target/arm: Implement SVE Floating Point Arithmetic - Unpredicated Group
[qemu.git] / target / arm / vec_helper.c
blobf504dd53c8fedd2592531acc5e7f92d2c3ee3a2b
1 /*
2 * ARM AdvSIMD / SVE Vector Operations
4 * Copyright (c) 2018 Linaro
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "tcg/tcg-gvec-desc.h"
24 #include "fpu/softfloat.h"
27 /* Note that vector data is stored in host-endian 64-bit chunks,
28 so addressing units smaller than that needs a host-endian fixup. */
29 #ifdef HOST_WORDS_BIGENDIAN
30 #define H1(x) ((x) ^ 7)
31 #define H2(x) ((x) ^ 3)
32 #define H4(x) ((x) ^ 1)
33 #else
34 #define H1(x) (x)
35 #define H2(x) (x)
36 #define H4(x) (x)
37 #endif
39 #define SET_QC() env->vfp.xregs[ARM_VFP_FPSCR] |= CPSR_Q
41 static void clear_tail(void *vd, uintptr_t opr_sz, uintptr_t max_sz)
43 uint64_t *d = vd + opr_sz;
44 uintptr_t i;
46 for (i = opr_sz; i < max_sz; i += 8) {
47 *d++ = 0;
51 /* Signed saturating rounding doubling multiply-accumulate high half, 16-bit */
52 static uint16_t inl_qrdmlah_s16(CPUARMState *env, int16_t src1,
53 int16_t src2, int16_t src3)
55 /* Simplify:
56 * = ((a3 << 16) + ((e1 * e2) << 1) + (1 << 15)) >> 16
57 * = ((a3 << 15) + (e1 * e2) + (1 << 14)) >> 15
59 int32_t ret = (int32_t)src1 * src2;
60 ret = ((int32_t)src3 << 15) + ret + (1 << 14);
61 ret >>= 15;
62 if (ret != (int16_t)ret) {
63 SET_QC();
64 ret = (ret < 0 ? -0x8000 : 0x7fff);
66 return ret;
69 uint32_t HELPER(neon_qrdmlah_s16)(CPUARMState *env, uint32_t src1,
70 uint32_t src2, uint32_t src3)
72 uint16_t e1 = inl_qrdmlah_s16(env, src1, src2, src3);
73 uint16_t e2 = inl_qrdmlah_s16(env, src1 >> 16, src2 >> 16, src3 >> 16);
74 return deposit32(e1, 16, 16, e2);
77 void HELPER(gvec_qrdmlah_s16)(void *vd, void *vn, void *vm,
78 void *ve, uint32_t desc)
80 uintptr_t opr_sz = simd_oprsz(desc);
81 int16_t *d = vd;
82 int16_t *n = vn;
83 int16_t *m = vm;
84 CPUARMState *env = ve;
85 uintptr_t i;
87 for (i = 0; i < opr_sz / 2; ++i) {
88 d[i] = inl_qrdmlah_s16(env, n[i], m[i], d[i]);
90 clear_tail(d, opr_sz, simd_maxsz(desc));
93 /* Signed saturating rounding doubling multiply-subtract high half, 16-bit */
94 static uint16_t inl_qrdmlsh_s16(CPUARMState *env, int16_t src1,
95 int16_t src2, int16_t src3)
97 /* Similarly, using subtraction:
98 * = ((a3 << 16) - ((e1 * e2) << 1) + (1 << 15)) >> 16
99 * = ((a3 << 15) - (e1 * e2) + (1 << 14)) >> 15
101 int32_t ret = (int32_t)src1 * src2;
102 ret = ((int32_t)src3 << 15) - ret + (1 << 14);
103 ret >>= 15;
104 if (ret != (int16_t)ret) {
105 SET_QC();
106 ret = (ret < 0 ? -0x8000 : 0x7fff);
108 return ret;
111 uint32_t HELPER(neon_qrdmlsh_s16)(CPUARMState *env, uint32_t src1,
112 uint32_t src2, uint32_t src3)
114 uint16_t e1 = inl_qrdmlsh_s16(env, src1, src2, src3);
115 uint16_t e2 = inl_qrdmlsh_s16(env, src1 >> 16, src2 >> 16, src3 >> 16);
116 return deposit32(e1, 16, 16, e2);
119 void HELPER(gvec_qrdmlsh_s16)(void *vd, void *vn, void *vm,
120 void *ve, uint32_t desc)
122 uintptr_t opr_sz = simd_oprsz(desc);
123 int16_t *d = vd;
124 int16_t *n = vn;
125 int16_t *m = vm;
126 CPUARMState *env = ve;
127 uintptr_t i;
129 for (i = 0; i < opr_sz / 2; ++i) {
130 d[i] = inl_qrdmlsh_s16(env, n[i], m[i], d[i]);
132 clear_tail(d, opr_sz, simd_maxsz(desc));
135 /* Signed saturating rounding doubling multiply-accumulate high half, 32-bit */
136 uint32_t HELPER(neon_qrdmlah_s32)(CPUARMState *env, int32_t src1,
