target/arm: Make rvbar settable after realize
[qemu.git] / target / arm / cpu.c
blob5d4ca7a2270041d301fa9646a5d304c9f6908914
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "qemu-common.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "cpu.h"
31 #ifdef CONFIG_TCG
32 #include "hw/core/tcg-cpu-ops.h"
33 #endif /* CONFIG_TCG */
34 #include "internals.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
40 #endif
41 #include "sysemu/tcg.h"
42 #include "sysemu/hw_accel.h"
43 #include "kvm_arm.h"
44 #include "disas/capstone.h"
45 #include "fpu/softfloat.h"
47 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
49 ARMCPU *cpu = ARM_CPU(cs);
50 CPUARMState *env = &cpu->env;
52 if (is_a64(env)) {
53 env->pc = value;
54 env->thumb = 0;
55 } else {
56 env->regs[15] = value & ~1;
57 env->thumb = value & 1;
61 #ifdef CONFIG_TCG
62 void arm_cpu_synchronize_from_tb(CPUState *cs,
63 const TranslationBlock *tb)
65 ARMCPU *cpu = ARM_CPU(cs);
66 CPUARMState *env = &cpu->env;
69 * It's OK to look at env for the current mode here, because it's
70 * never possible for an AArch64 TB to chain to an AArch32 TB.
72 if (is_a64(env)) {
73 env->pc = tb->pc;
74 } else {
75 env->regs[15] = tb->pc;
78 #endif /* CONFIG_TCG */
80 static bool arm_cpu_has_work(CPUState *cs)
82 ARMCPU *cpu = ARM_CPU(cs);
84 return (cpu->power_state != PSCI_OFF)
85 && cs->interrupt_request &
86 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
87 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
88 | CPU_INTERRUPT_EXITTB);
91 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
92 void *opaque)
94 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
96 entry->hook = hook;
97 entry->opaque = opaque;
99 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
102 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
103 void *opaque)
105 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
107 entry->hook = hook;
108 entry->opaque = opaque;
110 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
113 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
115 /* Reset a single ARMCPRegInfo register */
116 ARMCPRegInfo *ri = value;
117 ARMCPU *cpu = opaque;
119 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
120 return;
123 if (ri->resetfn) {
124 ri->resetfn(&cpu->env, ri);
125 return;
128 /* A zero offset is never possible as it would be regs[0]
129 * so we use it to indicate that reset is being handled elsewhere.
130 * This is basically only used for fields in non-core coprocessors
131 * (like the pxa2xx ones).
133 if (!ri->fieldoffset) {
134 return;
137 if (cpreg_field_is_64bit(ri)) {
138 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
139 } else {
140 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
144 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
146 /* Purely an assertion check: we've already done reset once,
147 * so now check that running the reset for the cpreg doesn't
148 * change its value. This traps bugs where two different cpregs
149 * both try to reset the same state field but to different values.
151 ARMCPRegInfo *ri = value;
152 ARMCPU *cpu = opaque;
153 uint64_t oldvalue, newvalue;
155 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
156 return;
159 oldvalue = read_raw_cp_reg(&cpu->env, ri);
160 cp_reg_reset(key, value, opaque);
161 newvalue = read_raw_cp_reg(&cpu->env, ri);
162 assert(oldvalue == newvalue);
165 static void arm_cpu_reset(DeviceState *dev)
167 CPUState *s = CPU(dev);
168 ARMCPU *cpu = ARM_CPU(s);
169 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
170 CPUARMState *env = &cpu->env;
172 acc->parent_reset(dev);
174 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
176 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
177 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
179 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
180 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
181 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
182 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
184 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
186 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
187 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
190 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
191 /* 64 bit CPUs always start in 64 bit mode */
192 env->aarch64 = 1;
193 #if defined(CONFIG_USER_ONLY)
194 env->pstate = PSTATE_MODE_EL0t;
195 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
196 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
197 /* Enable all PAC keys. */
198 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
199 SCTLR_EnDA | SCTLR_EnDB);
200 /* and to the FP/Neon instructions */
201 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
202 /* and to the SVE instructions */
203 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
204 /* with reasonable vector length */
205 if (cpu_isar_feature(aa64_sve, cpu)) {
206 env->vfp.zcr_el[1] =
207 aarch64_sve_zcr_get_valid_len(cpu, cpu->sve_default_vq - 1);
210 * Enable 48-bit address space (TODO: take reserved_va into account).
211 * Enable TBI0 but not TBI1.
212 * Note that this must match useronly_clean_ptr.
214 env->cp15.tcr_el[1].raw_tcr = 5 | (1ULL << 37);
216 /* Enable MTE */
217 if (cpu_isar_feature(aa64_mte, cpu)) {
218 /* Enable tag access, but leave TCF0 as No Effect (0). */
219 env->cp15.sctlr_el[1] |= SCTLR_ATA0;
221 * Exclude all tags, so that tag 0 is always used.
222 * This corresponds to Linux current->thread.gcr_incl = 0.
224 * Set RRND, so that helper_irg() will generate a seed later.
225 * Here in cpu_reset(), the crypto subsystem has not yet been
226 * initialized.
228 env->cp15.gcr_el1 = 0x1ffff;
230 #else
231 /* Reset into the highest available EL */
232 if (arm_feature(env, ARM_FEATURE_EL3)) {
233 env->pstate = PSTATE_MODE_EL3h;
234 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
235 env->pstate = PSTATE_MODE_EL2h;
236 } else {
237 env->pstate = PSTATE_MODE_EL1h;
240 /* Sample rvbar at reset. */
241 env->cp15.rvbar = cpu->rvbar_prop;
242 env->pc = env->cp15.rvbar;
243 #endif
244 } else {
245 #if defined(CONFIG_USER_ONLY)
246 /* Userspace expects access to cp10 and cp11 for FP/Neon */
247 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
248 #endif
251 #if defined(CONFIG_USER_ONLY)
252 env->uncached_cpsr = ARM_CPU_MODE_USR;
253 /* For user mode we must enable access to coprocessors */
254 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
255 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
256 env->cp15.c15_cpar = 3;
257 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
258 env->cp15.c15_cpar = 1;
260 #else
263 * If the highest available EL is EL2, AArch32 will start in Hyp
264 * mode; otherwise it starts in SVC. Note that if we start in
265 * AArch64 then these values in the uncached_cpsr will be ignored.
267 if (arm_feature(env, ARM_FEATURE_EL2) &&
268 !arm_feature(env, ARM_FEATURE_EL3)) {
269 env->uncached_cpsr = ARM_CPU_MODE_HYP;
270 } else {
271 env->uncached_cpsr = ARM_CPU_MODE_SVC;
273 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
275 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
276 * executing as AArch32 then check if highvecs are enabled and
277 * adjust the PC accordingly.
279 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
280 env->regs[15] = 0xFFFF0000;
283 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
284 #endif
286 if (arm_feature(env, ARM_FEATURE_M)) {
287 #ifndef CONFIG_USER_ONLY
288 uint32_t initial_msp; /* Loaded from 0x0 */
289 uint32_t initial_pc; /* Loaded from 0x4 */
290 uint8_t *rom;
291 uint32_t vecbase;
292 #endif
294 if (cpu_isar_feature(aa32_lob, cpu)) {
296 * LTPSIZE is constant 4 if MVE not implemented, and resets
297 * to an UNKNOWN value if MVE is implemented. We choose to
298 * always reset to 4.
