at your option) any later version.
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
28 #include "hw.h"
29 #include "pci.h"
30 #include "net.h"
31 #include "net/checksum.h"
32 #include "loader.h"
33 #include "sysemu.h"
35 #include "e1000_hw.h"
37 #define E1000_DEBUG
39 #ifdef E1000_DEBUG
40 enum {
41 DEBUG_GENERAL, DEBUG_IO, DEBUG_MMIO, DEBUG_INTERRUPT,
42 DEBUG_RX, DEBUG_TX, DEBUG_MDIC, DEBUG_EEPROM,
43 DEBUG_UNKNOWN, DEBUG_TXSUM, DEBUG_TXERR, DEBUG_RXERR,
44 DEBUG_RXFILTER, DEBUG_NOTYET,
46 #define DBGBIT(x) (1<<DEBUG_##x)
47 static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL);
49 #define DBGOUT(what, fmt, ...) do { \
50 if (debugflags & DBGBIT(what)) \
51 fprintf(stderr, "e1000: " fmt, ## __VA_ARGS__); \
52 } while (0)
53 #else
54 #define DBGOUT(what, fmt, ...) do {} while (0)
55 #endif
57 #define IOPORT_SIZE 0x40
58 #define PNPMMIO_SIZE 0x20000
59 #define MIN_BUF_SIZE 60 /* Min. octets in an ethernet frame sans FCS */
62 * HW models:
63 * E1000_DEV_ID_82540EM works with Windows and Linux
64 * E1000_DEV_ID_82573L OK with windoze and Linux 2.6.22,
65 * appears to perform better than 82540EM, but breaks with Linux 2.6.18
66 * E1000_DEV_ID_82544GC_COPPER appears to work; not well tested
67 * Others never tested
69 enum { E1000_DEVID = E1000_DEV_ID_82540EM };
72 * May need to specify additional MAC-to-PHY entries --
73 * Intel's Windows driver refuses to initialize unless they match
75 enum {
76 PHY_ID2_INIT = E1000_DEVID == E1000_DEV_ID_82573L ? 0xcc2 :
77 E1000_DEVID == E1000_DEV_ID_82544GC_COPPER ? 0xc30 :
78 /* default to E1000_DEV_ID_82540EM */ 0xc20
81 typedef struct E1000State_st {
82 PCIDevice dev;
83 NICState *nic;
84 NICConf conf;
85 int mmio_index;
87 uint32_t mac_reg[0x8000];
88 uint16_t phy_reg[0x20];
89 uint16_t eeprom_data[64];
91 uint32_t rxbuf_size;
92 uint32_t rxbuf_min_shift;
93 int check_rxov;
94 struct e1000_tx {
95 unsigned char header[256];
96 unsigned char vlan_header[4];
97 /* Fields vlan and data must not be reordered or separated. */
98 unsigned char vlan[4];
99 unsigned char data[0x10000];
100 uint16_t size;
101 unsigned char sum_needed;
102 unsigned char vlan_needed;
103 uint8_t ipcss;
104 uint8_t ipcso;
105 uint16_t ipcse;
106 uint8_t tucss;
107 uint8_t tucso;
108 uint16_t tucse;
109 uint8_t hdr_len;
110 uint16_t mss;
111 uint32_t paylen;
112 uint16_t tso_frames;
113 char tse;
114 int8_t ip;
115 int8_t tcp;
116 char cptse; // current packet tse bit
117 } tx;
119 struct {
120 uint32_t val_in; // shifted in from guest driver
121 uint16_t bitnum_in;
122 uint16_t bitnum_out;
123 uint16_t reading;
124 uint32_t old_eecd;
125 } eecd_state;
126 } E1000State;
128 #define defreg(x) x = (E1000_##x>>2)
129 enum {
130 defreg(CTRL), defreg(EECD), defreg(EERD), defreg(GPRC),
131 defreg(GPTC), defreg(ICR), defreg(ICS), defreg(IMC),
132 defreg(IMS), defreg(LEDCTL), defreg(MANC), defreg(MDIC),
133 defreg(MPC), defreg(PBA), defreg(RCTL), defreg(RDBAH),
134 defreg(RDBAL), defreg(RDH), defreg(RDLEN), defreg(RDT),
135 defreg(STATUS), defreg(SWSM), defreg(TCTL), defreg(TDBAH),
136 defreg(TDBAL), defreg(TDH), defreg(TDLEN), defreg(TDT),
137 defreg(TORH), defreg(TORL), defreg(TOTH), defreg(TOTL),
138 defreg(TPR), defreg(TPT), defreg(TXDCTL), defreg(WUFC),
139 defreg(RA), defreg(MTA), defreg(CRCERRS),defreg(VFTA),
140 defreg(VET),
143 enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W };
144 static const char phy_regcap[0x20] = {
145 [PHY_STATUS] = PHY_R, [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW,
146 [PHY_ID1] = PHY_R, [M88E1000_PHY_SPEC_CTRL] = PHY_RW,
147 [PHY_CTRL] = PHY_RW, [PHY_1000T_CTRL] = PHY_RW,
148 [PHY_LP_ABILITY] = PHY_R, [PHY_1000T_STATUS] = PHY_R,
149 [PHY_AUTONEG_ADV] = PHY_RW, [M88E1000_RX_ERR_CNTR] = PHY_R,
150 [PHY_ID2] = PHY_R, [M88E1000_PHY_SPEC_STATUS] = PHY_R
153 static void
154 ioport_map(PCIDevice *pci_dev, int region_num, pcibus_t addr,
155 pcibus_t size, int type)
157 DBGOUT(IO, "e1000_ioport_map addr=0x%04"FMT_PCIBUS
158 " size=0x%08"FMT_PCIBUS"\n", addr, size);
161 static void
162 set_interrupt_cause(E1000State *s, int index, uint32_t val)
164 if (val)
165 val |= E1000_ICR_INT_ASSERTED;
166 s->mac_reg[ICR] = val;
167 s->mac_reg[ICS] = val;
168 qemu_set_irq(s->dev.irq[0], (s->mac_reg[IMS] & s->mac_reg[ICR]) != 0);
171 static void
172 set_ics(E1000State *s, int index, uint32_t val)
174 DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR],
175 s->mac_reg[IMS]);
176 set_interrupt_cause(s, 0, val | s->mac_reg[ICR]);
179 static int
180 rxbufsize(uint32_t v)
182 v &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 |
183 E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 |
