Merge remote-tracking branch 'qmp/queue/qmp' into staging
[qemu.git] / hw / usb-ehci.c
blobe9e0789795e0d3d4509ed6ef736043d216400ab8
1 /*
2 * QEMU USB EHCI Emulation
4 * Copyright(c) 2008 Emutex Ltd. (address@hidden)
6 * EHCI project was started by Mark Burkley, with contributions by
7 * Niels de Vos. David S. Ahern continued working on it. Kevin Wolf,
8 * Jan Kiszka and Vincent Palatin contributed bugfixes.
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or(at your option) any later version.
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
25 #include "hw.h"
26 #include "qemu-timer.h"
27 #include "usb.h"
28 #include "pci.h"
29 #include "monitor.h"
30 #include "trace.h"
31 #include "dma.h"
33 #define EHCI_DEBUG 0
35 #if EHCI_DEBUG
36 #define DPRINTF printf
37 #else
38 #define DPRINTF(...)
39 #endif
41 /* internal processing - reset HC to try and recover */
42 #define USB_RET_PROCERR (-99)
44 #define MMIO_SIZE 0x1000
46 /* Capability Registers Base Address - section 2.2 */
47 #define CAPREGBASE 0x0000
48 #define CAPLENGTH CAPREGBASE + 0x0000 // 1-byte, 0x0001 reserved
49 #define HCIVERSION CAPREGBASE + 0x0002 // 2-bytes, i/f version #
50 #define HCSPARAMS CAPREGBASE + 0x0004 // 4-bytes, structural params
51 #define HCCPARAMS CAPREGBASE + 0x0008 // 4-bytes, capability params
52 #define EECP HCCPARAMS + 1
53 #define HCSPPORTROUTE1 CAPREGBASE + 0x000c
54 #define HCSPPORTROUTE2 CAPREGBASE + 0x0010
56 #define OPREGBASE 0x0020 // Operational Registers Base Address
58 #define USBCMD OPREGBASE + 0x0000
59 #define USBCMD_RUNSTOP (1 << 0) // run / Stop
60 #define USBCMD_HCRESET (1 << 1) // HC Reset
61 #define USBCMD_FLS (3 << 2) // Frame List Size
62 #define USBCMD_FLS_SH 2 // Frame List Size Shift
63 #define USBCMD_PSE (1 << 4) // Periodic Schedule Enable
64 #define USBCMD_ASE (1 << 5) // Asynch Schedule Enable
65 #define USBCMD_IAAD (1 << 6) // Int Asynch Advance Doorbell
66 #define USBCMD_LHCR (1 << 7) // Light Host Controller Reset
67 #define USBCMD_ASPMC (3 << 8) // Async Sched Park Mode Count
68 #define USBCMD_ASPME (1 << 11) // Async Sched Park Mode Enable
69 #define USBCMD_ITC (0x7f << 16) // Int Threshold Control
70 #define USBCMD_ITC_SH 16 // Int Threshold Control Shift
72 #define USBSTS OPREGBASE + 0x0004
73 #define USBSTS_RO_MASK 0x0000003f
74 #define USBSTS_INT (1 << 0) // USB Interrupt
75 #define USBSTS_ERRINT (1 << 1) // Error Interrupt
76 #define USBSTS_PCD (1 << 2) // Port Change Detect
77 #define USBSTS_FLR (1 << 3) // Frame List Rollover
78 #define USBSTS_HSE (1 << 4) // Host System Error
79 #define USBSTS_IAA (1 << 5) // Interrupt on Async Advance
80 #define USBSTS_HALT (1 << 12) // HC Halted
81 #define USBSTS_REC (1 << 13) // Reclamation
82 #define USBSTS_PSS (1 << 14) // Periodic Schedule Status
83 #define USBSTS_ASS (1 << 15) // Asynchronous Schedule Status
86 * Interrupt enable bits correspond to the interrupt active bits in USBSTS
87 * so no need to redefine here.
89 #define USBINTR OPREGBASE + 0x0008
90 #define USBINTR_MASK 0x0000003f
92 #define FRINDEX OPREGBASE + 0x000c
93 #define CTRLDSSEGMENT OPREGBASE + 0x0010
94 #define PERIODICLISTBASE OPREGBASE + 0x0014
95 #define ASYNCLISTADDR OPREGBASE + 0x0018
96 #define ASYNCLISTADDR_MASK 0xffffffe0
98 #define CONFIGFLAG OPREGBASE + 0x0040
100 #define PORTSC (OPREGBASE + 0x0044)
101 #define PORTSC_BEGIN PORTSC
102 #define PORTSC_END (PORTSC + 4 * NB_PORTS)
104 * Bits that are reserved or are read-only are masked out of values
105 * written to us by software
107 #define PORTSC_RO_MASK 0x007001c0
108 #define PORTSC_RWC_MASK 0x0000002a
109 #define PORTSC_WKOC_E (1 << 22) // Wake on Over Current Enable
110 #define PORTSC_WKDS_E (1 << 21) // Wake on Disconnect Enable
111 #define PORTSC_WKCN_E (1 << 20) // Wake on Connect Enable
112 #define PORTSC_PTC (15 << 16) // Port Test Control
113 #define PORTSC_PTC_SH 16 // Port Test Control shift
114 #define PORTSC_PIC (3 << 14) // Port Indicator Control
115 #define PORTSC_PIC_SH 14 // Port Indicator Control Shift
116 #define PORTSC_POWNER (1 << 13) // Port Owner
117 #define PORTSC_PPOWER (1 << 12) // Port Power
118 #define PORTSC_LINESTAT (3 << 10) // Port Line Status
119 #define PORTSC_LINESTAT_SH 10 // Port Line Status Shift
120 #define PORTSC_PRESET (1 << 8) // Port Reset
121 #define PORTSC_SUSPEND (1 << 7) // Port Suspend
122 #define PORTSC_FPRES (1 << 6) // Force Port Resume
123 #define PORTSC_OCC (1 << 5) // Over Current Change
124 #define PORTSC_OCA (1 << 4) // Over Current Active
125 #define PORTSC_PEDC (1 << 3) // Port Enable/Disable Change
126 #define PORTSC_PED (1 << 2) // Port Enable/Disable
