target-arm: Add FAR_EL2 and 3
[qemu.git] / target-arm / helper.c
bloba7f82f32fe61b7eefdcaa020fd5605960177cc8b
1 #include "cpu.h"
2 #include "internals.h"
3 #include "exec/gdbstub.h"
4 #include "exec/helper-proto.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include "exec/cpu_ldst.h"
11 #include "arm_ldst.h"
12 #include <zlib.h> /* For crc32 */
14 #ifndef CONFIG_USER_ONLY
15 static inline int get_phys_addr(CPUARMState *env, target_ulong address,
16 int access_type, int is_user,
17 hwaddr *phys_ptr, int *prot,
18 target_ulong *page_size);
20 /* Definitions for the PMCCNTR and PMCR registers */
21 #define PMCRD 0x8
22 #define PMCRC 0x4
23 #define PMCRE 0x1
24 #endif
26 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
28 int nregs;
30 /* VFP data registers are always little-endian. */
31 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
32 if (reg < nregs) {
33 stfq_le_p(buf, env->vfp.regs[reg]);
34 return 8;
36 if (arm_feature(env, ARM_FEATURE_NEON)) {
37 /* Aliases for Q regs. */
38 nregs += 16;
39 if (reg < nregs) {
40 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
41 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
42 return 16;
45 switch (reg - nregs) {
46 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
47 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
48 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
50 return 0;
53 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
55 int nregs;
57 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
58 if (reg < nregs) {
59 env->vfp.regs[reg] = ldfq_le_p(buf);
60 return 8;
62 if (arm_feature(env, ARM_FEATURE_NEON)) {
63 nregs += 16;
64 if (reg < nregs) {
65 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
66 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
67 return 16;
70 switch (reg - nregs) {
71 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
72 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
73 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
75 return 0;
78 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
80 switch (reg) {
81 case 0 ... 31:
82 /* 128 bit FP register */
83 stfq_le_p(buf, env->vfp.regs[reg * 2]);
84 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
85 return 16;
86 case 32:
87 /* FPSR */
88 stl_p(buf, vfp_get_fpsr(env));
89 return 4;
90 case 33:
91 /* FPCR */
92 stl_p(buf, vfp_get_fpcr(env));
93 return 4;
94 default:
95 return 0;
99 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
101 switch (reg) {
102 case 0 ... 31:
103 /* 128 bit FP register */
104 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
105 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
106 return 16;
107 case 32:
108 /* FPSR */
109 vfp_set_fpsr(env, ldl_p(buf));
110 return 4;
111 case 33:
112 /* FPCR */
113 vfp_set_fpcr(env, ldl_p(buf));
114 return 4;
115 default:
116 return 0;
120 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
122 if (cpreg_field_is_64bit(ri)) {
123 return CPREG_FIELD64(env, ri);
124 } else {
125 return CPREG_FIELD32(env, ri);
129 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
130 uint64_t value)
132 if (cpreg_field_is_64bit(ri)) {
133 CPREG_FIELD64(env, ri) = value;
134 } else {
135 CPREG_FIELD32(env, ri) = value;
139 static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
141 /* Raw read of a coprocessor register (as needed for migration, etc). */
142 if (ri->type & ARM_CP_CONST) {
143 return ri->resetvalue;
144 } else if (ri->raw_readfn) {
145 return ri->raw_readfn(env, ri);
146 } else if (ri->readfn) {
147 return ri->readfn(env, ri);
148 } else {
149 return raw_read(env, ri);
153 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
154 uint64_t v)
156 /* Raw write of a coprocessor register (as needed for migration, etc).
157 * Note that constant registers are treated as write-ignored; the
158 * caller should check for success by whether a readback gives the
159 * value written.
161 if (ri->type & ARM_CP_CONST) {
162 return;
163 } else if (ri->raw_writefn) {
164 ri->raw_writefn(env, ri, v);
165 } else if (ri->writefn) {
166 ri->writefn(env, ri, v);
167 } else {
168 raw_write(env, ri, v);
172 bool write_cpustate_to_list(ARMCPU *cpu)
174 /* Write the coprocessor state from cpu->env to the (index,value) list. */
175 int i;
176 bool ok = true;
178 for (i = 0; i < cpu->cpreg_array_len; i++) {
179 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
180 const ARMCPRegInfo *ri;
182 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
183 if (!ri) {
184 ok = false;
185 continue;
187 if (ri->type & ARM_CP_NO_MIGRATE) {
188 continue;
190 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
192 return ok;
195 bool write_list_to_cpustate(ARMCPU *cpu)
197 int i;
198 bool ok = true;
200 for (i = 0; i < cpu->cpreg_array_len; i++) {
201 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
202 uint64_t v = cpu->cpreg_values[i];
203 const ARMCPRegInfo *ri;
205 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
206 if (!ri) {
207 ok = false;
208 continue;
210 if (ri->type & ARM_CP_NO_MIGRATE) {
211 continue;
213 /* Write value and confirm it reads back as written
214 * (to catch read-only registers and partially read-only
215 * registers where the incoming migration value doesn't match)
217 write_raw_cp_reg(&cpu->env, ri, v);
218 if (read_raw_cp_reg(&cpu->env, ri) != v) {
219 ok = false;
222 return ok;
225 static void add_cpreg_to_list(gpointer key, gpointer opaque)
227 ARMCPU *cpu = opaque;
228 uint64_t regidx;
229 const ARMCPRegInfo *ri;
231 regidx = *(uint32_t *)key;
232 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
234 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
235 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
236 /* The value array need not be initialized at this point */
237 cpu->cpreg_array_len++;
241 static void count_cpreg(gpointer key, gpointer opaque)
243 ARMCPU *cpu = opaque;
244 uint64_t regidx;
245 const ARMCPRegInfo *ri;
247 regidx = *(uint32_t *)key;
248 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
250 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
251 cpu->cpreg_array_len++;
255 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
257 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
258 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
260 if (aidx > bidx) {
261 return 1;
263 if (aidx < bidx) {
264 return -1;
266 return 0;
269 static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
271 GList **plist = udata;
273 *plist = g_list_prepend(*plist, key);
276 void init_cpreg_list(ARMCPU *cpu)
278 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
279 * Note that we require cpreg_tuples[] to be sorted by key ID.
281 GList *keys = NULL;
282 int arraylen;
284 g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);
286 keys = g_list_sort(keys, cpreg_key_compare);
288 cpu->cpreg_array_len = 0;
290 g_list_foreach(keys, count_cpreg, cpu);
292 arraylen = cpu->cpreg_array_len;
293 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
294 cpu->cpreg_values = g_new(uint64_t, arraylen);
295 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
296 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
297 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
298 cpu->cpreg_array_len = 0;
300 g_list_foreach(keys, add_cpreg_to_list, cpu);
302 assert(cpu->cpreg_array_len == arraylen);
304 g_list_free(keys);
307 /* Return true if extended addresses are enabled.
308 * This is always the case if our translation regime is 64 bit,
309 * but depends on TTBCR.EAE for 32 bit.
311 static inline bool extended_addresses_enabled(CPUARMState *env)
313 return arm_el_is_aa64(env, 1)
314 || ((arm_feature(env, ARM_FEATURE_LPAE)
315 && (env->cp15.c2_control & TTBCR_EAE)));
318 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
320 ARMCPU *cpu = arm_env_get_cpu(env);
322 raw_write(env, ri, value);
323 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
326 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
328 ARMCPU *cpu = arm_env_get_cpu(env);
330 if (raw_read(env, ri) != value) {
331 /* Unlike real hardware the qemu TLB uses virtual addresses,
332 * not modified virtual addresses, so this causes a TLB flush.
334 tlb_flush(CPU(cpu), 1);
335 raw_write(env, ri, value);
339 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
340 uint64_t value)
342 ARMCPU *cpu = arm_env_get_cpu(env);
344 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
345 && !extended_addresses_enabled(env)) {
346 /* For VMSA (when not using the LPAE long descriptor page table
347 * format) this register includes the ASID, so do a TLB flush.
348 * For PMSA it is purely a process ID and no action is needed.
350 tlb_flush(CPU(cpu), 1);
352 raw_write(env, ri, value);
355 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
356 uint64_t value)
358 /* Invalidate all (TLBIALL) */
359 ARMCPU *cpu = arm_env_get_cpu(env);
361 tlb_flush(CPU(cpu), 1);
364 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
365 uint64_t value)
367 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
368 ARMCPU *cpu = arm_env_get_cpu(env);
370 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
373 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
374 uint64_t value)
376 /* Invalidate by ASID (TLBIASID) */
377 ARMCPU *cpu = arm_env_get_cpu(env);
379 tlb_flush(CPU(cpu), value == 0);
382 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
383 uint64_t value)
385 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
386 ARMCPU *cpu = arm_env_get_cpu(env);
388 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
391 static const ARMCPRegInfo cp_reginfo[] = {
392 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
393 * version" bits will read as a reserved value, which should cause
394 * Linux to not try to use the debug hardware.
396 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
397 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
398 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
399 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
400 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
401 { .name = "CONTEXTIDR", .state = ARM_CP_STATE_BOTH,
402 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
403 .access = PL1_RW,
404 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el1),
405 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
406 REGINFO_SENTINEL
409 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
410 /* NB: Some of these registers exist in v8 but with more precise
411 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
413 /* MMU Domain access control / MPU write buffer control */
414 { .name = "DACR", .cp = 15,
415 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
416 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
417 .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
418 /* ??? This covers not just the impdef TLB lockdown registers but also
419 * some v7VMSA registers relating to TEX remap, so it is overly broad.
421 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
422 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
423 /* MMU TLB control. Note that the wildcarding means we cover not just
424 * the unified TLB ops but also the dside/iside/inner-shareable variants.
426 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
427 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
428 .type = ARM_CP_NO_MIGRATE },
429 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
430 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
431 .type = ARM_CP_NO_MIGRATE },
432 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
433 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
434 .type = ARM_CP_NO_MIGRATE },
435 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
436 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
437 .type = ARM_CP_NO_MIGRATE },
438 /* Cache maintenance ops; some of this space may be overridden later. */
439 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
440 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
441 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
442 REGINFO_SENTINEL
445 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
446 /* Not all pre-v6 cores implemented this WFI, so this is slightly
447 * over-broad.
449 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
450 .access = PL1_W, .type = ARM_CP_WFI },
451 REGINFO_SENTINEL
454 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
455 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
456 * is UNPREDICTABLE; we choose to NOP as most implementations do).
458 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
459 .access = PL1_W, .type = ARM_CP_WFI },
460 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
461 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
462 * OMAPCP will override this space.
464 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
465 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
466 .resetvalue = 0 },
467 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
468 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
469 .resetvalue = 0 },
470 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
471 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
472 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
473 .resetvalue = 0 },
474 REGINFO_SENTINEL
477 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
478 uint64_t value)
480 uint32_t mask = 0;
482 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
483 if (!arm_feature(env, ARM_FEATURE_V8)) {
484 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
485 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
486 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
488 if (arm_feature(env, ARM_FEATURE_VFP)) {
489 /* VFP coprocessor: cp10 & cp11 [23:20] */
490 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
492 if (!arm_feature(env, ARM_FEATURE_NEON)) {
493 /* ASEDIS [31] bit is RAO/WI */
494 value |= (1 << 31);
497 /* VFPv3 and upwards with NEON implement 32 double precision
498 * registers (D0-D31).
500 if (!arm_feature(env, ARM_FEATURE_NEON) ||
501 !arm_feature(env, ARM_FEATURE_VFP3)) {
502 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
503 value |= (1 << 30);
506 value &= mask;
508 env->cp15.c1_coproc = value;
511 static const ARMCPRegInfo v6_cp_reginfo[] = {
512 /* prefetch by MVA in v6, NOP in v7 */
513 { .name = "MVA_prefetch",
514 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
515 .access = PL1_W, .type = ARM_CP_NOP },
516 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
517 .access = PL0_W, .type = ARM_CP_NOP },
518 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
519 .access = PL0_W, .type = ARM_CP_NOP },
520 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
521 .access = PL0_W, .type = ARM_CP_NOP },
522 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
523 .access = PL1_RW,
524 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[1]),
525 .resetvalue = 0, },
526 /* Watchpoint Fault Address Register : should actually only be present
527 * for 1136, 1176, 11MPCore.
529 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
530 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
531 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
532 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
533 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
534 .resetvalue = 0, .writefn = cpacr_write },
535 REGINFO_SENTINEL
538 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
540 /* Performance monitor registers user accessibility is controlled
541 * by PMUSERENR.
543 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
544 return CP_ACCESS_TRAP;
546 return CP_ACCESS_OK;
549 #ifndef CONFIG_USER_ONLY
550 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
551 uint64_t value)
553 /* Don't computer the number of ticks in user mode */
554 uint32_t temp_ticks;
556 temp_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
557 get_ticks_per_sec() / 1000000;
559 if (env->cp15.c9_pmcr & PMCRE) {
560 /* If the counter is enabled */
561 if (env->cp15.c9_pmcr & PMCRD) {
562 /* Increment once every 64 processor clock cycles */
563 env->cp15.c15_ccnt = (temp_ticks/64) - env->cp15.c15_ccnt;
564 } else {
565 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
569 if (value & PMCRC) {
570 /* The counter has been reset */
571 env->cp15.c15_ccnt = 0;
574 /* only the DP, X, D and E bits are writable */
575 env->cp15.c9_pmcr &= ~0x39;
576 env->cp15.c9_pmcr |= (value & 0x39);
578 if (env->cp15.c9_pmcr & PMCRE) {
579 if (env->cp15.c9_pmcr & PMCRD) {
580 /* Increment once every 64 processor clock cycles */
581 temp_ticks /= 64;
583 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
587 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
589 uint32_t total_ticks;
591 if (!(env->cp15.c9_pmcr & PMCRE)) {
592 /* Counter is disabled, do not change value */
593 return env->cp15.c15_ccnt;
596 total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
597 get_ticks_per_sec() / 1000000;
599 if (env->cp15.c9_pmcr & PMCRD) {
600 /* Increment once every 64 processor clock cycles */
601 total_ticks /= 64;
603 return total_ticks - env->cp15.c15_ccnt;
606 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
607 uint64_t value)
609 uint32_t total_ticks;
611 if (!(env->cp15.c9_pmcr & PMCRE)) {
612 /* Counter is disabled, set the absolute value */
613 env->cp15.c15_ccnt = value;
614 return;
617 total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
618 get_ticks_per_sec() / 1000000;
620 if (env->cp15.c9_pmcr & PMCRD) {
621 /* Increment once every 64 processor clock cycles */
622 total_ticks /= 64;
624 env->cp15.c15_ccnt = total_ticks - value;
626 #endif
628 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
629 uint64_t value)
631 value &= (1 << 31);
632 env->cp15.c9_pmcnten |= value;
635 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
636 uint64_t value)
638 value &= (1 << 31);
639 env->cp15.c9_pmcnten &= ~value;
642 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
643 uint64_t value)
645 env->cp15.c9_pmovsr &= ~value;
648 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
649 uint64_t value)
651 env->cp15.c9_pmxevtyper = value & 0xff;
654 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
655 uint64_t value)
657 env->cp15.c9_pmuserenr = value & 1;
660 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
661 uint64_t value)
663 /* We have no event counters so only the C bit can be changed */
664 value &= (1 << 31);
665 env->cp15.c9_pminten |= value;
668 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
669 uint64_t value)
671 value &= (1 << 31);
672 env->cp15.c9_pminten &= ~value;
675 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
676 uint64_t value)
678 /* Note that even though the AArch64 view of this register has bits
679 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
680 * architectural requirements for bits which are RES0 only in some
681 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
682 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
684 raw_write(env, ri, value & ~0x1FULL);
687 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
689 ARMCPU *cpu = arm_env_get_cpu(env);
690 return cpu->ccsidr[env->cp15.c0_cssel];
693 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
694 uint64_t value)
696 raw_write(env, ri, value & 0xf);
699 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
701 CPUState *cs = ENV_GET_CPU(env);
702 uint64_t ret = 0;
704 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
705 ret |= CPSR_I;
707 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
708 ret |= CPSR_F;
710 /* External aborts are not possible in QEMU so A bit is always clear */
711 return ret;
714 static const ARMCPRegInfo v7_cp_reginfo[] = {
715 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
716 * debug components
718 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
719 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
720 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
721 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
722 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
723 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
724 .access = PL1_W, .type = ARM_CP_NOP },
725 /* Performance monitors are implementation defined in v7,
726 * but with an ARM recommended set of registers, which we
727 * follow (although we don't actually implement any counters)
729 * Performance registers fall into three categories:
730 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
731 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
732 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
733 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
734 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
736 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
737 .access = PL0_RW, .resetvalue = 0,
738 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
739 .writefn = pmcntenset_write,
740 .accessfn = pmreg_access,
741 .raw_writefn = raw_write },
742 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
743 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
744 .accessfn = pmreg_access,
745 .writefn = pmcntenclr_write,
746 .type = ARM_CP_NO_MIGRATE },
747 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
748 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
749 .accessfn = pmreg_access,
750 .writefn = pmovsr_write,
751 .raw_writefn = raw_write },
752 /* Unimplemented so WI. */
753 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
754 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
755 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
756 * We choose to RAZ/WI.
758 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
759 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
760 .accessfn = pmreg_access },
761 #ifndef CONFIG_USER_ONLY
762 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
763 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
764 .readfn = pmccntr_read, .writefn = pmccntr_write,
765 .accessfn = pmreg_access },
766 #endif
767 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
768 .access = PL0_RW,
769 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
770 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
771 .raw_writefn = raw_write },
772 /* Unimplemented, RAZ/WI. */
773 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
774 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
775 .accessfn = pmreg_access },
776 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
777 .access = PL0_R | PL1_RW,
778 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
779 .resetvalue = 0,
780 .writefn = pmuserenr_write, .raw_writefn = raw_write },
781 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
782 .access = PL1_RW,
783 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
784 .resetvalue = 0,
785 .writefn = pmintenset_write, .raw_writefn = raw_write },
786 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
787 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
788 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
789 .resetvalue = 0, .writefn = pmintenclr_write, },
790 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
791 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
792 .access = PL1_RW, .writefn = vbar_write,
793 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[1]),
794 .resetvalue = 0 },
795 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
796 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
797 .resetvalue = 0, },
798 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
799 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
800 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
801 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
802 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
803 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
804 .writefn = csselr_write, .resetvalue = 0 },
805 /* Auxiliary ID register: this actually has an IMPDEF value but for now
806 * just RAZ for all cores:
808 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
809 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
810 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
811 /* Auxiliary fault status registers: these also are IMPDEF, and we
812 * choose to RAZ/WI for all cores.
814 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
815 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
816 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
817 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
818 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
819 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
820 /* MAIR can just read-as-written because we don't implement caches
821 * and so don't need to care about memory attributes.
823 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
824 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
825 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el1),
826 .resetvalue = 0 },
827 /* For non-long-descriptor page tables these are PRRR and NMRR;
828 * regardless they still act as reads-as-written for QEMU.
829 * The override is necessary because of the overly-broad TLB_LOCKDOWN
830 * definition.