184 E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256;
185 switch (v) {
186 case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384:
187 return 16384;
188 case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192:
189 return 8192;
190 case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096:
191 return 4096;
192 case E1000_RCTL_SZ_1024:
193 return 1024;
194 case E1000_RCTL_SZ_512:
195 return 512;
196 case E1000_RCTL_SZ_256:
197 return 256;
199 return 2048;
202 static void
203 set_ctrl(E1000State *s, int index, uint32_t val)
205 /* RST is self clearing */
206 s->mac_reg[CTRL] = val & ~E1000_CTRL_RST;
209 static void
210 set_rx_control(E1000State *s, int index, uint32_t val)
212 s->mac_reg[RCTL] = val;
213 s->rxbuf_size = rxbufsize(val);
214 s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1;
215 DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT],
216 s->mac_reg[RCTL]);
219 static void
220 set_mdic(E1000State *s, int index, uint32_t val)
222 uint32_t data = val & E1000_MDIC_DATA_MASK;
223 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
225 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy #
226 val = s->mac_reg[MDIC] | E1000_MDIC_ERROR;
227 else if (val & E1000_MDIC_OP_READ) {
228 DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr);
229 if (!(phy_regcap[addr] & PHY_R)) {
230 DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr);
231 val |= E1000_MDIC_ERROR;
232 } else
233 val = (val ^ data) | s->phy_reg[addr];
234 } else if (val & E1000_MDIC_OP_WRITE) {
235 DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data);
236 if (!(phy_regcap[addr] & PHY_W)) {
237 DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr);
238 val |= E1000_MDIC_ERROR;
239 } else
240 s->phy_reg[addr] = data;
242 s->mac_reg[MDIC] = val | E1000_MDIC_READY;
243 set_ics(s, 0, E1000_ICR_MDAC);
246 static uint32_t
247 get_eecd(E1000State *s, int index)
249 uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd;
251 DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n",
252 s->eecd_state.bitnum_out, s->eecd_state.reading);
253 if (!s->eecd_state.reading ||
254 ((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >>
255 ((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1)
256 ret |= E1000_EECD_DO;
257 return ret;
260 static void
261 set_eecd(E1000State *s, int index, uint32_t val)
263 uint32_t oldval = s->eecd_state.old_eecd;
265 s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS |
266 E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ);
267 if (!(E1000_EECD_CS & val)) // CS inactive; nothing to do
268 return;
269 if (E1000_EECD_CS & (val ^ oldval)) { // CS rise edge; reset state
270 s->eecd_state.val_in = 0;
271 s->eecd_state.bitnum_in = 0;
272 s->eecd_state.bitnum_out = 0;
273 s->eecd_state.reading = 0;
275 if (!(E1000_EECD_SK & (val ^ oldval))) // no clock edge
276 return;
277 if (!(E1000_EECD_SK & val)) { // falling edge
278 s->eecd_state.bitnum_out++;
279 return;
281 s->eecd_state.val_in <<= 1;
282 if (val & E1000_EECD_DI)
283 s->eecd_state.val_in |= 1;
284 if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) {
285 s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1;
286 s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) ==
287 EEPROM_READ_OPCODE_MICROWIRE);
289 DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n",
290 s->eecd_state.bitnum_in, s->eecd_state.bitnum_out,
291 s->eecd_state.reading);
294 static uint32_t
295 flash_eerd_read(E1000State *s, int x)
297 unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START;
299 if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0)
300 return (s->mac_reg[EERD]);
302 if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG)
303 return (E1000_EEPROM_RW_REG_DONE | r);
305 return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) |
306 E1000_EEPROM_RW_REG_DONE | r);
309 static void
310 putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse)
312 uint32_t sum;
314 if (cse && cse < n)
315 n = cse + 1;
316 if (sloc < n-1) {
317 sum = net_checksum_add(n-css, data+css);
318 cpu_to_be16wu((uint16_t *)(data + sloc),
319 net_checksum_finish(sum));
323 static inline int
324 vlan_enabled(E1000State *s)
326 return ((s->mac_reg[CTRL] & E1000_CTRL_VME) != 0);
329 static inline int
330 vlan_rx_filter_enabled(E1000State *s)
332 return ((s->mac_reg[RCTL] & E1000_RCTL_VFE) != 0);
335 static inline int
336 is_vlan_packet(E1000State *s, const uint8_t *buf)
338 return (be16_to_cpup((uint16_t *)(buf + 12)) ==
339 le16_to_cpup((uint16_t *)(s->mac_reg + VET)));
342 static inline int
343 is_vlan_txd(uint32_t txd_lower)
345 return ((txd_lower & E1000_TXD_CMD_VLE) != 0);
