kvm: use qemu_free consistently
[qemu.git] / hw / ppc.c
blob18733289db96eb9db7dd4f637fcb4d3e0c5fcbaa
1 /*
2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "ppc.h"
26 #include "qemu-timer.h"
27 #include "sysemu.h"
28 #include "nvram.h"
29 #include "qemu-log.h"
30 #include "loader.h"
31 #include "kvm.h"
32 #include "kvm_ppc.h"
34 //#define PPC_DEBUG_IRQ
35 //#define PPC_DEBUG_TB
37 #ifdef PPC_DEBUG_IRQ
38 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
39 #else
40 # define LOG_IRQ(...) do { } while (0)
41 #endif
44 #ifdef PPC_DEBUG_TB
45 # define LOG_TB(...) qemu_log(__VA_ARGS__)
46 #else
47 # define LOG_TB(...) do { } while (0)
48 #endif
50 static void cpu_ppc_tb_stop (CPUState *env);
51 static void cpu_ppc_tb_start (CPUState *env);
53 static void ppc_set_irq (CPUState *env, int n_IRQ, int level)
55 unsigned int old_pending = env->pending_interrupts;
57 if (level) {
58 env->pending_interrupts |= 1 << n_IRQ;
59 cpu_interrupt(env, CPU_INTERRUPT_HARD);
60 } else {
61 env->pending_interrupts &= ~(1 << n_IRQ);
62 if (env->pending_interrupts == 0)
63 cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
66 if (old_pending != env->pending_interrupts) {
67 #ifdef CONFIG_KVM
68 kvmppc_set_interrupt(env, n_IRQ, level);
69 #endif
72 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
73 "req %08x\n", __func__, env, n_IRQ, level,
74 env->pending_interrupts, env->interrupt_request);
77 /* PowerPC 6xx / 7xx internal IRQ controller */
78 static void ppc6xx_set_irq (void *opaque, int pin, int level)
80 CPUState *env = opaque;
81 int cur_level;
83 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
84 env, pin, level);
85 cur_level = (env->irq_input_state >> pin) & 1;
86 /* Don't generate spurious events */
87 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
88 switch (pin) {
89 case PPC6xx_INPUT_TBEN:
90 /* Level sensitive - active high */
91 LOG_IRQ("%s: %s the time base\n",
92 __func__, level ? "start" : "stop");
93 if (level) {
94 cpu_ppc_tb_start(env);
95 } else {
96 cpu_ppc_tb_stop(env);
98 case PPC6xx_INPUT_INT:
99 /* Level sensitive - active high */
100 LOG_IRQ("%s: set the external IRQ state to %d\n",
101 __func__, level);
102 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
103 break;
104 case PPC6xx_INPUT_SMI:
105 /* Level sensitive - active high */
106 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
107 __func__, level);
108 ppc_set_irq(env, PPC_INTERRUPT_SMI, level);
109 break;
110 case PPC6xx_INPUT_MCP:
111 /* Negative edge sensitive */
112 /* XXX: TODO: actual reaction may depends on HID0 status
113 * 603/604/740/750: check HID0[EMCP]
115 if (cur_level == 1 && level == 0) {
116 LOG_IRQ("%s: raise machine check state\n",
117 __func__);
118 ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
120 break;
121 case PPC6xx_INPUT_CKSTP_IN:
122 /* Level sensitive - active low */
123 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
124 /* XXX: Note that the only way to restart the CPU is to reset it */
125 if (level) {
126 LOG_IRQ("%s: stop the CPU\n", __func__);
127 env->halted = 1;
129 break;
130 case PPC6xx_INPUT_HRESET:
131 /* Level sensitive - active low */
132 if (level) {
133 LOG_IRQ("%s: reset the CPU\n", __func__);
134 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
135 /* XXX: TOFIX */
136 #if 0
137 cpu_reset(env);
138 #else
139 qemu_system_reset_request();
140 #endif
142 break;
143 case PPC6xx_INPUT_SRESET:
144 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
145 __func__, level);
146 ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
147 break;
148 default:
149 /* Unknown pin - do nothing */
150 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
151 return;
153 if (level)
154 env->irq_input_state |= 1 << pin;
155 else
156 env->irq_input_state &= ~(1 << pin);
160 void ppc6xx_irq_init (CPUState *env)
162 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, env,
163 PPC6xx_INPUT_NB);
166 #if defined(TARGET_PPC64)
167 /* PowerPC 970 internal IRQ controller */
168 static void ppc970_set_irq (void *opaque, int pin, int level)
170 CPUState *env = opaque;
171 int cur_level;
173 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
174 env, pin, level);
175 cur_level = (env->irq_input_state >> pin) & 1;
176 /* Don't generate spurious events */
177 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
178 switch (pin) {
179 case PPC970_INPUT_INT:
180 /* Level sensitive - active high */
181 LOG_IRQ("%s: set the external IRQ state to %d\n",
182 __func__, level);
183 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
184 break;
185 case PPC970_INPUT_THINT:
186 /* Level sensitive - active high */
187 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
188 level);
189 ppc_set_irq(env, PPC_INTERRUPT_THERM, level);
190 break;
191 case PPC970_INPUT_MCP:
192 /* Negative edge sensitive */
193 /* XXX: TODO: actual reaction may depends on HID0 status
194 * 603/604/740/750: check HID0[EMCP]
196 if (cur_level == 1 && level == 0) {