832 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
833 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
834 .fieldoffset = offsetoflow32(CPUARMState, cp15.mair_el1),
835 .resetfn = arm_cp_reset_ignore },
836 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
837 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
838 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el1),
839 .resetfn = arm_cp_reset_ignore },
840 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
841 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
842 .type = ARM_CP_NO_MIGRATE, .access = PL1_R, .readfn = isr_read },
843 REGINFO_SENTINEL
846 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
847 uint64_t value)
849 value &= 1;
850 env->teecr = value;
853 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
855 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
856 return CP_ACCESS_TRAP;
858 return CP_ACCESS_OK;
861 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
862 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
863 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
864 .resetvalue = 0,
865 .writefn = teecr_write },
866 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
867 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
868 .accessfn = teehbr_access, .resetvalue = 0 },
869 REGINFO_SENTINEL
872 static const ARMCPRegInfo v6k_cp_reginfo[] = {
873 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
874 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
875 .access = PL0_RW,
876 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 },
877 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
878 .access = PL0_RW,
879 .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0),
880 .resetfn = arm_cp_reset_ignore },
881 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
882 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
883 .access = PL0_R|PL1_W,
884 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 },
885 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
886 .access = PL0_R|PL1_W,
887 .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0),
888 .resetfn = arm_cp_reset_ignore },
889 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH,
890 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
891 .access = PL1_RW,
892 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 },
893 REGINFO_SENTINEL
896 #ifndef CONFIG_USER_ONLY
898 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
900 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
901 if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
902 return CP_ACCESS_TRAP;
904 return CP_ACCESS_OK;
907 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
909 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
910 if (arm_current_pl(env) == 0 &&
911 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
912 return CP_ACCESS_TRAP;
914 return CP_ACCESS_OK;
917 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
919 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
920 * EL0[PV]TEN is zero.
922 if (arm_current_pl(env) == 0 &&
923 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
924 return CP_ACCESS_TRAP;
926 return CP_ACCESS_OK;
929 static CPAccessResult gt_pct_access(CPUARMState *env,
930 const ARMCPRegInfo *ri)
932 return gt_counter_access(env, GTIMER_PHYS);
935 static CPAccessResult gt_vct_access(CPUARMState *env,
936 const ARMCPRegInfo *ri)
938 return gt_counter_access(env, GTIMER_VIRT);
941 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
943 return gt_timer_access(env, GTIMER_PHYS);
946 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
948 return gt_timer_access(env, GTIMER_VIRT);
951 static uint64_t gt_get_countervalue(CPUARMState *env)
953 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
956 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
958 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
960 if (gt->ctl & 1) {
961 /* Timer enabled: calculate and set current ISTATUS, irq, and
962 * reset timer to when ISTATUS next has to change
964 uint64_t count = gt_get_countervalue(&cpu->env);
965 /* Note that this must be unsigned 64 bit arithmetic: */
966 int istatus = count >= gt->cval;
967 uint64_t nexttick;
969 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
970 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
971 (istatus && !(gt->ctl & 2)));
972 if (istatus) {
973 /* Next transition is when count rolls back over to zero */
974 nexttick = UINT64_MAX;
975 } else {
976 /* Next transition is when we hit cval */
977 nexttick = gt->cval;
979 /* Note that the desired next expiry time might be beyond the
980 * signed-64-bit range of a QEMUTimer -- in this case we just
981 * set the timer for as far in the future as possible. When the
982 * timer expires we will reset the timer for any remaining period.
984 if (nexttick > INT64_MAX / GTIMER_SCALE) {
985 nexttick = INT64_MAX / GTIMER_SCALE;
987 timer_mod(cpu->gt_timer[timeridx], nexttick);
988 } else {
989 /* Timer disabled: ISTATUS and timer output always clear */
990 gt->ctl &= ~4;
991 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
992 timer_del(cpu->gt_timer[timeridx]);
996 static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
998 ARMCPU *cpu = arm_env_get_cpu(env);
999 int timeridx = ri->opc1 & 1;
1001 timer_del(cpu->gt_timer[timeridx]);
1004 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1006 return gt_get_countervalue(env);
1009 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1010 uint64_t value)
1012 int timeridx = ri->opc1 & 1;
1014 env->cp15.c14_timer[timeridx].cval = value;
1015 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1018 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1020 int timeridx = ri->crm & 1;
1022 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1023 gt_get_countervalue(env));
1026 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1027 uint64_t value)
1029 int timeridx = ri->crm & 1;
1031 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
1032 + sextract64(value, 0, 32);
1033 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1036 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1037 uint64_t value)
1039 ARMCPU *cpu = arm_env_get_cpu(env);
1040 int timeridx = ri->crm & 1;
1041 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1043 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1044 if ((oldval ^ value) & 1) {
1045 /* Enable toggled */
1046 gt_recalc_timer(cpu, timeridx);
1047 } else if ((oldval ^ value) & 2) {
1048 /* IMASK toggled: don't need to recalculate,
1049 * just set the interrupt line based on ISTATUS
1051 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1052 (oldval & 4) && !(value & 2));
1056 void arm_gt_ptimer_cb(void *opaque)
1058 ARMCPU *cpu = opaque;
1060 gt_recalc_timer(cpu, GTIMER_PHYS);
1063 void arm_gt_vtimer_cb(void *opaque)
1065 ARMCPU *cpu = opaque;
1067 gt_recalc_timer(cpu, GTIMER_VIRT);
1070 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1071 /* Note that CNTFRQ is purely reads-as-written for the benefit
1072 * of software; writing it doesn't actually change the timer frequency.
1073 * Our reset value matches the fixed frequency we implement the timer at.
1075 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1076 .type = ARM_CP_NO_MIGRATE,
1077 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1078 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1079 .resetfn = arm_cp_reset_ignore,
1081 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1082 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1083 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1084 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1085 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1087 /* overall control: mostly access permissions */
1088 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1089 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1090 .access = PL1_RW,
1091 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1092 .resetvalue = 0,
1094 /* per-timer control */
1095 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1096 .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
1097 .accessfn = gt_ptimer_access,
1098 .fieldoffset = offsetoflow32(CPUARMState,
1099 cp15.c14_timer[GTIMER_PHYS].ctl),
1100 .resetfn = arm_cp_reset_ignore,
1101 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1103 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1104 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1105 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1106 .accessfn = gt_ptimer_access,
1107 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1108 .resetvalue = 0,
1109 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1111 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1112 .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
1113 .accessfn = gt_vtimer_access,
1114 .fieldoffset = offsetoflow32(CPUARMState,
1115 cp15.c14_timer[GTIMER_VIRT].ctl),
1116 .resetfn = arm_cp_reset_ignore,
1117 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1119 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1120 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1121 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1122 .accessfn = gt_vtimer_access,
1123 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1124 .resetvalue = 0,
1125 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1127 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1128 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1129 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1130 .accessfn = gt_ptimer_access,
1131 .readfn = gt_tval_read, .writefn = gt_tval_write,
1133 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1134 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1135 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1136 .readfn = gt_tval_read, .writefn = gt_tval_write,
1138 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1139 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1140 .accessfn = gt_vtimer_access,
1141 .readfn = gt_tval_read, .writefn = gt_tval_write,
1143 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1144 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1145 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1146 .readfn = gt_tval_read, .writefn = gt_tval_write,
1148 /* The counter itself */
1149 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1150 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
1151 .accessfn = gt_pct_access,
1152 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1154 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1155 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1156 .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
1157 .accessfn = gt_pct_access,
1158 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1160 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1161 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
1162 .accessfn = gt_vct_access,
1163 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1165 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1166 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1167 .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
1168 .accessfn = gt_vct_access,
1169 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1171 /* Comparison value, indicating when the timer goes off */
1172 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1173 .access = PL1_RW | PL0_R,
1174 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
1175 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1176 .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore,
1177 .writefn = gt_cval_write, .raw_writefn = raw_write,
1179 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1180 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1181 .access = PL1_RW | PL0_R,
1182 .type = ARM_CP_IO,
1183 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1184 .resetvalue = 0, .accessfn = gt_vtimer_access,
1185 .writefn = gt_cval_write, .raw_writefn = raw_write,
1187 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1188 .access = PL1_RW | PL0_R,
1189 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
1190 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1191 .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore,
1192 .writefn = gt_cval_write, .raw_writefn = raw_write,
1194 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1195 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1196 .access = PL1_RW | PL0_R,
1197 .type = ARM_CP_IO,
1198 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1199 .resetvalue = 0, .accessfn = gt_vtimer_access,
1200 .writefn = gt_cval_write, .raw_writefn = raw_write,
1202 REGINFO_SENTINEL
1205 #else
1206 /* In user-mode none of the generic timer registers are accessible,
1207 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1208 * so instead just don't register any of them.
1210 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1211 REGINFO_SENTINEL
1214 #endif
1216 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1218 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1219 raw_write(env, ri, value);
1220 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1221 raw_write(env, ri, value & 0xfffff6ff);
1222 } else {
1223 raw_write(env, ri, value & 0xfffff1ff);
1227 #ifndef CONFIG_USER_ONLY
1228 /* get_phys_addr() isn't present for user-mode-only targets */
1230 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
1232 if (ri->opc2 & 4) {
1233 /* Other states are only available with TrustZone; in
1234 * a non-TZ implementation these registers don't exist
1235 * at all, which is an Uncategorized trap. This underdecoding
1236 * is safe because the reginfo is NO_MIGRATE.
1238 return CP_ACCESS_TRAP_UNCATEGORIZED;
1240 return CP_ACCESS_OK;
1243 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1245 hwaddr phys_addr;
1246 target_ulong page_size;
1247 int prot;
1248 int ret, is_user = ri->opc2 & 2;
1249 int access_type = ri->opc2 & 1;
1251 ret = get_phys_addr(env, value, access_type, is_user,
1252 &phys_addr, &prot, &page_size);
1253 if (extended_addresses_enabled(env)) {
1254 /* ret is a DFSR/IFSR value for the long descriptor
1255 * translation table format, but with WnR always clear.
1256 * Convert it to a 64-bit PAR.
1258 uint64_t par64 = (1 << 11); /* LPAE bit always set */
1259 if (ret == 0) {
1260 par64 |= phys_addr & ~0xfffULL;
1261 /* We don't set the ATTR or SH fields in the PAR. */
1262 } else {
1263 par64 |= 1; /* F */
1264 par64 |= (ret & 0x3f) << 1; /* FS */
1265 /* Note that S2WLK and FSTAGE are always zero, because we don't
1266 * implement virtualization and therefore there can't be a stage 2
1267 * fault.
1270 env->cp15.par_el1 = par64;
1271 } else {
1272 /* ret is a DFSR/IFSR value for the short descriptor
1273 * translation table format (with WnR always clear).
1274 * Convert it to a 32-bit PAR.
1276 if (ret == 0) {
1277 /* We do not set any attribute bits in the PAR */
1278 if (page_size == (1 << 24)
1279 && arm_feature(env, ARM_FEATURE_V7)) {
1280 env->cp15.par_el1 = (phys_addr & 0xff000000) | 1 << 1;
1281 } else {
1282 env->cp15.par_el1 = phys_addr & 0xfffff000;
1284 } else {
1285 env->cp15.par_el1 = ((ret & (1 << 10)) >> 5) |
1286 ((ret & (1 << 12)) >> 6) |
1287 ((ret & 0xf) << 1) | 1;
1291 #endif
1293 static const ARMCPRegInfo vapa_cp_reginfo[] = {
1294 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1295 .access = PL1_RW, .resetvalue = 0,
1296 .fieldoffset = offsetoflow32(CPUARMState, cp15.par_el1),
1297 .writefn = par_write },
1298 #ifndef CONFIG_USER_ONLY
1299 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1300 .access = PL1_W, .accessfn = ats_access,
1301 .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
1302 #endif
1303 REGINFO_SENTINEL
1306 /* Return basic MPU access permission bits. */
1307 static uint32_t simple_mpu_ap_bits(uint32_t val)
1309 uint32_t ret;
1310 uint32_t mask;
1311 int i;
1312 ret = 0;
1313 mask = 3;
1314 for (i = 0; i < 16; i += 2) {
1315 ret |= (val >> i) & mask;
1316 mask <<= 2;
1318 return ret;
1321 /* Pad basic MPU access permission bits to extended format. */
1322 static uint32_t extended_mpu_ap_bits(uint32_t val)
1324 uint32_t ret;
1325 uint32_t mask;
1326 int i;
1327 ret = 0;
1328 mask = 3;
1329 for (i = 0; i < 16; i += 2) {
1330 ret |= (val & mask) << i;
1331 mask <<= 2;
1333 return ret;
1336 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1337 uint64_t value)
1339 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
1342 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1344 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
1347 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1348 uint64_t value)
1350 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
1353 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1355 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
1358 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
1359 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1360 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1361 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
1362 .resetvalue = 0,
1363 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
1364 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1365 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1366 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
1367 .resetvalue = 0,
1368 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
1369 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
1370 .access = PL1_RW,
1371 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
1372 .resetvalue = 0, },
1373 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
1374 .access = PL1_RW,
1375 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
1376 .resetvalue = 0, },
1377 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1378 .access = PL1_RW,
1379 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
1380 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1381 .access = PL1_RW,
1382 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
1383 /* Protection region base and size registers */
1384 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
1385 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1386 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
1387 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
1388 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1389 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
1390 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
1391 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1392 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
1393 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
1394 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1395 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
1396 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
1397 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1398 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
1399 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
1400 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1401 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
1402 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
1403 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1404 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
1405 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
1406 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1407 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
1408 REGINFO_SENTINEL
1411 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1412 uint64_t value)
1414 int maskshift = extract32(value, 0, 3);
1416 if (!arm_feature(env, ARM_FEATURE_V8)) {
1417 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
1418 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
1419 * using Long-desciptor translation table format */
1420 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
1421 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
1422 /* In an implementation that includes the Security Extensions
1423 * TTBCR has additional fields PD0 [4] and PD1 [5] for
1424 * Short-descriptor translation table format.
1426 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
1427 } else {
1428 value &= TTBCR_N;
1432 /* Note that we always calculate c2_mask and c2_base_mask, but
1433 * they are only used for short-descriptor tables (ie if EAE is 0);
1434 * for long-descriptor tables the TTBCR fields are used differently
1435 * and the c2_mask and c2_base_mask values are meaningless.
1437 raw_write(env, ri, value);
1438 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift);
1439 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift);
1442 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1443 uint64_t value)
1445 ARMCPU *cpu = arm_env_get_cpu(env);
1447 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1448 /* With LPAE the TTBCR could result in a change of ASID
1449 * via the TTBCR.A1 bit, so do a TLB flush.
1451 tlb_flush(CPU(cpu), 1);
1453 vmsa_ttbcr_raw_write(env, ri, value);
1456 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1458 env->cp15.c2_base_mask = 0xffffc000u;
1459 raw_write(env, ri, 0);
1460 env->cp15.c2_mask = 0;
1463 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1464 uint64_t value)
1466 ARMCPU *cpu = arm_env_get_cpu(env);
1468 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1469 tlb_flush(CPU(cpu), 1);
1470 raw_write(env, ri, value);
1473 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1474 uint64_t value)
1476 /* 64 bit accesses to the TTBRs can change the ASID and so we
1477 * must flush the TLB.
1479 if (cpreg_field_is_64bit(ri)) {
1480 ARMCPU *cpu = arm_env_get_cpu(env);
1482 tlb_flush(CPU(cpu), 1);
1484 raw_write(env, ri, value);
1487 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
1488 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1489 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1490 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
1491 .resetfn = arm_cp_reset_ignore, },
1492 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1493 .access = PL1_RW,
1494 .fieldoffset = offsetof(CPUARMState, cp15.ifsr_el2), .resetvalue = 0, },
1495 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
1496 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
1497 .access = PL1_RW,
1498 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
1499 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
1500 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1501 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
1502 .writefn = vmsa_ttbr_write, .resetvalue = 0 },
1503 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
1504 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1505 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
1506 .writefn = vmsa_ttbr_write, .resetvalue = 0 },
1507 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
1508 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1509 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
1510 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
1511 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
1512 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1513 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, .writefn = vmsa_ttbcr_write,
1514 .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write,
1515 .fieldoffset = offsetoflow32(CPUARMState, cp15.c2_control) },
1516 /* 64-bit FAR; this entry also gives us the AArch32 DFAR */
1517 { .name = "FAR_EL1", .state = ARM_CP_STATE_BOTH,
1518 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
1519 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
1520 .resetvalue = 0, },
1521 REGINFO_SENTINEL
1524 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
1525 uint64_t value)
1527 env->cp15.c15_ticonfig = value & 0xe7;
1528 /* The OS_TYPE bit in this register changes the reported CPUID! */
1529 env->cp15.c0_cpuid = (value & (1 << 5)) ?
1530 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1533 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1534 uint64_t value)
1536 env->cp15.c15_threadid = value & 0xffff;
1539 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
1540 uint64_t value)
1542 /* Wait-for-interrupt (deprecated) */
1543 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1546 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
1547 uint64_t value)
1549 /* On OMAP there are registers indicating the max/min index of dcache lines
1550 * containing a dirty line; cache flush operations have to reset these.
1552 env->cp15.c15_i_max = 0x000;
1553 env->cp15.c15_i_min = 0xff0;
1556 static const ARMCPRegInfo omap_cp_reginfo[] = {
1557 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
1558 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
1559 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
1560 .resetvalue = 0, },
1561 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1562 .access = PL1_RW, .type = ARM_CP_NOP },
1563 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1564 .access = PL1_RW,
1565 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
1566 .writefn = omap_ticonfig_write },
1567 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
1568 .access = PL1_RW,
1569 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
1570 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
1571 .access = PL1_RW, .resetvalue = 0xff0,
1572 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
1573 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
1574 .access = PL1_RW,
1575 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
1576 .writefn = omap_threadid_write },
1577 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
1578 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1579 .type = ARM_CP_NO_MIGRATE,
1580 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
1581 /* TODO: Peripheral port remap register:
1582 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1583 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1584 * when MMU is off.
1586 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1587 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1588 .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
1589 .writefn = omap_cachemaint_write },
1590 { .name = "C9", .cp = 15, .crn = 9,
1591 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
1592 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1593 REGINFO_SENTINEL
1596 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1597 uint64_t value)
1599 value &= 0x3fff;
1600 if (env->cp15.c15_cpar != value) {
1601 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1602 tb_flush(env);
1603 env->cp15.c15_cpar = value;
1607 static const ARMCPRegInfo xscale_cp_reginfo[] = {
1608 { .name = "XSCALE_CPAR",
1609 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1610 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
1611 .writefn = xscale_cpar_write, },
1612 { .name = "XSCALE_AUXCR",
1613 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
1614 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
1615 .resetvalue = 0, },
1616 /* XScale specific cache-lockdown: since we have no cache we NOP these
1617 * and hope the guest does not really rely on cache behaviour.
1619 { .name = "XSCALE_LOCK_ICACHE_LINE",
1620 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1621 .access = PL1_W, .type = ARM_CP_NOP },
1622 { .name = "XSCALE_UNLOCK_ICACHE",
1623 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1624 .access = PL1_W, .type = ARM_CP_NOP },
1625 { .name = "XSCALE_DCACHE_LOCK",
1626 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
1627 .access = PL1_RW, .type = ARM_CP_NOP },
1628 { .name = "XSCALE_UNLOCK_DCACHE",
1629 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
1630 .access = PL1_W, .type = ARM_CP_NOP },
1631 REGINFO_SENTINEL
1634 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
1635 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1636 * implementation of this implementation-defined space.