348 /* FCS aka Ethernet CRC-32. We don't get it from backends and can't
349 * fill it in, just pad descriptor length by 4 bytes unless guest
350 * told us to strip it off the packet. */
351 static inline int
352 fcs_len(E1000State *s)
354 return (s->mac_reg[RCTL] & E1000_RCTL_SECRC) ? 0 : 4;
357 static void
358 xmit_seg(E1000State *s)
360 uint16_t len, *sp;
361 unsigned int frames = s->tx.tso_frames, css, sofar, n;
362 struct e1000_tx *tp = &s->tx;
364 if (tp->tse && tp->cptse) {
365 css = tp->ipcss;
366 DBGOUT(TXSUM, "frames %d size %d ipcss %d\n",
367 frames, tp->size, css);
368 if (tp->ip) { // IPv4
369 cpu_to_be16wu((uint16_t *)(tp->data+css+2),
370 tp->size - css);
371 cpu_to_be16wu((uint16_t *)(tp->data+css+4),
372 be16_to_cpup((uint16_t *)(tp->data+css+4))+frames);
373 } else // IPv6
374 cpu_to_be16wu((uint16_t *)(tp->data+css+4),
375 tp->size - css);
376 css = tp->tucss;
377 len = tp->size - css;
378 DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", tp->tcp, css, len);
379 if (tp->tcp) {
380 sofar = frames * tp->mss;
381 cpu_to_be32wu((uint32_t *)(tp->data+css+4), // seq
382 be32_to_cpupu((uint32_t *)(tp->data+css+4))+sofar);
383 if (tp->paylen - sofar > tp->mss)
384 tp->data[css + 13] &= ~9; // PSH, FIN
385 } else // UDP
386 cpu_to_be16wu((uint16_t *)(tp->data+css+4), len);
387 if (tp->sum_needed & E1000_TXD_POPTS_TXSM) {
388 unsigned int phsum;
389 // add pseudo-header length before checksum calculation
390 sp = (uint16_t *)(tp->data + tp->tucso);
391 phsum = be16_to_cpup(sp) + len;
392 phsum = (phsum >> 16) + (phsum & 0xffff);
393 cpu_to_be16wu(sp, phsum);
395 tp->tso_frames++;
398 if (tp->sum_needed & E1000_TXD_POPTS_TXSM)
399 putsum(tp->data, tp->size, tp->tucso, tp->tucss, tp->tucse);
400 if (tp->sum_needed & E1000_TXD_POPTS_IXSM)
401 putsum(tp->data, tp->size, tp->ipcso, tp->ipcss, tp->ipcse);
402 if (tp->vlan_needed) {
403 memmove(tp->vlan, tp->data, 4);
404 memmove(tp->data, tp->data + 4, 8);
405 memcpy(tp->data + 8, tp->vlan_header, 4);
406 qemu_send_packet(&s->nic->nc, tp->vlan, tp->size + 4);
407 } else
408 qemu_send_packet(&s->nic->nc, tp->data, tp->size);
409 s->mac_reg[TPT]++;
410 s->mac_reg[GPTC]++;
411 n = s->mac_reg[TOTL];
412 if ((s->mac_reg[TOTL] += s->tx.size) < n)
413 s->mac_reg[TOTH]++;
416 static void
417 process_tx_desc(E1000State *s, struct e1000_tx_desc *dp)
419 uint32_t txd_lower = le32_to_cpu(dp->lower.data);
420 uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
421 unsigned int split_size = txd_lower & 0xffff, bytes, sz, op;
422 unsigned int msh = 0xfffff, hdr = 0;
423 uint64_t addr;
424 struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
425 struct e1000_tx *tp = &s->tx;
427 if (dtype == E1000_TXD_CMD_DEXT) { // context descriptor
428 op = le32_to_cpu(xp->cmd_and_length);
429 tp->ipcss = xp->lower_setup.ip_fields.ipcss;
430 tp->ipcso = xp->lower_setup.ip_fields.ipcso;
431 tp->ipcse = le16_to_cpu(xp->lower_setup.ip_fields.ipcse);
432 tp->tucss = xp->upper_setup.tcp_fields.tucss;
433 tp->tucso = xp->upper_setup.tcp_fields.tucso;
434 tp->tucse = le16_to_cpu(xp->upper_setup.tcp_fields.tucse);
435 tp->paylen = op & 0xfffff;
436 tp->hdr_len = xp->tcp_seg_setup.fields.hdr_len;
437 tp->mss = le16_to_cpu(xp->tcp_seg_setup.fields.mss);
438 tp->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0;
439 tp->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0;
440 tp->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0;
441 tp->tso_frames = 0;
442 if (tp->tucso == 0) { // this is probably wrong
443 DBGOUT(TXSUM, "TCP/UDP: cso 0!\n");
444 tp->tucso = tp->tucss + (tp->tcp ? 16 : 6);
446 return;
447 } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
448 // data descriptor
449 if (tp->size == 0) {
450 tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
452 tp->cptse = ( txd_lower & E1000_TXD_CMD_TSE ) ? 1 : 0;
453 } else {
454 // legacy descriptor
455 tp->cptse = 0;
458 if (vlan_enabled(s) && is_vlan_txd(txd_lower) &&
459 (tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) {
460 tp->vlan_needed = 1;
461 cpu_to_be16wu((uint16_t *)(tp->vlan_header),
462 le16_to_cpup((uint16_t *)(s->mac_reg + VET)));
463 cpu_to_be16wu((uint16_t *)(tp->vlan_header + 2),
464 le16_to_cpu(dp->upper.fields.special));
467 addr = le64_to_cpu(dp->buffer_addr);
468 if (tp->tse && tp->cptse) {
469 hdr = tp->hdr_len;
470 msh = hdr + tp->mss;
471 do {
472 bytes = split_size;
473 if (tp->size + bytes > msh)
474 bytes = msh - tp->size;
475 cpu_physical_memory_read(addr, tp->data + tp->size, bytes);
476 if ((sz = tp->size + bytes) >= hdr && tp->size < hdr)
477 memmove(tp->header, tp->data, hdr);