197 LOG_IRQ("%s: raise machine check state\n",
198 __func__);
199 ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
201 break;
202 case PPC970_INPUT_CKSTP:
203 /* Level sensitive - active low */
204 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
205 if (level) {
206 LOG_IRQ("%s: stop the CPU\n", __func__);
207 env->halted = 1;
208 } else {
209 LOG_IRQ("%s: restart the CPU\n", __func__);
210 env->halted = 0;
211 qemu_cpu_kick(env);
213 break;
214 case PPC970_INPUT_HRESET:
215 /* Level sensitive - active low */
216 if (level) {
217 #if 0 // XXX: TOFIX
218 LOG_IRQ("%s: reset the CPU\n", __func__);
219 cpu_reset(env);
220 #endif
222 break;
223 case PPC970_INPUT_SRESET:
224 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
225 __func__, level);
226 ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
227 break;
228 case PPC970_INPUT_TBEN:
229 LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
230 level);
231 /* XXX: TODO */
232 break;
233 default:
234 /* Unknown pin - do nothing */
235 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
236 return;
238 if (level)
239 env->irq_input_state |= 1 << pin;
240 else
241 env->irq_input_state &= ~(1 << pin);
245 void ppc970_irq_init (CPUState *env)
247 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, env,
248 PPC970_INPUT_NB);
251 /* POWER7 internal IRQ controller */
252 static void power7_set_irq (void *opaque, int pin, int level)
254 CPUState *env = opaque;
256 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
257 env, pin, level);
259 switch (pin) {
260 case POWER7_INPUT_INT:
261 /* Level sensitive - active high */
262 LOG_IRQ("%s: set the external IRQ state to %d\n",
263 __func__, level);
264 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
265 break;
266 default:
267 /* Unknown pin - do nothing */
268 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
269 return;
271 if (level) {
272 env->irq_input_state |= 1 << pin;
273 } else {
274 env->irq_input_state &= ~(1 << pin);
278 void ppcPOWER7_irq_init (CPUState *env)
280 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, env,
281 POWER7_INPUT_NB);
283 #endif /* defined(TARGET_PPC64) */
285 /* PowerPC 40x internal IRQ controller */
286 static void ppc40x_set_irq (void *opaque, int pin, int level)
288 CPUState *env = opaque;
289 int cur_level;
291 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
292 env, pin, level);
293 cur_level = (env->irq_input_state >> pin) & 1;
294 /* Don't generate spurious events */
295 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
296 switch (pin) {
297 case PPC40x_INPUT_RESET_SYS:
298 if (level) {
299 LOG_IRQ("%s: reset the PowerPC system\n",
300 __func__);
301 ppc40x_system_reset(env);
303 break;
304 case PPC40x_INPUT_RESET_CHIP:
305 if (level) {
306 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
307 ppc40x_chip_reset(env);
309 break;
310 case PPC40x_INPUT_RESET_CORE:
311 /* XXX: TODO: update DBSR[MRR] */
312 if (level) {
313 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
314 ppc40x_core_reset(env);
316 break;
317 case PPC40x_INPUT_CINT:
318 /* Level sensitive - active high */
319 LOG_IRQ("%s: set the critical IRQ state to %d\n",
320 __func__, level);
321 ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
322 break;
323 case PPC40x_INPUT_INT:
324 /* Level sensitive - active high */
325 LOG_IRQ("%s: set the external IRQ state to %d\n",
326 __func__, level);
327 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
328 break;
329 case PPC40x_INPUT_HALT:
330 /* Level sensitive - active low */
331 if (level) {
332 LOG_IRQ("%s: stop the CPU\n", __func__);
333 env->halted = 1;
334 } else {
335 LOG_IRQ("%s: restart the CPU\n", __func__);
336 env->halted = 0;
337 qemu_cpu_kick(env);
339 break;
340 case PPC40x_INPUT_DEBUG:
341 /* Level sensitive - active high */
342 LOG_IRQ("%s: set the debug pin state to %d\n",
343 __func__, level);
344 ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
345 break;
346 default:
347 /* Unknown pin - do nothing */
348 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
349 return;
351 if (level)
352 env->irq_input_state |= 1 << pin;
353 else
354 env->irq_input_state &= ~(1 << pin);
358 void ppc40x_irq_init (CPUState *env)
360 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
361 env, PPC40x_INPUT_NB);
364 /* PowerPC E500 internal IRQ controller */
365 static void ppce500_set_irq (void *opaque, int pin, int level)
367 CPUState *env = opaque;
368 int cur_level;
370 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
371 env, pin, level);
372 cur_level = (env->irq_input_state >> pin) & 1;
373 /* Don't generate spurious events */
374 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
375 switch (pin) {
376 case PPCE500_INPUT_MCK:
377 if (level) {
378 LOG_IRQ("%s: reset the PowerPC system\n",
379 __func__);
380 qemu_system_reset_request();
382 break;
383 case PPCE500_INPUT_RESET_CORE:
384 if (level) {