1637 * Ideally this should eventually disappear in favour of actually
1638 * implementing the correct behaviour for all cores.
1640 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
1641 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1642 .access = PL1_RW,
1643 .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE | ARM_CP_OVERRIDE,
1644 .resetvalue = 0 },
1645 REGINFO_SENTINEL
1648 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
1649 /* Cache status: RAZ because we have no cache so it's always clean */
1650 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1651 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1652 .resetvalue = 0 },
1653 REGINFO_SENTINEL
1656 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
1657 /* We never have a a block transfer operation in progress */
1658 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1659 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1660 .resetvalue = 0 },
1661 /* The cache ops themselves: these all NOP for QEMU */
1662 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
1663 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1664 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
1665 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1666 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
1667 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1668 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
1669 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1670 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
1671 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1672 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
1673 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1674 REGINFO_SENTINEL
1677 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
1678 /* The cache test-and-clean instructions always return (1 << 30)
1679 * to indicate that there are no dirty cache lines.
1681 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
1682 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1683 .resetvalue = (1 << 30) },
1684 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
1685 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1686 .resetvalue = (1 << 30) },
1687 REGINFO_SENTINEL
1690 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
1691 /* Ignore ReadBuffer accesses */
1692 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
1693 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1694 .access = PL1_RW, .resetvalue = 0,
1695 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
1696 REGINFO_SENTINEL
1699 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1701 CPUState *cs = CPU(arm_env_get_cpu(env));
1702 uint32_t mpidr = cs->cpu_index;
1703 /* We don't support setting cluster ID ([8..11]) (known as Aff1
1704 * in later ARM ARM versions), or any of the higher affinity level fields,
1705 * so these bits always RAZ.
1707 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1708 mpidr |= (1U << 31);
1709 /* Cores which are uniprocessor (non-coherent)
1710 * but still implement the MP extensions set
1711 * bit 30. (For instance, A9UP.) However we do
1712 * not currently model any of those cores.
1715 return mpidr;
1718 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
1719 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
1720 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
1721 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
1722 REGINFO_SENTINEL
1725 static const ARMCPRegInfo lpae_cp_reginfo[] = {
1726 /* NOP AMAIR0/1: the override is because these clash with the rather
1727 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1729 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
1730 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
1731 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1732 .resetvalue = 0 },
1733 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
1734 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
1735 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1736 .resetvalue = 0 },
1737 /* 64 bit access versions of the (dummy) debug registers */
1738 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1739 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1740 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1741 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1742 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
1743 .access = PL1_RW, .type = ARM_CP_64BIT,
1744 .fieldoffset = offsetof(CPUARMState, cp15.par_el1), .resetvalue = 0 },
1745 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1746 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
1747 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
1748 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
1749 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1750 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
1751 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
1752 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
1753 REGINFO_SENTINEL
1756 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1758 return vfp_get_fpcr(env);
1761 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1762 uint64_t value)
1764 vfp_set_fpcr(env, value);
1767 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1769 return vfp_get_fpsr(env);
1772 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1773 uint64_t value)
1775 vfp_set_fpsr(env, value);
1778 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
1780 if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UMA)) {
1781 return CP_ACCESS_TRAP;
1783 return CP_ACCESS_OK;
1786 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
1787 uint64_t value)
1789 env->daif = value & PSTATE_DAIF;
1792 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
1793 const ARMCPRegInfo *ri)
1795 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
1796 * SCTLR_EL1.UCI is set.
1798 if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCI)) {
1799 return CP_ACCESS_TRAP;
1801 return CP_ACCESS_OK;
1804 static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri,
1805 uint64_t value)
1807 /* Invalidate by VA (AArch64 version) */
1808 ARMCPU *cpu = arm_env_get_cpu(env);
1809 uint64_t pageaddr = value << 12;
1810 tlb_flush_page(CPU(cpu), pageaddr);
1813 static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
1814 uint64_t value)
1816 /* Invalidate by VA, all ASIDs (AArch64 version) */
1817 ARMCPU *cpu = arm_env_get_cpu(env);
1818 uint64_t pageaddr = value << 12;
1819 tlb_flush_page(CPU(cpu), pageaddr);
1822 static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1823 uint64_t value)
1825 /* Invalidate by ASID (AArch64 version) */
1826 ARMCPU *cpu = arm_env_get_cpu(env);
1827 int asid = extract64(value, 48, 16);
1828 tlb_flush(CPU(cpu), asid == 0);
1831 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
1833 /* We don't implement EL2, so the only control on DC ZVA is the
1834 * bit in the SCTLR which can prohibit access for EL0.
1836 if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_DZE)) {
1837 return CP_ACCESS_TRAP;
1839 return CP_ACCESS_OK;
1842 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
1844 ARMCPU *cpu = arm_env_get_cpu(env);
1845 int dzp_bit = 1 << 4;
1847 /* DZP indicates whether DC ZVA access is allowed */
1848 if (aa64_zva_access(env, NULL) != CP_ACCESS_OK) {
1849 dzp_bit = 0;
1851 return cpu->dcz_blocksize | dzp_bit;
1854 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
1856 if (!env->pstate & PSTATE_SP) {
1857 /* Access to SP_EL0 is undefined if it's being used as
1858 * the stack pointer.
1860 return CP_ACCESS_TRAP_UNCATEGORIZED;
1862 return CP_ACCESS_OK;
1865 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
1867 return env->pstate & PSTATE_SP;
1870 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
1872 update_spsel(env, val);
1875 static const ARMCPRegInfo v8_cp_reginfo[] = {
1876 /* Minimal set of EL0-visible registers. This will need to be expanded
1877 * significantly for system emulation of AArch64 CPUs.
1879 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
1880 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
1881 .access = PL0_RW, .type = ARM_CP_NZCV },
1882 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
1883 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
1884 .type = ARM_CP_NO_MIGRATE,
1885 .access = PL0_RW, .accessfn = aa64_daif_access,
1886 .fieldoffset = offsetof(CPUARMState, daif),
1887 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
1888 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
1889 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
1890 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
1891 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
1892 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
1893 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
1894 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
1895 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
1896 .access = PL0_R, .type = ARM_CP_NO_MIGRATE,
1897 .readfn = aa64_dczid_read },
1898 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
1899 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
1900 .access = PL0_W, .type = ARM_CP_DC_ZVA,
1901 #ifndef CONFIG_USER_ONLY
1902 /* Avoid overhead of an access check that always passes in user-mode */
1903 .accessfn = aa64_zva_access,
1904 #endif
1906 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
1907 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
1908 .access = PL1_R, .type = ARM_CP_CURRENTEL },
1909 /* Cache ops: all NOPs since we don't emulate caches */
1910 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
1911 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
1912 .access = PL1_W, .type = ARM_CP_NOP },
1913 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
1914 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
1915 .access = PL1_W, .type = ARM_CP_NOP },
1916 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
1917 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
1918 .access = PL0_W, .type = ARM_CP_NOP,
1919 .accessfn = aa64_cacheop_access },
1920 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
1921 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
1922 .access = PL1_W, .type = ARM_CP_NOP },
1923 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
1924 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
1925 .access = PL1_W, .type = ARM_CP_NOP },
1926 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
1927 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
1928 .access = PL0_W, .type = ARM_CP_NOP,
1929 .accessfn = aa64_cacheop_access },
1930 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
1931 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
1932 .access = PL1_W, .type = ARM_CP_NOP },
1933 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
1934 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
1935 .access = PL0_W, .type = ARM_CP_NOP,
1936 .accessfn = aa64_cacheop_access },
1937 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
1938 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
1939 .access = PL0_W, .type = ARM_CP_NOP,
1940 .accessfn = aa64_cacheop_access },
1941 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
1942 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
1943 .access = PL1_W, .type = ARM_CP_NOP },
1944 /* TLBI operations */
1945 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
1946 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1947 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1948 .writefn = tlbiall_write },
1949 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
1950 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1951 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1952 .writefn = tlbi_aa64_va_write },
1953 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
1954 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1955 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1956 .writefn = tlbi_aa64_asid_write },
1957 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
1958 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1959 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1960 .writefn = tlbi_aa64_vaa_write },
1961 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
1962 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
1963 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1964 .writefn = tlbi_aa64_va_write },
1965 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
1966 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
1967 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1968 .writefn = tlbi_aa64_vaa_write },
1969 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
1970 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1971 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1972 .writefn = tlbiall_write },
1973 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
1974 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1975 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1976 .writefn = tlbi_aa64_va_write },
1977 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
1978 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1979 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1980 .writefn = tlbi_aa64_asid_write },
1981 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
1982 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1983 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1984 .writefn = tlbi_aa64_vaa_write },
1985 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
1986 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
1987 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1988 .writefn = tlbi_aa64_va_write },
1989 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
1990 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
1991 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1992 .writefn = tlbi_aa64_vaa_write },
1993 #ifndef CONFIG_USER_ONLY
1994 /* 64 bit address translation operations */
1995 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
1996 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
1997 .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write },
1998 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
1999 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
2000 .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write },
2001 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
2002 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
2003 .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write },
2004 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
2005 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
2006 .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write },
2007 #endif
2008 /* 32 bit TLB invalidates, Inner Shareable */
2009 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2010 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write },
2011 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2012 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
2013 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2014 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write },
2015 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2016 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimvaa_write },
2017 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2018 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
2019 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2020 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimvaa_write },
2021 /* 32 bit ITLB invalidates */
2022 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2023 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write },
2024 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2025 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
2026 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2027 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write },
2028 /* 32 bit DTLB invalidates */
2029 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2030 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write },
2031 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2032 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
2033 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2034 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write },
2035 /* 32 bit TLB invalidates */
2036 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2037 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write },
2038 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2039 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
2040 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2041 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write },
2042 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2043 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimvaa_write },
2044 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2045 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
2046 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2047 .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimvaa_write },
2048 /* 32 bit cache operations */
2049 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2050 .type = ARM_CP_NOP, .access = PL1_W },
2051 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
2052 .type = ARM_CP_NOP, .access = PL1_W },
2053 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2054 .type = ARM_CP_NOP, .access = PL1_W },
2055 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
2056 .type = ARM_CP_NOP, .access = PL1_W },
2057 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
2058 .type = ARM_CP_NOP, .access = PL1_W },
2059 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
2060 .type = ARM_CP_NOP, .access = PL1_W },
2061 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
2062 .type = ARM_CP_NOP, .access = PL1_W },
2063 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
2064 .type = ARM_CP_NOP, .access = PL1_W },
2065 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
2066 .type = ARM_CP_NOP, .access = PL1_W },
2067 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
2068 .type = ARM_CP_NOP, .access = PL1_W },
2069 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
2070 .type = ARM_CP_NOP, .access = PL1_W },
2071 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
2072 .type = ARM_CP_NOP, .access = PL1_W },
2073 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
2074 .type = ARM_CP_NOP, .access = PL1_W },
2075 /* MMU Domain access control / MPU write buffer control */
2076 { .name = "DACR", .cp = 15,
2077 .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
2078 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
2079 .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
2080 /* Dummy implementation of monitor debug system control register:
2081 * we don't support debug.
2083 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_AA64,
2084 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
2085 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2086 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
2087 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_AA64,
2088 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
2089 .access = PL1_W, .type = ARM_CP_NOP },
2090 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
2091 .type = ARM_CP_NO_MIGRATE,
2092 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
2093 .access = PL1_RW,
2094 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
2095 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
2096 .type = ARM_CP_NO_MIGRATE,
2097 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
2098 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[0]) },
2099 /* We rely on the access checks not allowing the guest to write to the
2100 * state field when SPSel indicates that it's being used as the stack
2101 * pointer.
2103 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
2104 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
2105 .access = PL1_RW, .accessfn = sp_el0_access,
2106 .type = ARM_CP_NO_MIGRATE,
2107 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
2108 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
2109 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
2110 .type = ARM_CP_NO_MIGRATE,
2111 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
2112 REGINFO_SENTINEL
2115 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
2116 static const ARMCPRegInfo v8_el3_no_el2_cp_reginfo[] = {
2117 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
2118 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
2119 .access = PL2_RW,
2120 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
2121 REGINFO_SENTINEL
2124 static const ARMCPRegInfo v8_el2_cp_reginfo[] = {
2125 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
2126 .type = ARM_CP_NO_MIGRATE,
2127 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
2128 .access = PL2_RW,
2129 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
2130 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
2131 .type = ARM_CP_NO_MIGRATE,
2132 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
2133 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
2134 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
2135 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
2136 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
2137 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
2138 .type = ARM_CP_NO_MIGRATE,
2139 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
2140 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) },
2141 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
2142 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
2143 .access = PL2_RW, .writefn = vbar_write,
2144 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
2145 .resetvalue = 0 },
2146 REGINFO_SENTINEL
2149 static const ARMCPRegInfo v8_el3_cp_reginfo[] = {
2150 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
2151 .type = ARM_CP_NO_MIGRATE,
2152 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
2153 .access = PL3_RW,
2154 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
2155 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
2156 .type = ARM_CP_NO_MIGRATE,
2157 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
2158 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
2159 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
2160 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
2161 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
2162 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
2163 .type = ARM_CP_NO_MIGRATE,
2164 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
2165 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) },
2166 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
2167 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
2168 .access = PL3_RW, .writefn = vbar_write,
2169 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
2170 .resetvalue = 0 },
2171 REGINFO_SENTINEL
2174 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2175 uint64_t value)
2177 ARMCPU *cpu = arm_env_get_cpu(env);
2179 if (raw_read(env, ri) == value) {
2180 /* Skip the TLB flush if nothing actually changed; Linux likes
2181 * to do a lot of pointless SCTLR writes.
2183 return;
2186 raw_write(env, ri, value);
2187 /* ??? Lots of these bits are not implemented. */
2188 /* This may enable/disable the MMU, so do a TLB flush. */
2189 tlb_flush(CPU(cpu), 1);
2192 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
2194 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
2195 * but the AArch32 CTR has its own reginfo struct)
2197 if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCT)) {
2198 return CP_ACCESS_TRAP;
2200 return CP_ACCESS_OK;
2203 static void define_aarch64_debug_regs(ARMCPU *cpu)
2205 /* Define breakpoint and watchpoint registers. These do nothing
2206 * but read as written, for now.
2208 int i;
2210 for (i = 0; i < 16; i++) {
2211 ARMCPRegInfo dbgregs[] = {
2212 { .name = "DBGBVR", .state = ARM_CP_STATE_AA64,
2213 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
2214 .access = PL1_RW,
2215 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]) },
2216 { .name = "DBGBCR", .state = ARM_CP_STATE_AA64,
2217 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
2218 .access = PL1_RW,
2219 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]) },
2220 { .name = "DBGWVR", .state = ARM_CP_STATE_AA64,
2221 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
2222 .access = PL1_RW,
2223 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]) },
2224 { .name = "DBGWCR", .state = ARM_CP_STATE_AA64,
2225 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
2226 .access = PL1_RW,
2227 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]) },
2228 REGINFO_SENTINEL
2230 define_arm_cp_regs(cpu, dbgregs);
2234 void register_cp_regs_for_features(ARMCPU *cpu)
2236 /* Register all the coprocessor registers based on feature bits */
2237 CPUARMState *env = &cpu->env;
2238 if (arm_feature(env, ARM_FEATURE_M)) {
2239 /* M profile has no coprocessor registers */
2240 return;
2243 define_arm_cp_regs(cpu, cp_reginfo);
2244 if (!arm_feature(env, ARM_FEATURE_V8)) {
2245 /* Must go early as it is full of wildcards that may be
2246 * overridden by later definitions.
2248 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
2251 if (arm_feature(env, ARM_FEATURE_V6)) {
2252 /* The ID registers all have impdef reset values */
2253 ARMCPRegInfo v6_idregs[] = {
2254 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
2255 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
2256 .access = PL1_R, .type = ARM_CP_CONST,
2257 .resetvalue = cpu->id_pfr0 },
2258 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
2259 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
2260 .access = PL1_R, .type = ARM_CP_CONST,
2261 .resetvalue = cpu->id_pfr1 },
2262 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
2263 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
2264 .access = PL1_R, .type = ARM_CP_CONST,
2265 .resetvalue = cpu->id_dfr0 },
2266 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
2267 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
2268 .access = PL1_R, .type = ARM_CP_CONST,
2269 .resetvalue = cpu->id_afr0 },
2270 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
2271 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
2272 .access = PL1_R, .type = ARM_CP_CONST,
2273 .resetvalue = cpu->id_mmfr0 },
2274 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
2275 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
2276 .access = PL1_R, .type = ARM_CP_CONST,
2277 .resetvalue = cpu->id_mmfr1 },
2278 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
2279 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
2280 .access = PL1_R, .type = ARM_CP_CONST,
2281 .resetvalue = cpu->id_mmfr2 },
2282 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
2283 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
2284 .access = PL1_R, .type = ARM_CP_CONST,
2285 .resetvalue = cpu->id_mmfr3 },
2286 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
2287 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
2288 .access = PL1_R, .type = ARM_CP_CONST,
2289 .resetvalue = cpu->id_isar0 },
2290 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
2291 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
2292 .access = PL1_R, .type = ARM_CP_CONST,
2293 .resetvalue = cpu->id_isar1 },
2294 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
2295 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
2296 .access = PL1_R, .type = ARM_CP_CONST,
2297 .resetvalue = cpu->id_isar2 },
2298 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
2299 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
2300 .access = PL1_R, .type = ARM_CP_CONST,
2301 .resetvalue = cpu->id_isar3 },
2302 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
2303 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
2304 .access = PL1_R, .type = ARM_CP_CONST,
2305 .resetvalue = cpu->id_isar4 },
2306 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
2307 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
2308 .access = PL1_R, .type = ARM_CP_CONST,
2309 .resetvalue = cpu->id_isar5 },
2310 /* 6..7 are as yet unallocated and must RAZ */
2311 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
2312 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
2313 .resetvalue = 0 },
2314 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
2315 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
2316 .resetvalue = 0 },
2317 REGINFO_SENTINEL
2319 define_arm_cp_regs(cpu, v6_idregs);
2320 define_arm_cp_regs(cpu, v6_cp_reginfo);
2321 } else {
2322 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
2324 if (arm_feature(env, ARM_FEATURE_V6K)) {
2325 define_arm_cp_regs(cpu, v6k_cp_reginfo);
2327 if (arm_feature(env, ARM_FEATURE_V7)) {
2328 /* v7 performance monitor control register: same implementor
2329 * field as main ID register, and we implement only the cycle
2330 * count register.
2332 #ifndef CONFIG_USER_ONLY
2333 ARMCPRegInfo pmcr = {
2334 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
2335 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
2336 .type = ARM_CP_IO,
2337 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
2338 .accessfn = pmreg_access, .writefn = pmcr_write,
2339 .raw_writefn = raw_write,
2341 define_one_arm_cp_reg(cpu, &pmcr);
2342 #endif
2343 ARMCPRegInfo clidr = {
2344 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
2345 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
2346 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
2348 define_one_arm_cp_reg(cpu, &clidr);
2349 define_arm_cp_regs(cpu, v7_cp_reginfo);
2350 } else {
2351 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
2353 if (arm_feature(env, ARM_FEATURE_V8)) {
2354 /* AArch64 ID registers, which all have impdef reset values */
2355 ARMCPRegInfo v8_idregs[] = {
2356 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
2357 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
2358 .access = PL1_R, .type = ARM_CP_CONST,
2359 .resetvalue = cpu->id_aa64pfr0 },
2360 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
2361 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
2362 .access = PL1_R, .type = ARM_CP_CONST,
2363 .resetvalue = cpu->id_aa64pfr1},
2364 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
2365 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
2366 .access = PL1_R, .type = ARM_CP_CONST,
2367 /* We mask out the PMUVer field, because we don't currently
2368 * implement the PMU. Not advertising it prevents the guest
2369 * from trying to use it and getting UNDEFs on registers we
2370 * don't implement.