478 tp->size = sz;
479 addr += bytes;
480 if (sz == msh) {
481 xmit_seg(s);
482 memmove(tp->data, tp->header, hdr);
483 tp->size = hdr;
485 } while (split_size -= bytes);
486 } else if (!tp->tse && tp->cptse) {
487 // context descriptor TSE is not set, while data descriptor TSE is set
488 DBGOUT(TXERR, "TCP segmentaion Error\n");
489 } else {
490 cpu_physical_memory_read(addr, tp->data + tp->size, split_size);
491 tp->size += split_size;
494 if (!(txd_lower & E1000_TXD_CMD_EOP))
495 return;
496 if (!(tp->tse && tp->cptse && tp->size < hdr))
497 xmit_seg(s);
498 tp->tso_frames = 0;
499 tp->sum_needed = 0;
500 tp->vlan_needed = 0;
501 tp->size = 0;
502 tp->cptse = 0;
505 static uint32_t
506 txdesc_writeback(target_phys_addr_t base, struct e1000_tx_desc *dp)
508 uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
510 if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS)))
511 return 0;
512 txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) &
513 ~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU);
514 dp->upper.data = cpu_to_le32(txd_upper);
515 cpu_physical_memory_write(base + ((char *)&dp->upper - (char *)dp),
516 (void *)&dp->upper, sizeof(dp->upper));
517 return E1000_ICR_TXDW;
520 static void
521 start_xmit(E1000State *s)
523 target_phys_addr_t base;
524 struct e1000_tx_desc desc;
525 uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE;
527 if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) {
528 DBGOUT(TX, "tx disabled\n");
529 return;
532 while (s->mac_reg[TDH] != s->mac_reg[TDT]) {
533 base = ((uint64_t)s->mac_reg[TDBAH] << 32) + s->mac_reg[TDBAL] +
534 sizeof(struct e1000_tx_desc) * s->mac_reg[TDH];
535 cpu_physical_memory_read(base, (void *)&desc, sizeof(desc));
537 DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH],
538 (void *)(intptr_t)desc.buffer_addr, desc.lower.data,
539 desc.upper.data);
541 process_tx_desc(s, &desc);
542 cause |= txdesc_writeback(base, &desc);
544 if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN])
545 s->mac_reg[TDH] = 0;
547 * the following could happen only if guest sw assigns
548 * bogus values to TDT/TDLEN.
549 * there's nothing too intelligent we could do about this.
551 if (s->mac_reg[TDH] == tdh_start) {
552 DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n",
553 tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]);
554 break;
557 set_ics(s, 0, cause);
560 static int
561 receive_filter(E1000State *s, const uint8_t *buf, int size)
563 static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
564 static const int mta_shift[] = {4, 3, 2, 0};
565 uint32_t f, rctl = s->mac_reg[RCTL], ra[2], *rp;
567 if (is_vlan_packet(s, buf) && vlan_rx_filter_enabled(s)) {
568 uint16_t vid = be16_to_cpup((uint16_t *)(buf + 14));
569 uint32_t vfta = le32_to_cpup((uint32_t *)(s->mac_reg + VFTA) +
570 ((vid >> 5) & 0x7f));
571 if ((vfta & (1 << (vid & 0x1f))) == 0)
572 return 0;
575 if (rctl & E1000_RCTL_UPE) // promiscuous
576 return 1;
578 if ((buf[0] & 1) && (rctl & E1000_RCTL_MPE)) // promiscuous mcast
579 return 1;
581 if ((rctl & E1000_RCTL_BAM) && !memcmp(buf, bcast, sizeof bcast))
582 return 1;
584 for (rp = s->mac_reg + RA; rp < s->mac_reg + RA + 32; rp += 2) {
585 if (!(rp[1] & E1000_RAH_AV))
586 continue;
587 ra[0] = cpu_to_le32(rp[0]);
588 ra[1] = cpu_to_le32(rp[1]);
589 if (!memcmp(buf, (uint8_t *)ra, 6)) {
590 DBGOUT(RXFILTER,
591 "unicast match[%d]: %02x:%02x:%02x:%02x:%02x:%02x\n",
592 (int)(rp - s->mac_reg - RA)/2,
593 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
594 return 1;
597 DBGOUT(RXFILTER, "unicast mismatch: %02x:%02x:%02x:%02x:%02x:%02x\n",
598 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
600 f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
601 f = (((buf[5] << 8) | buf[4]) >> f) & 0xfff;
602 if (s->mac_reg[MTA + (f >> 5)] & (1 << (f & 0x1f)))
603 return 1;
604 DBGOUT(RXFILTER,
605 "dropping, inexact filter mismatch: %02x:%02x:%02x:%02x:%02x:%02x MO %d MTA[%d] %x\n",
606 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
607 (rctl >> E1000_RCTL_MO_SHIFT) & 3, f >> 5,
608 s->mac_reg[MTA + (f >> 5)]);
610 return 0;
613 static void
614 e1000_set_link_status(VLANClientState *nc)
616 E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
617 uint32_t old_status = s->mac_reg[STATUS];
619 if (nc->link_down)
620 s->mac_reg[STATUS] &= ~E1000_STATUS_LU;
621 else
622 s->mac_reg[STATUS] |= E1000_STATUS_LU;
624 if (s->mac_reg[STATUS] != old_status)
625 set_ics(s, 0, E1000_ICR_LSC);
628 static bool e1000_has_rxbufs(E1000State *s, size_t total_size)
630 int bufs;
631 /* Fast-path short packets */
632 if (total_size <= s->rxbuf_size) {