300 env->v7m.ltpsize = 4;
301 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
302 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
303 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
306 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
307 env->v7m.secure = true;
308 } else {
309 /* This bit resets to 0 if security is supported, but 1 if
310 * it is not. The bit is not present in v7M, but we set it
311 * here so we can avoid having to make checks on it conditional
312 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
314 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
316 * Set NSACR to indicate "NS access permitted to everything";
317 * this avoids having to have all the tests of it being
318 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
319 * v8.1M the guest-visible value of NSACR in a CPU without the
320 * Security Extension is 0xcff.
322 env->v7m.nsacr = 0xcff;
325 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
326 * that it resets to 1, so QEMU always does that rather than making
327 * it dependent on CPU model. In v8M it is RES1.
329 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
330 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
331 if (arm_feature(env, ARM_FEATURE_V8)) {
332 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
333 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
334 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
336 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
337 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
338 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
341 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
342 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
343 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
344 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
347 #ifndef CONFIG_USER_ONLY
348 /* Unlike A/R profile, M profile defines the reset LR value */
349 env->regs[14] = 0xffffffff;
351 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
352 env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
354 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
355 vecbase = env->v7m.vecbase[env->v7m.secure];
356 rom = rom_ptr_for_as(s->as, vecbase, 8);
357 if (rom) {
358 /* Address zero is covered by ROM which hasn't yet been
359 * copied into physical memory.
361 initial_msp = ldl_p(rom);
362 initial_pc = ldl_p(rom + 4);
363 } else {
364 /* Address zero not covered by a ROM blob, or the ROM blob
365 * is in non-modifiable memory and this is a second reset after
366 * it got copied into memory. In the latter case, rom_ptr
367 * will return a NULL pointer and we should use ldl_phys instead.
369 initial_msp = ldl_phys(s->as, vecbase);
370 initial_pc = ldl_phys(s->as, vecbase + 4);
373 qemu_log_mask(CPU_LOG_INT,
374 "Loaded reset SP 0x%x PC 0x%x from vector table\n",
375 initial_msp, initial_pc);
377 env->regs[13] = initial_msp & 0xFFFFFFFC;
378 env->regs[15] = initial_pc & ~1;
379 env->thumb = initial_pc & 1;
380 #else
382 * For user mode we run non-secure and with access to the FPU.
383 * The FPU context is active (ie does not need further setup)
384 * and is owned by non-secure.
386 env->v7m.secure = false;
387 env->v7m.nsacr = 0xcff;
388 env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
389 env->v7m.fpccr[M_REG_S] &=
390 ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
391 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
392 #endif
395 /* M profile requires that reset clears the exclusive monitor;
396 * A profile does not, but clearing it makes more sense than having it
397 * set with an exclusive access on address zero.
399 arm_clear_exclusive(env);
401 if (arm_feature(env, ARM_FEATURE_PMSA)) {
402 if (cpu->pmsav7_dregion > 0) {
403 if (arm_feature(env, ARM_FEATURE_V8)) {
404 memset(env->pmsav8.rbar[M_REG_NS], 0,
405 sizeof(*env->pmsav8.rbar[M_REG_NS])
406 * cpu->pmsav7_dregion);
407 memset(env->pmsav8.rlar[M_REG_NS], 0,
408 sizeof(*env->pmsav8.rlar[M_REG_NS])
409 * cpu->pmsav7_dregion);
410 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
411 memset(env->pmsav8.rbar[M_REG_S], 0,
412 sizeof(*env->pmsav8.rbar[M_REG_S])
413 * cpu->pmsav7_dregion);
414 memset(env->pmsav8.rlar[M_REG_S], 0,
415 sizeof(*env->pmsav8.rlar[M_REG_S])
416 * cpu->pmsav7_dregion);
418 } else if (arm_feature(env, ARM_FEATURE_V7)) {
419 memset(env->pmsav7.drbar, 0,
420 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
421 memset(env->pmsav7.drsr, 0,
422 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
423 memset(env->pmsav7.dracr, 0,
424 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
427 env->pmsav7.rnr[M_REG_NS] = 0;
428 env->pmsav7.rnr[M_REG_S] = 0;
429 env->pmsav8.mair0[M_REG_NS] = 0;
430 env->pmsav8.mair0[M_REG_S] = 0;
431 env->pmsav8.mair1[M_REG_NS] = 0;
432 env->pmsav8.mair1[M_REG_S] = 0;
435 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
436 if (cpu->sau_sregion > 0) {
437 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
438 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
440 env->sau.rnr = 0;
441 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
442 * the Cortex-M33 does.
444 env->sau.ctrl = 0;
447 set_flush_to_zero(1, &env->vfp.standard_fp_status);
448 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
449 set_default_nan_mode(1, &env->vfp.standard_fp_status);
450 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
451 set_float_detect_tininess(float_tininess_before_rounding,
452 &env->vfp.fp_status);
453 set_float_detect_tininess(float_tininess_before_rounding,
454 &env->vfp.standard_fp_status);
455 set_float_detect_tininess(float_tininess_before_rounding,
456 &env->vfp.fp_status_f16);
457 set_float_detect_tininess(float_tininess_before_rounding,
458 &env->vfp.standard_fp_status_f16);
459 #ifndef CONFIG_USER_ONLY
460 if (kvm_enabled()) {
461 kvm_arm_reset_vcpu(cpu);
463 #endif
465 hw_breakpoint_update_all(cpu);
466 hw_watchpoint_update_all(cpu);
467 arm_rebuild_hflags(env);
470 #ifndef CONFIG_USER_ONLY
472 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
473 unsigned int target_el,
474 unsigned int cur_el, bool secure,
475 uint64_t hcr_el2)
477 CPUARMState *env = cs->env_ptr;
478 bool pstate_unmasked;
479 bool unmasked = false;
482 * Don't take exceptions if they target a lower EL.
483 * This check should catch any exceptions that would not be taken
484 * but left pending.
486 if (cur_el > target_el) {
487 return false;
490 switch (excp_idx) {
491 case EXCP_FIQ:
492 pstate_unmasked = !(env->daif & PSTATE_F);
493 break;
495 case EXCP_IRQ:
496 pstate_unmasked = !(env->daif & PSTATE_I);
497 break;
499 case EXCP_VFIQ:
500 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
501 /* VFIQs are only taken when hypervized. */
502 return false;
504 return !(env->daif & PSTATE_F);
505 case EXCP_VIRQ:
506 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
507 /* VIRQs are only taken when hypervized. */
508 return false;
510 return !(env->daif & PSTATE_I);
511 default:
512 g_assert_not_reached();
516 * Use the target EL, current execution state and SCR/HCR settings to
517 * determine whether the corresponding CPSR bit is used to mask the
518 * interrupt.
520 if ((target_el > cur_el) && (target_el != 1)) {
521 /* Exceptions targeting a higher EL may not be maskable */
522 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
524 * 64-bit masking rules are simple: exceptions to EL3
525 * can't be masked, and exceptions to EL2 can only be
526 * masked from Secure state. The HCR and SCR settings
527 * don't affect the masking logic, only the interrupt routing.
529 if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
530 unmasked = true;
532 } else {
534 * The old 32-bit-only environment has a more complicated
535 * masking setup. HCR and SCR bits not only affect interrupt
536 * routing but also change the behaviour of masking.