2372 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
2373 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
2374 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
2375 .access = PL1_R, .type = ARM_CP_CONST,
2376 .resetvalue = cpu->id_aa64dfr1 },
2377 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
2378 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
2379 .access = PL1_R, .type = ARM_CP_CONST,
2380 .resetvalue = cpu->id_aa64afr0 },
2381 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
2382 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
2383 .access = PL1_R, .type = ARM_CP_CONST,
2384 .resetvalue = cpu->id_aa64afr1 },
2385 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
2386 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
2387 .access = PL1_R, .type = ARM_CP_CONST,
2388 .resetvalue = cpu->id_aa64isar0 },
2389 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
2390 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
2391 .access = PL1_R, .type = ARM_CP_CONST,
2392 .resetvalue = cpu->id_aa64isar1 },
2393 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
2394 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
2395 .access = PL1_R, .type = ARM_CP_CONST,
2396 .resetvalue = cpu->id_aa64mmfr0 },
2397 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
2398 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
2399 .access = PL1_R, .type = ARM_CP_CONST,
2400 .resetvalue = cpu->id_aa64mmfr1 },
2401 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
2402 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
2403 .access = PL1_R, .type = ARM_CP_CONST,
2404 .resetvalue = cpu->mvfr0 },
2405 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
2406 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
2407 .access = PL1_R, .type = ARM_CP_CONST,
2408 .resetvalue = cpu->mvfr1 },
2409 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
2410 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
2411 .access = PL1_R, .type = ARM_CP_CONST,
2412 .resetvalue = cpu->mvfr2 },
2413 REGINFO_SENTINEL
2415 ARMCPRegInfo rvbar = {
2416 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
2417 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
2418 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
2420 define_one_arm_cp_reg(cpu, &rvbar);
2421 define_arm_cp_regs(cpu, v8_idregs);
2422 define_arm_cp_regs(cpu, v8_cp_reginfo);
2423 define_aarch64_debug_regs(cpu);
2425 if (arm_feature(env, ARM_FEATURE_EL2)) {
2426 define_arm_cp_regs(cpu, v8_el2_cp_reginfo);
2427 } else {
2428 /* If EL2 is missing but higher ELs are enabled, we need to
2429 * register the no_el2 reginfos.
2431 if (arm_feature(env, ARM_FEATURE_EL3)) {
2432 define_arm_cp_regs(cpu, v8_el3_no_el2_cp_reginfo);
2435 if (arm_feature(env, ARM_FEATURE_EL3)) {
2436 define_arm_cp_regs(cpu, v8_el3_cp_reginfo);
2438 if (arm_feature(env, ARM_FEATURE_MPU)) {
2439 /* These are the MPU registers prior to PMSAv6. Any new
2440 * PMSA core later than the ARM946 will require that we
2441 * implement the PMSAv6 or PMSAv7 registers, which are
2442 * completely different.
2444 assert(!arm_feature(env, ARM_FEATURE_V6));
2445 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
2446 } else {
2447 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
2449 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
2450 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
2452 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
2453 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
2455 if (arm_feature(env, ARM_FEATURE_VAPA)) {
2456 define_arm_cp_regs(cpu, vapa_cp_reginfo);
2458 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
2459 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
2461 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
2462 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
2464 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
2465 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
2467 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
2468 define_arm_cp_regs(cpu, omap_cp_reginfo);
2470 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
2471 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
2473 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2474 define_arm_cp_regs(cpu, xscale_cp_reginfo);
2476 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
2477 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
2479 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2480 define_arm_cp_regs(cpu, lpae_cp_reginfo);
2482 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
2483 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
2484 * be read-only (ie write causes UNDEF exception).
2487 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
2488 /* Pre-v8 MIDR space.
2489 * Note that the MIDR isn't a simple constant register because
2490 * of the TI925 behaviour where writes to another register can
2491 * cause the MIDR value to change.
2493 * Unimplemented registers in the c15 0 0 0 space default to
2494 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
2495 * and friends override accordingly.
2497 { .name = "MIDR",
2498 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
2499 .access = PL1_R, .resetvalue = cpu->midr,
2500 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
2501 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
2502 .type = ARM_CP_OVERRIDE },
2503 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
2504 { .name = "DUMMY",
2505 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
2506 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2507 { .name = "DUMMY",
2508 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
2509 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2510 { .name = "DUMMY",
2511 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
2512 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2513 { .name = "DUMMY",
2514 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
2515 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2516 { .name = "DUMMY",
2517 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
2518 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2519 REGINFO_SENTINEL
2521 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
2522 /* v8 MIDR -- the wildcard isn't necessary, and nor is the
2523 * variable-MIDR TI925 behaviour. Instead we have a single
2524 * (strictly speaking IMPDEF) alias of the MIDR, REVIDR.
2526 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
2527 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
2528 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
2529 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
2530 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
2531 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
2532 REGINFO_SENTINEL
2534 ARMCPRegInfo id_cp_reginfo[] = {
2535 /* These are common to v8 and pre-v8 */
2536 { .name = "CTR",
2537 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
2538 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
2539 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
2540 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
2541 .access = PL0_R, .accessfn = ctr_el0_access,
2542 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
2543 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
2544 { .name = "TCMTR",
2545 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
2546 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2547 { .name = "TLBTR",
2548 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
2549 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2550 REGINFO_SENTINEL
2552 ARMCPRegInfo crn0_wi_reginfo = {
2553 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
2554 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
2555 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
2557 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
2558 arm_feature(env, ARM_FEATURE_STRONGARM)) {
2559 ARMCPRegInfo *r;
2560 /* Register the blanket "writes ignored" value first to cover the
2561 * whole space. Then update the specific ID registers to allow write
2562 * access, so that they ignore writes rather than causing them to
2563 * UNDEF.
2565 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
2566 for (r = id_pre_v8_midr_cp_reginfo;
2567 r->type != ARM_CP_SENTINEL; r++) {
2568 r->access = PL1_RW;
2570 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
2571 r->access = PL1_RW;
2574 if (arm_feature(env, ARM_FEATURE_V8)) {
2575 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
2576 } else {
2577 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
2579 define_arm_cp_regs(cpu, id_cp_reginfo);
2582 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
2583 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
2586 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
2587 ARMCPRegInfo auxcr = {
2588 .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
2589 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
2590 .access = PL1_RW, .type = ARM_CP_CONST,
2591 .resetvalue = cpu->reset_auxcr
2593 define_one_arm_cp_reg(cpu, &auxcr);
2596 if (arm_feature(env, ARM_FEATURE_CBAR)) {
2597 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2598 /* 32 bit view is [31:18] 0...0 [43:32]. */
2599 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
2600 | extract64(cpu->reset_cbar, 32, 12);
2601 ARMCPRegInfo cbar_reginfo[] = {
2602 { .name = "CBAR",
2603 .type = ARM_CP_CONST,
2604 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
2605 .access = PL1_R, .resetvalue = cpu->reset_cbar },
2606 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
2607 .type = ARM_CP_CONST,
2608 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
2609 .access = PL1_R, .resetvalue = cbar32 },
2610 REGINFO_SENTINEL
2612 /* We don't implement a r/w 64 bit CBAR currently */
2613 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
2614 define_arm_cp_regs(cpu, cbar_reginfo);
2615 } else {
2616 ARMCPRegInfo cbar = {
2617 .name = "CBAR",
2618 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
2619 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
2620 .fieldoffset = offsetof(CPUARMState,
2621 cp15.c15_config_base_address)
2623 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
2624 cbar.access = PL1_R;
2625 cbar.fieldoffset = 0;
2626 cbar.type = ARM_CP_CONST;
2628 define_one_arm_cp_reg(cpu, &cbar);
2632 /* Generic registers whose values depend on the implementation */
2634 ARMCPRegInfo sctlr = {
2635 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
2636 .opc0 = 3, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
2637 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
2638 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
2639 .raw_writefn = raw_write,
2641 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2642 /* Normally we would always end the TB on an SCTLR write, but Linux
2643 * arch/arm/mach-pxa/sleep.S expects two instructions following
2644 * an MMU enable to execute from cache. Imitate this behaviour.
2646 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
2648 define_one_arm_cp_reg(cpu, &sctlr);
2652 ARMCPU *cpu_arm_init(const char *cpu_model)
2654 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
2657 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
2659 CPUState *cs = CPU(cpu);
2660 CPUARMState *env = &cpu->env;
2662 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2663 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
2664 aarch64_fpu_gdb_set_reg,
2665 34, "aarch64-fpu.xml", 0);
2666 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
2667 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
2668 51, "arm-neon.xml", 0);
2669 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
2670 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
2671 35, "arm-vfp3.xml", 0);
2672 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
2673 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
2674 19, "arm-vfp.xml", 0);
2678 /* Sort alphabetically by type name, except for "any". */
2679 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
2681 ObjectClass *class_a = (ObjectClass *)a;
2682 ObjectClass *class_b = (ObjectClass *)b;
2683 const char *name_a, *name_b;
2685 name_a = object_class_get_name(class_a);
2686 name_b = object_class_get_name(class_b);
2687 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
2688 return 1;
2689 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
2690 return -1;
2691 } else {
2692 return strcmp(name_a, name_b);
2696 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
2698 ObjectClass *oc = data;
2699 CPUListState *s = user_data;
2700 const char *typename;
2701 char *name;
2703 typename = object_class_get_name(oc);
2704 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
2705 (*s->cpu_fprintf)(s->file, " %s\n",
2706 name);
2707 g_free(name);
2710 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
2712 CPUListState s = {
2713 .file = f,
2714 .cpu_fprintf = cpu_fprintf,
2716 GSList *list;
2718 list = object_class_get_list(TYPE_ARM_CPU, false);
2719 list = g_slist_sort(list, arm_cpu_list_compare);
2720 (*cpu_fprintf)(f, "Available CPUs:\n");
2721 g_slist_foreach(list, arm_cpu_list_entry, &s);
2722 g_slist_free(list);
2723 #ifdef CONFIG_KVM
2724 /* The 'host' CPU type is dynamically registered only if KVM is
2725 * enabled, so we have to special-case it here:
2727 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
2728 #endif
2731 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
2733 ObjectClass *oc = data;
2734 CpuDefinitionInfoList **cpu_list = user_data;
2735 CpuDefinitionInfoList *entry;
2736 CpuDefinitionInfo *info;
2737 const char *typename;
2739 typename = object_class_get_name(oc);
2740 info = g_malloc0(sizeof(*info));
2741 info->name = g_strndup(typename,
2742 strlen(typename) - strlen("-" TYPE_ARM_CPU));
2744 entry = g_malloc0(sizeof(*entry));
2745 entry->value = info;
2746 entry->next = *cpu_list;
2747 *cpu_list = entry;
2750 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
2752 CpuDefinitionInfoList *cpu_list = NULL;
2753 GSList *list;
2755 list = object_class_get_list(TYPE_ARM_CPU, false);
2756 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
2757 g_slist_free(list);
2759 return cpu_list;
2762 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
2763 void *opaque, int state,
2764 int crm, int opc1, int opc2)
2766 /* Private utility function for define_one_arm_cp_reg_with_opaque():
2767 * add a single reginfo struct to the hash table.
2769 uint32_t *key = g_new(uint32_t, 1);
2770 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
2771 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
2772 if (r->state == ARM_CP_STATE_BOTH && state == ARM_CP_STATE_AA32) {
2773 /* The AArch32 view of a shared register sees the lower 32 bits
2774 * of a 64 bit backing field. It is not migratable as the AArch64
2775 * view handles that. AArch64 also handles reset.
2776 * We assume it is a cp15 register.
2778 r2->cp = 15;
2779 r2->type |= ARM_CP_NO_MIGRATE;
2780 r2->resetfn = arm_cp_reset_ignore;
2781 #ifdef HOST_WORDS_BIGENDIAN
2782 if (r2->fieldoffset) {
2783 r2->fieldoffset += sizeof(uint32_t);
2785 #endif
2787 if (state == ARM_CP_STATE_AA64) {
2788 /* To allow abbreviation of ARMCPRegInfo
2789 * definitions, we treat cp == 0 as equivalent to
2790 * the value for "standard guest-visible sysreg".
2792 if (r->cp == 0) {
2793 r2->cp = CP_REG_ARM64_SYSREG_CP;
2795 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
2796 r2->opc0, opc1, opc2);
2797 } else {
2798 *key = ENCODE_CP_REG(r2->cp, is64, r2->crn, crm, opc1, opc2);
2800 if (opaque) {
2801 r2->opaque = opaque;
2803 /* reginfo passed to helpers is correct for the actual access,
2804 * and is never ARM_CP_STATE_BOTH:
2806 r2->state = state;
2807 /* Make sure reginfo passed to helpers for wildcarded regs
2808 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
2810 r2->crm = crm;
2811 r2->opc1 = opc1;
2812 r2->opc2 = opc2;
2813 /* By convention, for wildcarded registers only the first
2814 * entry is used for migration; the others are marked as
2815 * NO_MIGRATE so we don't try to transfer the register
2816 * multiple times. Special registers (ie NOP/WFI) are
2817 * never migratable.
2819 if ((r->type & ARM_CP_SPECIAL) ||
2820 ((r->crm == CP_ANY) && crm != 0) ||
2821 ((r->opc1 == CP_ANY) && opc1 != 0) ||
2822 ((r->opc2 == CP_ANY) && opc2 != 0)) {
2823 r2->type |= ARM_CP_NO_MIGRATE;
2826 /* Overriding of an existing definition must be explicitly
2827 * requested.
2829 if (!(r->type & ARM_CP_OVERRIDE)) {
2830 ARMCPRegInfo *oldreg;
2831 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
2832 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
2833 fprintf(stderr, "Register redefined: cp=%d %d bit "
2834 "crn=%d crm=%d opc1=%d opc2=%d, "
2835 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
2836 r2->crn, r2->crm, r2->opc1, r2->opc2,
2837 oldreg->name, r2->name);
2838 g_assert_not_reached();
2841 g_hash_table_insert(cpu->cp_regs, key, r2);
2845 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2846 const ARMCPRegInfo *r, void *opaque)
2848 /* Define implementations of coprocessor registers.
2849 * We store these in a hashtable because typically
2850 * there are less than 150 registers in a space which
2851 * is 16*16*16*8*8 = 262144 in size.
2852 * Wildcarding is supported for the crm, opc1 and opc2 fields.
2853 * If a register is defined twice then the second definition is
2854 * used, so this can be used to define some generic registers and
2855 * then override them with implementation specific variations.
2856 * At least one of the original and the second definition should
2857 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
2858 * against accidental use.
2860 * The state field defines whether the register is to be
2861 * visible in the AArch32 or AArch64 execution state. If the
2862 * state is set to ARM_CP_STATE_BOTH then we synthesise a
2863 * reginfo structure for the AArch32 view, which sees the lower
2864 * 32 bits of the 64 bit register.
2866 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
2867 * be wildcarded. AArch64 registers are always considered to be 64
2868 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
2869 * the register, if any.
2871 int crm, opc1, opc2, state;
2872 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
2873 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
2874 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
2875 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
2876 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
2877 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
2878 /* 64 bit registers have only CRm and Opc1 fields */
2879 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
2880 /* op0 only exists in the AArch64 encodings */
2881 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
2882 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
2883 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
2884 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
2885 * encodes a minimum access level for the register. We roll this
2886 * runtime check into our general permission check code, so check
2887 * here that the reginfo's specified permissions are strict enough
2888 * to encompass the generic architectural permission check.
2890 if (r->state != ARM_CP_STATE_AA32) {
2891 int mask = 0;
2892 switch (r->opc1) {
2893 case 0: case 1: case 2:
2894 /* min_EL EL1 */
2895 mask = PL1_RW;
2896 break;
2897 case 3:
2898 /* min_EL EL0 */
2899 mask = PL0_RW;
2900 break;
2901 case 4:
2902 /* min_EL EL2 */
2903 mask = PL2_RW;
2904 break;
2905 case 5:
2906 /* unallocated encoding, so not possible */
2907 assert(false);
2908 break;
2909 case 6:
2910 /* min_EL EL3 */
2911 mask = PL3_RW;
2912 break;
2913 case 7:
2914 /* min_EL EL1, secure mode only (we don't check the latter) */
2915 mask = PL1_RW;
2916 break;
2917 default:
2918 /* broken reginfo with out-of-range opc1 */
2919 assert(false);
2920 break;
2922 /* assert our permissions are not too lax (stricter is fine) */
2923 assert((r->access & ~mask) == 0);
2926 /* Check that the register definition has enough info to handle
2927 * reads and writes if they are permitted.
2929 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
2930 if (r->access & PL3_R) {
2931 assert(r->fieldoffset || r->readfn);
2933 if (r->access & PL3_W) {
2934 assert(r->fieldoffset || r->writefn);
2937 /* Bad type field probably means missing sentinel at end of reg list */
2938 assert(cptype_valid(r->type));
2939 for (crm = crmmin; crm <= crmmax; crm++) {
2940 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
2941 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
2942 for (state = ARM_CP_STATE_AA32;
2943 state <= ARM_CP_STATE_AA64; state++) {
2944 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
2945 continue;
2947 add_cpreg_to_hashtable(cpu, r, opaque, state,
2948 crm, opc1, opc2);
2955 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2956 const ARMCPRegInfo *regs, void *opaque)
2958 /* Define a whole list of registers */
2959 const ARMCPRegInfo *r;
2960 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
2961 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
2965 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
2967 return g_hash_table_lookup(cpregs, &encoded_cp);
2970 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2971 uint64_t value)
2973 /* Helper coprocessor write function for write-ignore registers */
2976 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
2978 /* Helper coprocessor write function for read-as-zero registers */
2979 return 0;
2982 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
2984 /* Helper coprocessor reset function for do-nothing-on-reset registers */
2987 static int bad_mode_switch(CPUARMState *env, int mode)
2989 /* Return true if it is not valid for us to switch to
2990 * this CPU mode (ie all the UNPREDICTABLE cases in
2991 * the ARM ARM CPSRWriteByInstr pseudocode).