127 #define PORTSC_CSC (1 << 1) // Connect Status Change
128 #define PORTSC_CONNECT (1 << 0) // Current Connect Status
130 #define FRAME_TIMER_FREQ 1000
131 #define FRAME_TIMER_NS (1000000000 / FRAME_TIMER_FREQ)
133 #define NB_MAXINTRATE 8 // Max rate at which controller issues ints
134 #define NB_PORTS 6 // Number of downstream ports
135 #define BUFF_SIZE 5*4096 // Max bytes to transfer per transaction
136 #define MAX_ITERATIONS 20 // Max number of QH before we break the loop
137 #define MAX_QH 100 // Max allowable queue heads in a chain
139 /* Internal periodic / asynchronous schedule state machine states
141 typedef enum {
142 EST_INACTIVE = 1000,
143 EST_ACTIVE,
144 EST_EXECUTING,
145 EST_SLEEPING,
146 /* The following states are internal to the state machine function
148 EST_WAITLISTHEAD,
149 EST_FETCHENTRY,
150 EST_FETCHQH,
151 EST_FETCHITD,
152 EST_FETCHSITD,
153 EST_ADVANCEQUEUE,
154 EST_FETCHQTD,
155 EST_EXECUTE,
156 EST_WRITEBACK,
157 EST_HORIZONTALQH
158 } EHCI_STATES;
160 /* macros for accessing fields within next link pointer entry */
161 #define NLPTR_GET(x) ((x) & 0xffffffe0)
162 #define NLPTR_TYPE_GET(x) (((x) >> 1) & 3)
163 #define NLPTR_TBIT(x) ((x) & 1) // 1=invalid, 0=valid
165 /* link pointer types */
166 #define NLPTR_TYPE_ITD 0 // isoc xfer descriptor
167 #define NLPTR_TYPE_QH 1 // queue head
168 #define NLPTR_TYPE_STITD 2 // split xaction, isoc xfer descriptor
169 #define NLPTR_TYPE_FSTN 3 // frame span traversal node
172 /* EHCI spec version 1.0 Section 3.3
174 typedef struct EHCIitd {
175 uint32_t next;
177 uint32_t transact[8];
178 #define ITD_XACT_ACTIVE (1 << 31)
179 #define ITD_XACT_DBERROR (1 << 30)
180 #define ITD_XACT_BABBLE (1 << 29)
181 #define ITD_XACT_XACTERR (1 << 28)
182 #define ITD_XACT_LENGTH_MASK 0x0fff0000
183 #define ITD_XACT_LENGTH_SH 16
184 #define ITD_XACT_IOC (1 << 15)
185 #define ITD_XACT_PGSEL_MASK 0x00007000
186 #define ITD_XACT_PGSEL_SH 12
187 #define ITD_XACT_OFFSET_MASK 0x00000fff
189 uint32_t bufptr[7];
190 #define ITD_BUFPTR_MASK 0xfffff000
191 #define ITD_BUFPTR_SH 12
192 #define ITD_BUFPTR_EP_MASK 0x00000f00
193 #define ITD_BUFPTR_EP_SH 8
194 #define ITD_BUFPTR_DEVADDR_MASK 0x0000007f
195 #define ITD_BUFPTR_DEVADDR_SH 0
196 #define ITD_BUFPTR_DIRECTION (1 << 11)
197 #define ITD_BUFPTR_MAXPKT_MASK 0x000007ff
198 #define ITD_BUFPTR_MAXPKT_SH 0
199 #define ITD_BUFPTR_MULT_MASK 0x00000003
200 #define ITD_BUFPTR_MULT_SH 0
201 } EHCIitd;
203 /* EHCI spec version 1.0 Section 3.4
205 typedef struct EHCIsitd {
206 uint32_t next; // Standard next link pointer
207 uint32_t epchar;
208 #define SITD_EPCHAR_IO (1 << 31)
209 #define SITD_EPCHAR_PORTNUM_MASK 0x7f000000
210 #define SITD_EPCHAR_PORTNUM_SH 24
211 #define SITD_EPCHAR_HUBADD_MASK 0x007f0000
212 #define SITD_EPCHAR_HUBADDR_SH 16
213 #define SITD_EPCHAR_EPNUM_MASK 0x00000f00
214 #define SITD_EPCHAR_EPNUM_SH 8
215 #define SITD_EPCHAR_DEVADDR_MASK 0x0000007f
217 uint32_t uframe;
218 #define SITD_UFRAME_CMASK_MASK 0x0000ff00
219 #define SITD_UFRAME_CMASK_SH 8
220 #define SITD_UFRAME_SMASK_MASK 0x000000ff
222 uint32_t results;
223 #define SITD_RESULTS_IOC (1 << 31)
224 #define SITD_RESULTS_PGSEL (1 << 30)
225 #define SITD_RESULTS_TBYTES_MASK 0x03ff0000
226 #define SITD_RESULTS_TYBYTES_SH 16
227 #define SITD_RESULTS_CPROGMASK_MASK 0x0000ff00
228 #define SITD_RESULTS_CPROGMASK_SH 8
229 #define SITD_RESULTS_ACTIVE (1 << 7)
230 #define SITD_RESULTS_ERR (1 << 6)
231 #define SITD_RESULTS_DBERR (1 << 5)
232 #define SITD_RESULTS_BABBLE (1 << 4)
233 #define SITD_RESULTS_XACTERR (1 << 3)
234 #define SITD_RESULTS_MISSEDUF (1 << 2)
235 #define SITD_RESULTS_SPLITXSTATE (1 << 1)
237 uint32_t bufptr[2];
238 #define SITD_BUFPTR_MASK 0xfffff000
239 #define SITD_BUFPTR_CURROFF_MASK 0x00000fff
240 #define SITD_BUFPTR_TPOS_MASK 0x00000018
241 #define SITD_BUFPTR_TPOS_SH 3
242 #define SITD_BUFPTR_TCNT_MASK 0x00000007
244 uint32_t backptr; // Standard next link pointer
245 } EHCIsitd;
247 /* EHCI spec version 1.0 Section 3.5
249 typedef struct EHCIqtd {
250 uint32_t next; // Standard next link pointer
251 uint32_t altnext; // Standard next link pointer
252 uint32_t token;
253 #define QTD_TOKEN_DTOGGLE (1 << 31)
254 #define QTD_TOKEN_TBYTES_MASK 0x7fff0000
255 #define QTD_TOKEN_TBYTES_SH 16
256 #define QTD_TOKEN_IOC (1 << 15)
257 #define QTD_TOKEN_CPAGE_MASK 0x00007000
258 #define QTD_TOKEN_CPAGE_SH 12
259 #define QTD_TOKEN_CERR_MASK 0x00000c00
260 #define QTD_TOKEN_CERR_SH 10
261 #define QTD_TOKEN_PID_MASK 0x00000300
262 #define QTD_TOKEN_PID_SH 8
263 #define QTD_TOKEN_ACTIVE (1 << 7)
264 #define QTD_TOKEN_HALT (1 << 6)
265 #define QTD_TOKEN_DBERR (1 << 5)
