target-arm: Common kvm_arm_vcpu_init() for KVM ARM and KVM ARM64
[qemu.git] / target-arm / kvm32.c
blobb142e90719ea6119b6656c8e663a19f49fd5f33a
1 /*
2 * ARM implementation of KVM hooks, 32 bit specific code.
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 */
11 #include <stdio.h>
12 #include <sys/types.h>
13 #include <sys/ioctl.h>
14 #include <sys/mman.h>
16 #include <linux/kvm.h>
18 #include "qemu-common.h"
19 #include "qemu/timer.h"
20 #include "sysemu/sysemu.h"
21 #include "sysemu/kvm.h"
22 #include "kvm_arm.h"
23 #include "cpu.h"
24 #include "internals.h"
25 #include "hw/arm/arm.h"
27 static inline void set_feature(uint64_t *features, int feature)
29 *features |= 1ULL << feature;
32 bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
34 /* Identify the feature bits corresponding to the host CPU, and
35 * fill out the ARMHostCPUClass fields accordingly. To do this
36 * we have to create a scratch VM, create a single CPU inside it,
37 * and then query that CPU for the relevant ID registers.
39 int i, ret, fdarray[3];
40 uint32_t midr, id_pfr0, id_isar0, mvfr1;
41 uint64_t features = 0;
42 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
43 * we know these will only support creating one kind of guest CPU,
44 * which is its preferred CPU type.
46 static const uint32_t cpus_to_try[] = {
47 QEMU_KVM_ARM_TARGET_CORTEX_A15,
48 QEMU_KVM_ARM_TARGET_NONE
50 struct kvm_vcpu_init init;
51 struct kvm_one_reg idregs[] = {
53 .id = KVM_REG_ARM | KVM_REG_SIZE_U32
54 | ENCODE_CP_REG(15, 0, 0, 0, 0, 0),
55 .addr = (uintptr_t)&midr,
58 .id = KVM_REG_ARM | KVM_REG_SIZE_U32
59 | ENCODE_CP_REG(15, 0, 0, 1, 0, 0),
60 .addr = (uintptr_t)&id_pfr0,
63 .id = KVM_REG_ARM | KVM_REG_SIZE_U32
64 | ENCODE_CP_REG(15, 0, 0, 2, 0, 0),
65 .addr = (uintptr_t)&id_isar0,
68 .id = KVM_REG_ARM | KVM_REG_SIZE_U32
69 | KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR1,
70 .addr = (uintptr_t)&mvfr1,
74 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
75 return false;
78 ahcc->target = init.target;
80 /* This is not strictly blessed by the device tree binding docs yet,
81 * but in practice the kernel does not care about this string so
82 * there is no point maintaining an KVM_ARM_TARGET_* -> string table.
84 ahcc->dtb_compatible = "arm,arm-v7";
86 for (i = 0; i < ARRAY_SIZE(idregs); i++) {
87 ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &idregs[i]);
88 if (ret) {
89 break;
93 kvm_arm_destroy_scratch_host_vcpu(fdarray);
95 if (ret) {
96 return false;
99 /* Now we've retrieved all the register information we can
100 * set the feature bits based on the ID register fields.
101 * We can assume any KVM supporting CPU is at least a v7
102 * with VFPv3, LPAE and the generic timers; this in turn implies
103 * most of the other feature bits, but a few must be tested.