137 int32_t src2, int32_t src3)
139 /* Simplify similarly to int_qrdmlah_s16 above. */
140 int64_t ret = (int64_t)src1 * src2;
141 ret = ((int64_t)src3 << 31) + ret + (1 << 30);
142 ret >>= 31;
143 if (ret != (int32_t)ret) {
144 SET_QC();
145 ret = (ret < 0 ? INT32_MIN : INT32_MAX);
147 return ret;
150 void HELPER(gvec_qrdmlah_s32)(void *vd, void *vn, void *vm,
151 void *ve, uint32_t desc)
153 uintptr_t opr_sz = simd_oprsz(desc);
154 int32_t *d = vd;
155 int32_t *n = vn;
156 int32_t *m = vm;
157 CPUARMState *env = ve;
158 uintptr_t i;
160 for (i = 0; i < opr_sz / 4; ++i) {
161 d[i] = helper_neon_qrdmlah_s32(env, n[i], m[i], d[i]);
163 clear_tail(d, opr_sz, simd_maxsz(desc));
166 /* Signed saturating rounding doubling multiply-subtract high half, 32-bit */
167 uint32_t HELPER(neon_qrdmlsh_s32)(CPUARMState *env, int32_t src1,
168 int32_t src2, int32_t src3)
170 /* Simplify similarly to int_qrdmlsh_s16 above. */
171 int64_t ret = (int64_t)src1 * src2;
172 ret = ((int64_t)src3 << 31) - ret + (1 << 30);
173 ret >>= 31;
174 if (ret != (int32_t)ret) {
175 SET_QC();
176 ret = (ret < 0 ? INT32_MIN : INT32_MAX);
178 return ret;
181 void HELPER(gvec_qrdmlsh_s32)(void *vd, void *vn, void *vm,
182 void *ve, uint32_t desc)
184 uintptr_t opr_sz = simd_oprsz(desc);
185 int32_t *d = vd;
186 int32_t *n = vn;
187 int32_t *m = vm;
188 CPUARMState *env = ve;
189 uintptr_t i;
191 for (i = 0; i < opr_sz / 4; ++i) {
192 d[i] = helper_neon_qrdmlsh_s32(env, n[i], m[i], d[i]);
194 clear_tail(d, opr_sz, simd_maxsz(desc));
197 void HELPER(gvec_fcaddh)(void *vd, void *vn, void *vm,
198 void *vfpst, uint32_t desc)
200 uintptr_t opr_sz = simd_oprsz(desc);
201 float16 *d = vd;
202 float16 *n = vn;
203 float16 *m = vm;
204 float_status *fpst = vfpst;
205 uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
206 uint32_t neg_imag = neg_real ^ 1;
207 uintptr_t i;
209 /* Shift boolean to the sign bit so we can xor to negate. */
210 neg_real <<= 15;
211 neg_imag <<= 15;
213 for (i = 0; i < opr_sz / 2; i += 2) {
214 float16 e0 = n[H2(i)];
215 float16 e1 = m[H2(i + 1)] ^ neg_imag;
216 float16 e2 = n[H2(i + 1)];
217 float16 e3 = m[H2(i)] ^ neg_real;
219 d[H2(i)] = float16_add(e0, e1, fpst);
220 d[H2(i + 1)] = float16_add(e2, e3, fpst);
222 clear_tail(d, opr_sz, simd_maxsz(desc));
225 void HELPER(gvec_fcadds)(void *vd, void *vn, void *vm,
226 void *vfpst, uint32_t desc)
228 uintptr_t opr_sz = simd_oprsz(desc);
229 float32 *d = vd;
230 float32 *n = vn;
231 float32 *m = vm;
232 float_status *fpst = vfpst;
233 uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
234 uint32_t neg_imag = neg_real ^ 1;
235 uintptr_t i;
237 /* Shift boolean to the sign bit so we can xor to negate. */
238 neg_real <<= 31;
239 neg_imag <<= 31;
241 for (i = 0; i < opr_sz / 4; i += 2) {
242 float32 e0 = n[H4(i)];
243 float32 e1 = m[H4(i + 1)] ^ neg_imag;
244 float32 e2 = n[H4(i + 1)];
245 float32 e3 = m[H4(i)] ^ neg_real;
247 d[H4(i)] = float32_add(e0, e1, fpst);
248 d[H4(i + 1)] = float32_add(e2, e3, fpst);
250 clear_tail(d, opr_sz, simd_maxsz(desc));
253 void HELPER(gvec_fcaddd)(void *vd, void *vn, void *vm,
254 void *vfpst, uint32_t desc)
256 uintptr_t opr_sz = simd_oprsz(desc);
257 float64 *d = vd;
258 float64 *n = vn;
259 float64 *m = vm;
260 float_status *fpst = vfpst;
261 uint64_t neg_real = extract64(desc, SIMD_DATA_SHIFT, 1);
262 uint64_t neg_imag = neg_real ^ 1;
263 uintptr_t i;