385 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
386 ppc_set_irq(env, PPC_INTERRUPT_MCK, level);
388 break;
389 case PPCE500_INPUT_CINT:
390 /* Level sensitive - active high */
391 LOG_IRQ("%s: set the critical IRQ state to %d\n",
392 __func__, level);
393 ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
394 break;
395 case PPCE500_INPUT_INT:
396 /* Level sensitive - active high */
397 LOG_IRQ("%s: set the core IRQ state to %d\n",
398 __func__, level);
399 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
400 break;
401 case PPCE500_INPUT_DEBUG:
402 /* Level sensitive - active high */
403 LOG_IRQ("%s: set the debug pin state to %d\n",
404 __func__, level);
405 ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
406 break;
407 default:
408 /* Unknown pin - do nothing */
409 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
410 return;
412 if (level)
413 env->irq_input_state |= 1 << pin;
414 else
415 env->irq_input_state &= ~(1 << pin);
419 void ppce500_irq_init (CPUState *env)
421 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
422 env, PPCE500_INPUT_NB);
424 /*****************************************************************************/
425 /* PowerPC time base and decrementer emulation */
426 struct ppc_tb_t {
427 /* Time base management */
428 int64_t tb_offset; /* Compensation */
429 int64_t atb_offset; /* Compensation */
430 uint32_t tb_freq; /* TB frequency */
431 /* Decrementer management */
432 uint64_t decr_next; /* Tick for next decr interrupt */
433 uint32_t decr_freq; /* decrementer frequency */
434 struct QEMUTimer *decr_timer;
435 /* Hypervisor decrementer management */
436 uint64_t hdecr_next; /* Tick for next hdecr interrupt */
437 struct QEMUTimer *hdecr_timer;
438 uint64_t purr_load;
439 uint64_t purr_start;
440 void *opaque;
443 static inline uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk,
444 int64_t tb_offset)
446 /* TB time in tb periods */
447 return muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec()) + tb_offset;
450 uint64_t cpu_ppc_load_tbl (CPUState *env)
452 ppc_tb_t *tb_env = env->tb_env;
453 uint64_t tb;
455 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
456 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
458 return tb;
461 static inline uint32_t _cpu_ppc_load_tbu(CPUState *env)
463 ppc_tb_t *tb_env = env->tb_env;
464 uint64_t tb;
466 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
467 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
469 return tb >> 32;
472 uint32_t cpu_ppc_load_tbu (CPUState *env)
474 return _cpu_ppc_load_tbu(env);
477 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
478 int64_t *tb_offsetp, uint64_t value)
480 *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec());
481 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
482 __func__, value, *tb_offsetp);
485 void cpu_ppc_store_tbl (CPUState *env, uint32_t value)
487 ppc_tb_t *tb_env = env->tb_env;
488 uint64_t tb;
490 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
491 tb &= 0xFFFFFFFF00000000ULL;
492 cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
493 &tb_env->tb_offset, tb | (uint64_t)value);
496 static inline void _cpu_ppc_store_tbu(CPUState *env, uint32_t value)
498 ppc_tb_t *tb_env = env->tb_env;
499 uint64_t tb;
501 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
502 tb &= 0x00000000FFFFFFFFULL;
503 cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
504 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
507 void cpu_ppc_store_tbu (CPUState *env, uint32_t value)
509 _cpu_ppc_store_tbu(env, value);
512 uint64_t cpu_ppc_load_atbl (CPUState *env)
514 ppc_tb_t *tb_env = env->tb_env;
515 uint64_t tb;
517 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
518 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
520 return tb;
523 uint32_t cpu_ppc_load_atbu (CPUState *env)
525 ppc_tb_t *tb_env = env->tb_env;
526 uint64_t tb;
528 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
529 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
531 return tb >> 32;
534 void cpu_ppc_store_atbl (CPUState *env, uint32_t value)
536 ppc_tb_t *tb_env = env->tb_env;
537 uint64_t tb;
539 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
540 tb &= 0xFFFFFFFF00000000ULL;
541 cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
542 &tb_env->atb_offset, tb | (uint64_t)value);
545 void cpu_ppc_store_atbu (CPUState *env, uint32_t value)
547 ppc_tb_t *tb_env = env->tb_env;
548 uint64_t tb;
550 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
551 tb &= 0x00000000FFFFFFFFULL;
552 cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
553 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
556 static void cpu_ppc_tb_stop (CPUState *env)
558 ppc_tb_t *tb_env = env->tb_env;
559 uint64_t tb, atb, vmclk;
561 /* If the time base is already frozen, do nothing */
562 if (tb_env->tb_freq != 0) {
563 vmclk = qemu_get_clock_ns(vm_clock);
564 /* Get the time base */