105 set_feature(&features, ARM_FEATURE_V7);
106 set_feature(&features, ARM_FEATURE_VFP3);
107 set_feature(&features, ARM_FEATURE_LPAE);
108 set_feature(&features, ARM_FEATURE_GENERIC_TIMER);
110 switch (extract32(id_isar0, 24, 4)) {
111 case 1:
112 set_feature(&features, ARM_FEATURE_THUMB_DIV);
113 break;
114 case 2:
115 set_feature(&features, ARM_FEATURE_ARM_DIV);
116 set_feature(&features, ARM_FEATURE_THUMB_DIV);
117 break;
118 default:
119 break;
122 if (extract32(id_pfr0, 12, 4) == 1) {
123 set_feature(&features, ARM_FEATURE_THUMB2EE);
125 if (extract32(mvfr1, 20, 4) == 1) {
126 set_feature(&features, ARM_FEATURE_VFP_FP16);
128 if (extract32(mvfr1, 12, 4) == 1) {
129 set_feature(&features, ARM_FEATURE_NEON);
131 if (extract32(mvfr1, 28, 4) == 1) {
132 /* FMAC support implies VFPv4 */
133 set_feature(&features, ARM_FEATURE_VFP4);
136 ahcc->features = features;
138 return true;
141 static bool reg_syncs_via_tuple_list(uint64_t regidx)
143 /* Return true if the regidx is a register we should synchronize
144 * via the cpreg_tuples array (ie is not a core reg we sync by
145 * hand in kvm_arch_get/put_registers())
147 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
148 case KVM_REG_ARM_CORE:
149 case KVM_REG_ARM_VFP:
150 return false;
151 default:
152 return true;
156 static int compare_u64(const void *a, const void *b)
158 if (*(uint64_t *)a > *(uint64_t *)b) {
159 return 1;
161 if (*(uint64_t *)a < *(uint64_t *)b) {
162 return -1;
164 return 0;
167 int kvm_arch_init_vcpu(CPUState *cs)
169 int i, ret, arraylen;
170 uint64_t v;
171 struct kvm_one_reg r;
172 struct kvm_reg_list rl;
173 struct kvm_reg_list *rlp;
174 ARMCPU *cpu = ARM_CPU(cs);
176 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) {
177 fprintf(stderr, "KVM is not supported for this guest CPU type\n");
178 return -EINVAL;
181 /* Determine init features for this CPU */
182 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
183 if (cpu->start_powered_off) {
184 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
187 /* Do KVM_ARM_VCPU_INIT ioctl */
188 ret = kvm_arm_vcpu_init(cs);
189 if (ret) {
190 return ret;
193 /* Query the kernel to make sure it supports 32 VFP
194 * registers: QEMU's "cortex-a15" CPU is always a
195 * VFP-D32 core. The simplest way to do this is just
196 * to attempt to read register d31.
198 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
199 r.addr = (uintptr_t)(&v);
200 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
201 if (ret == -ENOENT) {
202 return -EINVAL;
205 /* Populate the cpreg list based on the kernel's idea
206 * of what registers exist (and throw away the TCG-created list).
208 rl.n = 0;
209 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
210 if (ret != -E2BIG) {
211 return ret;
213 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
214 rlp->n = rl.n;
215 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
216 if (ret) {
217 goto out;
219 /* Sort the list we get back from the kernel, since cpreg_tuples
220 * must be in strictly ascending order.
222 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
224 for (i = 0, arraylen = 0; i < rlp->n; i++) {
225 if (!reg_syncs_via_tuple_list(rlp->reg[i])) {
226 continue;
228 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
229 case KVM_REG_SIZE_U32:
230 case KVM_REG_SIZE_U64:
231 break;
232 default:
233 fprintf(stderr, "Can't handle size of register in kernel list\n");
234 ret = -EINVAL;
235 goto out;
238 arraylen++;
241 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
242 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
243 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
244 arraylen);
245 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
246 arraylen);
247 cpu->cpreg_array_len = arraylen;
248 cpu->cpreg_vmstate_array_len = arraylen;
250 for (i = 0, arraylen = 0; i < rlp->n; i++) {
251 uint64_t regidx = rlp->reg[i];
252 if (!reg_syncs_via_tuple_list(regidx)) {
253 continue;
255 cpu->cpreg_indexes[arraylen] = regidx;
256 arraylen++;
258 assert(cpu->cpreg_array_len == arraylen);
260 if (!write_kvmstate_to_list(cpu)) {
261 /* Shouldn't happen unless kernel is inconsistent about
262 * what registers exist.
264 fprintf(stderr, "Initial read of kernel register state failed\n");
265 ret = -EINVAL;
266 goto out;
269 /* Save a copy of the initial register values so that we can
270 * feed it back to the kernel on VCPU reset.