633 return s->mac_reg[RDH] != s->mac_reg[RDT] || !s->check_rxov;
635 if (s->mac_reg[RDH] < s->mac_reg[RDT]) {
636 bufs = s->mac_reg[RDT] - s->mac_reg[RDH];
637 } else if (s->mac_reg[RDH] > s->mac_reg[RDT] || !s->check_rxov) {
638 bufs = s->mac_reg[RDLEN] / sizeof(struct e1000_rx_desc) +
639 s->mac_reg[RDT] - s->mac_reg[RDH];
640 } else {
641 return false;
643 return total_size <= bufs * s->rxbuf_size;
646 static int
647 e1000_can_receive(VLANClientState *nc)
649 E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
651 return (s->mac_reg[RCTL] & E1000_RCTL_EN) && e1000_has_rxbufs(s, 1);
654 static ssize_t
655 e1000_receive(VLANClientState *nc, const uint8_t *buf, size_t size)
657 E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
658 struct e1000_rx_desc desc;
659 target_phys_addr_t base;
660 unsigned int n, rdt;
661 uint32_t rdh_start;
662 uint16_t vlan_special = 0;
663 uint8_t vlan_status = 0, vlan_offset = 0;
664 uint8_t min_buf[MIN_BUF_SIZE];
665 size_t desc_offset;
666 size_t desc_size;
667 size_t total_size;
669 if (!(s->mac_reg[RCTL] & E1000_RCTL_EN))
670 return -1;
672 /* Pad to minimum Ethernet frame length */
673 if (size < sizeof(min_buf)) {
674 memcpy(min_buf, buf, size);
675 memset(&min_buf[size], 0, sizeof(min_buf) - size);
676 buf = min_buf;
677 size = sizeof(min_buf);
680 if (!receive_filter(s, buf, size))
681 return size;
683 if (vlan_enabled(s) && is_vlan_packet(s, buf)) {
684 vlan_special = cpu_to_le16(be16_to_cpup((uint16_t *)(buf + 14)));
685 memmove((uint8_t *)buf + 4, buf, 12);
686 vlan_status = E1000_RXD_STAT_VP;
687 vlan_offset = 4;
688 size -= 4;
691 rdh_start = s->mac_reg[RDH];
692 desc_offset = 0;
693 total_size = size + fcs_len(s);
694 if (!e1000_has_rxbufs(s, total_size)) {
695 set_ics(s, 0, E1000_ICS_RXO);
696 return -1;
698 do {
699 desc_size = total_size - desc_offset;
700 if (desc_size > s->rxbuf_size) {
701 desc_size = s->rxbuf_size;
703 base = ((uint64_t)s->mac_reg[RDBAH] << 32) + s->mac_reg[RDBAL] +
704 sizeof(desc) * s->mac_reg[RDH];
705 cpu_physical_memory_read(base, (void *)&desc, sizeof(desc));
706 desc.special = vlan_special;
707 desc.status |= (vlan_status | E1000_RXD_STAT_DD);
708 if (desc.buffer_addr) {
709 if (desc_offset < size) {
710 size_t copy_size = size - desc_offset;
711 if (copy_size > s->rxbuf_size) {
712 copy_size = s->rxbuf_size;
714 cpu_physical_memory_write(le64_to_cpu(desc.buffer_addr),
715 (void *)(buf + desc_offset + vlan_offset),
716 copy_size);
718 desc_offset += desc_size;
719 desc.length = cpu_to_le16(desc_size);
720 if (desc_offset >= total_size) {
721 desc.status |= E1000_RXD_STAT_EOP | E1000_RXD_STAT_IXSM;
722 } else {
723 /* Guest zeroing out status is not a hardware requirement.
724 Clear EOP in case guest didn't do it. */
725 desc.status &= ~E1000_RXD_STAT_EOP;
727 } else { // as per intel docs; skip descriptors with null buf addr
728 DBGOUT(RX, "Null RX descriptor!!\n");
730 cpu_physical_memory_write(base, (void *)&desc, sizeof(desc));
732 if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN])
733 s->mac_reg[RDH] = 0;
734 s->check_rxov = 1;
735 /* see comment in start_xmit; same here */
736 if (s->mac_reg[RDH] == rdh_start) {
737 DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n",
738 rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]);
739 set_ics(s, 0, E1000_ICS_RXO);
740 return -1;
742 } while (desc_offset < total_size);
744 s->mac_reg[GPRC]++;
745 s->mac_reg[TPR]++;
746 /* TOR - Total Octets Received:
747 * This register includes bytes received in a packet from the <Destination
748 * Address> field through the <CRC> field, inclusively.
750 n = s->mac_reg[TORL] + size + /* Always include FCS length. */ 4;
751 if (n < s->mac_reg[TORL])
752 s->mac_reg[TORH]++;
753 s->mac_reg[TORL] = n;
755 n = E1000_ICS_RXT0;
756 if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH])
757 rdt += s->mac_reg[RDLEN] / sizeof(desc);
758 if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >>
759 s->rxbuf_min_shift)
760 n |= E1000_ICS_RXDMT0;
762 set_ics(s, 0, n);
764 return size;
767 static uint32_t
768 mac_readreg(E1000State *s, int index)
770 return s->mac_reg[index];
773 static uint32_t
774 mac_icr_read(E1000State *s, int index)
776 uint32_t ret = s->mac_reg[ICR];
778 DBGOUT(INTERRUPT, "ICR read: %x\n", ret);
779 set_interrupt_cause(s, 0, 0);
780 return ret;
783 static uint32_t
784 mac_read_clr4(E1000State *s, int index)
786 uint32_t ret = s->mac_reg[index];
788 s->mac_reg[index] = 0;
789 return ret;
792 static uint32_t
793 mac_read_clr8(E1000State *s, int index)
795 uint32_t ret = s->mac_reg[index];
797 s->mac_reg[index] = 0;
798 s->mac_reg[index-1] = 0;