565 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
566 /* Get the alternate time base */
567 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
568 /* Store the time base value (ie compute the current offset) */
569 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
570 /* Store the alternate time base value (compute the current offset) */
571 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
572 /* Set the time base frequency to zero */
573 tb_env->tb_freq = 0;
574 /* Now, the time bases are frozen to tb_offset / atb_offset value */
578 static void cpu_ppc_tb_start (CPUState *env)
580 ppc_tb_t *tb_env = env->tb_env;
581 uint64_t tb, atb, vmclk;
583 /* If the time base is not frozen, do nothing */
584 if (tb_env->tb_freq == 0) {
585 vmclk = qemu_get_clock_ns(vm_clock);
586 /* Get the time base from tb_offset */
587 tb = tb_env->tb_offset;
588 /* Get the alternate time base from atb_offset */
589 atb = tb_env->atb_offset;
590 /* Restore the tb frequency from the decrementer frequency */
591 tb_env->tb_freq = tb_env->decr_freq;
592 /* Store the time base value */
593 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
594 /* Store the alternate time base value */
595 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
599 static inline uint32_t _cpu_ppc_load_decr(CPUState *env, uint64_t next)
601 ppc_tb_t *tb_env = env->tb_env;
602 uint32_t decr;
603 int64_t diff;
605 diff = next - qemu_get_clock_ns(vm_clock);
606 if (diff >= 0)
607 decr = muldiv64(diff, tb_env->decr_freq, get_ticks_per_sec());
608 else
609 decr = -muldiv64(-diff, tb_env->decr_freq, get_ticks_per_sec());
610 LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
612 return decr;
615 uint32_t cpu_ppc_load_decr (CPUState *env)
617 ppc_tb_t *tb_env = env->tb_env;
619 return _cpu_ppc_load_decr(env, tb_env->decr_next);
622 uint32_t cpu_ppc_load_hdecr (CPUState *env)
624 ppc_tb_t *tb_env = env->tb_env;
626 return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
629 uint64_t cpu_ppc_load_purr (CPUState *env)
631 ppc_tb_t *tb_env = env->tb_env;
632 uint64_t diff;
634 diff = qemu_get_clock_ns(vm_clock) - tb_env->purr_start;
636 return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, get_ticks_per_sec());
639 /* When decrementer expires,
640 * all we need to do is generate or queue a CPU exception
642 static inline void cpu_ppc_decr_excp(CPUState *env)
644 /* Raise it */
645 LOG_TB("raise decrementer exception\n");
646 ppc_set_irq(env, PPC_INTERRUPT_DECR, 1);
649 static inline void cpu_ppc_hdecr_excp(CPUState *env)
651 /* Raise it */
652 LOG_TB("raise decrementer exception\n");
653 ppc_set_irq(env, PPC_INTERRUPT_HDECR, 1);
656 static void __cpu_ppc_store_decr (CPUState *env, uint64_t *nextp,
657 struct QEMUTimer *timer,
658 void (*raise_excp)(CPUState *),
659 uint32_t decr, uint32_t value,
660 int is_excp)
662 ppc_tb_t *tb_env = env->tb_env;
663 uint64_t now, next;
665 LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
666 decr, value);
667 now = qemu_get_clock_ns(vm_clock);
668 next = now + muldiv64(value, get_ticks_per_sec(), tb_env->decr_freq);
669 if (is_excp)
670 next += *nextp - now;
671 if (next == now)
672 next++;
673 *nextp = next;
674 /* Adjust timer */
675 qemu_mod_timer(timer, next);
676 /* If we set a negative value and the decrementer was positive,
677 * raise an exception.
679 if ((value & 0x80000000) && !(decr & 0x80000000))
680 (*raise_excp)(env);
683 static inline void _cpu_ppc_store_decr(CPUState *env, uint32_t decr,
684 uint32_t value, int is_excp)
686 ppc_tb_t *tb_env = env->tb_env;
688 __cpu_ppc_store_decr(env, &tb_env->decr_next, tb_env->decr_timer,
689 &cpu_ppc_decr_excp, decr, value, is_excp);
692 void cpu_ppc_store_decr (CPUState *env, uint32_t value)
694 _cpu_ppc_store_decr(env, cpu_ppc_load_decr(env), value, 0);
697 static void cpu_ppc_decr_cb (void *opaque)
699 _cpu_ppc_store_decr(opaque, 0x00000000, 0xFFFFFFFF, 1);
702 static inline void _cpu_ppc_store_hdecr(CPUState *env, uint32_t hdecr,
703 uint32_t value, int is_excp)
705 ppc_tb_t *tb_env = env->tb_env;
707 if (tb_env->hdecr_timer != NULL) {
708 __cpu_ppc_store_decr(env, &tb_env->hdecr_next, tb_env->hdecr_timer,
709 &cpu_ppc_hdecr_excp, hdecr, value, is_excp);
713 void cpu_ppc_store_hdecr (CPUState *env, uint32_t value)
715 _cpu_ppc_store_hdecr(env, cpu_ppc_load_hdecr(env), value, 0);
718 static void cpu_ppc_hdecr_cb (void *opaque)
720 _cpu_ppc_store_hdecr(opaque, 0x00000000, 0xFFFFFFFF, 1);
723 void cpu_ppc_store_purr (CPUState *env, uint64_t value)
725 ppc_tb_t *tb_env = env->tb_env;
727 tb_env->purr_load = value;
728 tb_env->purr_start = qemu_get_clock_ns(vm_clock);
731 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
733 CPUState *env = opaque;
734 ppc_tb_t *tb_env = env->tb_env;
736 tb_env->tb_freq = freq;
737 tb_env->decr_freq = freq;
738 /* There is a bug in Linux 2.4 kernels:
739 * if a decrementer exception is pending when it enables msr_ee at startup,
740 * it's not ready to handle it...