2993 switch (mode) {
2994 case ARM_CPU_MODE_USR:
2995 case ARM_CPU_MODE_SYS:
2996 case ARM_CPU_MODE_SVC:
2997 case ARM_CPU_MODE_ABT:
2998 case ARM_CPU_MODE_UND:
2999 case ARM_CPU_MODE_IRQ:
3000 case ARM_CPU_MODE_FIQ:
3001 return 0;
3002 default:
3003 return 1;
3007 uint32_t cpsr_read(CPUARMState *env)
3009 int ZF;
3010 ZF = (env->ZF == 0);
3011 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
3012 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
3013 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
3014 | ((env->condexec_bits & 0xfc) << 8)
3015 | (env->GE << 16) | (env->daif & CPSR_AIF);
3018 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
3020 if (mask & CPSR_NZCV) {
3021 env->ZF = (~val) & CPSR_Z;
3022 env->NF = val;
3023 env->CF = (val >> 29) & 1;
3024 env->VF = (val << 3) & 0x80000000;
3026 if (mask & CPSR_Q)
3027 env->QF = ((val & CPSR_Q) != 0);
3028 if (mask & CPSR_T)
3029 env->thumb = ((val & CPSR_T) != 0);
3030 if (mask & CPSR_IT_0_1) {
3031 env->condexec_bits &= ~3;
3032 env->condexec_bits |= (val >> 25) & 3;
3034 if (mask & CPSR_IT_2_7) {
3035 env->condexec_bits &= 3;
3036 env->condexec_bits |= (val >> 8) & 0xfc;
3038 if (mask & CPSR_GE) {
3039 env->GE = (val >> 16) & 0xf;
3042 env->daif &= ~(CPSR_AIF & mask);
3043 env->daif |= val & CPSR_AIF & mask;
3045 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
3046 if (bad_mode_switch(env, val & CPSR_M)) {
3047 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
3048 * We choose to ignore the attempt and leave the CPSR M field
3049 * untouched.
3051 mask &= ~CPSR_M;
3052 } else {
3053 switch_mode(env, val & CPSR_M);
3056 mask &= ~CACHED_CPSR_BITS;
3057 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
3060 /* Sign/zero extend */
3061 uint32_t HELPER(sxtb16)(uint32_t x)
3063 uint32_t res;
3064 res = (uint16_t)(int8_t)x;
3065 res |= (uint32_t)(int8_t)(x >> 16) << 16;
3066 return res;
3069 uint32_t HELPER(uxtb16)(uint32_t x)
3071 uint32_t res;
3072 res = (uint16_t)(uint8_t)x;
3073 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
3074 return res;
3077 uint32_t HELPER(clz)(uint32_t x)
3079 return clz32(x);
3082 int32_t HELPER(sdiv)(int32_t num, int32_t den)
3084 if (den == 0)
3085 return 0;
3086 if (num == INT_MIN && den == -1)
3087 return INT_MIN;
3088 return num / den;
3091 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
3093 if (den == 0)
3094 return 0;
3095 return num / den;
3098 uint32_t HELPER(rbit)(uint32_t x)
3100 x = ((x & 0xff000000) >> 24)
3101 | ((x & 0x00ff0000) >> 8)
3102 | ((x & 0x0000ff00) << 8)
3103 | ((x & 0x000000ff) << 24);
3104 x = ((x & 0xf0f0f0f0) >> 4)
3105 | ((x & 0x0f0f0f0f) << 4);
3106 x = ((x & 0x88888888) >> 3)
3107 | ((x & 0x44444444) >> 1)
3108 | ((x & 0x22222222) << 1)
3109 | ((x & 0x11111111) << 3);
3110 return x;
3113 #if defined(CONFIG_USER_ONLY)
3115 void arm_cpu_do_interrupt(CPUState *cs)
3117 cs->exception_index = -1;
3120 int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
3121 int mmu_idx)
3123 ARMCPU *cpu = ARM_CPU(cs);
3124 CPUARMState *env = &cpu->env;
3126 env->exception.vaddress = address;
3127 if (rw == 2) {
3128 cs->exception_index = EXCP_PREFETCH_ABORT;
3129 } else {
3130 cs->exception_index = EXCP_DATA_ABORT;
3132 return 1;
3135 /* These should probably raise undefined insn exceptions. */
3136 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
3138 ARMCPU *cpu = arm_env_get_cpu(env);
3140 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
3143 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
3145 ARMCPU *cpu = arm_env_get_cpu(env);
3147 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
3148 return 0;
3151 void switch_mode(CPUARMState *env, int mode)
3153 ARMCPU *cpu = arm_env_get_cpu(env);
3155 if (mode != ARM_CPU_MODE_USR) {
3156 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
3160 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
3162 ARMCPU *cpu = arm_env_get_cpu(env);
3164 cpu_abort(CPU(cpu), "banked r13 write\n");
3167 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
3169 ARMCPU *cpu = arm_env_get_cpu(env);
3171 cpu_abort(CPU(cpu), "banked r13 read\n");
3172 return 0;
3175 #else
3177 /* Map CPU modes onto saved register banks. */
3178 int bank_number(int mode)
3180 switch (mode) {
3181 case ARM_CPU_MODE_USR:
3182 case ARM_CPU_MODE_SYS:
3183 return 0;
3184 case ARM_CPU_MODE_SVC:
3185 return 1;
3186 case ARM_CPU_MODE_ABT:
3187 return 2;
3188 case ARM_CPU_MODE_UND:
3189 return 3;
3190 case ARM_CPU_MODE_IRQ:
3191 return 4;
3192 case ARM_CPU_MODE_FIQ:
3193 return 5;
3194 case ARM_CPU_MODE_HYP:
3195 return 6;
3196 case ARM_CPU_MODE_MON:
3197 return 7;
3199 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
3202 void switch_mode(CPUARMState *env, int mode)
3204 int old_mode;
3205 int i;
3207 old_mode = env->uncached_cpsr & CPSR_M;
3208 if (mode == old_mode)
3209 return;
3211 if (old_mode == ARM_CPU_MODE_FIQ) {
3212 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
3213 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
3214 } else if (mode == ARM_CPU_MODE_FIQ) {
3215 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
3216 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
3219 i = bank_number(old_mode);
3220 env->banked_r13[i] = env->regs[13];
3221 env->banked_r14[i] = env->regs[14];
3222 env->banked_spsr[i] = env->spsr;
3224 i = bank_number(mode);
3225 env->regs[13] = env->banked_r13[i];
3226 env->regs[14] = env->banked_r14[i];
3227 env->spsr = env->banked_spsr[i];
3230 static void v7m_push(CPUARMState *env, uint32_t val)
3232 CPUState *cs = CPU(arm_env_get_cpu(env));
3234 env->regs[13] -= 4;
3235 stl_phys(cs->as, env->regs[13], val);
3238 static uint32_t v7m_pop(CPUARMState *env)
3240 CPUState *cs = CPU(arm_env_get_cpu(env));
3241 uint32_t val;
3243 val = ldl_phys(cs->as, env->regs[13]);
3244 env->regs[13] += 4;
3245 return val;
3248 /* Switch to V7M main or process stack pointer. */
3249 static void switch_v7m_sp(CPUARMState *env, int process)
3251 uint32_t tmp;
3252 if (env->v7m.current_sp != process) {
3253 tmp = env->v7m.other_sp;
3254 env->v7m.other_sp = env->regs[13];
3255 env->regs[13] = tmp;
3256 env->v7m.current_sp = process;
3260 static void do_v7m_exception_exit(CPUARMState *env)
3262 uint32_t type;
3263 uint32_t xpsr;
3265 type = env->regs[15];
3266 if (env->v7m.exception != 0)
3267 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
3269 /* Switch to the target stack. */
3270 switch_v7m_sp(env, (type & 4) != 0);
3271 /* Pop registers. */
3272 env->regs[0] = v7m_pop(env);
3273 env->regs[1] = v7m_pop(env);
3274 env->regs[2] = v7m_pop(env);
3275 env->regs[3] = v7m_pop(env);
3276 env->regs[12] = v7m_pop(env);
3277 env->regs[14] = v7m_pop(env);
3278 env->regs[15] = v7m_pop(env);
3279 xpsr = v7m_pop(env);
3280 xpsr_write(env, xpsr, 0xfffffdff);
3281 /* Undo stack alignment. */
3282 if (xpsr & 0x200)
3283 env->regs[13] |= 4;
3284 /* ??? The exception return type specifies Thread/Handler mode. However
3285 this is also implied by the xPSR value. Not sure what to do
3286 if there is a mismatch. */
3287 /* ??? Likewise for mismatches between the CONTROL register and the stack
3288 pointer. */
3291 void arm_v7m_cpu_do_interrupt(CPUState *cs)
3293 ARMCPU *cpu = ARM_CPU(cs);
3294 CPUARMState *env = &cpu->env;
3295 uint32_t xpsr = xpsr_read(env);
3296 uint32_t lr;
3297 uint32_t addr;
3299 arm_log_exception(cs->exception_index);
3301 lr = 0xfffffff1;
3302 if (env->v7m.current_sp)
3303 lr |= 4;
3304 if (env->v7m.exception == 0)
3305 lr |= 8;
3307 /* For exceptions we just mark as pending on the NVIC, and let that
3308 handle it. */
3309 /* TODO: Need to escalate if the current priority is higher than the
3310 one we're raising. */
3311 switch (cs->exception_index) {
3312 case EXCP_UDEF:
3313 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
3314 return;
3315 case EXCP_SWI:
3316 /* The PC already points to the next instruction. */
3317 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
3318 return;
3319 case EXCP_PREFETCH_ABORT:
3320 case EXCP_DATA_ABORT:
3321 /* TODO: if we implemented the MPU registers, this is where we
3322 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
3324 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
3325 return;
3326 case EXCP_BKPT:
3327 if (semihosting_enabled) {
3328 int nr;
3329 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
3330 if (nr == 0xab) {
3331 env->regs[15] += 2;
3332 env->regs[0] = do_arm_semihosting(env);
3333 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
3334 return;
3337 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
3338 return;
3339 case EXCP_IRQ:
3340 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
3341 break;
3342 case EXCP_EXCEPTION_EXIT:
3343 do_v7m_exception_exit(env);
3344 return;
3345 default:
3346 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
3347 return; /* Never happens. Keep compiler happy. */
3350 /* Align stack pointer. */
3351 /* ??? Should only do this if Configuration Control Register
3352 STACKALIGN bit is set. */
3353 if (env->regs[13] & 4) {
3354 env->regs[13] -= 4;
3355 xpsr |= 0x200;
3357 /* Switch to the handler mode. */
3358 v7m_push(env, xpsr);
3359 v7m_push(env, env->regs[15]);
3360 v7m_push(env, env->regs[14]);
3361 v7m_push(env, env->regs[12]);
3362 v7m_push(env, env->regs[3]);
3363 v7m_push(env, env->regs[2]);
3364 v7m_push(env, env->regs[1]);
3365 v7m_push(env, env->regs[0]);
3366 switch_v7m_sp(env, 0);
3367 /* Clear IT bits */
3368 env->condexec_bits = 0;
3369 env->regs[14] = lr;
3370 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
3371 env->regs[15] = addr & 0xfffffffe;
3372 env->thumb = addr & 1;
3375 /* Handle a CPU exception. */
3376 void arm_cpu_do_interrupt(CPUState *cs)
3378 ARMCPU *cpu = ARM_CPU(cs);
3379 CPUARMState *env = &cpu->env;
3380 uint32_t addr;
3381 uint32_t mask;
3382 int new_mode;
3383 uint32_t offset;
3385 assert(!IS_M(env));
3387 arm_log_exception(cs->exception_index);
3389 /* TODO: Vectored interrupt controller. */
3390 switch (cs->exception_index) {
3391 case EXCP_UDEF:
3392 new_mode = ARM_CPU_MODE_UND;
3393 addr = 0x04;
3394 mask = CPSR_I;
3395 if (env->thumb)
3396 offset = 2;
3397 else
3398 offset = 4;
3399 break;
3400 case EXCP_SWI:
3401 if (semihosting_enabled) {
3402 /* Check for semihosting interrupt. */
3403 if (env->thumb) {
3404 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
3405 & 0xff;
3406 } else {
3407 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
3408 & 0xffffff;
3410 /* Only intercept calls from privileged modes, to provide some
3411 semblance of security. */
3412 if (((mask == 0x123456 && !env->thumb)
3413 || (mask == 0xab && env->thumb))
3414 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
3415 env->regs[0] = do_arm_semihosting(env);
3416 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
3417 return;
3420 new_mode = ARM_CPU_MODE_SVC;
3421 addr = 0x08;
3422 mask = CPSR_I;
3423 /* The PC already points to the next instruction. */
3424 offset = 0;
3425 break;
3426 case EXCP_BKPT:
3427 /* See if this is a semihosting syscall. */
3428 if (env->thumb && semihosting_enabled) {
3429 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
3430 if (mask == 0xab
3431 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
3432 env->regs[15] += 2;
3433 env->regs[0] = do_arm_semihosting(env);
3434 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
3435 return;
3438 env->exception.fsr = 2;
3439 /* Fall through to prefetch abort. */
3440 case EXCP_PREFETCH_ABORT:
3441 env->cp15.ifsr_el2 = env->exception.fsr;
3442 env->cp15.far_el[1] = deposit64(env->cp15.far_el[1], 32, 32,
3443 env->exception.vaddress);
3444 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
3445 env->cp15.ifsr_el2, (uint32_t)env->exception.vaddress);
3446 new_mode = ARM_CPU_MODE_ABT;
3447 addr = 0x0c;
3448 mask = CPSR_A | CPSR_I;
3449 offset = 4;
3450 break;
3451 case EXCP_DATA_ABORT:
3452 env->cp15.esr_el[1] = env->exception.fsr;
3453 env->cp15.far_el[1] = deposit64(env->cp15.far_el[1], 0, 32,
3454 env->exception.vaddress);
3455 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
3456 (uint32_t)env->cp15.esr_el[1],
3457 (uint32_t)env->exception.vaddress);
3458 new_mode = ARM_CPU_MODE_ABT;
3459 addr = 0x10;
3460 mask = CPSR_A | CPSR_I;
3461 offset = 8;
3462 break;
3463 case EXCP_IRQ:
3464 new_mode = ARM_CPU_MODE_IRQ;
3465 addr = 0x18;
3466 /* Disable IRQ and imprecise data aborts. */
3467 mask = CPSR_A | CPSR_I;
3468 offset = 4;
3469 break;
3470 case EXCP_FIQ:
3471 new_mode = ARM_CPU_MODE_FIQ;
3472 addr = 0x1c;
3473 /* Disable FIQ, IRQ and imprecise data aborts. */
3474 mask = CPSR_A | CPSR_I | CPSR_F;
3475 offset = 4;
3476 break;
3477 default:
3478 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
3479 return; /* Never happens. Keep compiler happy. */
3481 /* High vectors. */
3482 if (env->cp15.c1_sys & SCTLR_V) {
3483 /* when enabled, base address cannot be remapped. */
3484 addr += 0xffff0000;
3485 } else {
3486 /* ARM v7 architectures provide a vector base address register to remap
3487 * the interrupt vector table.
3488 * This register is only followed in non-monitor mode, and has a secure
3489 * and un-secure copy. Since the cpu is always in a un-secure operation
3490 * and is never in monitor mode this feature is always active.
3491 * Note: only bits 31:5 are valid.
3493 addr += env->cp15.vbar_el[1];
3495 switch_mode (env, new_mode);
3496 env->spsr = cpsr_read(env);
3497 /* Clear IT bits. */
3498 env->condexec_bits = 0;
3499 /* Switch to the new mode, and to the correct instruction set. */
3500 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
3501 env->daif |= mask;
3502 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
3503 * and we should just guard the thumb mode on V4 */
3504 if (arm_feature(env, ARM_FEATURE_V4T)) {
3505 env->thumb = (env->cp15.c1_sys & SCTLR_TE) != 0;
3507 env->regs[14] = env->regs[15] + offset;
3508 env->regs[15] = addr;
3509 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
3512 /* Check section/page access permissions.
3513 Returns the page protection flags, or zero if the access is not
3514 permitted. */
3515 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
3516 int access_type, int is_user)
3518 int prot_ro;
3520 if (domain_prot == 3) {
3521 return PAGE_READ | PAGE_WRITE;
3524 if (access_type == 1)
3525 prot_ro = 0;
3526 else
3527 prot_ro = PAGE_READ;
3529 switch (ap) {
3530 case 0:
3531 if (arm_feature(env, ARM_FEATURE_V7)) {
3532 return 0;
3534 if (access_type == 1)
3535 return 0;
3536 switch (env->cp15.c1_sys & (SCTLR_S | SCTLR_R)) {
3537 case SCTLR_S:
3538 return is_user ? 0 : PAGE_READ;
3539 case SCTLR_R:
3540 return PAGE_READ;
3541 default:
3542 return 0;
3544 case 1:
3545 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
3546 case 2:
3547 if (is_user)
3548 return prot_ro;
3549 else
3550 return PAGE_READ | PAGE_WRITE;
3551 case 3:
3552 return PAGE_READ | PAGE_WRITE;
3553 case 4: /* Reserved. */
3554 return 0;
3555 case 5:
3556 return is_user ? 0 : prot_ro;
3557 case 6:
3558 return prot_ro;
3559 case 7:
3560 if (!arm_feature (env, ARM_FEATURE_V6K))
3561 return 0;
3562 return prot_ro;
3563 default:
3564 abort();
3568 static bool get_level1_table_address(CPUARMState *env, uint32_t *table,
3569 uint32_t address)
3571 if (address & env->cp15.c2_mask) {
3572 if ((env->cp15.c2_control & TTBCR_PD1)) {
3573 /* Translation table walk disabled for TTBR1 */
3574 return false;
3576 *table = env->cp15.ttbr1_el1 & 0xffffc000;
3577 } else {
3578 if ((env->cp15.c2_control & TTBCR_PD0)) {
3579 /* Translation table walk disabled for TTBR0 */
3580 return false;
3582 *table = env->cp15.ttbr0_el1 & env->cp15.c2_base_mask;
3584 *table |= (address >> 18) & 0x3ffc;
3585 return true;
3588 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
3589 int is_user, hwaddr *phys_ptr,
3590 int *prot, target_ulong *page_size)
3592 CPUState *cs = CPU(arm_env_get_cpu(env));
3593 int code;
3594 uint32_t table;
3595 uint32_t desc;
3596 int type;
3597 int ap;
3598 int domain = 0;
3599 int domain_prot;
3600 hwaddr phys_addr;
3602 /* Pagetable walk. */
3603 /* Lookup l1 descriptor. */
3604 if (!get_level1_table_address(env, &table, address)) {
3605 /* Section translation fault if page walk is disabled by PD0 or PD1 */
3606 code = 5;
3607 goto do_fault;
3609 desc = ldl_phys(cs->as, table);
3610 type = (desc & 3);
3611 domain = (desc >> 5) & 0x0f;
3612 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
3613 if (type == 0) {
3614 /* Section translation fault. */
3615 code = 5;
3616 goto do_fault;
3618 if (domain_prot == 0 || domain_prot == 2) {
3619 if (type == 2)
3620 code = 9; /* Section domain fault. */
3621 else
3622 code = 11; /* Page domain fault. */
3623 goto do_fault;
3625 if (type == 2) {
3626 /* 1Mb section. */
3627 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
3628 ap = (desc >> 10) & 3;
3629 code = 13;
3630 *page_size = 1024 * 1024;
3631 } else {
3632 /* Lookup l2 entry. */
3633 if (type == 1) {
3634 /* Coarse pagetable. */
3635 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
3636 } else {
3637 /* Fine pagetable. */
3638 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
3640 desc = ldl_phys(cs->as, table);
3641 switch (desc & 3) {
3642 case 0: /* Page translation fault. */
3643 code = 7;
3644 goto do_fault;
3645 case 1: /* 64k page. */
3646 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
3647 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
3648 *page_size = 0x10000;
3649 break;
3650 case 2: /* 4k page. */
3651 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
3652 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
3653 *page_size = 0x1000;
3654 break;
3655 case 3: /* 1k page. */
3656 if (type == 1) {
3657 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
3658 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
3659 } else {
3660 /* Page translation fault. */
3661 code = 7;
3662 goto do_fault;
3664 } else {
3665 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
3667 ap = (desc >> 4) & 3;
3668 *page_size = 0x400;
3669 break;
3670 default:
3671 /* Never happens, but compiler isn't smart enough to tell. */
3672 abort();
3674 code = 15;
3676 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
3677 if (!*prot) {
3678 /* Access permission fault. */
3679 goto do_fault;
3681 *prot |= PAGE_EXEC;
3682 *phys_ptr = phys_addr;
3683 return 0;
3684 do_fault:
3685 return code | (domain << 4);
3688 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
3689 int is_user, hwaddr *phys_ptr,
3690 int *prot, target_ulong *page_size)
3692 CPUState *cs = CPU(arm_env_get_cpu(env));
3693 int code;
3694 uint32_t table;
3695 uint32_t desc;
3696 uint32_t xn;
3697 uint32_t pxn = 0;
3698 int type;
3699 int ap;
3700 int domain = 0;
3701 int domain_prot;
3702 hwaddr phys_addr;
3704 /* Pagetable walk. */
3705 /* Lookup l1 descriptor. */
3706 if (!get_level1_table_address(env, &table, address)) {
3707 /* Section translation fault if page walk is disabled by PD0 or PD1 */
3708 code = 5;
3709 goto do_fault;
3711 desc = ldl_phys(cs->as, table);
3712 type = (desc & 3);
3713 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
3714 /* Section translation fault, or attempt to use the encoding
3715 * which is Reserved on implementations without PXN.