266 #define QTD_TOKEN_BABBLE (1 << 4)
267 #define QTD_TOKEN_XACTERR (1 << 3)
268 #define QTD_TOKEN_MISSEDUF (1 << 2)
269 #define QTD_TOKEN_SPLITXSTATE (1 << 1)
270 #define QTD_TOKEN_PING (1 << 0)
272 uint32_t bufptr[5]; // Standard buffer pointer
273 #define QTD_BUFPTR_MASK 0xfffff000
274 #define QTD_BUFPTR_SH 12
275 } EHCIqtd;
277 /* EHCI spec version 1.0 Section 3.6
279 typedef struct EHCIqh {
280 uint32_t next; // Standard next link pointer
282 /* endpoint characteristics */
283 uint32_t epchar;
284 #define QH_EPCHAR_RL_MASK 0xf0000000
285 #define QH_EPCHAR_RL_SH 28
286 #define QH_EPCHAR_C (1 << 27)
287 #define QH_EPCHAR_MPLEN_MASK 0x07FF0000
288 #define QH_EPCHAR_MPLEN_SH 16
289 #define QH_EPCHAR_H (1 << 15)
290 #define QH_EPCHAR_DTC (1 << 14)
291 #define QH_EPCHAR_EPS_MASK 0x00003000
292 #define QH_EPCHAR_EPS_SH 12
293 #define EHCI_QH_EPS_FULL 0
294 #define EHCI_QH_EPS_LOW 1
295 #define EHCI_QH_EPS_HIGH 2
296 #define EHCI_QH_EPS_RESERVED 3
298 #define QH_EPCHAR_EP_MASK 0x00000f00
299 #define QH_EPCHAR_EP_SH 8
300 #define QH_EPCHAR_I (1 << 7)
301 #define QH_EPCHAR_DEVADDR_MASK 0x0000007f
302 #define QH_EPCHAR_DEVADDR_SH 0
304 /* endpoint capabilities */
305 uint32_t epcap;
306 #define QH_EPCAP_MULT_MASK 0xc0000000
307 #define QH_EPCAP_MULT_SH 30
308 #define QH_EPCAP_PORTNUM_MASK 0x3f800000
309 #define QH_EPCAP_PORTNUM_SH 23
310 #define QH_EPCAP_HUBADDR_MASK 0x007f0000
311 #define QH_EPCAP_HUBADDR_SH 16
312 #define QH_EPCAP_CMASK_MASK 0x0000ff00
313 #define QH_EPCAP_CMASK_SH 8
314 #define QH_EPCAP_SMASK_MASK 0x000000ff
315 #define QH_EPCAP_SMASK_SH 0
317 uint32_t current_qtd; // Standard next link pointer
318 uint32_t next_qtd; // Standard next link pointer
319 uint32_t altnext_qtd;
320 #define QH_ALTNEXT_NAKCNT_MASK 0x0000001e
321 #define QH_ALTNEXT_NAKCNT_SH 1
323 uint32_t token; // Same as QTD token
324 uint32_t bufptr[5]; // Standard buffer pointer
325 #define BUFPTR_CPROGMASK_MASK 0x000000ff
326 #define BUFPTR_FRAMETAG_MASK 0x0000001f
327 #define BUFPTR_SBYTES_MASK 0x00000fe0
328 #define BUFPTR_SBYTES_SH 5
329 } EHCIqh;
331 /* EHCI spec version 1.0 Section 3.7
333 typedef struct EHCIfstn {
334 uint32_t next; // Standard next link pointer
335 uint32_t backptr; // Standard next link pointer
336 } EHCIfstn;
338 typedef struct EHCIQueue EHCIQueue;
339 typedef struct EHCIState EHCIState;
341 enum async_state {
342 EHCI_ASYNC_NONE = 0,
343 EHCI_ASYNC_INFLIGHT,
344 EHCI_ASYNC_FINISHED,
347 struct EHCIQueue {
348 EHCIState *ehci;
349 QTAILQ_ENTRY(EHCIQueue) next;
350 bool async_schedule;
351 uint32_t seen;
352 uint64_t ts;
354 /* cached data from guest - needs to be flushed
355 * when guest removes an entry (doorbell, handshake sequence)
357 EHCIqh qh; // copy of current QH (being worked on)
358 uint32_t qhaddr; // address QH read from
359 EHCIqtd qtd; // copy of current QTD (being worked on)
360 uint32_t qtdaddr; // address QTD read from
362 USBPacket packet;
363 QEMUSGList sgl;
364 int pid;
365 uint32_t tbytes;
366 enum async_state async;
367 int usb_status;
370 struct EHCIState {
371 PCIDevice dev;
372 USBBus bus;
373 qemu_irq irq;
374 MemoryRegion mem;
375 int companion_count;
377 /* properties */
378 uint32_t freq;
379 uint32_t maxframes;
382 * EHCI spec version 1.0 Section 2.3
383 * Host Controller Operational Registers
385 union {
386 uint8_t mmio[MMIO_SIZE];
387 struct {
388 uint8_t cap[OPREGBASE];
389 uint32_t usbcmd;
390 uint32_t usbsts;
391 uint32_t usbintr;
392 uint32_t frindex;
393 uint32_t ctrldssegment;
394 uint32_t periodiclistbase;
395 uint32_t asynclistaddr;
396 uint32_t notused[9];
397 uint32_t configflag;
398 uint32_t portsc[NB_PORTS];
403 * Internal states, shadow registers, etc
405 uint32_t sofv;
406 QEMUTimer *frame_timer;
407 int attach_poll_counter;
408 int astate; // Current state in asynchronous schedule
409 int pstate; // Current state in periodic schedule
410 USBPort ports[NB_PORTS];
411 USBPort *companion_ports[NB_PORTS];
412 uint32_t usbsts_pending;
413 QTAILQ_HEAD(, EHCIQueue) queues;
415 uint32_t a_fetch_addr; // which address to look at next
416 uint32_t p_fetch_addr; // which address to look at next
418 USBPacket ipacket;
419 QEMUSGList isgl;
420 int isoch_pause;
422 uint64_t last_run_ns;
425 #define SET_LAST_RUN_CLOCK(s) \
426 (s)->last_run_ns = qemu_get_clock_ns(vm_clock);
428 /* nifty macros from Arnon's EHCI version */
429 #define get_field(data, field) \
430 (((data) & field##_MASK) >> field##_SH)
432 #define set_field(data, newval, field) do { \
433 uint32_t val = *data; \
434 val &= ~ field##_MASK; \
435 val |= ((newval) << field##_SH) & field##_MASK; \
436 *data = val; \