742 _cpu_ppc_store_decr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
743 _cpu_ppc_store_hdecr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
744 cpu_ppc_store_purr(env, 0x0000000000000000ULL);
747 /* Set up (once) timebase frequency (in Hz) */
748 clk_setup_cb cpu_ppc_tb_init (CPUState *env, uint32_t freq)
750 ppc_tb_t *tb_env;
752 tb_env = qemu_mallocz(sizeof(ppc_tb_t));
753 env->tb_env = tb_env;
754 /* Create new timer */
755 tb_env->decr_timer = qemu_new_timer_ns(vm_clock, &cpu_ppc_decr_cb, env);
756 if (0) {
757 /* XXX: find a suitable condition to enable the hypervisor decrementer
759 tb_env->hdecr_timer = qemu_new_timer_ns(vm_clock, &cpu_ppc_hdecr_cb, env);
760 } else {
761 tb_env->hdecr_timer = NULL;
763 cpu_ppc_set_tb_clk(env, freq);
765 return &cpu_ppc_set_tb_clk;
768 /* Specific helpers for POWER & PowerPC 601 RTC */
769 #if 0
770 static clk_setup_cb cpu_ppc601_rtc_init (CPUState *env)
772 return cpu_ppc_tb_init(env, 7812500);
774 #endif
776 void cpu_ppc601_store_rtcu (CPUState *env, uint32_t value)
778 _cpu_ppc_store_tbu(env, value);
781 uint32_t cpu_ppc601_load_rtcu (CPUState *env)
783 return _cpu_ppc_load_tbu(env);
786 void cpu_ppc601_store_rtcl (CPUState *env, uint32_t value)
788 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
791 uint32_t cpu_ppc601_load_rtcl (CPUState *env)
793 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
796 /*****************************************************************************/
797 /* Embedded PowerPC timers */
799 /* PIT, FIT & WDT */
800 typedef struct ppcemb_timer_t ppcemb_timer_t;
801 struct ppcemb_timer_t {
802 uint64_t pit_reload; /* PIT auto-reload value */
803 uint64_t fit_next; /* Tick for next FIT interrupt */
804 struct QEMUTimer *fit_timer;
805 uint64_t wdt_next; /* Tick for next WDT interrupt */
806 struct QEMUTimer *wdt_timer;
808 /* 405 have the PIT, 440 have a DECR. */
809 unsigned int decr_excp;
812 /* Fixed interval timer */
813 static void cpu_4xx_fit_cb (void *opaque)
815 CPUState *env;
816 ppc_tb_t *tb_env;
817 ppcemb_timer_t *ppcemb_timer;
818 uint64_t now, next;
820 env = opaque;
821 tb_env = env->tb_env;
822 ppcemb_timer = tb_env->opaque;
823 now = qemu_get_clock_ns(vm_clock);
824 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
825 case 0:
826 next = 1 << 9;
827 break;
828 case 1:
829 next = 1 << 13;
830 break;
831 case 2:
832 next = 1 << 17;
833 break;
834 case 3:
835 next = 1 << 21;
836 break;
837 default:
838 /* Cannot occur, but makes gcc happy */
839 return;
841 next = now + muldiv64(next, get_ticks_per_sec(), tb_env->tb_freq);
842 if (next == now)
843 next++;
844 qemu_mod_timer(ppcemb_timer->fit_timer, next);
845 env->spr[SPR_40x_TSR] |= 1 << 26;
846 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1)
847 ppc_set_irq(env, PPC_INTERRUPT_FIT, 1);
848 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
849 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
850 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
853 /* Programmable interval timer */
854 static void start_stop_pit (CPUState *env, ppc_tb_t *tb_env, int is_excp)
856 ppcemb_timer_t *ppcemb_timer;
857 uint64_t now, next;
859 ppcemb_timer = tb_env->opaque;
860 if (ppcemb_timer->pit_reload <= 1 ||
861 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
862 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
863 /* Stop PIT */
864 LOG_TB("%s: stop PIT\n", __func__);
865 qemu_del_timer(tb_env->decr_timer);
866 } else {
867 LOG_TB("%s: start PIT %016" PRIx64 "\n",
868 __func__, ppcemb_timer->pit_reload);
869 now = qemu_get_clock_ns(vm_clock);
870 next = now + muldiv64(ppcemb_timer->pit_reload,
871 get_ticks_per_sec(), tb_env->decr_freq);
872 if (is_excp)
873 next += tb_env->decr_next - now;
874 if (next == now)
875 next++;
876 qemu_mod_timer(tb_env->decr_timer, next);