3717 code = 5;
3718 goto do_fault;
3720 if ((type == 1) || !(desc & (1 << 18))) {
3721 /* Page or Section. */
3722 domain = (desc >> 5) & 0x0f;
3724 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
3725 if (domain_prot == 0 || domain_prot == 2) {
3726 if (type != 1) {
3727 code = 9; /* Section domain fault. */
3728 } else {
3729 code = 11; /* Page domain fault. */
3731 goto do_fault;
3733 if (type != 1) {
3734 if (desc & (1 << 18)) {
3735 /* Supersection. */
3736 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
3737 *page_size = 0x1000000;
3738 } else {
3739 /* Section. */
3740 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
3741 *page_size = 0x100000;
3743 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
3744 xn = desc & (1 << 4);
3745 pxn = desc & 1;
3746 code = 13;
3747 } else {
3748 if (arm_feature(env, ARM_FEATURE_PXN)) {
3749 pxn = (desc >> 2) & 1;
3751 /* Lookup l2 entry. */
3752 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
3753 desc = ldl_phys(cs->as, table);
3754 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
3755 switch (desc & 3) {
3756 case 0: /* Page translation fault. */
3757 code = 7;
3758 goto do_fault;
3759 case 1: /* 64k page. */
3760 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
3761 xn = desc & (1 << 15);
3762 *page_size = 0x10000;
3763 break;
3764 case 2: case 3: /* 4k page. */
3765 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
3766 xn = desc & 1;
3767 *page_size = 0x1000;
3768 break;
3769 default:
3770 /* Never happens, but compiler isn't smart enough to tell. */
3771 abort();
3773 code = 15;
3775 if (domain_prot == 3) {
3776 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3777 } else {
3778 if (pxn && !is_user) {
3779 xn = 1;
3781 if (xn && access_type == 2)
3782 goto do_fault;
3784 /* The simplified model uses AP[0] as an access control bit. */
3785 if ((env->cp15.c1_sys & SCTLR_AFE) && (ap & 1) == 0) {
3786 /* Access flag fault. */
3787 code = (code == 15) ? 6 : 3;
3788 goto do_fault;
3790 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
3791 if (!*prot) {
3792 /* Access permission fault. */
3793 goto do_fault;
3795 if (!xn) {
3796 *prot |= PAGE_EXEC;
3799 *phys_ptr = phys_addr;
3800 return 0;
3801 do_fault:
3802 return code | (domain << 4);
3805 /* Fault type for long-descriptor MMU fault reporting; this corresponds
3806 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
3808 typedef enum {
3809 translation_fault = 1,
3810 access_fault = 2,
3811 permission_fault = 3,
3812 } MMUFaultType;
3814 static int get_phys_addr_lpae(CPUARMState *env, target_ulong address,
3815 int access_type, int is_user,
3816 hwaddr *phys_ptr, int *prot,
3817 target_ulong *page_size_ptr)
3819 CPUState *cs = CPU(arm_env_get_cpu(env));
3820 /* Read an LPAE long-descriptor translation table. */
3821 MMUFaultType fault_type = translation_fault;
3822 uint32_t level = 1;
3823 uint32_t epd;
3824 int32_t tsz;
3825 uint32_t tg;
3826 uint64_t ttbr;
3827 int ttbr_select;
3828 hwaddr descaddr, descmask;
3829 uint32_t tableattrs;
3830 target_ulong page_size;
3831 uint32_t attrs;
3832 int32_t granule_sz = 9;
3833 int32_t va_size = 32;
3834 int32_t tbi = 0;
3836 if (arm_el_is_aa64(env, 1)) {
3837 va_size = 64;
3838 if (extract64(address, 55, 1))
3839 tbi = extract64(env->cp15.c2_control, 38, 1);
3840 else
3841 tbi = extract64(env->cp15.c2_control, 37, 1);
3842 tbi *= 8;
3845 /* Determine whether this address is in the region controlled by
3846 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
3847 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
3848 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
3850 uint32_t t0sz = extract32(env->cp15.c2_control, 0, 6);
3851 if (arm_el_is_aa64(env, 1)) {
3852 t0sz = MIN(t0sz, 39);
3853 t0sz = MAX(t0sz, 16);
3855 uint32_t t1sz = extract32(env->cp15.c2_control, 16, 6);
3856 if (arm_el_is_aa64(env, 1)) {
3857 t1sz = MIN(t1sz, 39);
3858 t1sz = MAX(t1sz, 16);
3860 if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
3861 /* there is a ttbr0 region and we are in it (high bits all zero) */
3862 ttbr_select = 0;
3863 } else if (t1sz && !extract64(~address, va_size - t1sz, t1sz - tbi)) {
3864 /* there is a ttbr1 region and we are in it (high bits all one) */
3865 ttbr_select = 1;
3866 } else if (!t0sz) {
3867 /* ttbr0 region is "everything not in the ttbr1 region" */
3868 ttbr_select = 0;
3869 } else if (!t1sz) {
3870 /* ttbr1 region is "everything not in the ttbr0 region" */
3871 ttbr_select = 1;
3872 } else {
3873 /* in the gap between the two regions, this is a Translation fault */
3874 fault_type = translation_fault;
3875 goto do_fault;
3878 /* Note that QEMU ignores shareability and cacheability attributes,
3879 * so we don't need to do anything with the SH, ORGN, IRGN fields
3880 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
3881 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
3882 * implement any ASID-like capability so we can ignore it (instead
3883 * we will always flush the TLB any time the ASID is changed).
3885 if (ttbr_select == 0) {
3886 ttbr = env->cp15.ttbr0_el1;
3887 epd = extract32(env->cp15.c2_control, 7, 1);
3888 tsz = t0sz;
3890 tg = extract32(env->cp15.c2_control, 14, 2);
3891 if (tg == 1) { /* 64KB pages */
3892 granule_sz = 13;
3894 if (tg == 2) { /* 16KB pages */
3895 granule_sz = 11;
3897 } else {
3898 ttbr = env->cp15.ttbr1_el1;
3899 epd = extract32(env->cp15.c2_control, 23, 1);
3900 tsz = t1sz;
3902 tg = extract32(env->cp15.c2_control, 30, 2);
3903 if (tg == 3) { /* 64KB pages */
3904 granule_sz = 13;
3906 if (tg == 1) { /* 16KB pages */
3907 granule_sz = 11;
3911 if (epd) {
3912 /* Translation table walk disabled => Translation fault on TLB miss */
3913 goto do_fault;
3916 /* The starting level depends on the virtual address size which can be
3917 * up to 48-bits and the translation granule size.
3919 if ((va_size - tsz) > (granule_sz * 4 + 3)) {
3920 level = 0;
3921 } else if ((va_size - tsz) > (granule_sz * 3 + 3)) {
3922 level = 1;
3923 } else {
3924 level = 2;
3927 /* Clear the vaddr bits which aren't part of the within-region address,
3928 * so that we don't have to special case things when calculating the
3929 * first descriptor address.
3931 if (tsz) {
3932 address &= (1ULL << (va_size - tsz)) - 1;
3935 descmask = (1ULL << (granule_sz + 3)) - 1;
3937 /* Now we can extract the actual base address from the TTBR */
3938 descaddr = extract64(ttbr, 0, 48);
3939 descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1);
3941 tableattrs = 0;
3942 for (;;) {
3943 uint64_t descriptor;
3945 descaddr |= (address >> (granule_sz * (4 - level))) & descmask;
3946 descaddr &= ~7ULL;
3947 descriptor = ldq_phys(cs->as, descaddr);
3948 if (!(descriptor & 1) ||
3949 (!(descriptor & 2) && (level == 3))) {
3950 /* Invalid, or the Reserved level 3 encoding */
3951 goto do_fault;
3953 descaddr = descriptor & 0xfffffff000ULL;
3955 if ((descriptor & 2) && (level < 3)) {
3956 /* Table entry. The top five bits are attributes which may
3957 * propagate down through lower levels of the table (and
3958 * which are all arranged so that 0 means "no effect", so
3959 * we can gather them up by ORing in the bits at each level).
3961 tableattrs |= extract64(descriptor, 59, 5);
3962 level++;
3963 continue;
3965 /* Block entry at level 1 or 2, or page entry at level 3.
3966 * These are basically the same thing, although the number
3967 * of bits we pull in from the vaddr varies.
3969 page_size = (1ULL << ((granule_sz * (4 - level)) + 3));
3970 descaddr |= (address & (page_size - 1));
3971 /* Extract attributes from the descriptor and merge with table attrs */
3972 attrs = extract64(descriptor, 2, 10)
3973 | (extract64(descriptor, 52, 12) << 10);
3974 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
3975 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
3976 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
3977 * means "force PL1 access only", which means forcing AP[1] to 0.
3979 if (extract32(tableattrs, 2, 1)) {
3980 attrs &= ~(1 << 4);
3982 /* Since we're always in the Non-secure state, NSTable is ignored. */
3983 break;
3985 /* Here descaddr is the final physical address, and attributes
3986 * are all in attrs.
3988 fault_type = access_fault;
3989 if ((attrs & (1 << 8)) == 0) {
3990 /* Access flag */
3991 goto do_fault;
3993 fault_type = permission_fault;
3994 if (is_user && !(attrs & (1 << 4))) {
3995 /* Unprivileged access not enabled */
3996 goto do_fault;
3998 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3999 if ((arm_feature(env, ARM_FEATURE_V8) && is_user && (attrs & (1 << 12))) ||
4000 (!arm_feature(env, ARM_FEATURE_V8) && (attrs & (1 << 12))) ||
4001 (!is_user && (attrs & (1 << 11)))) {
4002 /* XN/UXN or PXN. Since we only implement EL0/EL1 we unconditionally
4003 * treat XN/UXN as UXN for v8.
4005 if (access_type == 2) {
4006 goto do_fault;
4008 *prot &= ~PAGE_EXEC;
4010 if (attrs & (1 << 5)) {
4011 /* Write access forbidden */
4012 if (access_type == 1) {
4013 goto do_fault;
4015 *prot &= ~PAGE_WRITE;
4018 *phys_ptr = descaddr;
4019 *page_size_ptr = page_size;
4020 return 0;
4022 do_fault:
4023 /* Long-descriptor format IFSR/DFSR value */
4024 return (1 << 9) | (fault_type << 2) | level;
4027 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
4028 int access_type, int is_user,
4029 hwaddr *phys_ptr, int *prot)
4031 int n;
4032 uint32_t mask;
4033 uint32_t base;
4035 *phys_ptr = address;
4036 for (n = 7; n >= 0; n--) {
4037 base = env->cp15.c6_region[n];
4038 if ((base & 1) == 0)
4039 continue;
4040 mask = 1 << ((base >> 1) & 0x1f);
4041 /* Keep this shift separate from the above to avoid an
4042 (undefined) << 32. */
4043 mask = (mask << 1) - 1;
4044 if (((base ^ address) & ~mask) == 0)
4045 break;
4047 if (n < 0)
4048 return 2;
4050 if (access_type == 2) {
4051 mask = env->cp15.pmsav5_insn_ap;
4052 } else {
4053 mask = env->cp15.pmsav5_data_ap;
4055 mask = (mask >> (n * 4)) & 0xf;
4056 switch (mask) {
4057 case 0:
4058 return 1;
4059 case 1:
4060 if (is_user)
4061 return 1;
4062 *prot = PAGE_READ | PAGE_WRITE;
4063 break;
4064 case 2:
4065 *prot = PAGE_READ;
4066 if (!is_user)
4067 *prot |= PAGE_WRITE;
4068 break;
4069 case 3:
4070 *prot = PAGE_READ | PAGE_WRITE;
4071 break;
4072 case 5:
4073 if (is_user)
4074 return 1;
4075 *prot = PAGE_READ;
4076 break;
4077 case 6:
4078 *prot = PAGE_READ;
4079 break;
4080 default:
4081 /* Bad permission. */
4082 return 1;
4084 *prot |= PAGE_EXEC;
4085 return 0;
4088 /* get_phys_addr - get the physical address for this virtual address
4090 * Find the physical address corresponding to the given virtual address,
4091 * by doing a translation table walk on MMU based systems or using the
4092 * MPU state on MPU based systems.
4094 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
4095 * prot and page_size are not filled in, and the return value provides
4096 * information on why the translation aborted, in the format of a
4097 * DFSR/IFSR fault register, with the following caveats:
4098 * * we honour the short vs long DFSR format differences.
4099 * * the WnR bit is never set (the caller must do this).
4100 * * for MPU based systems we don't bother to return a full FSR format
4101 * value.
4103 * @env: CPUARMState
4104 * @address: virtual address to get physical address for
4105 * @access_type: 0 for read, 1 for write, 2 for execute
4106 * @is_user: 0 for privileged access, 1 for user
4107 * @phys_ptr: set to the physical address corresponding to the virtual address
4108 * @prot: set to the permissions for the page containing phys_ptr
4109 * @page_size: set to the size of the page containing phys_ptr
4111 static inline int get_phys_addr(CPUARMState *env, target_ulong address,
4112 int access_type, int is_user,
4113 hwaddr *phys_ptr, int *prot,
4114 target_ulong *page_size)
4116 /* Fast Context Switch Extension. */
4117 if (address < 0x02000000)
4118 address += env->cp15.c13_fcse;
4120 if ((env->cp15.c1_sys & SCTLR_M) == 0) {
4121 /* MMU/MPU disabled. */
4122 *phys_ptr = address;
4123 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
4124 *page_size = TARGET_PAGE_SIZE;
4125 return 0;
4126 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
4127 *page_size = TARGET_PAGE_SIZE;
4128 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
4129 prot);
4130 } else if (extended_addresses_enabled(env)) {
4131 return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
4132 prot, page_size);
4133 } else if (env->cp15.c1_sys & SCTLR_XP) {
4134 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
4135 prot, page_size);
4136 } else {
4137 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
4138 prot, page_size);
4142 int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address,
4143 int access_type, int mmu_idx)
4145 ARMCPU *cpu = ARM_CPU(cs);
4146 CPUARMState *env = &cpu->env;
4147 hwaddr phys_addr;
4148 target_ulong page_size;
4149 int prot;
4150 int ret, is_user;
4151 uint32_t syn;
4152 bool same_el = (arm_current_pl(env) != 0);
4154 is_user = mmu_idx == MMU_USER_IDX;
4155 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
4156 &page_size);
4157 if (ret == 0) {
4158 /* Map a single [sub]page. */
4159 phys_addr &= ~(hwaddr)0x3ff;
4160 address &= ~(target_ulong)0x3ff;
4161 tlb_set_page(cs, address, phys_addr, prot, mmu_idx, page_size);
4162 return 0;
4165 /* AArch64 syndrome does not have an LPAE bit */
4166 syn = ret & ~(1 << 9);
4168 /* For insn and data aborts we assume there is no instruction syndrome
4169 * information; this is always true for exceptions reported to EL1.
4171 if (access_type == 2) {
4172 syn = syn_insn_abort(same_el, 0, 0, syn);
4173 cs->exception_index = EXCP_PREFETCH_ABORT;
4174 } else {
4175 syn = syn_data_abort(same_el, 0, 0, 0, access_type == 1, syn);
4176 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) {
4177 ret |= (1 << 11);
4179 cs->exception_index = EXCP_DATA_ABORT;
4182 env->exception.syndrome = syn;
4183 env->exception.vaddress = address;
4184 env->exception.fsr = ret;
4185 return 1;
4188 hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
4190 ARMCPU *cpu = ARM_CPU(cs);
4191 hwaddr phys_addr;
4192 target_ulong page_size;
4193 int prot;
4194 int ret;
4196 ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size);
4198 if (ret != 0) {
4199 return -1;
4202 return phys_addr;
4205 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
4207 if ((env->uncached_cpsr & CPSR_M) == mode) {
4208 env->regs[13] = val;
4209 } else {
4210 env->banked_r13[bank_number(mode)] = val;
4214 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
4216 if ((env->uncached_cpsr & CPSR_M) == mode) {
4217 return env->regs[13];
4218 } else {
4219 return env->banked_r13[bank_number(mode)];
4223 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
4225 ARMCPU *cpu = arm_env_get_cpu(env);
4227 switch (reg) {
4228 case 0: /* APSR */
4229 return xpsr_read(env) & 0xf8000000;
4230 case 1: /* IAPSR */
4231 return xpsr_read(env) & 0xf80001ff;
4232 case 2: /* EAPSR */
4233 return xpsr_read(env) & 0xff00fc00;
4234 case 3: /* xPSR */
4235 return xpsr_read(env) & 0xff00fdff;
4236 case 5: /* IPSR */
4237 return xpsr_read(env) & 0x000001ff;
4238 case 6: /* EPSR */
4239 return xpsr_read(env) & 0x0700fc00;
4240 case 7: /* IEPSR */
4241 return xpsr_read(env) & 0x0700edff;
4242 case 8: /* MSP */
4243 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
4244 case 9: /* PSP */
4245 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
4246 case 16: /* PRIMASK */
4247 return (env->daif & PSTATE_I) != 0;
4248 case 17: /* BASEPRI */
4249 case 18: /* BASEPRI_MAX */
4250 return env->v7m.basepri;
4251 case 19: /* FAULTMASK */
4252 return (env->daif & PSTATE_F) != 0;
4253 case 20: /* CONTROL */
4254 return env->v7m.control;
4255 default:
4256 /* ??? For debugging only. */
4257 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
4258 return 0;
4262 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
4264 ARMCPU *cpu = arm_env_get_cpu(env);
4266 switch (reg) {
4267 case 0: /* APSR */
4268 xpsr_write(env, val, 0xf8000000);
4269 break;
4270 case 1: /* IAPSR */
4271 xpsr_write(env, val, 0xf8000000);
4272 break;
4273 case 2: /* EAPSR */
4274 xpsr_write(env, val, 0xfe00fc00);
4275 break;
4276 case 3: /* xPSR */
4277 xpsr_write(env, val, 0xfe00fc00);
4278 break;
4279 case 5: /* IPSR */
4280 /* IPSR bits are readonly. */
4281 break;
4282 case 6: /* EPSR */
4283 xpsr_write(env, val, 0x0600fc00);
4284 break;
4285 case 7: /* IEPSR */
4286 xpsr_write(env, val, 0x0600fc00);
4287 break;
4288 case 8: /* MSP */
4289 if (env->v7m.current_sp)
4290 env->v7m.other_sp = val;
4291 else
4292 env->regs[13] = val;
4293 break;
4294 case 9: /* PSP */
4295 if (env->v7m.current_sp)
4296 env->regs[13] = val;
4297 else
4298 env->v7m.other_sp = val;
4299 break;
4300 case 16: /* PRIMASK */
4301 if (val & 1) {
4302 env->daif |= PSTATE_I;
4303 } else {
4304 env->daif &= ~PSTATE_I;
4306 break;
4307 case 17: /* BASEPRI */
4308 env->v7m.basepri = val & 0xff;
4309 break;
4310 case 18: /* BASEPRI_MAX */
4311 val &= 0xff;
4312 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
4313 env->v7m.basepri = val;
4314 break;
4315 case 19: /* FAULTMASK */
4316 if (val & 1) {
4317 env->daif |= PSTATE_F;
4318 } else {
4319 env->daif &= ~PSTATE_F;
4321 break;
4322 case 20: /* CONTROL */
4323 env->v7m.control = val & 3;
4324 switch_v7m_sp(env, (val & 2) != 0);
4325 break;
4326 default:
4327 /* ??? For debugging only. */
4328 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
4329 return;
4333 #endif
4335 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
4337 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
4338 * Note that we do not implement the (architecturally mandated)
4339 * alignment fault for attempts to use this on Device memory
4340 * (which matches the usual QEMU behaviour of not implementing either
4341 * alignment faults or any memory attribute handling).