538 bool hcr, scr;
540 switch (excp_idx) {
541 case EXCP_FIQ:
543 * If FIQs are routed to EL3 or EL2 then there are cases where
544 * we override the CPSR.F in determining if the exception is
545 * masked or not. If neither of these are set then we fall back
546 * to the CPSR.F setting otherwise we further assess the state
547 * below.
549 hcr = hcr_el2 & HCR_FMO;
550 scr = (env->cp15.scr_el3 & SCR_FIQ);
553 * When EL3 is 32-bit, the SCR.FW bit controls whether the
554 * CPSR.F bit masks FIQ interrupts when taken in non-secure
555 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
556 * when non-secure but only when FIQs are only routed to EL3.
558 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
559 break;
560 case EXCP_IRQ:
562 * When EL3 execution state is 32-bit, if HCR.IMO is set then
563 * we may override the CPSR.I masking when in non-secure state.
564 * The SCR.IRQ setting has already been taken into consideration
565 * when setting the target EL, so it does not have a further
566 * affect here.
568 hcr = hcr_el2 & HCR_IMO;
569 scr = false;
570 break;
571 default:
572 g_assert_not_reached();
575 if ((scr || hcr) && !secure) {
576 unmasked = true;
582 * The PSTATE bits only mask the interrupt if we have not overriden the
583 * ability above.
585 return unmasked || pstate_unmasked;
588 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
590 CPUClass *cc = CPU_GET_CLASS(cs);
591 CPUARMState *env = cs->env_ptr;
592 uint32_t cur_el = arm_current_el(env);
593 bool secure = arm_is_secure(env);
594 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
595 uint32_t target_el;
596 uint32_t excp_idx;
598 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
600 if (interrupt_request & CPU_INTERRUPT_FIQ) {
601 excp_idx = EXCP_FIQ;
602 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
603 if (arm_excp_unmasked(cs, excp_idx, target_el,
604 cur_el, secure, hcr_el2)) {
605 goto found;
608 if (interrupt_request & CPU_INTERRUPT_HARD) {
609 excp_idx = EXCP_IRQ;
610 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
611 if (arm_excp_unmasked(cs, excp_idx, target_el,
612 cur_el, secure, hcr_el2)) {
613 goto found;
616 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
617 excp_idx = EXCP_VIRQ;
618 target_el = 1;
619 if (arm_excp_unmasked(cs, excp_idx, target_el,
620 cur_el, secure, hcr_el2)) {
621 goto found;
624 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
625 excp_idx = EXCP_VFIQ;
626 target_el = 1;
627 if (arm_excp_unmasked(cs, excp_idx, target_el,
628 cur_el, secure, hcr_el2)) {
629 goto found;
632 return false;
634 found:
635 cs->exception_index = excp_idx;
636 env->exception.target_el = target_el;
637 cc->tcg_ops->do_interrupt(cs);
638 return true;
640 #endif /* !CONFIG_USER_ONLY */
642 void arm_cpu_update_virq(ARMCPU *cpu)
645 * Update the interrupt level for VIRQ, which is the logical OR of
646 * the HCR_EL2.VI bit and the input line level from the GIC.
648 CPUARMState *env = &cpu->env;
649 CPUState *cs = CPU(cpu);
651 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
652 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
654 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
655 if (new_state) {
656 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
657 } else {
658 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
663 void arm_cpu_update_vfiq(ARMCPU *cpu)
666 * Update the interrupt level for VFIQ, which is the logical OR of
667 * the HCR_EL2.VF bit and the input line level from the GIC.
669 CPUARMState *env = &cpu->env;
670 CPUState *cs = CPU(cpu);
672 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
673 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
675 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
676 if (new_state) {
677 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
678 } else {
679 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
684 #ifndef CONFIG_USER_ONLY
685 static void arm_cpu_set_irq(void *opaque, int irq, int level)
687 ARMCPU *cpu = opaque;
688 CPUARMState *env = &cpu->env;
689 CPUState *cs = CPU(cpu);
690 static const int mask[] = {
691 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
692 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
693 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
694 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
697 if (level) {
698 env->irq_line_state |= mask[irq];
699 } else {
700 env->irq_line_state &= ~mask[irq];
703 switch (irq) {
704 case ARM_CPU_VIRQ:
705 assert(arm_feature(env, ARM_FEATURE_EL2));
706 arm_cpu_update_virq(cpu);
707 break;
708 case ARM_CPU_VFIQ:
709 assert(arm_feature(env, ARM_FEATURE_EL2));
710 arm_cpu_update_vfiq(cpu);
711 break;
712 case ARM_CPU_IRQ:
713 case ARM_CPU_FIQ:
714 if (level) {
715 cpu_interrupt(cs, mask[irq]);
716 } else {
717 cpu_reset_interrupt(cs, mask[irq]);
719 break;
720 default:
721 g_assert_not_reached();
725 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
727 #ifdef CONFIG_KVM
728 ARMCPU *cpu = opaque;
729 CPUARMState *env = &cpu->env;
730 CPUState *cs = CPU(cpu);
731 uint32_t linestate_bit;
732 int irq_id;
734 switch (irq) {
735 case ARM_CPU_IRQ:
736 irq_id = KVM_ARM_IRQ_CPU_IRQ;
737 linestate_bit = CPU_INTERRUPT_HARD;
738 break;
739 case ARM_CPU_FIQ:
740 irq_id = KVM_ARM_IRQ_CPU_FIQ;
741 linestate_bit = CPU_INTERRUPT_FIQ;
742 break;
743 default:
744 g_assert_not_reached();
747 if (level) {
748 env->irq_line_state |= linestate_bit;
749 } else {
750 env->irq_line_state &= ~linestate_bit;
752 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
753 #endif
756 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
758 ARMCPU *cpu = ARM_CPU(cs);
759 CPUARMState *env = &cpu->env;
761 cpu_synchronize_state(cs);
762 return arm_cpu_data_is_big_endian(env);
765 #endif
767 static int
768 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
770 return print_insn_arm(pc | 1, info);
773 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
775 ARMCPU *ac = ARM_CPU(cpu);
776 CPUARMState *env = &ac->env;
777 bool sctlr_b;
779 if (is_a64(env)) {
780 /* We might not be compiled with the A64 disassembler
781 * because it needs a C++ compiler. Leave print_insn
782 * unset in this case to use the caller default behaviour.