877 tb_env->decr_next = next;
881 static void cpu_4xx_pit_cb (void *opaque)
883 CPUState *env;
884 ppc_tb_t *tb_env;
885 ppcemb_timer_t *ppcemb_timer;
887 env = opaque;
888 tb_env = env->tb_env;
889 ppcemb_timer = tb_env->opaque;
890 env->spr[SPR_40x_TSR] |= 1 << 27;
891 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1)
892 ppc_set_irq(env, ppcemb_timer->decr_excp, 1);
893 start_stop_pit(env, tb_env, 1);
894 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
895 "%016" PRIx64 "\n", __func__,
896 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
897 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
898 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
899 ppcemb_timer->pit_reload);
902 /* Watchdog timer */
903 static void cpu_4xx_wdt_cb (void *opaque)
905 CPUState *env;
906 ppc_tb_t *tb_env;
907 ppcemb_timer_t *ppcemb_timer;
908 uint64_t now, next;
910 env = opaque;
911 tb_env = env->tb_env;
912 ppcemb_timer = tb_env->opaque;
913 now = qemu_get_clock_ns(vm_clock);
914 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
915 case 0:
916 next = 1 << 17;
917 break;
918 case 1:
919 next = 1 << 21;
920 break;
921 case 2:
922 next = 1 << 25;
923 break;
924 case 3:
925 next = 1 << 29;
926 break;
927 default:
928 /* Cannot occur, but makes gcc happy */
929 return;
931 next = now + muldiv64(next, get_ticks_per_sec(), tb_env->decr_freq);
932 if (next == now)
933 next++;
934 LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
935 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
936 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
937 case 0x0:
938 case 0x1:
939 qemu_mod_timer(ppcemb_timer->wdt_timer, next);
940 ppcemb_timer->wdt_next = next;
941 env->spr[SPR_40x_TSR] |= 1 << 31;
942 break;
943 case 0x2:
944 qemu_mod_timer(ppcemb_timer->wdt_timer, next);
945 ppcemb_timer->wdt_next = next;
946 env->spr[SPR_40x_TSR] |= 1 << 30;
947 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1)
948 ppc_set_irq(env, PPC_INTERRUPT_WDT, 1);
949 break;
950 case 0x3:
951 env->spr[SPR_40x_TSR] &= ~0x30000000;
952 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
953 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
954 case 0x0:
955 /* No reset */
956 break;
957 case 0x1: /* Core reset */
958 ppc40x_core_reset(env);
959 break;
960 case 0x2: /* Chip reset */
961 ppc40x_chip_reset(env);
962 break;
963 case 0x3: /* System reset */
964 ppc40x_system_reset(env);
965 break;
970 void store_40x_pit (CPUState *env, target_ulong val)
972 ppc_tb_t *tb_env;
973 ppcemb_timer_t *ppcemb_timer;
975 tb_env = env->tb_env;
976 ppcemb_timer = tb_env->opaque;
977 LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
978 ppcemb_timer->pit_reload = val;
979 start_stop_pit(env, tb_env, 0);
982 target_ulong load_40x_pit (CPUState *env)
984 return cpu_ppc_load_decr(env);
987 void store_booke_tsr (CPUState *env, target_ulong val)
989 ppc_tb_t *tb_env = env->tb_env;
990 ppcemb_timer_t *ppcemb_timer;
992 ppcemb_timer = tb_env->opaque;
994 LOG_TB("%s: val " TARGET_FMT_lx "\n", __func__, val);
995 env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000);
996 if (val & 0x80000000)
997 ppc_set_irq(env, ppcemb_timer->decr_excp, 0);
1000 void store_booke_tcr (CPUState *env, target_ulong val)
1002 ppc_tb_t *tb_env;
1004 tb_env = env->tb_env;
1005 LOG_TB("%s: val " TARGET_FMT_lx "\n", __func__, val);
1006 env->spr[SPR_40x_TCR] = val & 0xFFC00000;
1007 start_stop_pit(env, tb_env, 1);
1008 cpu_4xx_wdt_cb(env);
1011 static void ppc_emb_set_tb_clk (void *opaque, uint32_t freq)
1013 CPUState *env = opaque;
1014 ppc_tb_t *tb_env = env->tb_env;
1016 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1017 freq);
1018 tb_env->tb_freq = freq;
1019 tb_env->decr_freq = freq;
1020 /* XXX: we should also update all timers */
1023 clk_setup_cb ppc_emb_timers_init (CPUState *env, uint32_t freq,