437 } while(0)
439 static const char *ehci_state_names[] = {
440 [ EST_INACTIVE ] = "INACTIVE",
441 [ EST_ACTIVE ] = "ACTIVE",
442 [ EST_EXECUTING ] = "EXECUTING",
443 [ EST_SLEEPING ] = "SLEEPING",
444 [ EST_WAITLISTHEAD ] = "WAITLISTHEAD",
445 [ EST_FETCHENTRY ] = "FETCH ENTRY",
446 [ EST_FETCHQH ] = "FETCH QH",
447 [ EST_FETCHITD ] = "FETCH ITD",
448 [ EST_ADVANCEQUEUE ] = "ADVANCEQUEUE",
449 [ EST_FETCHQTD ] = "FETCH QTD",
450 [ EST_EXECUTE ] = "EXECUTE",
451 [ EST_WRITEBACK ] = "WRITEBACK",
452 [ EST_HORIZONTALQH ] = "HORIZONTALQH",
455 static const char *ehci_mmio_names[] = {
456 [ CAPLENGTH ] = "CAPLENGTH",
457 [ HCIVERSION ] = "HCIVERSION",
458 [ HCSPARAMS ] = "HCSPARAMS",
459 [ HCCPARAMS ] = "HCCPARAMS",
460 [ USBCMD ] = "USBCMD",
461 [ USBSTS ] = "USBSTS",
462 [ USBINTR ] = "USBINTR",
463 [ FRINDEX ] = "FRINDEX",
464 [ PERIODICLISTBASE ] = "P-LIST BASE",
465 [ ASYNCLISTADDR ] = "A-LIST ADDR",
466 [ PORTSC_BEGIN ] = "PORTSC #0",
467 [ PORTSC_BEGIN + 4] = "PORTSC #1",
468 [ PORTSC_BEGIN + 8] = "PORTSC #2",
469 [ PORTSC_BEGIN + 12] = "PORTSC #3",
470 [ CONFIGFLAG ] = "CONFIGFLAG",
473 static const char *nr2str(const char **n, size_t len, uint32_t nr)
475 if (nr < len && n[nr] != NULL) {
476 return n[nr];
477 } else {
478 return "unknown";
482 static const char *state2str(uint32_t state)
484 return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
487 static const char *addr2str(target_phys_addr_t addr)
489 return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
492 static void ehci_trace_usbsts(uint32_t mask, int state)
494 /* interrupts */
495 if (mask & USBSTS_INT) {
496 trace_usb_ehci_usbsts("INT", state);
498 if (mask & USBSTS_ERRINT) {
499 trace_usb_ehci_usbsts("ERRINT", state);
501 if (mask & USBSTS_PCD) {
502 trace_usb_ehci_usbsts("PCD", state);
504 if (mask & USBSTS_FLR) {
505 trace_usb_ehci_usbsts("FLR", state);
507 if (mask & USBSTS_HSE) {
508 trace_usb_ehci_usbsts("HSE", state);
510 if (mask & USBSTS_IAA) {
511 trace_usb_ehci_usbsts("IAA", state);
514 /* status */
515 if (mask & USBSTS_HALT) {
516 trace_usb_ehci_usbsts("HALT", state);
518 if (mask & USBSTS_REC) {
519 trace_usb_ehci_usbsts("REC", state);
521 if (mask & USBSTS_PSS) {
522 trace_usb_ehci_usbsts("PSS", state);
524 if (mask & USBSTS_ASS) {
525 trace_usb_ehci_usbsts("ASS", state);
529 static inline void ehci_set_usbsts(EHCIState *s, int mask)
531 if ((s->usbsts & mask) == mask) {
532 return;
534 ehci_trace_usbsts(mask, 1);
535 s->usbsts |= mask;
538 static inline void ehci_clear_usbsts(EHCIState *s, int mask)
540 if ((s->usbsts & mask) == 0) {
541 return;
543 ehci_trace_usbsts(mask, 0);
544 s->usbsts &= ~mask;
547 static inline void ehci_set_interrupt(EHCIState *s, int intr)
549 int level = 0;
551 // TODO honour interrupt threshold requests
553 ehci_set_usbsts(s, intr);
555 if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
556 level = 1;
559 qemu_set_irq(s->irq, level);
562 static inline void ehci_record_interrupt(EHCIState *s, int intr)
564 s->usbsts_pending |= intr;
567 static inline void ehci_commit_interrupt(EHCIState *s)
569 if (!s->usbsts_pending) {
570 return;
572 ehci_set_interrupt(s, s->usbsts_pending);
573 s->usbsts_pending = 0;
576 static void ehci_set_state(EHCIState *s, int async, int state)
578 if (async) {
579 trace_usb_ehci_state("async", state2str(state));
580 s->astate = state;
581 } else {
582 trace_usb_ehci_state("periodic", state2str(state));
583 s->pstate = state;
587 static int ehci_get_state(EHCIState *s, int async)
589 return async ? s->astate : s->pstate;
592 static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
594 if (async) {
595 s->a_fetch_addr = addr;
596 } else {
597 s->p_fetch_addr = addr;
601 static int ehci_get_fetch_addr(EHCIState *s, int async)
603 return async ? s->a_fetch_addr : s->p_fetch_addr;
606 static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
608 /* need three here due to argument count limits */
609 trace_usb_ehci_qh_ptrs(q, addr, qh->next,
610 qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
611 trace_usb_ehci_qh_fields(addr,
612 get_field(qh->epchar, QH_EPCHAR_RL),
613 get_field(qh->epchar, QH_EPCHAR_MPLEN),
614 get_field(qh->epchar, QH_EPCHAR_EPS),
615 get_field(qh->epchar, QH_EPCHAR_EP),
616 get_field(qh->epchar, QH_EPCHAR_DEVADDR));
617 trace_usb_ehci_qh_bits(addr,
618 (bool)(qh->epchar & QH_EPCHAR_C),
619 (bool)(qh->epchar & QH_EPCHAR_H),
620 (bool)(qh->epchar & QH_EPCHAR_DTC),
621 (bool)(qh->epchar & QH_EPCHAR_I));
624 static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
626 /* need three here due to argument count limits */