784 #if defined(CONFIG_ARM_A64_DIS)
785 info->print_insn = print_insn_arm_a64;
786 #endif
787 info->cap_arch = CS_ARCH_ARM64;
788 info->cap_insn_unit = 4;
789 info->cap_insn_split = 4;
790 } else {
791 int cap_mode;
792 if (env->thumb) {
793 info->print_insn = print_insn_thumb1;
794 info->cap_insn_unit = 2;
795 info->cap_insn_split = 4;
796 cap_mode = CS_MODE_THUMB;
797 } else {
798 info->print_insn = print_insn_arm;
799 info->cap_insn_unit = 4;
800 info->cap_insn_split = 4;
801 cap_mode = CS_MODE_ARM;
803 if (arm_feature(env, ARM_FEATURE_V8)) {
804 cap_mode |= CS_MODE_V8;
806 if (arm_feature(env, ARM_FEATURE_M)) {
807 cap_mode |= CS_MODE_MCLASS;
809 info->cap_arch = CS_ARCH_ARM;
810 info->cap_mode = cap_mode;
813 sctlr_b = arm_sctlr_b(env);
814 if (bswap_code(sctlr_b)) {
815 #ifdef TARGET_WORDS_BIGENDIAN
816 info->endian = BFD_ENDIAN_LITTLE;
817 #else
818 info->endian = BFD_ENDIAN_BIG;
819 #endif
821 info->flags &= ~INSN_ARM_BE32;
822 #ifndef CONFIG_USER_ONLY
823 if (sctlr_b) {
824 info->flags |= INSN_ARM_BE32;
826 #endif
829 #ifdef TARGET_AARCH64
831 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
833 ARMCPU *cpu = ARM_CPU(cs);
834 CPUARMState *env = &cpu->env;
835 uint32_t psr = pstate_read(env);
836 int i;
837 int el = arm_current_el(env);
838 const char *ns_status;
840 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
841 for (i = 0; i < 32; i++) {
842 if (i == 31) {
843 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
844 } else {
845 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
846 (i + 2) % 3 ? " " : "\n");
850 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
851 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
852 } else {
853 ns_status = "";
855 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
856 psr,
857 psr & PSTATE_N ? 'N' : '-',
858 psr & PSTATE_Z ? 'Z' : '-',
859 psr & PSTATE_C ? 'C' : '-',
860 psr & PSTATE_V ? 'V' : '-',
861 ns_status,
863 psr & PSTATE_SP ? 'h' : 't');
865 if (cpu_isar_feature(aa64_bti, cpu)) {
866 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
868 if (!(flags & CPU_DUMP_FPU)) {
869 qemu_fprintf(f, "\n");
870 return;
872 if (fp_exception_el(env, el) != 0) {
873 qemu_fprintf(f, " FPU disabled\n");
874 return;
876 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
877 vfp_get_fpcr(env), vfp_get_fpsr(env));
879 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
880 int j, zcr_len = sve_zcr_len_for_el(env, el);
882 for (i = 0; i <= FFR_PRED_NUM; i++) {
883 bool eol;
884 if (i == FFR_PRED_NUM) {
885 qemu_fprintf(f, "FFR=");
886 /* It's last, so end the line. */
887 eol = true;
888 } else {
889 qemu_fprintf(f, "P%02d=", i);
890 switch (zcr_len) {
891 case 0:
892 eol = i % 8 == 7;
893 break;
894 case 1:
895 eol = i % 6 == 5;
896 break;
897 case 2:
898 case 3:
899 eol = i % 3 == 2;
900 break;
901 default:
902 /* More than one quadword per predicate. */
903 eol = true;
904 break;
907 for (j = zcr_len / 4; j >= 0; j--) {
908 int digits;
909 if (j * 4 + 4 <= zcr_len + 1) {
910 digits = 16;
911 } else {
912 digits = (zcr_len % 4 + 1) * 4;
914 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
915 env->vfp.pregs[i].p[j],
916 j ? ":" : eol ? "\n" : " ");
920 for (i = 0; i < 32; i++) {
921 if (zcr_len == 0) {
922 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
923 i, env->vfp.zregs[i].d[1],
924 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
925 } else if (zcr_len == 1) {
926 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
927 ":%016" PRIx64 ":%016" PRIx64 "\n",
928 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
929 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
930 } else {
931 for (j = zcr_len; j >= 0; j--) {
932 bool odd = (zcr_len - j) % 2 != 0;
933 if (j == zcr_len) {
934 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
935 } else if (!odd) {
936 if (j > 0) {
937 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
938 } else {
939 qemu_fprintf(f, " [%x]=", j);
942 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
943 env->vfp.zregs[i].d[j * 2 + 1],
944 env->vfp.zregs[i].d[j * 2],
945 odd || j == 0 ? "\n" : ":");
949 } else {
950 for (i = 0; i < 32; i++) {
951 uint64_t *q = aa64_vfp_qreg(env, i);
952 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
953 i, q[1], q[0], (i & 1 ? "\n" : " "));
958 #else
960 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
962 g_assert_not_reached();
965 #endif
967 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
969 ARMCPU *cpu = ARM_CPU(cs);
970 CPUARMState *env = &cpu->env;
971 int i;
973 if (is_a64(env)) {
974 aarch64_cpu_dump_state(cs, f, flags);
975 return;
978 for (i = 0; i < 16; i++) {
979 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
980 if ((i % 4) == 3) {
981 qemu_fprintf(f, "\n");
982 } else {
983 qemu_fprintf(f, " ");
987 if (arm_feature(env, ARM_FEATURE_M)) {
988 uint32_t xpsr = xpsr_read(env);
989 const char *mode;
990 const char *ns_status = "";
992 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
993 ns_status = env->v7m.secure ? "S " : "NS ";
996 if (xpsr & XPSR_EXCP) {
997 mode = "handler";
998 } else {
999 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1000 mode = "unpriv-thread";
1001 } else {
1002 mode = "priv-thread";
1006 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1007 xpsr,
1008 xpsr & XPSR_N ? 'N' : '-',
1009 xpsr & XPSR_Z ? 'Z' : '-',
1010 xpsr & XPSR_C ? 'C' : '-',
1011 xpsr & XPSR_V ? 'V' : '-',
1012 xpsr & XPSR_T ? 'T' : 'A',
1013 ns_status,
1014 mode);
1015 } else {
1016 uint32_t psr = cpsr_read(env);
1017 const char *ns_status = "";
1019 if (arm_feature(env, ARM_FEATURE_EL3) &&
1020 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1021 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1024 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1025 psr,
1026 psr & CPSR_N ? 'N' : '-',
1027 psr & CPSR_Z ? 'Z' : '-',
1028 psr & CPSR_C ? 'C' : '-',
1029 psr & CPSR_V ? 'V' : '-',
1030 psr & CPSR_T ? 'T' : 'A',
1031 ns_status,
1032 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1035 if (flags & CPU_DUMP_FPU) {
1036 int numvfpregs = 0;
1037 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1038 numvfpregs = 32;
1039 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1040 numvfpregs = 16;
1042 for (i = 0; i < numvfpregs; i++) {
1043 uint64_t v = *aa32_vfp_dreg(env, i);
1044 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1045 i * 2, (uint32_t)v,
1046 i * 2 + 1, (uint32_t)(v >> 32),
1047 i, v);
1049 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1050 if (cpu_isar_feature(aa32_mve, cpu)) {
1051 qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1056 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1058 uint32_t Aff1 = idx / clustersz;
1059 uint32_t Aff0 = idx % clustersz;
1060 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1063 static void cpreg_hashtable_data_destroy(gpointer data)
1066 * Destroy function for cpu->cp_regs hashtable data entries.
1067 * We must free the name string because it was g_strdup()ed in
1068 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1069 * from r->name because we know we definitely allocated it.
1071 ARMCPRegInfo *r = data;
1073 g_free((void *)r->name);
1074 g_free(r);
1077 static void arm_cpu_initfn(Object *obj)
1079 ARMCPU *cpu = ARM_CPU(obj);
1081 cpu_set_cpustate_pointers(cpu);
1082 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1083 g_free, cpreg_hashtable_data_destroy);
1085 QLIST_INIT(&cpu->pre_el_change_hooks);
1086 QLIST_INIT(&cpu->el_change_hooks);
1088 #ifdef CONFIG_USER_ONLY
1089 # ifdef TARGET_AARCH64
1091 * The linux kernel defaults to 512-bit vectors, when sve is supported.
