slirp: fix segv when init failed
[qemu.git] / hw / acpi / nvdimm.c
blobe486128aa1b584ce6bcf10f4ae3fe3104dde8bbd
1 /*
2 * NVDIMM ACPI Implementation
4 * Copyright(C) 2015 Intel Corporation.
6 * Author:
7 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
10 * and the DSM specification can be found at:
11 * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
13 * Currently, it only supports PMEM Virtualization.
15 * This library is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU Lesser General Public
17 * License as published by the Free Software Foundation; either
18 * version 2 of the License, or (at your option) any later version.
20 * This library is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * Lesser General Public License for more details.
25 * You should have received a copy of the GNU Lesser General Public
26 * License along with this library; if not, see <http://www.gnu.org/licenses/>
29 #include "qemu/osdep.h"
30 #include "hw/acpi/acpi.h"
31 #include "hw/acpi/aml-build.h"
32 #include "hw/acpi/bios-linker-loader.h"
33 #include "hw/nvram/fw_cfg.h"
34 #include "hw/mem/nvdimm.h"
36 static int nvdimm_plugged_device_list(Object *obj, void *opaque)
38 GSList **list = opaque;
40 if (object_dynamic_cast(obj, TYPE_NVDIMM)) {
41 DeviceState *dev = DEVICE(obj);
43 if (dev->realized) { /* only realized NVDIMMs matter */
44 *list = g_slist_append(*list, DEVICE(obj));
48 object_child_foreach(obj, nvdimm_plugged_device_list, opaque);
49 return 0;
53 * inquire plugged NVDIMM devices and link them into the list which is
54 * returned to the caller.
56 * Note: it is the caller's responsibility to free the list to avoid
57 * memory leak.
59 static GSList *nvdimm_get_plugged_device_list(void)
61 GSList *list = NULL;
63 object_child_foreach(qdev_get_machine(), nvdimm_plugged_device_list,
64 &list);
65 return list;
68 #define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \
69 { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \
70 (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff, \
71 (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }
74 * define Byte Addressable Persistent Memory (PM) Region according to
75 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
77 static const uint8_t nvdimm_nfit_spa_uuid[] =
78 NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
79 0x18, 0xb7, 0x8c, 0xdb);
82 * NVDIMM Firmware Interface Table
83 * @signature: "NFIT"
85 * It provides information that allows OSPM to enumerate NVDIMM present in
86 * the platform and associate system physical address ranges created by the
87 * NVDIMMs.
89 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
91 struct NvdimmNfitHeader {
92 ACPI_TABLE_HEADER_DEF
93 uint32_t reserved;
94 } QEMU_PACKED;
95 typedef struct NvdimmNfitHeader NvdimmNfitHeader;
98 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
99 * Interface Table (NFIT).
103 * System Physical Address Range Structure
105 * It describes the system physical address ranges occupied by NVDIMMs and
106 * the types of the regions.
108 struct NvdimmNfitSpa {
109 uint16_t type;
110 uint16_t length;
111 uint16_t spa_index;
112 uint16_t flags;
113 uint32_t reserved;
114 uint32_t proximity_domain;
115 uint8_t type_guid[16];
116 uint64_t spa_base;
117 uint64_t spa_length;
118 uint64_t mem_attr;
119 } QEMU_PACKED;
120 typedef struct NvdimmNfitSpa NvdimmNfitSpa;
123 * Memory Device to System Physical Address Range Mapping Structure
125 * It enables identifying each NVDIMM region and the corresponding SPA
126 * describing the memory interleave
128 struct NvdimmNfitMemDev {
129 uint16_t type;
130 uint16_t length;
131 uint32_t nfit_handle;
132 uint16_t phys_id;
133 uint16_t region_id;
134 uint16_t spa_index;
135 uint16_t dcr_index;
136 uint64_t region_len;
137 uint64_t region_offset;
138 uint64_t region_dpa;
139 uint16_t interleave_index;
140 uint16_t interleave_ways;
141 uint16_t flags;
142 uint16_t reserved;
143 } QEMU_PACKED;
144 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
147 * NVDIMM Control Region Structure
149 * It describes the NVDIMM and if applicable, Block Control Window.