272 cpu->cpreg_reset_values = g_memdup(cpu->cpreg_values,
273 cpu->cpreg_array_len *
274 sizeof(cpu->cpreg_values[0]));
276 out:
277 g_free(rlp);
278 return ret;
281 typedef struct Reg {
282 uint64_t id;
283 int offset;
284 } Reg;
286 #define COREREG(KERNELNAME, QEMUFIELD) \
288 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
289 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
290 offsetof(CPUARMState, QEMUFIELD) \
293 #define VFPSYSREG(R) \
295 KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
296 KVM_REG_ARM_VFP_##R, \
297 offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
300 /* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */
301 #define COREREG64(KERNELNAME, QEMUFIELD) \
303 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
304 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
305 offsetoflow32(CPUARMState, QEMUFIELD) \
308 static const Reg regs[] = {
309 /* R0_usr .. R14_usr */
310 COREREG(usr_regs.uregs[0], regs[0]),
311 COREREG(usr_regs.uregs[1], regs[1]),
312 COREREG(usr_regs.uregs[2], regs[2]),
313 COREREG(usr_regs.uregs[3], regs[3]),
314 COREREG(usr_regs.uregs[4], regs[4]),
315 COREREG(usr_regs.uregs[5], regs[5]),
316 COREREG(usr_regs.uregs[6], regs[6]),
317 COREREG(usr_regs.uregs[7], regs[7]),
318 COREREG(usr_regs.uregs[8], usr_regs[0]),
319 COREREG(usr_regs.uregs[9], usr_regs[1]),
320 COREREG(usr_regs.uregs[10], usr_regs[2]),
321 COREREG(usr_regs.uregs[11], usr_regs[3]),
322 COREREG(usr_regs.uregs[12], usr_regs[4]),
323 COREREG(usr_regs.uregs[13], banked_r13[0]),
324 COREREG(usr_regs.uregs[14], banked_r14[0]),
325 /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
326 COREREG(svc_regs[0], banked_r13[1]),
327 COREREG(svc_regs[1], banked_r14[1]),
328 COREREG64(svc_regs[2], banked_spsr[1]),
329 COREREG(abt_regs[0], banked_r13[2]),
330 COREREG(abt_regs[1], banked_r14[2]),
331 COREREG64(abt_regs[2], banked_spsr[2]),
332 COREREG(und_regs[0], banked_r13[3]),
333 COREREG(und_regs[1], banked_r14[3]),
334 COREREG64(und_regs[2], banked_spsr[3]),
335 COREREG(irq_regs[0], banked_r13[4]),
336 COREREG(irq_regs[1], banked_r14[4]),
337 COREREG64(irq_regs[2], banked_spsr[4]),
338 /* R8_fiq .. R14_fiq and SPSR_fiq */
339 COREREG(fiq_regs[0], fiq_regs[0]),
340 COREREG(fiq_regs[1], fiq_regs[1]),
341 COREREG(fiq_regs[2], fiq_regs[2]),
342 COREREG(fiq_regs[3], fiq_regs[3]),
343 COREREG(fiq_regs[4], fiq_regs[4]),
344 COREREG(fiq_regs[5], banked_r13[5]),
345 COREREG(fiq_regs[6], banked_r14[5]),
346 COREREG64(fiq_regs[7], banked_spsr[5]),
347 /* R15 */
348 COREREG(usr_regs.uregs[15], regs[15]),
349 /* VFP system registers */
350 VFPSYSREG(FPSID),
351 VFPSYSREG(MVFR1),
352 VFPSYSREG(MVFR0),
353 VFPSYSREG(FPEXC),
354 VFPSYSREG(FPINST),
355 VFPSYSREG(FPINST2),
358 int kvm_arch_put_registers(CPUState *cs, int level)
360 ARMCPU *cpu = ARM_CPU(cs);
361 CPUARMState *env = &cpu->env;
362 struct kvm_one_reg r;
363 int mode, bn;
364 int ret, i;
365 uint32_t cpsr, fpscr;
367 /* Make sure the banked regs are properly set */
368 mode = env->uncached_cpsr & CPSR_M;
369 bn = bank_number(mode);
370 if (mode == ARM_CPU_MODE_FIQ) {
371 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
372 } else {
373 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
375 env->banked_r13[bn] = env->regs[13];
376 env->banked_r14[bn] = env->regs[14];
377 env->banked_spsr[bn] = env->spsr;
379 /* Now we can safely copy stuff down to the kernel */
380 for (i = 0; i < ARRAY_SIZE(regs); i++) {
381 r.id = regs[i].id;
382 r.addr = (uintptr_t)(env) + regs[i].offset;
383 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
384 if (ret) {
385 return ret;
389 /* Special cases which aren't a single CPUARMState field */
390 cpsr = cpsr_read(env);
391 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
392 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
393 r.addr = (uintptr_t)(&cpsr);