1092 * See documentation for /proc/sys/abi/sve_default_vector_length, and
1093 * our corresponding sve-default-vector-length cpu property.
1095 cpu->sve_default_vq = 4;
1096 # endif
1097 #else
1098 /* Our inbound IRQ and FIQ lines */
1099 if (kvm_enabled()) {
1100 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1101 * the same interface as non-KVM CPUs.
1103 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1104 } else {
1105 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1108 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1109 ARRAY_SIZE(cpu->gt_timer_outputs));
1111 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1112 "gicv3-maintenance-interrupt", 1);
1113 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1114 "pmu-interrupt", 1);
1115 #endif
1117 /* DTB consumers generally don't in fact care what the 'compatible'
1118 * string is, so always provide some string and trust that a hypothetical
1119 * picky DTB consumer will also provide a helpful error message.
1121 cpu->dtb_compatible = "qemu,unknown";
1122 cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1123 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1125 if (tcg_enabled() || hvf_enabled()) {
1126 /* TCG and HVF implement PSCI 1.1 */
1127 cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1131 static Property arm_cpu_gt_cntfrq_property =
1132 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1133 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1135 static Property arm_cpu_reset_cbar_property =
1136 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1138 static Property arm_cpu_reset_hivecs_property =
1139 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1141 #ifndef CONFIG_USER_ONLY
1142 static Property arm_cpu_has_el2_property =
1143 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1145 static Property arm_cpu_has_el3_property =
1146 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1147 #endif
1149 static Property arm_cpu_cfgend_property =
1150 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1152 static Property arm_cpu_has_vfp_property =
1153 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1155 static Property arm_cpu_has_neon_property =
1156 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1158 static Property arm_cpu_has_dsp_property =
1159 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1161 static Property arm_cpu_has_mpu_property =
1162 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1164 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1165 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1166 * the right value for that particular CPU type, and we don't want
1167 * to override that with an incorrect constant value.
1169 static Property arm_cpu_pmsav7_dregion_property =
1170 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1171 pmsav7_dregion,
1172 qdev_prop_uint32, uint32_t);
1174 static bool arm_get_pmu(Object *obj, Error **errp)
1176 ARMCPU *cpu = ARM_CPU(obj);
1178 return cpu->has_pmu;
1181 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1183 ARMCPU *cpu = ARM_CPU(obj);
1185 if (value) {
1186 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1187 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1188 return;
1190 set_feature(&cpu->env, ARM_FEATURE_PMU);
1191 } else {
1192 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1194 cpu->has_pmu = value;
1197 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1200 * The exact approach to calculating guest ticks is:
1202 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1203 * NANOSECONDS_PER_SECOND);
1205 * We don't do that. Rather we intentionally use integer division
1206 * truncation below and in the caller for the conversion of host monotonic
1207 * time to guest ticks to provide the exact inverse for the semantics of
1208 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1209 * it loses precision when representing frequencies where
1210 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1211 * provide an exact inverse leads to scheduling timers with negative
1212 * periods, which in turn leads to sticky behaviour in the guest.
1214 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1215 * cannot become zero.
1217 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1218 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1221 void arm_cpu_post_init(Object *obj)
1223 ARMCPU *cpu = ARM_CPU(obj);
1225 /* M profile implies PMSA. We have to do this here rather than
1226 * in realize with the other feature-implication checks because
1227 * we look at the PMSA bit to see if we should add some properties.
1229 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1230 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1233 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1234 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1235 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1238 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1239 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1242 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1243 object_property_add_uint64_ptr(obj, "rvbar",
1244 &cpu->rvbar_prop,
1245 OBJ_PROP_FLAG_READWRITE);
1248 #ifndef CONFIG_USER_ONLY
1249 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1250 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1251 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1253 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1255 object_property_add_link(obj, "secure-memory",
1256 TYPE_MEMORY_REGION,
1257 (Object **)&cpu->secure_memory,
1258 qdev_prop_allow_set_link_before_realize,
1259 OBJ_PROP_LINK_STRONG);
1262 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1263 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1265 #endif
1267 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1268 cpu->has_pmu = true;
1269 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1273 * Allow user to turn off VFP and Neon support, but only for TCG --
1274 * KVM does not currently allow us to lie to the guest about its
1275 * ID/feature registers, so the guest always sees what the host has.
1277 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1278 ? cpu_isar_feature(aa64_fp_simd, cpu)
1279 : cpu_isar_feature(aa32_vfp, cpu)) {
1280 cpu->has_vfp = true;
1281 if (!kvm_enabled()) {
1282 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1286 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1287 cpu->has_neon = true;
1288 if (!kvm_enabled()) {
1289 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1293 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1294 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1295 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1298 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1299 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1300 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1301 qdev_property_add_static(DEVICE(obj),
1302 &arm_cpu_pmsav7_dregion_property);
1306 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1307 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1308 qdev_prop_allow_set_link_before_realize,
1309 OBJ_PROP_LINK_STRONG);
1311 * M profile: initial value of the Secure VTOR. We can't just use
1312 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1313 * the property to be set after realize.
1315 object_property_add_uint32_ptr(obj, "init-svtor",
1316 &cpu->init_svtor,
1317 OBJ_PROP_FLAG_READWRITE);
1319 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1321 * Initial value of the NS VTOR (for cores without the Security
1322 * extension, this is the only VTOR)
1324 object_property_add_uint32_ptr(obj, "init-nsvtor",
1325 &cpu->init_nsvtor,
1326 OBJ_PROP_FLAG_READWRITE);
1329 /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1330 object_property_add_uint32_ptr(obj, "psci-conduit",
1331 &cpu->psci_conduit,
1332 OBJ_PROP_FLAG_READWRITE);
1334 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1336 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1337 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1340 if (kvm_enabled()) {
1341 kvm_arm_add_vcpu_properties(obj);
1344 #ifndef CONFIG_USER_ONLY
1345 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1346 cpu_isar_feature(aa64_mte, cpu)) {
1347 object_property_add_link(obj, "tag-memory",
1348 TYPE_MEMORY_REGION,
1349 (Object **)&cpu->tag_memory,
1350 qdev_prop_allow_set_link_before_realize,
1351 OBJ_PROP_LINK_STRONG);
1353 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1354 object_property_add_link(obj, "secure-tag-memory",
1355 TYPE_MEMORY_REGION,
1356 (Object **)&cpu->secure_tag_memory,
1357 qdev_prop_allow_set_link_before_realize,
1358 OBJ_PROP_LINK_STRONG);
1361 #endif
1364 static void arm_cpu_finalizefn(Object *obj)
1366 ARMCPU *cpu = ARM_CPU(obj);
1367 ARMELChangeHook *hook, *next;
1369 g_hash_table_destroy(cpu->cp_regs);
1371 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1372 QLIST_REMOVE(hook, node);
1373 g_free(hook);
1375 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1376 QLIST_REMOVE(hook, node);
1377 g_free(hook);
1379 #ifndef CONFIG_USER_ONLY
1380 if (cpu->pmu_timer) {
1381 timer_free(cpu->pmu_timer);
1383 #endif
1386 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1388 Error *local_err = NULL;
1390 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1391 arm_cpu_sve_finalize(cpu, &local_err);
1392 if (local_err != NULL) {
1393 error_propagate(errp, local_err);
1394 return;
1397 arm_cpu_pauth_finalize(cpu, &local_err);
1398 if (local_err != NULL) {
1399 error_propagate(errp, local_err);
1400 return;
1403 arm_cpu_lpa2_finalize(cpu, &local_err);
1404 if (local_err != NULL) {
1405 error_propagate(errp, local_err);
1406 return;
1410 if (kvm_enabled()) {
1411 kvm_arm_steal_time_finalize(cpu, &local_err);
1412 if (local_err != NULL) {
1413 error_propagate(errp, local_err);
1414 return;
1419 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1421 CPUState *cs = CPU(dev);
1422 ARMCPU *cpu = ARM_CPU(dev);
1423 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1424 CPUARMState *env = &cpu->env;
1425 int pagebits;
1426 Error *local_err = NULL;
1427 bool no_aa32 = false;
1429 /* If we needed to query the host kernel for the CPU features
1430 * then it's possible that might have failed in the initfn, but
1431 * this is the first point where we can report it.