627 trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
628 trace_usb_ehci_qtd_fields(addr,
629 get_field(qtd->token, QTD_TOKEN_TBYTES),
630 get_field(qtd->token, QTD_TOKEN_CPAGE),
631 get_field(qtd->token, QTD_TOKEN_CERR),
632 get_field(qtd->token, QTD_TOKEN_PID));
633 trace_usb_ehci_qtd_bits(addr,
634 (bool)(qtd->token & QTD_TOKEN_IOC),
635 (bool)(qtd->token & QTD_TOKEN_ACTIVE),
636 (bool)(qtd->token & QTD_TOKEN_HALT),
637 (bool)(qtd->token & QTD_TOKEN_BABBLE),
638 (bool)(qtd->token & QTD_TOKEN_XACTERR));
641 static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
643 trace_usb_ehci_itd(addr, itd->next,
644 get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
645 get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
646 get_field(itd->bufptr[0], ITD_BUFPTR_EP),
647 get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
650 static void ehci_trace_sitd(EHCIState *s, target_phys_addr_t addr,
651 EHCIsitd *sitd)
653 trace_usb_ehci_sitd(addr, sitd->next,
654 (bool)(sitd->results & SITD_RESULTS_ACTIVE));
657 /* queue management */
659 static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, int async)
661 EHCIQueue *q;
663 q = g_malloc0(sizeof(*q));
664 q->ehci = ehci;
665 q->async_schedule = async;
666 QTAILQ_INSERT_HEAD(&ehci->queues, q, next);
667 trace_usb_ehci_queue_action(q, "alloc");
668 return q;
671 static void ehci_free_queue(EHCIQueue *q)
673 trace_usb_ehci_queue_action(q, "free");
674 if (q->async == EHCI_ASYNC_INFLIGHT) {
675 usb_cancel_packet(&q->packet);
677 QTAILQ_REMOVE(&q->ehci->queues, q, next);
678 g_free(q);
681 static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr)
683 EHCIQueue *q;
685 QTAILQ_FOREACH(q, &ehci->queues, next) {
686 if (addr == q->qhaddr) {
687 return q;
690 return NULL;
693 static void ehci_queues_rip_unused(EHCIState *ehci)
695 EHCIQueue *q, *tmp;
697 QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
698 if (q->seen) {
699 q->seen = 0;
700 q->ts = ehci->last_run_ns;
701 continue;
703 if (ehci->last_run_ns < q->ts + 250000000) {
704 /* allow 0.25 sec idle */
705 continue;
707 ehci_free_queue(q);
711 static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev)
713 EHCIQueue *q, *tmp;
715 QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
716 if (q->packet.owner != dev) {
717 continue;
719 ehci_free_queue(q);
723 static void ehci_queues_rip_all(EHCIState *ehci)
725 EHCIQueue *q, *tmp;
727 QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
728 ehci_free_queue(q);
732 /* Attach or detach a device on root hub */
734 static void ehci_attach(USBPort *port)
736 EHCIState *s = port->opaque;
737 uint32_t *portsc = &s->portsc[port->index];
739 trace_usb_ehci_port_attach(port->index, port->dev->product_desc);
741 if (*portsc & PORTSC_POWNER) {
742 USBPort *companion = s->companion_ports[port->index];
743 companion->dev = port->dev;
744 companion->ops->attach(companion);
745 return;
748 *portsc |= PORTSC_CONNECT;
749 *portsc |= PORTSC_CSC;
751 ehci_set_interrupt(s, USBSTS_PCD);
754 static void ehci_detach(USBPort *port)
756 EHCIState *s = port->opaque;
757 uint32_t *portsc = &s->portsc[port->index];
759 trace_usb_ehci_port_detach(port->index);
761 if (*portsc & PORTSC_POWNER) {
762 USBPort *companion = s->companion_ports[port->index];
763 companion->ops->detach(companion);
764 companion->dev = NULL;
765 return;
768 ehci_queues_rip_device(s, port->dev);
770 *portsc &= ~(PORTSC_CONNECT|PORTSC_PED);
771 *portsc |= PORTSC_CSC;
773 ehci_set_interrupt(s, USBSTS_PCD);
776 static void ehci_child_detach(USBPort *port, USBDevice *child)
778 EHCIState *s = port->opaque;
779 uint32_t portsc = s->portsc[port->index];
781 if (portsc & PORTSC_POWNER) {
782 USBPort *companion = s->companion_ports[port->index];
783 companion->ops->child_detach(companion, child);
784 companion->dev = NULL;
785 return;
788 ehci_queues_rip_device(s, child);
791 static void ehci_wakeup(USBPort *port)
793 EHCIState *s = port->opaque;
794 uint32_t portsc = s->portsc[port->index];
796 if (portsc & PORTSC_POWNER) {
797 USBPort *companion = s->companion_ports[port->index];
798 if (companion->ops->wakeup) {
799 companion->ops->wakeup(companion);
804 static int ehci_register_companion(USBBus *bus, USBPort *ports[],
805 uint32_t portcount, uint32_t firstport)
807 EHCIState *s = container_of(bus, EHCIState, bus);
808 uint32_t i;
810 if (firstport + portcount > NB_PORTS) {
811 qerror_report(QERR_INVALID_PARAMETER_VALUE, "firstport",
812 "firstport on masterbus");
813 error_printf_unless_qmp(
814 "firstport value of %u makes companion take ports %u - %u, which "
815 "is outside of the valid range of 0 - %u\n", firstport, firstport,