1024 unsigned int decr_excp)
1026 ppc_tb_t *tb_env;
1027 ppcemb_timer_t *ppcemb_timer;
1029 tb_env = qemu_mallocz(sizeof(ppc_tb_t));
1030 env->tb_env = tb_env;
1031 ppcemb_timer = qemu_mallocz(sizeof(ppcemb_timer_t));
1032 tb_env->tb_freq = freq;
1033 tb_env->decr_freq = freq;
1034 tb_env->opaque = ppcemb_timer;
1035 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1036 if (ppcemb_timer != NULL) {
1037 /* We use decr timer for PIT */
1038 tb_env->decr_timer = qemu_new_timer_ns(vm_clock, &cpu_4xx_pit_cb, env);
1039 ppcemb_timer->fit_timer =
1040 qemu_new_timer_ns(vm_clock, &cpu_4xx_fit_cb, env);
1041 ppcemb_timer->wdt_timer =
1042 qemu_new_timer_ns(vm_clock, &cpu_4xx_wdt_cb, env);
1043 ppcemb_timer->decr_excp = decr_excp;
1046 return &ppc_emb_set_tb_clk;
1049 /*****************************************************************************/
1050 /* Embedded PowerPC Device Control Registers */
1051 typedef struct ppc_dcrn_t ppc_dcrn_t;
1052 struct ppc_dcrn_t {
1053 dcr_read_cb dcr_read;
1054 dcr_write_cb dcr_write;
1055 void *opaque;
1058 /* XXX: on 460, DCR addresses are 32 bits wide,
1059 * using DCRIPR to get the 22 upper bits of the DCR address
1061 #define DCRN_NB 1024
1062 struct ppc_dcr_t {
1063 ppc_dcrn_t dcrn[DCRN_NB];
1064 int (*read_error)(int dcrn);
1065 int (*write_error)(int dcrn);
1068 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1070 ppc_dcrn_t *dcr;
1072 if (dcrn < 0 || dcrn >= DCRN_NB)
1073 goto error;
1074 dcr = &dcr_env->dcrn[dcrn];
1075 if (dcr->dcr_read == NULL)
1076 goto error;
1077 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1079 return 0;
1081 error:
1082 if (dcr_env->read_error != NULL)
1083 return (*dcr_env->read_error)(dcrn);
1085 return -1;
1088 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1090 ppc_dcrn_t *dcr;
1092 if (dcrn < 0 || dcrn >= DCRN_NB)
1093 goto error;
1094 dcr = &dcr_env->dcrn[dcrn];
1095 if (dcr->dcr_write == NULL)
1096 goto error;
1097 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1099 return 0;
1101 error:
1102 if (dcr_env->write_error != NULL)
1103 return (*dcr_env->write_error)(dcrn);
1105 return -1;
1108 int ppc_dcr_register (CPUState *env, int dcrn, void *opaque,
1109 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1111 ppc_dcr_t *dcr_env;
1112 ppc_dcrn_t *dcr;
1114 dcr_env = env->dcr_env;
1115 if (dcr_env == NULL)
1116 return -1;
1117 if (dcrn < 0 || dcrn >= DCRN_NB)
1118 return -1;
1119 dcr = &dcr_env->dcrn[dcrn];
1120 if (dcr->opaque != NULL ||
1121 dcr->dcr_read != NULL ||
1122 dcr->dcr_write != NULL)
1123 return -1;
1124 dcr->opaque = opaque;
1125 dcr->dcr_read = dcr_read;
1126 dcr->dcr_write = dcr_write;
1128 return 0;
1131 int ppc_dcr_init (CPUState *env, int (*read_error)(int dcrn),
1132 int (*write_error)(int dcrn))
1134 ppc_dcr_t *dcr_env;
1136 dcr_env = qemu_mallocz(sizeof(ppc_dcr_t));
1137 dcr_env->read_error = read_error;
1138 dcr_env->write_error = write_error;
1139 env->dcr_env = dcr_env;
1141 return 0;
1144 /*****************************************************************************/
1145 /* Debug port */
1146 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1148 addr &= 0xF;
1149 switch (addr) {
1150 case 0:
1151 printf("%c", val);
1152 break;
1153 case 1:
1154 printf("\n");
1155 fflush(stdout);
1156 break;
1157 case 2:
1158 printf("Set loglevel to %04" PRIx32 "\n", val);
1159 cpu_set_log(val | 0x100);
1160 break;
1164 /*****************************************************************************/
1165 /* NVRAM helpers */
1166 static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr)
1168 return (*nvram->read_fn)(nvram->opaque, addr);;
1171 static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val)
1173 (*nvram->write_fn)(nvram->opaque, addr, val);
1176 void NVRAM_set_byte (nvram_t *nvram, uint32_t addr, uint8_t value)