4344 ARMCPU *cpu = arm_env_get_cpu(env);
4345 uint64_t blocklen = 4 << cpu->dcz_blocksize;
4346 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
4348 #ifndef CONFIG_USER_ONLY
4350 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
4351 * the block size so we might have to do more than one TLB lookup.
4352 * We know that in fact for any v8 CPU the page size is at least 4K
4353 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
4354 * 1K as an artefact of legacy v5 subpage support being present in the
4355 * same QEMU executable.
4357 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
4358 void *hostaddr[maxidx];
4359 int try, i;
4361 for (try = 0; try < 2; try++) {
4363 for (i = 0; i < maxidx; i++) {
4364 hostaddr[i] = tlb_vaddr_to_host(env,
4365 vaddr + TARGET_PAGE_SIZE * i,
4366 1, cpu_mmu_index(env));
4367 if (!hostaddr[i]) {
4368 break;
4371 if (i == maxidx) {
4372 /* If it's all in the TLB it's fair game for just writing to;
4373 * we know we don't need to update dirty status, etc.
4375 for (i = 0; i < maxidx - 1; i++) {
4376 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
4378 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
4379 return;
4381 /* OK, try a store and see if we can populate the tlb. This
4382 * might cause an exception if the memory isn't writable,
4383 * in which case we will longjmp out of here. We must for
4384 * this purpose use the actual register value passed to us
4385 * so that we get the fault address right.
4387 helper_ret_stb_mmu(env, vaddr_in, 0, cpu_mmu_index(env), GETRA());
4388 /* Now we can populate the other TLB entries, if any */
4389 for (i = 0; i < maxidx; i++) {
4390 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
4391 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
4392 helper_ret_stb_mmu(env, va, 0, cpu_mmu_index(env), GETRA());
4397 /* Slow path (probably attempt to do this to an I/O device or
4398 * similar, or clearing of a block of code we have translations
4399 * cached for). Just do a series of byte writes as the architecture
4400 * demands. It's not worth trying to use a cpu_physical_memory_map(),
4401 * memset(), unmap() sequence here because:
4402 * + we'd need to account for the blocksize being larger than a page
4403 * + the direct-RAM access case is almost always going to be dealt
4404 * with in the fastpath code above, so there's no speed benefit
4405 * + we would have to deal with the map returning NULL because the
4406 * bounce buffer was in use
4408 for (i = 0; i < blocklen; i++) {
4409 helper_ret_stb_mmu(env, vaddr + i, 0, cpu_mmu_index(env), GETRA());
4412 #else
4413 memset(g2h(vaddr), 0, blocklen);
4414 #endif
4417 /* Note that signed overflow is undefined in C. The following routines are
4418 careful to use unsigned types where modulo arithmetic is required.
4419 Failure to do so _will_ break on newer gcc. */
4421 /* Signed saturating arithmetic. */
4423 /* Perform 16-bit signed saturating addition. */
4424 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
4426 uint16_t res;
4428 res = a + b;
4429 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
4430 if (a & 0x8000)
4431 res = 0x8000;
4432 else
4433 res = 0x7fff;
4435 return res;
4438 /* Perform 8-bit signed saturating addition. */
4439 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
4441 uint8_t res;
4443 res = a + b;
4444 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
4445 if (a & 0x80)
4446 res = 0x80;
4447 else
4448 res = 0x7f;
4450 return res;
4453 /* Perform 16-bit signed saturating subtraction. */
4454 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
4456 uint16_t res;
4458 res = a - b;
4459 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
4460 if (a & 0x8000)
4461 res = 0x8000;
4462 else
4463 res = 0x7fff;
4465 return res;
4468 /* Perform 8-bit signed saturating subtraction. */
4469 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
4471 uint8_t res;
4473 res = a - b;
4474 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
4475 if (a & 0x80)
4476 res = 0x80;
4477 else
4478 res = 0x7f;
4480 return res;
4483 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
4484 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
4485 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
4486 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
4487 #define PFX q
4489 #include "op_addsub.h"
4491 /* Unsigned saturating arithmetic. */
4492 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
4494 uint16_t res;
4495 res = a + b;
4496 if (res < a)
4497 res = 0xffff;
4498 return res;
4501 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
4503 if (a > b)
4504 return a - b;
4505 else
4506 return 0;
4509 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
4511 uint8_t res;
4512 res = a + b;
4513 if (res < a)
4514 res = 0xff;
4515 return res;
4518 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
4520 if (a > b)
4521 return a - b;
4522 else
4523 return 0;
4526 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
4527 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
4528 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
4529 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
4530 #define PFX uq
4532 #include "op_addsub.h"
4534 /* Signed modulo arithmetic. */
4535 #define SARITH16(a, b, n, op) do { \
4536 int32_t sum; \
4537 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
4538 RESULT(sum, n, 16); \
4539 if (sum >= 0) \
4540 ge |= 3 << (n * 2); \
4541 } while(0)
4543 #define SARITH8(a, b, n, op) do { \
4544 int32_t sum; \
4545 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
4546 RESULT(sum, n, 8); \
4547 if (sum >= 0) \
4548 ge |= 1 << n; \
4549 } while(0)
4552 #define ADD16(a, b, n) SARITH16(a, b, n, +)
4553 #define SUB16(a, b, n) SARITH16(a, b, n, -)
4554 #define ADD8(a, b, n) SARITH8(a, b, n, +)
4555 #define SUB8(a, b, n) SARITH8(a, b, n, -)
4556 #define PFX s
4557 #define ARITH_GE
4559 #include "op_addsub.h"
4561 /* Unsigned modulo arithmetic. */
4562 #define ADD16(a, b, n) do { \
4563 uint32_t sum; \
4564 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
4565 RESULT(sum, n, 16); \
4566 if ((sum >> 16) == 1) \
4567 ge |= 3 << (n * 2); \
4568 } while(0)
4570 #define ADD8(a, b, n) do { \
4571 uint32_t sum; \
4572 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
4573 RESULT(sum, n, 8); \
4574 if ((sum >> 8) == 1) \
4575 ge |= 1 << n; \
4576 } while(0)
4578 #define SUB16(a, b, n) do { \
4579 uint32_t sum; \
4580 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
4581 RESULT(sum, n, 16); \
4582 if ((sum >> 16) == 0) \
4583 ge |= 3 << (n * 2); \
4584 } while(0)
4586 #define SUB8(a, b, n) do { \
4587 uint32_t sum; \
4588 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
4589 RESULT(sum, n, 8); \
4590 if ((sum >> 8) == 0) \
4591 ge |= 1 << n; \
4592 } while(0)
4594 #define PFX u
4595 #define ARITH_GE
4597 #include "op_addsub.h"
4599 /* Halved signed arithmetic. */
4600 #define ADD16(a, b, n) \
4601 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
4602 #define SUB16(a, b, n) \
4603 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
4604 #define ADD8(a, b, n) \
4605 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
4606 #define SUB8(a, b, n) \
4607 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
4608 #define PFX sh
4610 #include "op_addsub.h"
4612 /* Halved unsigned arithmetic. */
4613 #define ADD16(a, b, n) \
4614 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
4615 #define SUB16(a, b, n) \
4616 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
4617 #define ADD8(a, b, n) \
4618 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
4619 #define SUB8(a, b, n) \
4620 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
4621 #define PFX uh
4623 #include "op_addsub.h"
4625 static inline uint8_t do_usad(uint8_t a, uint8_t b)
4627 if (a > b)
4628 return a - b;
4629 else
4630 return b - a;
4633 /* Unsigned sum of absolute byte differences. */
4634 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
4636 uint32_t sum;
4637 sum = do_usad(a, b);
4638 sum += do_usad(a >> 8, b >> 8);
4639 sum += do_usad(a >> 16, b >>16);
4640 sum += do_usad(a >> 24, b >> 24);
4641 return sum;
4644 /* For ARMv6 SEL instruction. */
4645 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
4647 uint32_t mask;
4649 mask = 0;
4650 if (flags & 1)
4651 mask |= 0xff;
4652 if (flags & 2)
4653 mask |= 0xff00;
4654 if (flags & 4)
4655 mask |= 0xff0000;
4656 if (flags & 8)
4657 mask |= 0xff000000;
4658 return (a & mask) | (b & ~mask);
4661 /* VFP support. We follow the convention used for VFP instructions:
4662 Single precision routines have a "s" suffix, double precision a
4663 "d" suffix. */
4665 /* Convert host exception flags to vfp form. */
4666 static inline int vfp_exceptbits_from_host(int host_bits)
4668 int target_bits = 0;
4670 if (host_bits & float_flag_invalid)
4671 target_bits |= 1;
4672 if (host_bits & float_flag_divbyzero)
4673 target_bits |= 2;
4674 if (host_bits & float_flag_overflow)
4675 target_bits |= 4;
4676 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
4677 target_bits |= 8;
4678 if (host_bits & float_flag_inexact)
4679 target_bits |= 0x10;
4680 if (host_bits & float_flag_input_denormal)
4681 target_bits |= 0x80;
4682 return target_bits;
4685 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
4687 int i;
4688 uint32_t fpscr;
4690 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
4691 | (env->vfp.vec_len << 16)
4692 | (env->vfp.vec_stride << 20);
4693 i = get_float_exception_flags(&env->vfp.fp_status);
4694 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
4695 fpscr |= vfp_exceptbits_from_host(i);
4696 return fpscr;
4699 uint32_t vfp_get_fpscr(CPUARMState *env)
4701 return HELPER(vfp_get_fpscr)(env);
4704 /* Convert vfp exception flags to target form. */
4705 static inline int vfp_exceptbits_to_host(int target_bits)
4707 int host_bits = 0;
4709 if (target_bits & 1)
4710 host_bits |= float_flag_invalid;
4711 if (target_bits & 2)
4712 host_bits |= float_flag_divbyzero;
4713 if (target_bits & 4)
4714 host_bits |= float_flag_overflow;
4715 if (target_bits & 8)
4716 host_bits |= float_flag_underflow;
4717 if (target_bits & 0x10)
4718 host_bits |= float_flag_inexact;
4719 if (target_bits & 0x80)
4720 host_bits |= float_flag_input_denormal;
4721 return host_bits;
4724 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
4726 int i;
4727 uint32_t changed;
4729 changed = env->vfp.xregs[ARM_VFP_FPSCR];
4730 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
4731 env->vfp.vec_len = (val >> 16) & 7;
4732 env->vfp.vec_stride = (val >> 20) & 3;
4734 changed ^= val;
4735 if (changed & (3 << 22)) {
4736 i = (val >> 22) & 3;
4737 switch (i) {
4738 case FPROUNDING_TIEEVEN:
4739 i = float_round_nearest_even;
4740 break;
4741 case FPROUNDING_POSINF:
4742 i = float_round_up;
4743 break;
4744 case FPROUNDING_NEGINF:
4745 i = float_round_down;
4746 break;
4747 case FPROUNDING_ZERO:
4748 i = float_round_to_zero;
4749 break;
4751 set_float_rounding_mode(i, &env->vfp.fp_status);
4753 if (changed & (1 << 24)) {
4754 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
4755 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
4757 if (changed & (1 << 25))
4758 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
4760 i = vfp_exceptbits_to_host(val);
4761 set_float_exception_flags(i, &env->vfp.fp_status);
4762 set_float_exception_flags(0, &env->vfp.standard_fp_status);
4765 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
4767 HELPER(vfp_set_fpscr)(env, val);
4770 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
4772 #define VFP_BINOP(name) \
4773 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4775 float_status *fpst = fpstp; \
4776 return float32_ ## name(a, b, fpst); \
4778 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4780 float_status *fpst = fpstp; \
4781 return float64_ ## name(a, b, fpst); \
4783 VFP_BINOP(add)
4784 VFP_BINOP(sub)
4785 VFP_BINOP(mul)
4786 VFP_BINOP(div)
4787 VFP_BINOP(min)
4788 VFP_BINOP(max)
4789 VFP_BINOP(minnum)
4790 VFP_BINOP(maxnum)
4791 #undef VFP_BINOP
4793 float32 VFP_HELPER(neg, s)(float32 a)
4795 return float32_chs(a);
4798 float64 VFP_HELPER(neg, d)(float64 a)
4800 return float64_chs(a);
4803 float32 VFP_HELPER(abs, s)(float32 a)
4805 return float32_abs(a);
4808 float64 VFP_HELPER(abs, d)(float64 a)
4810 return float64_abs(a);
4813 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
4815 return float32_sqrt(a, &env->vfp.fp_status);
4818 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
4820 return float64_sqrt(a, &env->vfp.fp_status);
4823 /* XXX: check quiet/signaling case */
4824 #define DO_VFP_cmp(p, type) \
4825 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4827 uint32_t flags; \
4828 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
4829 case 0: flags = 0x6; break; \
4830 case -1: flags = 0x8; break; \
4831 case 1: flags = 0x2; break; \
4832 default: case 2: flags = 0x3; break; \
4834 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
4835 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
4837 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4839 uint32_t flags; \
4840 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
4841 case 0: flags = 0x6; break; \
4842 case -1: flags = 0x8; break; \
4843 case 1: flags = 0x2; break; \
4844 default: case 2: flags = 0x3; break; \
4846 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
4847 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
4849 DO_VFP_cmp(s, float32)
4850 DO_VFP_cmp(d, float64)
4851 #undef DO_VFP_cmp
4853 /* Integer to float and float to integer conversions */
4855 #define CONV_ITOF(name, fsz, sign) \
4856 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
4858 float_status *fpst = fpstp; \
4859 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
4862 #define CONV_FTOI(name, fsz, sign, round) \
4863 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
4865 float_status *fpst = fpstp; \
4866 if (float##fsz##_is_any_nan(x)) { \
4867 float_raise(float_flag_invalid, fpst); \
4868 return 0; \
4870 return float##fsz##_to_##sign##int32##round(x, fpst); \
4873 #define FLOAT_CONVS(name, p, fsz, sign) \
4874 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
4875 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
4876 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
4878 FLOAT_CONVS(si, s, 32, )
4879 FLOAT_CONVS(si, d, 64, )
4880 FLOAT_CONVS(ui, s, 32, u)
4881 FLOAT_CONVS(ui, d, 64, u)
4883 #undef CONV_ITOF
4884 #undef CONV_FTOI
4885 #undef FLOAT_CONVS
4887 /* floating point conversion */
4888 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
4890 float64 r = float32_to_float64(x, &env->vfp.fp_status);
4891 /* ARM requires that S<->D conversion of any kind of NaN generates
4892 * a quiet NaN by forcing the most significant frac bit to 1.
4894 return float64_maybe_silence_nan(r);
4897 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
4899 float32 r = float64_to_float32(x, &env->vfp.fp_status);
4900 /* ARM requires that S<->D conversion of any kind of NaN generates
4901 * a quiet NaN by forcing the most significant frac bit to 1.
4903 return float32_maybe_silence_nan(r);
4906 /* VFP3 fixed point conversion. */
4907 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4908 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
4909 void *fpstp) \
4911 float_status *fpst = fpstp; \
4912 float##fsz tmp; \
4913 tmp = itype##_to_##float##fsz(x, fpst); \
4914 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
4917 /* Notice that we want only input-denormal exception flags from the
4918 * scalbn operation: the other possible flags (overflow+inexact if
4919 * we overflow to infinity, output-denormal) aren't correct for the
4920 * complete scale-and-convert operation.
4922 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
4923 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
4924 uint32_t shift, \
4925 void *fpstp) \
4927 float_status *fpst = fpstp; \
4928 int old_exc_flags = get_float_exception_flags(fpst); \
4929 float##fsz tmp; \
4930 if (float##fsz##_is_any_nan(x)) { \
4931 float_raise(float_flag_invalid, fpst); \
4932 return 0; \
4934 tmp = float##fsz##_scalbn(x, shift, fpst); \
4935 old_exc_flags |= get_float_exception_flags(fpst) \
4936 & float_flag_input_denormal; \
4937 set_float_exception_flags(old_exc_flags, fpst); \
4938 return float##fsz##_to_##itype##round(tmp, fpst); \
4941 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
4942 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4943 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
4944 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4946 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
4947 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4948 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4950 VFP_CONV_FIX(sh, d, 64, 64, int16)
4951 VFP_CONV_FIX(sl, d, 64, 64, int32)
4952 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
4953 VFP_CONV_FIX(uh, d, 64, 64, uint16)
4954 VFP_CONV_FIX(ul, d, 64, 64, uint32)
4955 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
4956 VFP_CONV_FIX(sh, s, 32, 32, int16)
4957 VFP_CONV_FIX(sl, s, 32, 32, int32)
4958 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
4959 VFP_CONV_FIX(uh, s, 32, 32, uint16)
4960 VFP_CONV_FIX(ul, s, 32, 32, uint32)
4961 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
4962 #undef VFP_CONV_FIX
4963 #undef VFP_CONV_FIX_FLOAT
4964 #undef VFP_CONV_FLOAT_FIX_ROUND
4966 /* Set the current fp rounding mode and return the old one.
4967 * The argument is a softfloat float_round_ value.
4969 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
4971 float_status *fp_status = &env->vfp.fp_status;
4973 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
4974 set_float_rounding_mode(rmode, fp_status);
4976 return prev_rmode;
4979 /* Set the current fp rounding mode in the standard fp status and return
4980 * the old one. This is for NEON instructions that need to change the
4981 * rounding mode but wish to use the standard FPSCR values for everything
4982 * else. Always set the rounding mode back to the correct value after
4983 * modifying it.