1433 if (cpu->host_cpu_probe_failed) {
1434 if (!kvm_enabled() && !hvf_enabled()) {
1435 error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1436 } else {
1437 error_setg(errp, "Failed to retrieve host CPU features");
1439 return;
1442 #ifndef CONFIG_USER_ONLY
1443 /* The NVIC and M-profile CPU are two halves of a single piece of
1444 * hardware; trying to use one without the other is a command line
1445 * error and will result in segfaults if not caught here.
1447 if (arm_feature(env, ARM_FEATURE_M)) {
1448 if (!env->nvic) {
1449 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1450 return;
1452 } else {
1453 if (env->nvic) {
1454 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1455 return;
1459 if (kvm_enabled()) {
1461 * Catch all the cases which might cause us to create more than one
1462 * address space for the CPU (otherwise we will assert() later in
1463 * cpu_address_space_init()).
1465 if (arm_feature(env, ARM_FEATURE_M)) {
1466 error_setg(errp,
1467 "Cannot enable KVM when using an M-profile guest CPU");
1468 return;
1470 if (cpu->has_el3) {
1471 error_setg(errp,
1472 "Cannot enable KVM when guest CPU has EL3 enabled");
1473 return;
1475 if (cpu->tag_memory) {
1476 error_setg(errp,
1477 "Cannot enable KVM when guest CPUs has MTE enabled");
1478 return;
1483 uint64_t scale;
1485 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1486 if (!cpu->gt_cntfrq_hz) {
1487 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1488 cpu->gt_cntfrq_hz);
1489 return;
1491 scale = gt_cntfrq_period_ns(cpu);
1492 } else {
1493 scale = GTIMER_SCALE;
1496 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1497 arm_gt_ptimer_cb, cpu);
1498 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1499 arm_gt_vtimer_cb, cpu);
1500 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1501 arm_gt_htimer_cb, cpu);
1502 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1503 arm_gt_stimer_cb, cpu);
1504 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1505 arm_gt_hvtimer_cb, cpu);
1507 #endif
1509 cpu_exec_realizefn(cs, &local_err);
1510 if (local_err != NULL) {
1511 error_propagate(errp, local_err);
1512 return;
1515 arm_cpu_finalize_features(cpu, &local_err);
1516 if (local_err != NULL) {
1517 error_propagate(errp, local_err);
1518 return;
1521 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1522 cpu->has_vfp != cpu->has_neon) {
1524 * This is an architectural requirement for AArch64; AArch32 is
1525 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1527 error_setg(errp,
1528 "AArch64 CPUs must have both VFP and Neon or neither");
1529 return;
1532 if (!cpu->has_vfp) {
1533 uint64_t t;
1534 uint32_t u;
1536 t = cpu->isar.id_aa64isar1;
1537 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1538 cpu->isar.id_aa64isar1 = t;
1540 t = cpu->isar.id_aa64pfr0;
1541 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1542 cpu->isar.id_aa64pfr0 = t;
1544 u = cpu->isar.id_isar6;
1545 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1546 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1547 cpu->isar.id_isar6 = u;
1549 u = cpu->isar.mvfr0;
1550 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1551 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1552 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1553 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1554 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1555 if (!arm_feature(env, ARM_FEATURE_M)) {
1556 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1557 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1559 cpu->isar.mvfr0 = u;
1561 u = cpu->isar.mvfr1;
1562 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1563 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1564 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1565 if (arm_feature(env, ARM_FEATURE_M)) {
1566 u = FIELD_DP32(u, MVFR1, FP16, 0);
1568 cpu->isar.mvfr1 = u;
1570 u = cpu->isar.mvfr2;
1571 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1572 cpu->isar.mvfr2 = u;
1575 if (!cpu->has_neon) {
1576 uint64_t t;
1577 uint32_t u;
1579 unset_feature(env, ARM_FEATURE_NEON);
1581 t = cpu->isar.id_aa64isar0;
1582 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1583 cpu->isar.id_aa64isar0 = t;
1585 t = cpu->isar.id_aa64isar1;
1586 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1587 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1588 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1589 cpu->isar.id_aa64isar1 = t;
1591 t = cpu->isar.id_aa64pfr0;
1592 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1593 cpu->isar.id_aa64pfr0 = t;
1595 u = cpu->isar.id_isar5;
1596 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1597 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1598 cpu->isar.id_isar5 = u;
1600 u = cpu->isar.id_isar6;
1601 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1602 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1603 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1604 u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1605 cpu->isar.id_isar6 = u;
1607 if (!arm_feature(env, ARM_FEATURE_M)) {
1608 u = cpu->isar.mvfr1;
1609 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1610 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1611 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1612 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1613 cpu->isar.mvfr1 = u;
1615 u = cpu->isar.mvfr2;
1616 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1617 cpu->isar.mvfr2 = u;
1621 if (!cpu->has_neon && !cpu->has_vfp) {
1622 uint64_t t;
1623 uint32_t u;
1625 t = cpu->isar.id_aa64isar0;
1626 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1627 cpu->isar.id_aa64isar0 = t;
1629 t = cpu->isar.id_aa64isar1;
1630 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1631 cpu->isar.id_aa64isar1 = t;
1633 u = cpu->isar.mvfr0;
1634 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1635 cpu->isar.mvfr0 = u;
1637 /* Despite the name, this field covers both VFP and Neon */
1638 u = cpu->isar.mvfr1;
1639 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1640 cpu->isar.mvfr1 = u;
1643 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1644 uint32_t u;
1646 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1648 u = cpu->isar.id_isar1;
1649 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1650 cpu->isar.id_isar1 = u;
1652 u = cpu->isar.id_isar2;
1653 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1654 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1655 cpu->isar.id_isar2 = u;
1657 u = cpu->isar.id_isar3;
1658 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1659 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1660 cpu->isar.id_isar3 = u;
1663 /* Some features automatically imply others: */
1664 if (arm_feature(env, ARM_FEATURE_V8)) {
1665 if (arm_feature(env, ARM_FEATURE_M)) {
1666 set_feature(env, ARM_FEATURE_V7);
1667 } else {
1668 set_feature(env, ARM_FEATURE_V7VE);
1673 * There exist AArch64 cpus without AArch32 support. When KVM
1674 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1675 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1676 * As a general principle, we also do not make ID register
1677 * consistency checks anywhere unless using TCG, because only
1678 * for TCG would a consistency-check failure be a QEMU bug.