1178 nvram_write(nvram, addr, value);
1181 uint8_t NVRAM_get_byte (nvram_t *nvram, uint32_t addr)
1183 return nvram_read(nvram, addr);
1186 void NVRAM_set_word (nvram_t *nvram, uint32_t addr, uint16_t value)
1188 nvram_write(nvram, addr, value >> 8);
1189 nvram_write(nvram, addr + 1, value & 0xFF);
1192 uint16_t NVRAM_get_word (nvram_t *nvram, uint32_t addr)
1194 uint16_t tmp;
1196 tmp = nvram_read(nvram, addr) << 8;
1197 tmp |= nvram_read(nvram, addr + 1);
1199 return tmp;
1202 void NVRAM_set_lword (nvram_t *nvram, uint32_t addr, uint32_t value)
1204 nvram_write(nvram, addr, value >> 24);
1205 nvram_write(nvram, addr + 1, (value >> 16) & 0xFF);
1206 nvram_write(nvram, addr + 2, (value >> 8) & 0xFF);
1207 nvram_write(nvram, addr + 3, value & 0xFF);
1210 uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr)
1212 uint32_t tmp;
1214 tmp = nvram_read(nvram, addr) << 24;
1215 tmp |= nvram_read(nvram, addr + 1) << 16;
1216 tmp |= nvram_read(nvram, addr + 2) << 8;
1217 tmp |= nvram_read(nvram, addr + 3);
1219 return tmp;
1222 void NVRAM_set_string (nvram_t *nvram, uint32_t addr,
1223 const char *str, uint32_t max)
1225 int i;
1227 for (i = 0; i < max && str[i] != '\0'; i++) {
1228 nvram_write(nvram, addr + i, str[i]);
1230 nvram_write(nvram, addr + i, str[i]);
1231 nvram_write(nvram, addr + max - 1, '\0');
1234 int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max)
1236 int i;
1238 memset(dst, 0, max);
1239 for (i = 0; i < max; i++) {
1240 dst[i] = NVRAM_get_byte(nvram, addr + i);
1241 if (dst[i] == '\0')
1242 break;
1245 return i;
1248 static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
1250 uint16_t tmp;
1251 uint16_t pd, pd1, pd2;
1253 tmp = prev >> 8;
1254 pd = prev ^ value;
1255 pd1 = pd & 0x000F;
1256 pd2 = ((pd >> 4) & 0x000F) ^ pd1;
1257 tmp ^= (pd1 << 3) | (pd1 << 8);
1258 tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
1260 return tmp;
1263 static uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count)
1265 uint32_t i;
1266 uint16_t crc = 0xFFFF;
1267 int odd;
1269 odd = count & 1;
1270 count &= ~1;
1271 for (i = 0; i != count; i++) {
1272 crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
1274 if (odd) {
1275 crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
1278 return crc;
1281 #define CMDLINE_ADDR 0x017ff000
1283 int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size,
1284 const char *arch,
1285 uint32_t RAM_size, int boot_device,
1286 uint32_t kernel_image, uint32_t kernel_size,
1287 const char *cmdline,
1288 uint32_t initrd_image, uint32_t initrd_size,
1289 uint32_t NVRAM_image,
1290 int width, int height, int depth)
1292 uint16_t crc;
1294 /* Set parameters for Open Hack'Ware BIOS */
1295 NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
1296 NVRAM_set_lword(nvram, 0x10, 0x00000002); /* structure v2 */
1297 NVRAM_set_word(nvram, 0x14, NVRAM_size);
1298 NVRAM_set_string(nvram, 0x20, arch, 16);
1299 NVRAM_set_lword(nvram, 0x30, RAM_size);
1300 NVRAM_set_byte(nvram, 0x34, boot_device);
1301 NVRAM_set_lword(nvram, 0x38, kernel_image);
1302 NVRAM_set_lword(nvram, 0x3C, kernel_size);
1303 if (cmdline) {
1304 /* XXX: put the cmdline in NVRAM too ? */
1305 pstrcpy_targphys("cmdline", CMDLINE_ADDR, RAM_size - CMDLINE_ADDR, cmdline);
1306 NVRAM_set_lword(nvram, 0x40, CMDLINE_ADDR);
1307 NVRAM_set_lword(nvram, 0x44, strlen(cmdline));
1308 } else {
1309 NVRAM_set_lword(nvram, 0x40, 0);
1310 NVRAM_set_lword(nvram, 0x44, 0);
1312 NVRAM_set_lword(nvram, 0x48, initrd_image);
1313 NVRAM_set_lword(nvram, 0x4C, initrd_size);
1314 NVRAM_set_lword(nvram, 0x50, NVRAM_image);
1316 NVRAM_set_word(nvram, 0x54, width);
1317 NVRAM_set_word(nvram, 0x56, height);
1318 NVRAM_set_word(nvram, 0x58, depth);
1319 crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
1320 NVRAM_set_word(nvram, 0xFC, crc);
1322 return 0;