816 firstport + portcount - 1, NB_PORTS - 1);
817 return -1;
820 for (i = 0; i < portcount; i++) {
821 if (s->companion_ports[firstport + i]) {
822 qerror_report(QERR_INVALID_PARAMETER_VALUE, "masterbus",
823 "an USB masterbus");
824 error_printf_unless_qmp(
825 "port %u on masterbus %s already has a companion assigned\n",
826 firstport + i, bus->qbus.name);
827 return -1;
831 for (i = 0; i < portcount; i++) {
832 s->companion_ports[firstport + i] = ports[i];
833 s->ports[firstport + i].speedmask |=
834 USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL;
835 /* Ensure devs attached before the initial reset go to the companion */
836 s->portsc[firstport + i] = PORTSC_POWNER;
839 s->companion_count++;
840 s->mmio[0x05] = (s->companion_count << 4) | portcount;
842 return 0;
845 /* 4.1 host controller initialization */
846 static void ehci_reset(void *opaque)
848 EHCIState *s = opaque;
849 int i;
850 USBDevice *devs[NB_PORTS];
852 trace_usb_ehci_reset();
855 * Do the detach before touching portsc, so that it correctly gets send to
856 * us or to our companion based on PORTSC_POWNER before the reset.
858 for(i = 0; i < NB_PORTS; i++) {
859 devs[i] = s->ports[i].dev;
860 if (devs[i] && devs[i]->attached) {
861 usb_detach(&s->ports[i]);
865 memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
867 s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
868 s->usbsts = USBSTS_HALT;
870 s->astate = EST_INACTIVE;
871 s->pstate = EST_INACTIVE;
872 s->isoch_pause = -1;
873 s->attach_poll_counter = 0;
875 for(i = 0; i < NB_PORTS; i++) {
876 if (s->companion_ports[i]) {
877 s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
878 } else {
879 s->portsc[i] = PORTSC_PPOWER;
881 if (devs[i] && devs[i]->attached) {
882 usb_attach(&s->ports[i]);
885 ehci_queues_rip_all(s);
888 static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
890 EHCIState *s = ptr;
891 uint32_t val;
893 val = s->mmio[addr];
895 return val;
898 static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
900 EHCIState *s = ptr;
901 uint32_t val;
903 val = s->mmio[addr] | (s->mmio[addr+1] << 8);
905 return val;
908 static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
910 EHCIState *s = ptr;
911 uint32_t val;
913 val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
914 (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
916 trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
917 return val;
920 static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
922 fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
923 exit(1);
926 static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
928 fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
929 exit(1);
932 static void handle_port_owner_write(EHCIState *s, int port, uint32_t owner)
934 USBDevice *dev = s->ports[port].dev;
935 uint32_t *portsc = &s->portsc[port];
936 uint32_t orig;
938 if (s->companion_ports[port] == NULL)
939 return;
941 owner = owner & PORTSC_POWNER;
942 orig = *portsc & PORTSC_POWNER;
944 if (!(owner ^ orig)) {
945 return;
948 if (dev && dev->attached) {
949 usb_detach(&s->ports[port]);
952 *portsc &= ~PORTSC_POWNER;
953 *portsc |= owner;
955 if (dev && dev->attached) {
956 usb_attach(&s->ports[port]);
960 static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
962 uint32_t *portsc = &s->portsc[port];
963 USBDevice *dev = s->ports[port].dev;
965 /* Clear rwc bits */
966 *portsc &= ~(val & PORTSC_RWC_MASK);
967 /* The guest may clear, but not set the PED bit */
968 *portsc &= val | ~PORTSC_PED;
969 /* POWNER is masked out by RO_MASK as it is RO when we've no companion */
970 handle_port_owner_write(s, port, val);
971 /* And finally apply RO_MASK */
972 val &= PORTSC_RO_MASK;
974 if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
975 trace_usb_ehci_port_reset(port, 1);
978 if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
979 trace_usb_ehci_port_reset(port, 0);
980 if (dev && dev->attached) {
981 usb_attach(&s->ports[port]);
982 usb_send_msg(dev, USB_MSG_RESET);
983 *portsc &= ~PORTSC_CSC;
987 * Table 2.16 Set the enable bit(and enable bit change) to indicate
988 * to SW that this port has a high speed device attached
990 if (dev && dev->attached && (dev->speedmask & USB_SPEED_MASK_HIGH)) {
991 val |= PORTSC_PED;
995 *portsc &= ~PORTSC_RO_MASK;
996 *portsc |= val;
999 static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
1001 EHCIState *s = ptr;
1002 uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
1003 uint32_t old = *mmio;
1004 int i;
1006 trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
1008 /* Only aligned reads are allowed on OHCI */