1680 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1681 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1684 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1685 /* v7 Virtualization Extensions. In real hardware this implies
1686 * EL2 and also the presence of the Security Extensions.
1687 * For QEMU, for backwards-compatibility we implement some
1688 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1689 * include the various other features that V7VE implies.
1690 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1691 * Security Extensions is ARM_FEATURE_EL3.
1693 assert(!tcg_enabled() || no_aa32 ||
1694 cpu_isar_feature(aa32_arm_div, cpu));
1695 set_feature(env, ARM_FEATURE_LPAE);
1696 set_feature(env, ARM_FEATURE_V7);
1698 if (arm_feature(env, ARM_FEATURE_V7)) {
1699 set_feature(env, ARM_FEATURE_VAPA);
1700 set_feature(env, ARM_FEATURE_THUMB2);
1701 set_feature(env, ARM_FEATURE_MPIDR);
1702 if (!arm_feature(env, ARM_FEATURE_M)) {
1703 set_feature(env, ARM_FEATURE_V6K);
1704 } else {
1705 set_feature(env, ARM_FEATURE_V6);
1708 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1709 * non-EL3 configs. This is needed by some legacy boards.
1711 set_feature(env, ARM_FEATURE_VBAR);
1713 if (arm_feature(env, ARM_FEATURE_V6K)) {
1714 set_feature(env, ARM_FEATURE_V6);
1715 set_feature(env, ARM_FEATURE_MVFR);
1717 if (arm_feature(env, ARM_FEATURE_V6)) {
1718 set_feature(env, ARM_FEATURE_V5);
1719 if (!arm_feature(env, ARM_FEATURE_M)) {
1720 assert(!tcg_enabled() || no_aa32 ||
1721 cpu_isar_feature(aa32_jazelle, cpu));
1722 set_feature(env, ARM_FEATURE_AUXCR);
1725 if (arm_feature(env, ARM_FEATURE_V5)) {
1726 set_feature(env, ARM_FEATURE_V4T);
1728 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1729 set_feature(env, ARM_FEATURE_V7MP);
1731 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1732 set_feature(env, ARM_FEATURE_CBAR);
1734 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1735 !arm_feature(env, ARM_FEATURE_M)) {
1736 set_feature(env, ARM_FEATURE_THUMB_DSP);
1740 * We rely on no XScale CPU having VFP so we can use the same bits in the
1741 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1743 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1744 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1745 !arm_feature(env, ARM_FEATURE_XSCALE));
1747 if (arm_feature(env, ARM_FEATURE_V7) &&
1748 !arm_feature(env, ARM_FEATURE_M) &&
1749 !arm_feature(env, ARM_FEATURE_PMSA)) {
1750 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1751 * can use 4K pages.
1753 pagebits = 12;
1754 } else {
1755 /* For CPUs which might have tiny 1K pages, or which have an
1756 * MPU and might have small region sizes, stick with 1K pages.
1758 pagebits = 10;
1760 if (!set_preferred_target_page_bits(pagebits)) {
1761 /* This can only ever happen for hotplugging a CPU, or if
1762 * the board code incorrectly creates a CPU which it has
1763 * promised via minimum_page_size that it will not.
1765 error_setg(errp, "This CPU requires a smaller page size than the "
1766 "system is using");
1767 return;
1770 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1771 * We don't support setting cluster ID ([16..23]) (known as Aff2
1772 * in later ARM ARM versions), or any of the higher affinity level fields,
1773 * so these bits always RAZ.
1775 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1776 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1777 ARM_DEFAULT_CPUS_PER_CLUSTER);
1780 if (cpu->reset_hivecs) {
1781 cpu->reset_sctlr |= (1 << 13);
1784 if (cpu->cfgend) {
1785 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1786 cpu->reset_sctlr |= SCTLR_EE;
1787 } else {
1788 cpu->reset_sctlr |= SCTLR_B;
1792 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1793 /* If the has_el3 CPU property is disabled then we need to disable the
1794 * feature.
1796 unset_feature(env, ARM_FEATURE_EL3);
1798 /* Disable the security extension feature bits in the processor feature
1799 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1801 cpu->isar.id_pfr1 &= ~0xf0;
1802 cpu->isar.id_aa64pfr0 &= ~0xf000;
1805 if (!cpu->has_el2) {
1806 unset_feature(env, ARM_FEATURE_EL2);
1809 if (!cpu->has_pmu) {
1810 unset_feature(env, ARM_FEATURE_PMU);
1812 if (arm_feature(env, ARM_FEATURE_PMU)) {
1813 pmu_init(cpu);
1815 if (!kvm_enabled()) {
1816 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1817 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1820 #ifndef CONFIG_USER_ONLY
1821 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1822 cpu);
1823 #endif
1824 } else {
1825 cpu->isar.id_aa64dfr0 =
1826 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1827 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1828 cpu->pmceid0 = 0;
1829 cpu->pmceid1 = 0;
1832 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1833 /* Disable the hypervisor feature bits in the processor feature
1834 * registers if we don't have EL2. These are id_pfr1[15:12] and
1835 * id_aa64pfr0_el1[11:8].
1837 cpu->isar.id_aa64pfr0 &= ~0xf00;
1838 cpu->isar.id_pfr1 &= ~0xf000;
1841 #ifndef CONFIG_USER_ONLY
1842 if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1844 * Disable the MTE feature bits if we do not have tag-memory
1845 * provided by the machine.
1847 cpu->isar.id_aa64pfr1 =
1848 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1850 #endif
1852 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1853 * to false or by setting pmsav7-dregion to 0.
1855 if (!cpu->has_mpu) {
1856 cpu->pmsav7_dregion = 0;
1858 if (cpu->pmsav7_dregion == 0) {
1859 cpu->has_mpu = false;
1862 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1863 arm_feature(env, ARM_FEATURE_V7)) {
1864 uint32_t nr = cpu->pmsav7_dregion;
1866 if (nr > 0xff) {
1867 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1868 return;
1871 if (nr) {
1872 if (arm_feature(env, ARM_FEATURE_V8)) {
1873 /* PMSAv8 */
1874 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1875 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1876 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1877 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1878 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1880 } else {
1881 env->pmsav7.drbar = g_new0(uint32_t, nr);
1882 env->pmsav7.drsr = g_new0(uint32_t, nr);
1883 env->pmsav7.dracr = g_new0(uint32_t, nr);
1888 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1889 uint32_t nr = cpu->sau_sregion;
1891 if (nr > 0xff) {
1892 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1893 return;
1896 if (nr) {
1897 env->sau.rbar = g_new0(uint32_t, nr);
1898 env->sau.rlar = g_new0(uint32_t, nr);
1902 if (arm_feature(env, ARM_FEATURE_EL3)) {
1903 set_feature(env, ARM_FEATURE_VBAR);
1906 register_cp_regs_for_features(cpu);
1907 arm_cpu_register_gdb_regs_for_features(cpu);
1909 init_cpreg_list(cpu);
1911 #ifndef CONFIG_USER_ONLY
1912 MachineState *ms = MACHINE(qdev_get_machine());
1913 unsigned int smp_cpus = ms->smp.cpus;
1914 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1917 * We must set cs->num_ases to the final value before
1918 * the first call to cpu_address_space_init.