799 return ret;
802 static void
803 mac_writereg(E1000State *s, int index, uint32_t val)
805 s->mac_reg[index] = val;
808 static void
809 set_rdt(E1000State *s, int index, uint32_t val)
811 s->check_rxov = 0;
812 s->mac_reg[index] = val & 0xffff;
815 static void
816 set_16bit(E1000State *s, int index, uint32_t val)
818 s->mac_reg[index] = val & 0xffff;
821 static void
822 set_dlen(E1000State *s, int index, uint32_t val)
824 s->mac_reg[index] = val & 0xfff80;
827 static void
828 set_tctl(E1000State *s, int index, uint32_t val)
830 s->mac_reg[index] = val;
831 s->mac_reg[TDT] &= 0xffff;
832 start_xmit(s);
835 static void
836 set_icr(E1000State *s, int index, uint32_t val)
838 DBGOUT(INTERRUPT, "set_icr %x\n", val);
839 set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val);
842 static void
843 set_imc(E1000State *s, int index, uint32_t val)
845 s->mac_reg[IMS] &= ~val;
846 set_ics(s, 0, 0);
849 static void
850 set_ims(E1000State *s, int index, uint32_t val)
852 s->mac_reg[IMS] |= val;
853 set_ics(s, 0, 0);
856 #define getreg(x) [x] = mac_readreg
857 static uint32_t (*macreg_readops[])(E1000State *, int) = {
858 getreg(PBA), getreg(RCTL), getreg(TDH), getreg(TXDCTL),
859 getreg(WUFC), getreg(TDT), getreg(CTRL), getreg(LEDCTL),
860 getreg(MANC), getreg(MDIC), getreg(SWSM), getreg(STATUS),
861 getreg(TORL), getreg(TOTL), getreg(IMS), getreg(TCTL),
862 getreg(RDH), getreg(RDT), getreg(VET), getreg(ICS),
863 getreg(TDBAL), getreg(TDBAH), getreg(RDBAH), getreg(RDBAL),
864 getreg(TDLEN), getreg(RDLEN),
866 [TOTH] = mac_read_clr8, [TORH] = mac_read_clr8, [GPRC] = mac_read_clr4,
867 [GPTC] = mac_read_clr4, [TPR] = mac_read_clr4, [TPT] = mac_read_clr4,
868 [ICR] = mac_icr_read, [EECD] = get_eecd, [EERD] = flash_eerd_read,
869 [CRCERRS ... MPC] = &mac_readreg,
870 [RA ... RA+31] = &mac_readreg,
871 [MTA ... MTA+127] = &mac_readreg,
872 [VFTA ... VFTA+127] = &mac_readreg,
874 enum { NREADOPS = ARRAY_SIZE(macreg_readops) };
876 #define putreg(x) [x] = mac_writereg
877 static void (*macreg_writeops[])(E1000State *, int, uint32_t) = {
878 putreg(PBA), putreg(EERD), putreg(SWSM), putreg(WUFC),
879 putreg(TDBAL), putreg(TDBAH), putreg(TXDCTL), putreg(RDBAH),
880 putreg(RDBAL), putreg(LEDCTL), putreg(VET),
881 [TDLEN] = set_dlen, [RDLEN] = set_dlen, [TCTL] = set_tctl,
882 [TDT] = set_tctl, [MDIC] = set_mdic, [ICS] = set_ics,
883 [TDH] = set_16bit, [RDH] = set_16bit, [RDT] = set_rdt,
884 [IMC] = set_imc, [IMS] = set_ims, [ICR] = set_icr,
885 [EECD] = set_eecd, [RCTL] = set_rx_control, [CTRL] = set_ctrl,
886 [RA ... RA+31] = &mac_writereg,
887 [MTA ... MTA+127] = &mac_writereg,
888 [VFTA ... VFTA+127] = &mac_writereg,
890 enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) };
892 static void
893 e1000_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
895 E1000State *s = opaque;
896 unsigned int index = (addr & 0x1ffff) >> 2;
898 if (index < NWRITEOPS && macreg_writeops[index]) {
899 macreg_writeops[index](s, index, val);
900 } else if (index < NREADOPS && macreg_readops[index]) {
901 DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04x\n", index<<2, val);
902 } else {
903 DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08x\n",
904 index<<2, val);
908 static void
909 e1000_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
911 // emulate hw without byte enables: no RMW
912 e1000_mmio_writel(opaque, addr & ~3,
913 (val & 0xffff) << (8*(addr & 3)));
916 static void
917 e1000_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
919 // emulate hw without byte enables: no RMW
920 e1000_mmio_writel(opaque, addr & ~3,
921 (val & 0xff) << (8*(addr & 3)));
924 static uint32_t
925 e1000_mmio_readl(void *opaque, target_phys_addr_t addr)
927 E1000State *s = opaque;
928 unsigned int index = (addr & 0x1ffff) >> 2;
930 if (index < NREADOPS && macreg_readops[index])
932 return macreg_readops[index](s, index);
934 DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2);
935 return 0;
938 static uint32_t
939 e1000_mmio_readb(void *opaque, target_phys_addr_t addr)
941 return ((e1000_mmio_readl(opaque, addr & ~3)) >>
942 (8 * (addr & 3))) & 0xff;
945 static uint32_t
946 e1000_mmio_readw(void *opaque, target_phys_addr_t addr)
948 return ((e1000_mmio_readl(opaque, addr & ~3)) >>
949 (8 * (addr & 3))) & 0xffff;
952 static bool is_version_1(void *opaque, int version_id)
954 return version_id == 1;
957 static const VMStateDescription vmstate_e1000 = {
958 .name = "e1000",
959 .version_id = 2,
960 .minimum_version_id = 1,
961 .minimum_version_id_old = 1,
962 .fields = (VMStateField []) {
963 VMSTATE_PCI_DEVICE(dev, E1000State),
964 VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */
965 VMSTATE_UNUSED(4), /* Was mmio_base. */
966 VMSTATE_UINT32(rxbuf_size, E1000State),
967 VMSTATE_UINT32(rxbuf_min_shift, E1000State),
968 VMSTATE_UINT32(eecd_state.val_in, E1000State),
969 VMSTATE_UINT16(eecd_state.bitnum_in, E1000State),
970 VMSTATE_UINT16(eecd_state.bitnum_out, E1000State),
971 VMSTATE_UINT16(eecd_state.reading, E1000State),
972 VMSTATE_UINT32(eecd_state.old_eecd, E1000State),
973 VMSTATE_UINT8(tx.ipcss, E1000State),
974 VMSTATE_UINT8(tx.ipcso, E1000State),
975 VMSTATE_UINT16(tx.ipcse, E1000State),
976 VMSTATE_UINT8(tx.tucss, E1000State),
977 VMSTATE_UINT8(tx.tucso, E1000State),
978 VMSTATE_UINT16(tx.tucse, E1000State),
979 VMSTATE_UINT32(tx.paylen, E1000State),
980 VMSTATE_UINT8(tx.hdr_len, E1000State),
981 VMSTATE_UINT16(tx.mss, E1000State),
982 VMSTATE_UINT16(tx.size, E1000State),
983 VMSTATE_UINT16(tx.tso_frames, E1000State),
984 VMSTATE_UINT8(tx.sum_needed, E1000State),
985 VMSTATE_INT8(tx.ip, E1000State),
986 VMSTATE_INT8(tx.tcp, E1000State),
987 VMSTATE_BUFFER(tx.header, E1000State),
988 VMSTATE_BUFFER(tx.data, E1000State),
989 VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64),
990 VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20),
991 VMSTATE_UINT32(mac_reg[CTRL], E1000State),
992 VMSTATE_UINT32(mac_reg[EECD], E1000State),
993 VMSTATE_UINT32(mac_reg[EERD], E1000State),
994 VMSTATE_UINT32(mac_reg[GPRC], E1000State),
995 VMSTATE_UINT32(mac_reg[GPTC], E1000State),
996 VMSTATE_UINT32(mac_reg[ICR], E1000State),
997 VMSTATE_UINT32(mac_reg[ICS], E1000State),
998 VMSTATE_UINT32(mac_reg[IMC], E1000State),
999 VMSTATE_UINT32(mac_reg[IMS], E1000State),
1000 VMSTATE_UINT32(mac_reg[LEDCTL], E1000State),
1001 VMSTATE_UINT32(mac_reg[MANC], E1000State),
1002 VMSTATE_UINT32(mac_reg[MDIC], E1000State),
1003 VMSTATE_UINT32(mac_reg[MPC], E1000State),
1004 VMSTATE_UINT32(mac_reg[PBA], E1000State),
1005 VMSTATE_UINT32(mac_reg[RCTL], E1000State),
1006 VMSTATE_UINT32(mac_reg[RDBAH], E1000State),
1007 VMSTATE_UINT32(mac_reg[RDBAL], E1000State),
1008 VMSTATE_UINT32(mac_reg[RDH], E1000State),
1009 VMSTATE_UINT32(mac_reg[RDLEN], E1000State),
1010 VMSTATE_UINT32(mac_reg[RDT], E1000State),
1011 VMSTATE_UINT32(mac_reg[STATUS], E1000State),
1012 VMSTATE_UINT32(mac_reg[SWSM], E1000State),
1013 VMSTATE_UINT32(mac_reg[TCTL], E1000State),
1014 VMSTATE_UINT32(mac_reg[TDBAH], E1000State),
1015 VMSTATE_UINT32(mac_reg[TDBAL], E1000State),
1016 VMSTATE_UINT32(mac_reg[TDH], E1000State),
1017 VMSTATE_UINT32(mac_reg[TDLEN], E1000State),
1018 VMSTATE_UINT32(mac_reg[TDT], E1000State),
1019 VMSTATE_UINT32(mac_reg[TORH], E1000State),
1020 VMSTATE_UINT32(mac_reg[TORL], E1000State),
1021 VMSTATE_UINT32(mac_reg[TOTH], E1000State),
1022 VMSTATE_UINT32(mac_reg[TOTL], E1000State),
1023 VMSTATE_UINT32(mac_reg[TPR], E1000State),
1024 VMSTATE_UINT32(mac_reg[TPT], E1000State),
1025 VMSTATE_UINT32(mac_reg[TXDCTL], E1000State),
1026 VMSTATE_UINT32(mac_reg[WUFC], E1000State),
1027 VMSTATE_UINT32(mac_reg[VET], E1000State),
1028 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32),
1029 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, 128),
1030 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA, 128),
1031 VMSTATE_END_OF_LIST()
1035 static const uint16_t e1000_eeprom_template[64] = {
1036 0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000,
1037 0x3000, 0x1000, 0x6403, E1000_DEVID, 0x8086, E1000_DEVID, 0x8086, 0x3040,
1038 0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700,
1039 0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706,
1040 0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff,
1041 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
1042 0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
1043 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000,
1046 static const uint16_t phy_reg_init[] = {
1047 [PHY_CTRL] = 0x1140, [PHY_STATUS] = 0x796d, // link initially up
1048 [PHY_ID1] = 0x141, [PHY_ID2] = PHY_ID2_INIT,
1049 [PHY_1000T_CTRL] = 0x0e00, [M88E1000_PHY_SPEC_CTRL] = 0x360,
1050 [M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60, [PHY_AUTONEG_ADV] = 0xde1,
1051 [PHY_LP_ABILITY] = 0x1e0, [PHY_1000T_STATUS] = 0x3c00,
1052 [M88E1000_PHY_SPEC_STATUS] = 0xac00,
1055 static const uint32_t mac_reg_init[] = {
1056 [PBA] = 0x00100030,
1057 [LEDCTL] = 0x602,
1058 [CTRL] = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
1059 E1000_CTRL_SPD_1000 | E1000_CTRL_SLU,
1060 [STATUS] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE |
1061 E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK |
1062 E1000_STATUS_SPEED_1000 | E1000_STATUS_FD |
1063 E1000_STATUS_LU,