151 struct NvdimmNfitControlRegion {
152 uint16_t type;
153 uint16_t length;
154 uint16_t dcr_index;
155 uint16_t vendor_id;
156 uint16_t device_id;
157 uint16_t revision_id;
158 uint16_t sub_vendor_id;
159 uint16_t sub_device_id;
160 uint16_t sub_revision_id;
161 uint8_t reserved[6];
162 uint32_t serial_number;
163 uint16_t fic;
164 uint16_t num_bcw;
165 uint64_t bcw_size;
166 uint64_t cmd_offset;
167 uint64_t cmd_size;
168 uint64_t status_offset;
169 uint64_t status_size;
170 uint16_t flags;
171 uint8_t reserved2[6];
172 } QEMU_PACKED;
173 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
176 * Module serial number is a unique number for each device. We use the
177 * slot id of NVDIMM device to generate this number so that each device
178 * associates with a different number.
180 * 0x123456 is a magic number we arbitrarily chose.
182 static uint32_t nvdimm_slot_to_sn(int slot)
184 return 0x123456 + slot;
188 * handle is used to uniquely associate nfit_memdev structure with NVDIMM
189 * ACPI device - nfit_memdev.nfit_handle matches with the value returned
190 * by ACPI device _ADR method.
192 * We generate the handle with the slot id of NVDIMM device and reserve
193 * 0 for NVDIMM root device.
195 static uint32_t nvdimm_slot_to_handle(int slot)
197 return slot + 1;
201 * index uniquely identifies the structure, 0 is reserved which indicates
202 * that the structure is not valid or the associated structure is not
203 * present.
205 * Each NVDIMM device needs two indexes, one for nfit_spa and another for
206 * nfit_dc which are generated by the slot id of NVDIMM device.
208 static uint16_t nvdimm_slot_to_spa_index(int slot)
210 return (slot + 1) << 1;
213 /* See the comments of nvdimm_slot_to_spa_index(). */
214 static uint32_t nvdimm_slot_to_dcr_index(int slot)
216 return nvdimm_slot_to_spa_index(slot) + 1;
219 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
221 NVDIMMDevice *nvdimm = NULL;
222 GSList *list, *device_list = nvdimm_get_plugged_device_list();
224 for (list = device_list; list; list = list->next) {
225 NVDIMMDevice *nvd = list->data;
226 int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
227 NULL);
229 if (nvdimm_slot_to_handle(slot) == handle) {
230 nvdimm = nvd;
231 break;
235 g_slist_free(device_list);
236 return nvdimm;
239 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
240 static void
241 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
243 NvdimmNfitSpa *nfit_spa;
244 uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP,
245 NULL);
246 uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
247 NULL);
248 uint32_t node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP,
249 NULL);
250 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
251 NULL);
253 nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
255 nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
256 Structure */);
257 nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
258 nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
261 * Control region is strict as all the device info, such as SN, index,
262 * is associated with slot id.
264 nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
265 management during hot add/online
266 operation */ |
267 2 /* Data in Proximity Domain field is
268 valid*/);
270 /* NUMA node. */
271 nfit_spa->proximity_domain = cpu_to_le32(node);
272 /* the region reported as PMEM. */
273 memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
274 sizeof(nvdimm_nfit_spa_uuid));
276 nfit_spa->spa_base = cpu_to_le64(addr);
277 nfit_spa->spa_length = cpu_to_le64(size);
279 /* It is the PMEM and can be cached as writeback. */
280 nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
281 0x8000ULL /* EFI_MEMORY_NV */);
285 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
286 * Structure
288 static void
289 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
291 NvdimmNfitMemDev *nfit_memdev;
292 uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP,
293 NULL);
294 uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
295 NULL);
296 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
297 NULL);
298 uint32_t handle = nvdimm_slot_to_handle(slot);
300 nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
302 nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
303 Range Map Structure*/);
304 nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
305 nfit_memdev->nfit_handle = cpu_to_le32(handle);
308 * associate memory device with System Physical Address Range
309 * Structure.