1920 if (cpu->tag_memory != NULL) {
1921 cs->num_ases = 3 + has_secure;
1922 } else {
1923 cs->num_ases = 1 + has_secure;
1926 if (has_secure) {
1927 if (!cpu->secure_memory) {
1928 cpu->secure_memory = cs->memory;
1930 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1931 cpu->secure_memory);
1934 if (cpu->tag_memory != NULL) {
1935 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1936 cpu->tag_memory);
1937 if (has_secure) {
1938 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1939 cpu->secure_tag_memory);
1943 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1945 /* No core_count specified, default to smp_cpus. */
1946 if (cpu->core_count == -1) {
1947 cpu->core_count = smp_cpus;
1949 #endif
1951 if (tcg_enabled()) {
1952 int dcz_blocklen = 4 << cpu->dcz_blocksize;
1955 * We only support DCZ blocklen that fits on one page.
1957 * Architectually this is always true. However TARGET_PAGE_SIZE
1958 * is variable and, for compatibility with -machine virt-2.7,
1959 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1960 * But even then, while the largest architectural DCZ blocklen
1961 * is 2KiB, no cpu actually uses such a large blocklen.
1963 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1966 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1967 * both nibbles of each byte storing tag data may be written at once.
1968 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1970 if (cpu_isar_feature(aa64_mte, cpu)) {
1971 assert(dcz_blocklen >= 2 * TAG_GRANULE);
1975 qemu_init_vcpu(cs);
1976 cpu_reset(cs);
1978 acc->parent_realize(dev, errp);
1981 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1983 ObjectClass *oc;
1984 char *typename;
1985 char **cpuname;
1986 const char *cpunamestr;
1988 cpuname = g_strsplit(cpu_model, ",", 1);
1989 cpunamestr = cpuname[0];
1990 #ifdef CONFIG_USER_ONLY
1991 /* For backwards compatibility usermode emulation allows "-cpu any",
1992 * which has the same semantics as "-cpu max".
1994 if (!strcmp(cpunamestr, "any")) {
1995 cpunamestr = "max";
1997 #endif
1998 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1999 oc = object_class_by_name(typename);
2000 g_strfreev(cpuname);
2001 g_free(typename);
2002 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2003 object_class_is_abstract(oc)) {
2004 return NULL;
2006 return oc;
2009 static Property arm_cpu_properties[] = {
2010 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2011 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2012 mp_affinity, ARM64_AFFINITY_INVALID),
2013 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2014 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2015 DEFINE_PROP_END_OF_LIST()
2018 static gchar *arm_gdb_arch_name(CPUState *cs)
2020 ARMCPU *cpu = ARM_CPU(cs);
2021 CPUARMState *env = &cpu->env;
2023 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2024 return g_strdup("iwmmxt");
2026 return g_strdup("arm");
2029 #ifndef CONFIG_USER_ONLY
2030 #include "hw/core/sysemu-cpu-ops.h"
2032 static const struct SysemuCPUOps arm_sysemu_ops = {
2033 .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2034 .asidx_from_attrs = arm_asidx_from_attrs,
2035 .write_elf32_note = arm_cpu_write_elf32_note,
2036 .write_elf64_note = arm_cpu_write_elf64_note,
2037 .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2038 .legacy_vmsd = &vmstate_arm_cpu,
2040 #endif
2042 #ifdef CONFIG_TCG
2043 static const struct TCGCPUOps arm_tcg_ops = {
2044 .initialize = arm_translate_init,
2045 .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2046 .debug_excp_handler = arm_debug_excp_handler,
2048 #ifdef CONFIG_USER_ONLY
2049 .record_sigsegv = arm_cpu_record_sigsegv,
2050 .record_sigbus = arm_cpu_record_sigbus,
2051 #else
2052 .tlb_fill = arm_cpu_tlb_fill,
2053 .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2054 .do_interrupt = arm_cpu_do_interrupt,
2055 .do_transaction_failed = arm_cpu_do_transaction_failed,
2056 .do_unaligned_access = arm_cpu_do_unaligned_access,
2057 .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2058 .debug_check_watchpoint = arm_debug_check_watchpoint,
2059 .debug_check_breakpoint = arm_debug_check_breakpoint,
2060 #endif /* !CONFIG_USER_ONLY */
2062 #endif /* CONFIG_TCG */
2064 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2066 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2067 CPUClass *cc = CPU_CLASS(acc);
2068 DeviceClass *dc = DEVICE_CLASS(oc);
2070 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2071 &acc->parent_realize);
2073 device_class_set_props(dc, arm_cpu_properties);
2074 device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2076 cc->class_by_name = arm_cpu_class_by_name;
2077 cc->has_work = arm_cpu_has_work;
2078 cc->dump_state = arm_cpu_dump_state;
2079 cc->set_pc = arm_cpu_set_pc;
2080 cc->gdb_read_register = arm_cpu_gdb_read_register;
2081 cc->gdb_write_register = arm_cpu_gdb_write_register;
2082 #ifndef CONFIG_USER_ONLY
2083 cc->sysemu_ops = &arm_sysemu_ops;
2084 #endif
2085 cc->gdb_num_core_regs = 26;
2086 cc->gdb_core_xml_file = "arm-core.xml";
2087 cc->gdb_arch_name = arm_gdb_arch_name;
2088 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2089 cc->gdb_stop_before_watchpoint = true;
2090 cc->disas_set_info = arm_disas_set_info;
2092 #ifdef CONFIG_TCG
2093 cc->tcg_ops = &arm_tcg_ops;
2094 #endif /* CONFIG_TCG */
2097 static void arm_cpu_instance_init(Object *obj)
2099 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2101 acc->info->initfn(obj);
2102 arm_cpu_post_init(obj);
2105 static void cpu_register_class_init(ObjectClass *oc, void *data)
2107 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2109 acc->info = data;
2112 void arm_cpu_register(const ARMCPUInfo *info)
2114 TypeInfo type_info = {
2115 .parent = TYPE_ARM_CPU,
2116 .instance_size = sizeof(ARMCPU),
2117 .instance_align = __alignof__(ARMCPU),
2118 .instance_init = arm_cpu_instance_init,
2119 .class_size = sizeof(ARMCPUClass),
2120 .class_init = info->class_init ?: cpu_register_class_init,
2121 .class_data = (void *)info,
2124 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2125 type_register(&type_info);
2126 g_free((void *)type_info.name);
2129 static const TypeInfo arm_cpu_type_info = {
2130 .name = TYPE_ARM_CPU,
2131 .parent = TYPE_CPU,
2132 .instance_size = sizeof(ARMCPU),
2133 .instance_align = __alignof__(ARMCPU),
2134 .instance_init = arm_cpu_initfn,
2135 .instance_finalize = arm_cpu_finalizefn,
2136 .abstract = true,
2137 .class_size = sizeof(ARMCPUClass),
2138 .class_init = arm_cpu_class_init,
2141 static void arm_cpu_register_types(void)
2143 type_register_static(&arm_cpu_type_info);
2146 type_init(arm_cpu_register_types)