265 /* Shift boolean to the sign bit so we can xor to negate. */
266 neg_real <<= 63;
267 neg_imag <<= 63;
269 for (i = 0; i < opr_sz / 8; i += 2) {
270 float64 e0 = n[i];
271 float64 e1 = m[i + 1] ^ neg_imag;
272 float64 e2 = n[i + 1];
273 float64 e3 = m[i] ^ neg_real;
275 d[i] = float64_add(e0, e1, fpst);
276 d[i + 1] = float64_add(e2, e3, fpst);
278 clear_tail(d, opr_sz, simd_maxsz(desc));
281 void HELPER(gvec_fcmlah)(void *vd, void *vn, void *vm,
282 void *vfpst, uint32_t desc)
284 uintptr_t opr_sz = simd_oprsz(desc);
285 float16 *d = vd;
286 float16 *n = vn;
287 float16 *m = vm;
288 float_status *fpst = vfpst;
289 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
290 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
291 uint32_t neg_real = flip ^ neg_imag;
292 uintptr_t i;
294 /* Shift boolean to the sign bit so we can xor to negate. */
295 neg_real <<= 15;
296 neg_imag <<= 15;
298 for (i = 0; i < opr_sz / 2; i += 2) {
299 float16 e2 = n[H2(i + flip)];
300 float16 e1 = m[H2(i + flip)] ^ neg_real;
301 float16 e4 = e2;
302 float16 e3 = m[H2(i + 1 - flip)] ^ neg_imag;
304 d[H2(i)] = float16_muladd(e2, e1, d[H2(i)], 0, fpst);
305 d[H2(i + 1)] = float16_muladd(e4, e3, d[H2(i + 1)], 0, fpst);
307 clear_tail(d, opr_sz, simd_maxsz(desc));
310 void HELPER(gvec_fcmlah_idx)(void *vd, void *vn, void *vm,
311 void *vfpst, uint32_t desc)
313 uintptr_t opr_sz = simd_oprsz(desc);
314 float16 *d = vd;
315 float16 *n = vn;
316 float16 *m = vm;
317 float_status *fpst = vfpst;
318 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
319 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
320 uint32_t neg_real = flip ^ neg_imag;
321 uintptr_t i;
322 float16 e1 = m[H2(flip)];
323 float16 e3 = m[H2(1 - flip)];
325 /* Shift boolean to the sign bit so we can xor to negate. */
326 neg_real <<= 15;
327 neg_imag <<= 15;
328 e1 ^= neg_real;
329 e3 ^= neg_imag;
331 for (i = 0; i < opr_sz / 2; i += 2) {
332 float16 e2 = n[H2(i + flip)];
333 float16 e4 = e2;
335 d[H2(i)] = float16_muladd(e2, e1, d[H2(i)], 0, fpst);
336 d[H2(i + 1)] = float16_muladd(e4, e3, d[H2(i + 1)], 0, fpst);
338 clear_tail(d, opr_sz, simd_maxsz(desc));
341 void HELPER(gvec_fcmlas)(void *vd, void *vn, void *vm,
342 void *vfpst, uint32_t desc)
344 uintptr_t opr_sz = simd_oprsz(desc);
345 float32 *d = vd;
346 float32 *n = vn;
347 float32 *m = vm;
348 float_status *fpst = vfpst;
349 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
350 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
351 uint32_t neg_real = flip ^ neg_imag;
352 uintptr_t i;
354 /* Shift boolean to the sign bit so we can xor to negate. */
355 neg_real <<= 31;
356 neg_imag <<= 31;
358 for (i = 0; i < opr_sz / 4; i += 2) {
359 float32 e2 = n[H4(i + flip)];
360 float32 e1 = m[H4(i + flip)] ^ neg_real;
361 float32 e4 = e2;
362 float32 e3 = m[H4(i + 1 - flip)] ^ neg_imag;
364 d[H4(i)] = float32_muladd(e2, e1, d[H4(i)], 0, fpst);
365 d[H4(i + 1)] = float32_muladd(e4, e3, d[H4(i + 1)], 0, fpst);
367 clear_tail(d, opr_sz, simd_maxsz(desc));
370 void HELPER(gvec_fcmlas_idx)(void *vd, void *vn, void *vm,
371 void *vfpst, uint32_t desc)
373 uintptr_t opr_sz = simd_oprsz(desc);
374 float32 *d = vd;
375 float32 *n = vn;
376 float32 *m = vm;
377 float_status *fpst = vfpst;
378 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
379 uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
380 uint32_t neg_real = flip ^ neg_imag;