4984 * The argument is a softfloat float_round_ value.
4986 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
4988 float_status *fp_status = &env->vfp.standard_fp_status;
4990 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
4991 set_float_rounding_mode(rmode, fp_status);
4993 return prev_rmode;
4996 /* Half precision conversions. */
4997 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
4999 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
5000 float32 r = float16_to_float32(make_float16(a), ieee, s);
5001 if (ieee) {
5002 return float32_maybe_silence_nan(r);
5004 return r;
5007 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
5009 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
5010 float16 r = float32_to_float16(a, ieee, s);
5011 if (ieee) {
5012 r = float16_maybe_silence_nan(r);
5014 return float16_val(r);
5017 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
5019 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
5022 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
5024 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
5027 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
5029 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
5032 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
5034 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
5037 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
5039 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
5040 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
5041 if (ieee) {
5042 return float64_maybe_silence_nan(r);
5044 return r;
5047 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
5049 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
5050 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
5051 if (ieee) {
5052 r = float16_maybe_silence_nan(r);
5054 return float16_val(r);
5057 #define float32_two make_float32(0x40000000)
5058 #define float32_three make_float32(0x40400000)
5059 #define float32_one_point_five make_float32(0x3fc00000)
5061 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
5063 float_status *s = &env->vfp.standard_fp_status;
5064 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
5065 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
5066 if (!(float32_is_zero(a) || float32_is_zero(b))) {
5067 float_raise(float_flag_input_denormal, s);
5069 return float32_two;
5071 return float32_sub(float32_two, float32_mul(a, b, s), s);
5074 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
5076 float_status *s = &env->vfp.standard_fp_status;
5077 float32 product;
5078 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
5079 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
5080 if (!(float32_is_zero(a) || float32_is_zero(b))) {
5081 float_raise(float_flag_input_denormal, s);
5083 return float32_one_point_five;
5085 product = float32_mul(a, b, s);
5086 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
5089 /* NEON helpers. */
5091 /* Constants 256 and 512 are used in some helpers; we avoid relying on
5092 * int->float conversions at run-time. */
5093 #define float64_256 make_float64(0x4070000000000000LL)
5094 #define float64_512 make_float64(0x4080000000000000LL)
5095 #define float32_maxnorm make_float32(0x7f7fffff)
5096 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
5098 /* Reciprocal functions
5100 * The algorithm that must be used to calculate the estimate
5101 * is specified by the ARM ARM, see FPRecipEstimate()
5104 static float64 recip_estimate(float64 a, float_status *real_fp_status)
5106 /* These calculations mustn't set any fp exception flags,
5107 * so we use a local copy of the fp_status.
5109 float_status dummy_status = *real_fp_status;
5110 float_status *s = &dummy_status;
5111 /* q = (int)(a * 512.0) */
5112 float64 q = float64_mul(float64_512, a, s);
5113 int64_t q_int = float64_to_int64_round_to_zero(q, s);
5115 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
5116 q = int64_to_float64(q_int, s);
5117 q = float64_add(q, float64_half, s);
5118 q = float64_div(q, float64_512, s);
5119 q = float64_div(float64_one, q, s);
5121 /* s = (int)(256.0 * r + 0.5) */
5122 q = float64_mul(q, float64_256, s);
5123 q = float64_add(q, float64_half, s);
5124 q_int = float64_to_int64_round_to_zero(q, s);
5126 /* return (double)s / 256.0 */
5127 return float64_div(int64_to_float64(q_int, s), float64_256, s);
5130 /* Common wrapper to call recip_estimate */
5131 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
5133 uint64_t val64 = float64_val(num);
5134 uint64_t frac = extract64(val64, 0, 52);
5135 int64_t exp = extract64(val64, 52, 11);
5136 uint64_t sbit;
5137 float64 scaled, estimate;
5139 /* Generate the scaled number for the estimate function */
5140 if (exp == 0) {
5141 if (extract64(frac, 51, 1) == 0) {
5142 exp = -1;
5143 frac = extract64(frac, 0, 50) << 2;
5144 } else {
5145 frac = extract64(frac, 0, 51) << 1;
5149 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
5150 scaled = make_float64((0x3feULL << 52)
5151 | extract64(frac, 44, 8) << 44);
5153 estimate = recip_estimate(scaled, fpst);
5155 /* Build new result */
5156 val64 = float64_val(estimate);
5157 sbit = 0x8000000000000000ULL & val64;
5158 exp = off - exp;
5159 frac = extract64(val64, 0, 52);
5161 if (exp == 0) {
5162 frac = 1ULL << 51 | extract64(frac, 1, 51);
5163 } else if (exp == -1) {
5164 frac = 1ULL << 50 | extract64(frac, 2, 50);
5165 exp = 0;
5168 return make_float64(sbit | (exp << 52) | frac);
5171 static bool round_to_inf(float_status *fpst, bool sign_bit)
5173 switch (fpst->float_rounding_mode) {
5174 case float_round_nearest_even: /* Round to Nearest */
5175 return true;
5176 case float_round_up: /* Round to +Inf */
5177 return !sign_bit;
5178 case float_round_down: /* Round to -Inf */
5179 return sign_bit;
5180 case float_round_to_zero: /* Round to Zero */
5181 return false;
5184 g_assert_not_reached();
5187 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
5189 float_status *fpst = fpstp;
5190 float32 f32 = float32_squash_input_denormal(input, fpst);
5191 uint32_t f32_val = float32_val(f32);
5192 uint32_t f32_sbit = 0x80000000ULL & f32_val;
5193 int32_t f32_exp = extract32(f32_val, 23, 8);
5194 uint32_t f32_frac = extract32(f32_val, 0, 23);
5195 float64 f64, r64;
5196 uint64_t r64_val;
5197 int64_t r64_exp;
5198 uint64_t r64_frac;
5200 if (float32_is_any_nan(f32)) {
5201 float32 nan = f32;
5202 if (float32_is_signaling_nan(f32)) {
5203 float_raise(float_flag_invalid, fpst);
5204 nan = float32_maybe_silence_nan(f32);
5206 if (fpst->default_nan_mode) {
5207 nan = float32_default_nan;
5209 return nan;
5210 } else if (float32_is_infinity(f32)) {
5211 return float32_set_sign(float32_zero, float32_is_neg(f32));
5212 } else if (float32_is_zero(f32)) {
5213 float_raise(float_flag_divbyzero, fpst);
5214 return float32_set_sign(float32_infinity, float32_is_neg(f32));
5215 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
5216 /* Abs(value) < 2.0^-128 */
5217 float_raise(float_flag_overflow | float_flag_inexact, fpst);
5218 if (round_to_inf(fpst, f32_sbit)) {
5219 return float32_set_sign(float32_infinity, float32_is_neg(f32));
5220 } else {
5221 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
5223 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
5224 float_raise(float_flag_underflow, fpst);
5225 return float32_set_sign(float32_zero, float32_is_neg(f32));
5229 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
5230 r64 = call_recip_estimate(f64, 253, fpst);
5231 r64_val = float64_val(r64);
5232 r64_exp = extract64(r64_val, 52, 11);
5233 r64_frac = extract64(r64_val, 0, 52);
5235 /* result = sign : result_exp<7:0> : fraction<51:29>; */
5236 return make_float32(f32_sbit |
5237 (r64_exp & 0xff) << 23 |
5238 extract64(r64_frac, 29, 24));
5241 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
5243 float_status *fpst = fpstp;
5244 float64 f64 = float64_squash_input_denormal(input, fpst);
5245 uint64_t f64_val = float64_val(f64);
5246 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
5247 int64_t f64_exp = extract64(f64_val, 52, 11);
5248 float64 r64;
5249 uint64_t r64_val;
5250 int64_t r64_exp;
5251 uint64_t r64_frac;
5253 /* Deal with any special cases */
5254 if (float64_is_any_nan(f64)) {
5255 float64 nan = f64;
5256 if (float64_is_signaling_nan(f64)) {
5257 float_raise(float_flag_invalid, fpst);
5258 nan = float64_maybe_silence_nan(f64);
5260 if (fpst->default_nan_mode) {
5261 nan = float64_default_nan;
5263 return nan;
5264 } else if (float64_is_infinity(f64)) {
5265 return float64_set_sign(float64_zero, float64_is_neg(f64));
5266 } else if (float64_is_zero(f64)) {
5267 float_raise(float_flag_divbyzero, fpst);
5268 return float64_set_sign(float64_infinity, float64_is_neg(f64));
5269 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
5270 /* Abs(value) < 2.0^-1024 */
5271 float_raise(float_flag_overflow | float_flag_inexact, fpst);
5272 if (round_to_inf(fpst, f64_sbit)) {
5273 return float64_set_sign(float64_infinity, float64_is_neg(f64));
5274 } else {
5275 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
5277 } else if (f64_exp >= 1023 && fpst->flush_to_zero) {
5278 float_raise(float_flag_underflow, fpst);
5279 return float64_set_sign(float64_zero, float64_is_neg(f64));
5282 r64 = call_recip_estimate(f64, 2045, fpst);
5283 r64_val = float64_val(r64);
5284 r64_exp = extract64(r64_val, 52, 11);
5285 r64_frac = extract64(r64_val, 0, 52);
5287 /* result = sign : result_exp<10:0> : fraction<51:0> */
5288 return make_float64(f64_sbit |
5289 ((r64_exp & 0x7ff) << 52) |
5290 r64_frac);
5293 /* The algorithm that must be used to calculate the estimate
5294 * is specified by the ARM ARM.
5296 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
5298 /* These calculations mustn't set any fp exception flags,
5299 * so we use a local copy of the fp_status.
5301 float_status dummy_status = *real_fp_status;
5302 float_status *s = &dummy_status;
5303 float64 q;
5304 int64_t q_int;
5306 if (float64_lt(a, float64_half, s)) {
5307 /* range 0.25 <= a < 0.5 */
5309 /* a in units of 1/512 rounded down */
5310 /* q0 = (int)(a * 512.0); */
5311 q = float64_mul(float64_512, a, s);
5312 q_int = float64_to_int64_round_to_zero(q, s);
5314 /* reciprocal root r */
5315 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
5316 q = int64_to_float64(q_int, s);
5317 q = float64_add(q, float64_half, s);
5318 q = float64_div(q, float64_512, s);
5319 q = float64_sqrt(q, s);
5320 q = float64_div(float64_one, q, s);
5321 } else {
5322 /* range 0.5 <= a < 1.0 */
5324 /* a in units of 1/256 rounded down */
5325 /* q1 = (int)(a * 256.0); */
5326 q = float64_mul(float64_256, a, s);
5327 int64_t q_int = float64_to_int64_round_to_zero(q, s);
5329 /* reciprocal root r */
5330 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
5331 q = int64_to_float64(q_int, s);
5332 q = float64_add(q, float64_half, s);
5333 q = float64_div(q, float64_256, s);
5334 q = float64_sqrt(q, s);
5335 q = float64_div(float64_one, q, s);
5337 /* r in units of 1/256 rounded to nearest */
5338 /* s = (int)(256.0 * r + 0.5); */
5340 q = float64_mul(q, float64_256,s );
5341 q = float64_add(q, float64_half, s);
5342 q_int = float64_to_int64_round_to_zero(q, s);
5344 /* return (double)s / 256.0;*/
5345 return float64_div(int64_to_float64(q_int, s), float64_256, s);
5348 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
5350 float_status *s = fpstp;
5351 float32 f32 = float32_squash_input_denormal(input, s);
5352 uint32_t val = float32_val(f32);
5353 uint32_t f32_sbit = 0x80000000 & val;
5354 int32_t f32_exp = extract32(val, 23, 8);
5355 uint32_t f32_frac = extract32(val, 0, 23);
5356 uint64_t f64_frac;
5357 uint64_t val64;
5358 int result_exp;
5359 float64 f64;
5361 if (float32_is_any_nan(f32)) {
5362 float32 nan = f32;
5363 if (float32_is_signaling_nan(f32)) {
5364 float_raise(float_flag_invalid, s);
5365 nan = float32_maybe_silence_nan(f32);
5367 if (s->default_nan_mode) {
5368 nan = float32_default_nan;
5370 return nan;
5371 } else if (float32_is_zero(f32)) {
5372 float_raise(float_flag_divbyzero, s);
5373 return float32_set_sign(float32_infinity, float32_is_neg(f32));
5374 } else if (float32_is_neg(f32)) {
5375 float_raise(float_flag_invalid, s);
5376 return float32_default_nan;
5377 } else if (float32_is_infinity(f32)) {
5378 return float32_zero;
5381 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
5382 * preserving the parity of the exponent. */
5384 f64_frac = ((uint64_t) f32_frac) << 29;
5385 if (f32_exp == 0) {
5386 while (extract64(f64_frac, 51, 1) == 0) {
5387 f64_frac = f64_frac << 1;
5388 f32_exp = f32_exp-1;
5390 f64_frac = extract64(f64_frac, 0, 51) << 1;
5393 if (extract64(f32_exp, 0, 1) == 0) {
5394 f64 = make_float64(((uint64_t) f32_sbit) << 32
5395 | (0x3feULL << 52)
5396 | f64_frac);
5397 } else {
5398 f64 = make_float64(((uint64_t) f32_sbit) << 32
5399 | (0x3fdULL << 52)
5400 | f64_frac);
5403 result_exp = (380 - f32_exp) / 2;
5405 f64 = recip_sqrt_estimate(f64, s);
5407 val64 = float64_val(f64);
5409 val = ((result_exp & 0xff) << 23)
5410 | ((val64 >> 29) & 0x7fffff);
5411 return make_float32(val);
5414 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
5416 float_status *s = fpstp;
5417 float64 f64 = float64_squash_input_denormal(input, s);
5418 uint64_t val = float64_val(f64);
5419 uint64_t f64_sbit = 0x8000000000000000ULL & val;
5420 int64_t f64_exp = extract64(val, 52, 11);
5421 uint64_t f64_frac = extract64(val, 0, 52);
5422 int64_t result_exp;
5423 uint64_t result_frac;
5425 if (float64_is_any_nan(f64)) {
5426 float64 nan = f64;
5427 if (float64_is_signaling_nan(f64)) {
5428 float_raise(float_flag_invalid, s);
5429 nan = float64_maybe_silence_nan(f64);
5431 if (s->default_nan_mode) {
5432 nan = float64_default_nan;
5434 return nan;
5435 } else if (float64_is_zero(f64)) {
5436 float_raise(float_flag_divbyzero, s);
5437 return float64_set_sign(float64_infinity, float64_is_neg(f64));
5438 } else if (float64_is_neg(f64)) {
5439 float_raise(float_flag_invalid, s);
5440 return float64_default_nan;
5441 } else if (float64_is_infinity(f64)) {
5442 return float64_zero;
5445 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
5446 * preserving the parity of the exponent. */
5448 if (f64_exp == 0) {
5449 while (extract64(f64_frac, 51, 1) == 0) {
5450 f64_frac = f64_frac << 1;
5451 f64_exp = f64_exp - 1;
5453 f64_frac = extract64(f64_frac, 0, 51) << 1;
5456 if (extract64(f64_exp, 0, 1) == 0) {
5457 f64 = make_float64(f64_sbit
5458 | (0x3feULL << 52)
5459 | f64_frac);
5460 } else {
5461 f64 = make_float64(f64_sbit
5462 | (0x3fdULL << 52)
5463 | f64_frac);
5466 result_exp = (3068 - f64_exp) / 2;
5468 f64 = recip_sqrt_estimate(f64, s);
5470 result_frac = extract64(float64_val(f64), 0, 52);
5472 return make_float64(f64_sbit |
5473 ((result_exp & 0x7ff) << 52) |
5474 result_frac);
5477 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
5479 float_status *s = fpstp;
5480 float64 f64;
5482 if ((a & 0x80000000) == 0) {
5483 return 0xffffffff;
5486 f64 = make_float64((0x3feULL << 52)
5487 | ((int64_t)(a & 0x7fffffff) << 21));
5489 f64 = recip_estimate(f64, s);
5491 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
5494 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
5496 float_status *fpst = fpstp;
5497 float64 f64;
5499 if ((a & 0xc0000000) == 0) {
5500 return 0xffffffff;
5503 if (a & 0x80000000) {
5504 f64 = make_float64((0x3feULL << 52)
5505 | ((uint64_t)(a & 0x7fffffff) << 21));
5506 } else { /* bits 31-30 == '01' */
5507 f64 = make_float64((0x3fdULL << 52)
5508 | ((uint64_t)(a & 0x3fffffff) << 22));
5511 f64 = recip_sqrt_estimate(f64, fpst);
5513 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
5516 /* VFPv4 fused multiply-accumulate */
5517 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
5519 float_status *fpst = fpstp;
5520 return float32_muladd(a, b, c, 0, fpst);
5523 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
5525 float_status *fpst = fpstp;
5526 return float64_muladd(a, b, c, 0, fpst);
5529 /* ARMv8 round to integral */
5530 float32 HELPER(rints_exact)(float32 x, void *fp_status)
5532 return float32_round_to_int(x, fp_status);
5535 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
5537 return float64_round_to_int(x, fp_status);
5540 float32 HELPER(rints)(float32 x, void *fp_status)
5542 int old_flags = get_float_exception_flags(fp_status), new_flags;
5543 float32 ret;
5545 ret = float32_round_to_int(x, fp_status);
5547 /* Suppress any inexact exceptions the conversion produced */
5548 if (!(old_flags & float_flag_inexact)) {
5549 new_flags = get_float_exception_flags(fp_status);
5550 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
5553 return ret;
5556 float64 HELPER(rintd)(float64 x, void *fp_status)
5558 int old_flags = get_float_exception_flags(fp_status), new_flags;
5559 float64 ret;
5561 ret = float64_round_to_int(x, fp_status);
5563 new_flags = get_float_exception_flags(fp_status);
5565 /* Suppress any inexact exceptions the conversion produced */
5566 if (!(old_flags & float_flag_inexact)) {
5567 new_flags = get_float_exception_flags(fp_status);
5568 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
5571 return ret;
5574 /* Convert ARM rounding mode to softfloat */
5575 int arm_rmode_to_sf(int rmode)
5577 switch (rmode) {
5578 case FPROUNDING_TIEAWAY:
5579 rmode = float_round_ties_away;
5580 break;
5581 case FPROUNDING_ODD:
5582 /* FIXME: add support for TIEAWAY and ODD */
5583 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
5584 rmode);
5585 case FPROUNDING_TIEEVEN:
5586 default:
5587 rmode = float_round_nearest_even;
5588 break;
5589 case FPROUNDING_POSINF:
5590 rmode = float_round_up;
5591 break;
5592 case FPROUNDING_NEGINF:
5593 rmode = float_round_down;
5594 break;
5595 case FPROUNDING_ZERO:
5596 rmode = float_round_to_zero;
5597 break;
5599 return rmode;
5602 /* CRC helpers.
5603 * The upper bytes of val (above the number specified by 'bytes') must have
5604 * been zeroed out by the caller.
5606 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
5608 uint8_t buf[4];
5610 stl_le_p(buf, val);
5612 /* zlib crc32 converts the accumulator and output to one's complement. */
5613 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
5616 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
5618 uint8_t buf[4];
5620 stl_le_p(buf, val);
5622 /* Linux crc32c converts the output to one's complement. */
5623 return crc32c(acc, buf, bytes) ^ 0xffffffff;