311 nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
312 /* associate memory device with Control Region Structure. */
313 nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
315 /* The memory region on the device. */
316 nfit_memdev->region_len = cpu_to_le64(size);
317 nfit_memdev->region_dpa = cpu_to_le64(addr);
319 /* Only one interleave for PMEM. */
320 nfit_memdev->interleave_ways = cpu_to_le16(1);
324 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
326 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
328 NvdimmNfitControlRegion *nfit_dcr;
329 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
330 NULL);
331 uint32_t sn = nvdimm_slot_to_sn(slot);
333 nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
335 nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
336 nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
337 nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
339 /* vendor: Intel. */
340 nfit_dcr->vendor_id = cpu_to_le16(0x8086);
341 nfit_dcr->device_id = cpu_to_le16(1);
343 /* The _DSM method is following Intel's DSM specification. */
344 nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
345 in ACPI 6.0 is 1. */);
346 nfit_dcr->serial_number = cpu_to_le32(sn);
347 nfit_dcr->fic = cpu_to_le16(0x201 /* Format Interface Code. See Chapter
348 2: NVDIMM Device Specific Method
349 (DSM) in DSM Spec Rev1.*/);
352 static GArray *nvdimm_build_device_structure(GSList *device_list)
354 GArray *structures = g_array_new(false, true /* clear */, 1);
356 for (; device_list; device_list = device_list->next) {
357 DeviceState *dev = device_list->data;
359 /* build System Physical Address Range Structure. */
360 nvdimm_build_structure_spa(structures, dev);
363 * build Memory Device to System Physical Address Range Mapping
364 * Structure.
366 nvdimm_build_structure_memdev(structures, dev);
368 /* build NVDIMM Control Region Structure. */
369 nvdimm_build_structure_dcr(structures, dev);
372 return structures;
375 static void nvdimm_build_nfit(GSList *device_list, GArray *table_offsets,
376 GArray *table_data, BIOSLinker *linker)
378 GArray *structures = nvdimm_build_device_structure(device_list);
379 unsigned int header;
381 acpi_add_table(table_offsets, table_data);
383 /* NFIT header. */
384 header = table_data->len;
385 acpi_data_push(table_data, sizeof(NvdimmNfitHeader));
386 /* NVDIMM device structures. */
387 g_array_append_vals(table_data, structures->data, structures->len);
389 build_header(linker, table_data,
390 (void *)(table_data->data + header), "NFIT",
391 sizeof(NvdimmNfitHeader) + structures->len, 1, NULL, NULL);
392 g_array_free(structures, true);
395 struct NvdimmDsmIn {
396 uint32_t handle;
397 uint32_t revision;
398 uint32_t function;
399 /* the remaining size in the page is used by arg3. */
400 union {
401 uint8_t arg3[4084];
403 } QEMU_PACKED;
404 typedef struct NvdimmDsmIn NvdimmDsmIn;
405 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != 4096);
407 struct NvdimmDsmOut {
408 /* the size of buffer filled by QEMU. */
409 uint32_t len;
410 uint8_t data[4092];
411 } QEMU_PACKED;
412 typedef struct NvdimmDsmOut NvdimmDsmOut;
413 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != 4096);
415 struct NvdimmDsmFunc0Out {
416 /* the size of buffer filled by QEMU. */
417 uint32_t len;
418 uint32_t supported_func;
419 } QEMU_PACKED;
420 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
422 struct NvdimmDsmFuncNoPayloadOut {
423 /* the size of buffer filled by QEMU. */
424 uint32_t len;
425 uint32_t func_ret_status;
426 } QEMU_PACKED;
427 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
429 struct NvdimmFuncGetLabelSizeOut {
430 /* the size of buffer filled by QEMU. */
431 uint32_t len;
432 uint32_t func_ret_status; /* return status code. */
433 uint32_t label_size; /* the size of label data area. */
435 * Maximum size of the namespace label data length supported by
436 * the platform in Get/Set Namespace Label Data functions.