1009 if (addr & 3) {
1010 fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
1011 TARGET_FMT_plx "\n", addr);
1012 return;
1015 if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
1016 handle_port_status_write(s, (addr-PORTSC)/4, val);
1017 trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1018 return;
1021 if (addr < OPREGBASE) {
1022 fprintf(stderr, "usb-ehci: write attempt to read-only register"
1023 TARGET_FMT_plx "\n", addr);
1024 return;
1028 /* Do any register specific pre-write processing here. */
1029 switch(addr) {
1030 case USBCMD:
1031 if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) {
1032 qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
1033 SET_LAST_RUN_CLOCK(s);
1034 ehci_clear_usbsts(s, USBSTS_HALT);
1037 if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) {
1038 qemu_del_timer(s->frame_timer);
1039 // TODO - should finish out some stuff before setting halt
1040 ehci_set_usbsts(s, USBSTS_HALT);
1043 if (val & USBCMD_HCRESET) {
1044 ehci_reset(s);
1045 val &= ~USBCMD_HCRESET;
1048 /* not supporting dynamic frame list size at the moment */
1049 if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
1050 fprintf(stderr, "attempt to set frame list size -- value %d\n",
1051 val & USBCMD_FLS);
1052 val &= ~USBCMD_FLS;
1054 break;
1056 case USBSTS:
1057 val &= USBSTS_RO_MASK; // bits 6 thru 31 are RO
1058 ehci_clear_usbsts(s, val); // bits 0 thru 5 are R/WC
1059 val = s->usbsts;
1060 ehci_set_interrupt(s, 0);
1061 break;
1063 case USBINTR:
1064 val &= USBINTR_MASK;
1065 break;
1067 case FRINDEX:
1068 s->sofv = val >> 3;
1069 break;
1071 case CONFIGFLAG:
1072 val &= 0x1;
1073 if (val) {
1074 for(i = 0; i < NB_PORTS; i++)
1075 handle_port_owner_write(s, i, 0);
1077 break;
1079 case PERIODICLISTBASE:
1080 if ((s->usbcmd & USBCMD_PSE) && (s->usbcmd & USBCMD_RUNSTOP)) {
1081 fprintf(stderr,
1082 "ehci: PERIODIC list base register set while periodic schedule\n"
1083 " is enabled and HC is enabled\n");
1085 break;
1087 case ASYNCLISTADDR:
1088 if ((s->usbcmd & USBCMD_ASE) && (s->usbcmd & USBCMD_RUNSTOP)) {
1089 fprintf(stderr,
1090 "ehci: ASYNC list address register set while async schedule\n"
1091 " is enabled and HC is enabled\n");
1093 break;
1096 *mmio = val;
1097 trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1101 // TODO : Put in common header file, duplication from usb-ohci.c
1103 /* Get an array of dwords from main memory */
1104 static inline int get_dwords(uint32_t addr, uint32_t *buf, int num)
1106 int i;
1108 for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1109 cpu_physical_memory_rw(addr,(uint8_t *)buf, sizeof(*buf), 0);
1110 *buf = le32_to_cpu(*buf);
1113 return 1;
1116 /* Put an array of dwords in to main memory */
1117 static inline int put_dwords(uint32_t addr, uint32_t *buf, int num)
1119 int i;
1121 for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1122 uint32_t tmp = cpu_to_le32(*buf);
1123 cpu_physical_memory_rw(addr,(uint8_t *)&tmp, sizeof(tmp), 1);
1126 return 1;
1129 // 4.10.2
1131 static int ehci_qh_do_overlay(EHCIQueue *q)
1133 int i;
1134 int dtoggle;
1135 int ping;
1136 int eps;
1137 int reload;
1139 // remember values in fields to preserve in qh after overlay
1141 dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
1142 ping = q->qh.token & QTD_TOKEN_PING;
1144 q->qh.current_qtd = q->qtdaddr;
1145 q->qh.next_qtd = q->qtd.next;
1146 q->qh.altnext_qtd = q->qtd.altnext;
1147 q->qh.token = q->qtd.token;
1150 eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
1151 if (eps == EHCI_QH_EPS_HIGH) {
1152 q->qh.token &= ~QTD_TOKEN_PING;
1153 q->qh.token |= ping;
1156 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1157 set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1159 for (i = 0; i < 5; i++) {
1160 q->qh.bufptr[i] = q->qtd.bufptr[i];
1163 if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
1164 // preserve QH DT bit
1165 q->qh.token &= ~QTD_TOKEN_DTOGGLE;
1166 q->qh.token |= dtoggle;
1169 q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
1170 q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
1172 put_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1174 return 0;
1177 static int ehci_init_transfer(EHCIQueue *q)
1179 uint32_t cpage, offset, bytes, plen;
1180 target_phys_addr_t page;
1182 cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1183 bytes = get_field(q->qh.token, QTD_TOKEN_TBYTES);
1184 offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1185 qemu_sglist_init(&q->sgl, 5);
1187 while (bytes > 0) {
1188 if (cpage > 4) {
1189 fprintf(stderr, "cpage out of range (%d)\n", cpage);