1064 [MANC] = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN |
1065 E1000_MANC_ARP_EN | E1000_MANC_0298_EN |
1066 E1000_MANC_RMCP_EN,
1069 /* PCI interface */
1071 static CPUWriteMemoryFunc * const e1000_mmio_write[] = {
1072 e1000_mmio_writeb, e1000_mmio_writew, e1000_mmio_writel
1075 static CPUReadMemoryFunc * const e1000_mmio_read[] = {
1076 e1000_mmio_readb, e1000_mmio_readw, e1000_mmio_readl
1079 static void
1080 e1000_mmio_map(PCIDevice *pci_dev, int region_num,
1081 pcibus_t addr, pcibus_t size, int type)
1083 E1000State *d = DO_UPCAST(E1000State, dev, pci_dev);
1084 int i;
1085 const uint32_t excluded_regs[] = {
1086 E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS,
1087 E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE
1091 DBGOUT(MMIO, "e1000_mmio_map addr=0x%08"FMT_PCIBUS" 0x%08"FMT_PCIBUS"\n",
1092 addr, size);
1094 cpu_register_physical_memory(addr, PNPMMIO_SIZE, d->mmio_index);
1095 qemu_register_coalesced_mmio(addr, excluded_regs[0]);
1097 for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++)
1098 qemu_register_coalesced_mmio(addr + excluded_regs[i] + 4,
1099 excluded_regs[i + 1] -
1100 excluded_regs[i] - 4);
1103 static void
1104 e1000_cleanup(VLANClientState *nc)
1106 E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
1108 s->nic = NULL;
1111 static int
1112 pci_e1000_uninit(PCIDevice *dev)
1114 E1000State *d = DO_UPCAST(E1000State, dev, dev);
1116 cpu_unregister_io_memory(d->mmio_index);
1117 qemu_del_vlan_client(&d->nic->nc);
1118 return 0;
1121 static void e1000_reset(void *opaque)
1123 E1000State *d = opaque;
1125 memset(d->phy_reg, 0, sizeof d->phy_reg);
1126 memmove(d->phy_reg, phy_reg_init, sizeof phy_reg_init);
1127 memset(d->mac_reg, 0, sizeof d->mac_reg);
1128 memmove(d->mac_reg, mac_reg_init, sizeof mac_reg_init);
1129 d->rxbuf_min_shift = 1;
1130 memset(&d->tx, 0, sizeof d->tx);
1133 static NetClientInfo net_e1000_info = {
1134 .type = NET_CLIENT_TYPE_NIC,
1135 .size = sizeof(NICState),
1136 .can_receive = e1000_can_receive,
1137 .receive = e1000_receive,
1138 .cleanup = e1000_cleanup,
1139 .link_status_changed = e1000_set_link_status,
1142 static int pci_e1000_init(PCIDevice *pci_dev)
1144 E1000State *d = DO_UPCAST(E1000State, dev, pci_dev);
1145 uint8_t *pci_conf;
1146 uint16_t checksum = 0;
1147 int i;
1148 uint8_t *macaddr;
1150 pci_conf = d->dev.config;
1152 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
1153 pci_config_set_device_id(pci_conf, E1000_DEVID);
1154 /* TODO: we have no capabilities, so why is this bit set? */
1155 pci_set_word(pci_conf + PCI_STATUS, PCI_STATUS_CAP_LIST);
1156 pci_conf[PCI_REVISION_ID] = 0x03;
1157 pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
1158 /* TODO: RST# value should be 0, PCI spec 6.2.4 */
1159 pci_conf[PCI_CACHE_LINE_SIZE] = 0x10;
1161 /* TODO: RST# value should be 0 if programmable, PCI spec 6.2.4 */
1162 pci_conf[PCI_INTERRUPT_PIN] = 1; // interrupt pin 0
1164 d->mmio_index = cpu_register_io_memory(e1000_mmio_read,
1165 e1000_mmio_write, d, DEVICE_LITTLE_ENDIAN);
1167 pci_register_bar(&d->dev, 0, PNPMMIO_SIZE,
1168 PCI_BASE_ADDRESS_SPACE_MEMORY, e1000_mmio_map);
1170 pci_register_bar(&d->dev, 1, IOPORT_SIZE,
1171 PCI_BASE_ADDRESS_SPACE_IO, ioport_map);
1173 memmove(d->eeprom_data, e1000_eeprom_template,
1174 sizeof e1000_eeprom_template);
1175 qemu_macaddr_default_if_unset(&d->conf.macaddr);
1176 macaddr = d->conf.macaddr.a;
1177 for (i = 0; i < 3; i++)
1178 d->eeprom_data[i] = (macaddr[2*i+1]<<8) | macaddr[2*i];
1179 for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
1180 checksum += d->eeprom_data[i];
1181 checksum = (uint16_t) EEPROM_SUM - checksum;
1182 d->eeprom_data[EEPROM_CHECKSUM_REG] = checksum;
1184 d->nic = qemu_new_nic(&net_e1000_info, &d->conf,
1185 d->dev.qdev.info->name, d->dev.qdev.id, d);
1187 qemu_format_nic_info_str(&d->nic->nc, macaddr);
1189 add_boot_device_path(d->conf.bootindex, &pci_dev->qdev, "/ethernet-phy@0");
1191 return 0;
1194 static void qdev_e1000_reset(DeviceState *dev)
1196 E1000State *d = DO_UPCAST(E1000State, dev.qdev, dev);
1197 e1000_reset(d);
1200 static PCIDeviceInfo e1000_info = {
1201 .qdev.name = "e1000",
1202 .qdev.desc = "Intel Gigabit Ethernet",
1203 .qdev.size = sizeof(E1000State),
1204 .qdev.reset = qdev_e1000_reset,
1205 .qdev.vmsd = &vmstate_e1000,
1206 .init = pci_e1000_init,
1207 .exit = pci_e1000_uninit,
1208 .romfile = "pxe-e1000.bin",
1209 .qdev.props = (Property[]) {
1210 DEFINE_NIC_PROPERTIES(E1000State, conf),
1211 DEFINE_PROP_END_OF_LIST(),
1215 static void e1000_register_devices(void)
1217 pci_qdev_register(&e1000_info);
1220 device_init(e1000_register_devices)