438 uint32_t max_xfer;
439 } QEMU_PACKED;
440 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
441 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > 4096);
443 struct NvdimmFuncGetLabelDataIn {
444 uint32_t offset; /* the offset in the namespace label data area. */
445 uint32_t length; /* the size of data is to be read via the function. */
446 } QEMU_PACKED;
447 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
448 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
449 offsetof(NvdimmDsmIn, arg3) > 4096);
451 struct NvdimmFuncGetLabelDataOut {
452 /* the size of buffer filled by QEMU. */
453 uint32_t len;
454 uint32_t func_ret_status; /* return status code. */
455 uint8_t out_buf[0]; /* the data got via Get Namesapce Label function. */
456 } QEMU_PACKED;
457 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
458 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > 4096);
460 struct NvdimmFuncSetLabelDataIn {
461 uint32_t offset; /* the offset in the namespace label data area. */
462 uint32_t length; /* the size of data is to be written via the function. */
463 uint8_t in_buf[0]; /* the data written to label data area. */
464 } QEMU_PACKED;
465 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
466 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
467 offsetof(NvdimmDsmIn, arg3) > 4096);
469 static void
470 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
472 NvdimmDsmFunc0Out func0 = {
473 .len = cpu_to_le32(sizeof(func0)),
474 .supported_func = cpu_to_le32(supported_func),
476 cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
479 static void
480 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
482 NvdimmDsmFuncNoPayloadOut out = {
483 .len = cpu_to_le32(sizeof(out)),
484 .func_ret_status = cpu_to_le32(func_ret_status),
486 cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
489 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
492 * function 0 is called to inquire which functions are supported by
493 * OSPM
495 if (!in->function) {
496 nvdimm_dsm_function0(0 /* No function supported other than
497 function 0 */, dsm_mem_addr);
498 return;
501 /* No function except function 0 is supported yet. */
502 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
506 * the max transfer size is the max size transferred by both a
507 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
508 * function.
510 static uint32_t nvdimm_get_max_xfer_label_size(void)
512 uint32_t max_get_size, max_set_size, dsm_memory_size = 4096;
515 * the max data ACPI can read one time which is transferred by
516 * the response of 'Get Namespace Label Data' function.
518 max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
521 * the max data ACPI can write one time which is transferred by
522 * 'Set Namespace Label Data' function.
524 max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
525 sizeof(NvdimmFuncSetLabelDataIn);
527 return MIN(max_get_size, max_set_size);
531 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
533 * It gets the size of Namespace Label data area and the max data size
534 * that Get/Set Namespace Label Data functions can transfer.
536 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
538 NvdimmFuncGetLabelSizeOut label_size_out = {
539 .len = cpu_to_le32(sizeof(label_size_out)),
541 uint32_t label_size, mxfer;
543 label_size = nvdimm->label_size;
544 mxfer = nvdimm_get_max_xfer_label_size();
546 nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer);
548 label_size_out.func_ret_status = cpu_to_le32(0 /* Success */);
549 label_size_out.label_size = cpu_to_le32(label_size);
550 label_size_out.max_xfer = cpu_to_le32(mxfer);
552 cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
553 sizeof(label_size_out));
556 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
557 uint32_t offset, uint32_t length)
559 uint32_t ret = 3 /* Invalid Input Parameters */;
561 if (offset + length < offset) {
562 nvdimm_debug("offset %#x + length %#x is overflow.\n", offset,
563 length);
564 return ret;
567 if (nvdimm->label_size < offset + length) {
568 nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n",
569 offset + length, nvdimm->label_size);
570 return ret;
573 if (length > nvdimm_get_max_xfer_label_size()) {
574 nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n",
575 length, nvdimm_get_max_xfer_label_size());
576 return ret;
579 return 0 /* Success */;
583 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
585 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
586 hwaddr dsm_mem_addr)
588 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
589 NvdimmFuncGetLabelDataIn *get_label_data;
590 NvdimmFuncGetLabelDataOut *get_label_data_out;
591 uint32_t status;
592 int size;
594 get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
595 le32_to_cpus(&get_label_data->offset);
596 le32_to_cpus(&get_label_data->length);
598 nvdimm_debug("Read Label Data: offset %#x length %#x.\n",
599 get_label_data->offset, get_label_data->length);
601 status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
602 get_label_data->length);
603 if (status != 0 /* Success */) {
604 nvdimm_dsm_no_payload(status, dsm_mem_addr);
605 return;
608 size = sizeof(*get_label_data_out) + get_label_data->length;