394 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
395 if (ret) {
396 return ret;
399 /* VFP registers */
400 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
401 for (i = 0; i < 32; i++) {
402 r.addr = (uintptr_t)(&env->vfp.regs[i]);
403 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
404 if (ret) {
405 return ret;
407 r.id++;
410 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
411 KVM_REG_ARM_VFP_FPSCR;
412 fpscr = vfp_get_fpscr(env);
413 r.addr = (uintptr_t)&fpscr;
414 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
415 if (ret) {
416 return ret;
419 /* Note that we do not call write_cpustate_to_list()
420 * here, so we are only writing the tuple list back to
421 * KVM. This is safe because nothing can change the
422 * CPUARMState cp15 fields (in particular gdb accesses cannot)
423 * and so there are no changes to sync. In fact syncing would
424 * be wrong at this point: for a constant register where TCG and
425 * KVM disagree about its value, the preceding write_list_to_cpustate()
426 * would not have had any effect on the CPUARMState value (since the
427 * register is read-only), and a write_cpustate_to_list() here would
428 * then try to write the TCG value back into KVM -- this would either
429 * fail or incorrectly change the value the guest sees.
431 * If we ever want to allow the user to modify cp15 registers via
432 * the gdb stub, we would need to be more clever here (for instance
433 * tracking the set of registers kvm_arch_get_registers() successfully
434 * managed to update the CPUARMState with, and only allowing those
435 * to be written back up into the kernel).
437 if (!write_list_to_kvmstate(cpu)) {
438 return EINVAL;
441 return ret;
444 int kvm_arch_get_registers(CPUState *cs)
446 ARMCPU *cpu = ARM_CPU(cs);
447 CPUARMState *env = &cpu->env;
448 struct kvm_one_reg r;
449 int mode, bn;
450 int ret, i;
451 uint32_t cpsr, fpscr;
453 for (i = 0; i < ARRAY_SIZE(regs); i++) {
454 r.id = regs[i].id;
455 r.addr = (uintptr_t)(env) + regs[i].offset;
456 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
457 if (ret) {
458 return ret;
462 /* Special cases which aren't a single CPUARMState field */
463 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
464 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
465 r.addr = (uintptr_t)(&cpsr);
466 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
467 if (ret) {
468 return ret;
470 cpsr_write(env, cpsr, 0xffffffff);
472 /* Make sure the current mode regs are properly set */
473 mode = env->uncached_cpsr & CPSR_M;
474 bn = bank_number(mode);
475 if (mode == ARM_CPU_MODE_FIQ) {
476 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
477 } else {
478 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
480 env->regs[13] = env->banked_r13[bn];
481 env->regs[14] = env->banked_r14[bn];
482 env->spsr = env->banked_spsr[bn];
484 /* VFP registers */
485 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
486 for (i = 0; i < 32; i++) {
487 r.addr = (uintptr_t)(&env->vfp.regs[i]);
488 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
489 if (ret) {
490 return ret;
492 r.id++;
495 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
496 KVM_REG_ARM_VFP_FPSCR;
497 r.addr = (uintptr_t)&fpscr;
498 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
499 if (ret) {
500 return ret;
502 vfp_set_fpscr(env, fpscr);
504 if (!write_kvmstate_to_list(cpu)) {
505 return EINVAL;
507 /* Note that it's OK to have registers which aren't in CPUState,
508 * so we can ignore a failure return here.
510 write_list_to_cpustate(cpu);
512 return 0;
515 void kvm_arm_reset_vcpu(ARMCPU *cpu)
517 /* Feed the kernel back its initial register state */
518 memmove(cpu->cpreg_values, cpu->cpreg_reset_values,
519 cpu->cpreg_array_len * sizeof(cpu->cpreg_values[0]));
521 if (!write_list_to_kvmstate(cpu)) {
522 abort();