381 uintptr_t i;
382 float32 e1 = m[H4(flip)];
383 float32 e3 = m[H4(1 - flip)];
385 /* Shift boolean to the sign bit so we can xor to negate. */
386 neg_real <<= 31;
387 neg_imag <<= 31;
388 e1 ^= neg_real;
389 e3 ^= neg_imag;
391 for (i = 0; i < opr_sz / 4; i += 2) {
392 float32 e2 = n[H4(i + flip)];
393 float32 e4 = e2;
395 d[H4(i)] = float32_muladd(e2, e1, d[H4(i)], 0, fpst);
396 d[H4(i + 1)] = float32_muladd(e4, e3, d[H4(i + 1)], 0, fpst);
398 clear_tail(d, opr_sz, simd_maxsz(desc));
401 void HELPER(gvec_fcmlad)(void *vd, void *vn, void *vm,
402 void *vfpst, uint32_t desc)
404 uintptr_t opr_sz = simd_oprsz(desc);
405 float64 *d = vd;
406 float64 *n = vn;
407 float64 *m = vm;
408 float_status *fpst = vfpst;
409 intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
410 uint64_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
411 uint64_t neg_real = flip ^ neg_imag;
412 uintptr_t i;
414 /* Shift boolean to the sign bit so we can xor to negate. */
415 neg_real <<= 63;
416 neg_imag <<= 63;
418 for (i = 0; i < opr_sz / 8; i += 2) {
419 float64 e2 = n[i + flip];
420 float64 e1 = m[i + flip] ^ neg_real;
421 float64 e4 = e2;
422 float64 e3 = m[i + 1 - flip] ^ neg_imag;
424 d[i] = float64_muladd(e2, e1, d[i], 0, fpst);
425 d[i + 1] = float64_muladd(e4, e3, d[i + 1], 0, fpst);
427 clear_tail(d, opr_sz, simd_maxsz(desc));
430 /* Floating-point trigonometric starting value.
431 * See the ARM ARM pseudocode function FPTrigSMul.
433 static float16 float16_ftsmul(float16 op1, uint16_t op2, float_status *stat)
435 float16 result = float16_mul(op1, op1, stat);
436 if (!float16_is_any_nan(result)) {
437 result = float16_set_sign(result, op2 & 1);
439 return result;
442 static float32 float32_ftsmul(float32 op1, uint32_t op2, float_status *stat)
444 float32 result = float32_mul(op1, op1, stat);
445 if (!float32_is_any_nan(result)) {
446 result = float32_set_sign(result, op2 & 1);
448 return result;
451 static float64 float64_ftsmul(float64 op1, uint64_t op2, float_status *stat)
453 float64 result = float64_mul(op1, op1, stat);
454 if (!float64_is_any_nan(result)) {
455 result = float64_set_sign(result, op2 & 1);
457 return result;
460 #define DO_3OP(NAME, FUNC, TYPE) \
461 void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
463 intptr_t i, oprsz = simd_oprsz(desc); \
464 TYPE *d = vd, *n = vn, *m = vm; \
465 for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
466 d[i] = FUNC(n[i], m[i], stat); \
470 DO_3OP(gvec_fadd_h, float16_add, float16)
471 DO_3OP(gvec_fadd_s, float32_add, float32)
472 DO_3OP(gvec_fadd_d, float64_add, float64)
474 DO_3OP(gvec_fsub_h, float16_sub, float16)
475 DO_3OP(gvec_fsub_s, float32_sub, float32)
476 DO_3OP(gvec_fsub_d, float64_sub, float64)
478 DO_3OP(gvec_fmul_h, float16_mul, float16)
479 DO_3OP(gvec_fmul_s, float32_mul, float32)
480 DO_3OP(gvec_fmul_d, float64_mul, float64)
482 DO_3OP(gvec_ftsmul_h, float16_ftsmul, float16)
483 DO_3OP(gvec_ftsmul_s, float32_ftsmul, float32)
484 DO_3OP(gvec_ftsmul_d, float64_ftsmul, float64)
486 #ifdef TARGET_AARCH64
488 DO_3OP(gvec_recps_h, helper_recpsf_f16, float16)
489 DO_3OP(gvec_recps_s, helper_recpsf_f32, float32)
490 DO_3OP(gvec_recps_d, helper_recpsf_f64, float64)
492 DO_3OP(gvec_rsqrts_h, helper_rsqrtsf_f16, float16)
493 DO_3OP(gvec_rsqrts_s, helper_rsqrtsf_f32, float32)
494 DO_3OP(gvec_rsqrts_d, helper_rsqrtsf_f64, float64)
496 #endif
497 #undef DO_3OP