609 assert(size <= 4096);
610 get_label_data_out = g_malloc(size);
612 get_label_data_out->len = cpu_to_le32(size);
613 get_label_data_out->func_ret_status = cpu_to_le32(0 /* Success */);
614 nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
615 get_label_data->length, get_label_data->offset);
617 cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
618 g_free(get_label_data_out);
622 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
624 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
625 hwaddr dsm_mem_addr)
627 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
628 NvdimmFuncSetLabelDataIn *set_label_data;
629 uint32_t status;
631 set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
633 le32_to_cpus(&set_label_data->offset);
634 le32_to_cpus(&set_label_data->length);
636 nvdimm_debug("Write Label Data: offset %#x length %#x.\n",
637 set_label_data->offset, set_label_data->length);
639 status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
640 set_label_data->length);
641 if (status != 0 /* Success */) {
642 nvdimm_dsm_no_payload(status, dsm_mem_addr);
643 return;
646 assert(sizeof(*in) + sizeof(*set_label_data) + set_label_data->length <=
647 4096);
649 nvc->write_label_data(nvdimm, set_label_data->in_buf,
650 set_label_data->length, set_label_data->offset);
651 nvdimm_dsm_no_payload(0 /* Success */, dsm_mem_addr);
654 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
656 NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
658 /* See the comments in nvdimm_dsm_root(). */
659 if (!in->function) {
660 uint32_t supported_func = 0;
662 if (nvdimm && nvdimm->label_size) {
663 supported_func |= 0x1 /* Bit 0 indicates whether there is
664 support for any functions other
665 than function 0. */ |
666 1 << 4 /* Get Namespace Label Size */ |
667 1 << 5 /* Get Namespace Label Data */ |
668 1 << 6 /* Set Namespace Label Data */;
670 nvdimm_dsm_function0(supported_func, dsm_mem_addr);
671 return;
674 if (!nvdimm) {
675 nvdimm_dsm_no_payload(2 /* Non-Existing Memory Device */,
676 dsm_mem_addr);
677 return;
680 /* Encode DSM function according to DSM Spec Rev1. */
681 switch (in->function) {
682 case 4 /* Get Namespace Label Size */:
683 if (nvdimm->label_size) {
684 nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
685 return;
687 break;
688 case 5 /* Get Namespace Label Data */:
689 if (nvdimm->label_size) {
690 nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
691 return;
693 break;
694 case 0x6 /* Set Namespace Label Data */:
695 if (nvdimm->label_size) {
696 nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
697 return;
699 break;
702 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
705 static uint64_t
706 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
708 nvdimm_debug("BUG: we never read _DSM IO Port.\n");
709 return 0;
712 static void
713 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
715 NvdimmDsmIn *in;
716 hwaddr dsm_mem_addr = val;
718 nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr);
721 * The DSM memory is mapped to guest address space so an evil guest
722 * can change its content while we are doing DSM emulation. Avoid
723 * this by copying DSM memory to QEMU local memory.
725 in = g_new(NvdimmDsmIn, 1);
726 cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
728 le32_to_cpus(&in->revision);
729 le32_to_cpus(&in->function);
730 le32_to_cpus(&in->handle);
732 nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision,
733 in->handle, in->function);
735 if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
736 nvdimm_debug("Revision %#x is not supported, expect %#x.\n",
737 in->revision, 0x1);
738 nvdimm_dsm_no_payload(1 /* Not Supported */, dsm_mem_addr);
739 goto exit;
742 /* Handle 0 is reserved for NVDIMM Root Device. */
743 if (!in->handle) {
744 nvdimm_dsm_root(in, dsm_mem_addr);
745 goto exit;
748 nvdimm_dsm_device(in, dsm_mem_addr);
750 exit:
751 g_free(in);
754 static const MemoryRegionOps nvdimm_dsm_ops = {
755 .read = nvdimm_dsm_read,
756 .write = nvdimm_dsm_write,
757 .endianness = DEVICE_LITTLE_ENDIAN,
758 .valid = {
759 .min_access_size = 4,
760 .max_access_size = 4,
764 void nvdimm_init_acpi_state(AcpiNVDIMMState *state, MemoryRegion *io,
765 FWCfgState *fw_cfg, Object *owner)
767 memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
768 "nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN);
769 memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr);
771 state->dsm_mem = g_array_new(false, true /* clear */, 1);
772 acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
773 fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
774 state->dsm_mem->len);
777 #define NVDIMM_COMMON_DSM "NCAL"
778 #define NVDIMM_ACPI_MEM_ADDR "MEMA"
780 static void nvdimm_build_common_dsm(Aml *dev)
782 Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *result_size;
783 Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
784 Aml *pckg, *pckg_index, *pckg_buf;
785 uint8_t byte_list[1];
787 method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
788 uuid = aml_arg(0);
789 function = aml_arg(2);
790 handle = aml_arg(4);
791 dsm_mem = aml_name(NVDIMM_ACPI_MEM_ADDR);
794 * do not support any method if DSM memory address has not been
795 * patched.
797 unpatched = aml_equal(dsm_mem, aml_int(0x0));
799 expected_uuid = aml_local(0);
801 ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
802 aml_append(ifctx, aml_store(
803 aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
804 /* UUID for NVDIMM Root Device */, expected_uuid));
805 aml_append(method, ifctx);
806 elsectx = aml_else();
807 aml_append(elsectx, aml_store(
808 aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
809 /* UUID for NVDIMM Devices */, expected_uuid));
810 aml_append(method, elsectx);
812 uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
814 unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL));
817 * function 0 is called to inquire what functions are supported by
818 * OSPM
820 ifctx = aml_if(aml_equal(function, aml_int(0)));
821 byte_list[0] = 0 /* No function Supported */;
822 aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
823 aml_append(unsupport, ifctx);
825 /* No function is supported yet. */
826 byte_list[0] = 1 /* Not Supported */;
827 aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
828 aml_append(method, unsupport);
831 * The HDLE indicates the DSM function is issued from which device,
832 * it reserves 0 for root device and is the handle for NVDIMM devices.
833 * See the comments in nvdimm_slot_to_handle().
835 aml_append(method, aml_store(handle, aml_name("HDLE")));
836 aml_append(method, aml_store(aml_arg(1), aml_name("REVS")));
837 aml_append(method, aml_store(aml_arg(2), aml_name("FUNC")));
840 * The fourth parameter (Arg3) of _DSM is a package which contains
841 * a buffer, the layout of the buffer is specified by UUID (Arg0),
842 * Revision ID (Arg1) and Function Index (Arg2) which are documented
843 * in the DSM Spec.
845 pckg = aml_arg(3);
846 ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg),
847 aml_int(4 /* Package */)) /* It is a Package? */,
848 aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */,
849 NULL));
851 pckg_index = aml_local(2);
852 pckg_buf = aml_local(3);
853 aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
854 aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
855 aml_append(ifctx, aml_store(pckg_buf, aml_name("ARG3")));
856 aml_append(method, ifctx);
859 * tell QEMU about the real address of DSM memory, then QEMU
860 * gets the control and fills the result in DSM memory.
862 aml_append(method, aml_store(dsm_mem, aml_name("NTFI")));
864 result_size = aml_local(1);
865 aml_append(method, aml_store(aml_name("RLEN"), result_size));
866 aml_append(method, aml_store(aml_shiftleft(result_size, aml_int(3)),
867 result_size));
868 aml_append(method, aml_create_field(aml_name("ODAT"), aml_int(0),
869 result_size, "OBUF"));
870 aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"),
871 aml_arg(6)));
872 aml_append(method, aml_return(aml_arg(6)));
873 aml_append(dev, method);
876 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
878 Aml *method;
880 method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
881 aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
882 aml_arg(1), aml_arg(2), aml_arg(3),
883 aml_int(handle))));
884 aml_append(dev, method);
887 static void nvdimm_build_nvdimm_devices(GSList *device_list, Aml *root_dev)
889 for (; device_list; device_list = device_list->next) {
890 DeviceState *dev = device_list->data;
891 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
892 NULL);
893 uint32_t handle = nvdimm_slot_to_handle(slot);
894 Aml *nvdimm_dev;
896 nvdimm_dev = aml_device("NV%02X", slot);
899 * ACPI 6.0: 9.20 NVDIMM Devices:
901 * _ADR object that is used to supply OSPM with unique address
902 * of the NVDIMM device. This is done by returning the NFIT Device
903 * handle that is used to identify the associated entries in ACPI
904 * table NFIT or _FIT.
906 aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
908 nvdimm_build_device_dsm(nvdimm_dev, handle);
909 aml_append(root_dev, nvdimm_dev);
913 static void nvdimm_build_ssdt(GSList *device_list, GArray *table_offsets,
914 GArray *table_data, BIOSLinker *linker,
915 GArray *dsm_dma_arrea)
917 Aml *ssdt, *sb_scope, *dev, *field;
918 int mem_addr_offset, nvdimm_ssdt;
920 acpi_add_table(table_offsets, table_data);
922 ssdt = init_aml_allocator();
923 acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader));
925 sb_scope = aml_scope("\\_SB");
927 dev = aml_device("NVDR");
930 * ACPI 6.0: 9.20 NVDIMM Devices:
932 * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
933 * NVDIMM interface device. Platform firmware is required to contain one
934 * such device in _SB scope if NVDIMMs support is exposed by platform to
935 * OSPM.
936 * For each NVDIMM present or intended to be supported by platform,
937 * platform firmware also exposes an ACPI Namespace Device under the
938 * root device.
940 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
942 /* map DSM memory and IO into ACPI namespace. */
943 aml_append(dev, aml_operation_region("NPIO", AML_SYSTEM_IO,
944 aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN));
945 aml_append(dev, aml_operation_region("NRAM", AML_SYSTEM_MEMORY,
946 aml_name(NVDIMM_ACPI_MEM_ADDR), sizeof(NvdimmDsmIn)));
949 * DSM notifier:
950 * NTFI: write the address of DSM memory and notify QEMU to emulate
951 * the access.
953 * It is the IO port so that accessing them will cause VM-exit, the
954 * control will be transferred to QEMU.
956 field = aml_field("NPIO", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE);
957 aml_append(field, aml_named_field("NTFI",
958 sizeof(uint32_t) * BITS_PER_BYTE));
959 aml_append(dev, field);
962 * DSM input:
963 * HDLE: store device's handle, it's zero if the _DSM call happens
964 * on NVDIMM Root Device.
965 * REVS: store the Arg1 of _DSM call.
966 * FUNC: store the Arg2 of _DSM call.
967 * ARG3: store the Arg3 of _DSM call.
969 * They are RAM mapping on host so that these accesses never cause
970 * VM-EXIT.
972 field = aml_field("NRAM", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE);
973 aml_append(field, aml_named_field("HDLE",
974 sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
975 aml_append(field, aml_named_field("REVS",
976 sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
977 aml_append(field, aml_named_field("FUNC",
978 sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
979 aml_append(field, aml_named_field("ARG3",
980 (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
981 aml_append(dev, field);
984 * DSM output:
985 * RLEN: the size of the buffer filled by QEMU.
986 * ODAT: the buffer QEMU uses to store the result.
988 * Since the page is reused by both input and out, the input data
989 * will be lost after storing new result into ODAT so we should fetch
990 * all the input data before writing the result.
992 field = aml_field("NRAM", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE);
993 aml_append(field, aml_named_field("RLEN",
994 sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
995 aml_append(field, aml_named_field("ODAT",
996 (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
997 aml_append(dev, field);
999 nvdimm_build_common_dsm(dev);
1001 /* 0 is reserved for root device. */
1002 nvdimm_build_device_dsm(dev, 0);
1004 nvdimm_build_nvdimm_devices(device_list, dev);
1006 aml_append(sb_scope, dev);
1007 aml_append(ssdt, sb_scope);
1009 nvdimm_ssdt = table_data->len;
1011 /* copy AML table into ACPI tables blob and patch header there */
1012 g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
1013 mem_addr_offset = build_append_named_dword(table_data,
1014 NVDIMM_ACPI_MEM_ADDR);
1016 bios_linker_loader_alloc(linker,
1017 NVDIMM_DSM_MEM_FILE, dsm_dma_arrea,
1018 sizeof(NvdimmDsmIn), false /* high memory */);
1019 bios_linker_loader_add_pointer(linker,
1020 ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
1021 NVDIMM_DSM_MEM_FILE, 0);
1022 build_header(linker, table_data,
1023 (void *)(table_data->data + nvdimm_ssdt),
1024 "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM");
1025 free_aml_allocator();
1028 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
1029 BIOSLinker *linker, GArray *dsm_dma_arrea)
1031 GSList *device_list;
1033 /* no NVDIMM device is plugged. */
1034 device_list = nvdimm_get_plugged_device_list();
1035 if (!device_list) {
1036 return;
1038 nvdimm_build_nfit(device_list, table_offsets, table_data, linker);
1039 nvdimm_build_ssdt(device_list, table_offsets, table_data, linker,
1040 dsm_dma_arrea);
1041 g_slist_free(device_list);