1190 return USB_RET_PROCERR;
1193 page = q->qh.bufptr[cpage] & QTD_BUFPTR_MASK;
1194 page += offset;
1195 plen = bytes;
1196 if (plen > 4096 - offset) {
1197 plen = 4096 - offset;
1198 offset = 0;
1199 cpage++;
1202 qemu_sglist_add(&q->sgl, page, plen);
1203 bytes -= plen;
1205 return 0;
1208 static void ehci_finish_transfer(EHCIQueue *q, int status)
1210 uint32_t cpage, offset;
1212 qemu_sglist_destroy(&q->sgl);
1214 if (status > 0) {
1215 /* update cpage & offset */
1216 cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1217 offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1219 offset += status;
1220 cpage += offset >> QTD_BUFPTR_SH;
1221 offset &= ~QTD_BUFPTR_MASK;
1223 set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1224 q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
1225 q->qh.bufptr[0] |= offset;
1229 static void ehci_async_complete_packet(USBPort *port, USBPacket *packet)
1231 EHCIQueue *q;
1232 EHCIState *s = port->opaque;
1233 uint32_t portsc = s->portsc[port->index];
1235 if (portsc & PORTSC_POWNER) {
1236 USBPort *companion = s->companion_ports[port->index];
1237 companion->ops->complete(companion, packet);
1238 return;
1241 q = container_of(packet, EHCIQueue, packet);
1242 trace_usb_ehci_queue_action(q, "wakeup");
1243 assert(q->async == EHCI_ASYNC_INFLIGHT);
1244 q->async = EHCI_ASYNC_FINISHED;
1245 q->usb_status = packet->result;
1248 static void ehci_execute_complete(EHCIQueue *q)
1250 int c_err, reload;
1252 assert(q->async != EHCI_ASYNC_INFLIGHT);
1253 q->async = EHCI_ASYNC_NONE;
1255 DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1256 q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1258 if (q->usb_status < 0) {
1259 err:
1260 /* TO-DO: put this is in a function that can be invoked below as well */
1261 c_err = get_field(q->qh.token, QTD_TOKEN_CERR);
1262 c_err--;
1263 set_field(&q->qh.token, c_err, QTD_TOKEN_CERR);
1265 switch(q->usb_status) {
1266 case USB_RET_NODEV:
1267 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
1268 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1269 break;
1270 case USB_RET_STALL:
1271 q->qh.token |= QTD_TOKEN_HALT;
1272 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1273 break;
1274 case USB_RET_NAK:
1275 /* 4.10.3 */
1276 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1277 if ((q->pid == USB_TOKEN_IN) && reload) {
1278 int nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1279 nakcnt--;
1280 set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1281 } else if (!reload) {
1282 return;
1284 break;
1285 case USB_RET_BABBLE:
1286 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1287 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1288 break;
1289 default:
1290 /* should not be triggerable */
1291 fprintf(stderr, "USB invalid response %d to handle\n", q->usb_status);
1292 assert(0);
1293 break;
1295 } else {
1296 // DPRINTF("Short packet condition\n");
1297 // TODO check 4.12 for splits
1299 if ((q->usb_status > q->tbytes) && (q->pid == USB_TOKEN_IN)) {
1300 q->usb_status = USB_RET_BABBLE;
1301 goto err;
1304 if (q->tbytes && q->pid == USB_TOKEN_IN) {
1305 q->tbytes -= q->usb_status;
1306 } else {
1307 q->tbytes = 0;
1310 DPRINTF("updating tbytes to %d\n", q->tbytes);
1311 set_field(&q->qh.token, q->tbytes, QTD_TOKEN_TBYTES);
1313 ehci_finish_transfer(q, q->usb_status);
1314 usb_packet_unmap(&q->packet);
1316 q->qh.token ^= QTD_TOKEN_DTOGGLE;
1317 q->qh.token &= ~QTD_TOKEN_ACTIVE;
1319 if ((q->usb_status >= 0) && (q->qh.token & QTD_TOKEN_IOC)) {
1320 ehci_record_interrupt(q->ehci, USBSTS_INT);
1324 // 4.10.3
1326 static int ehci_execute(EHCIQueue *q)
1328 USBPort *port;
1329 USBDevice *dev;
1330 int ret;
1331 int i;
1332 int endp;
1333 int devadr;
1335 if ( !(q->qh.token & QTD_TOKEN_ACTIVE)) {
1336 fprintf(stderr, "Attempting to execute inactive QH\n");
1337 return USB_RET_PROCERR;
1340 q->tbytes = (q->qh.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1341 if (q->tbytes > BUFF_SIZE) {
1342 fprintf(stderr, "Request for more bytes than allowed\n");
1343 return USB_RET_PROCERR;
1346 q->pid = (q->qh.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1347 switch(q->pid) {
1348 case 0: q->pid = USB_TOKEN_OUT; break;
1349 case 1: q->pid = USB_TOKEN_IN; break;
1350 case 2: q->pid = USB_TOKEN_SETUP; break;
1351 default: fprintf(stderr, "bad token\n"); break;
1354 if (ehci_init_transfer(q) != 0) {
1355 return USB_RET_PROCERR;
1358 endp = get_field(q->qh.epchar, QH_EPCHAR_EP);
1359 devadr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
1361 ret = USB_RET_NODEV;
1363 usb_packet_setup(&q->packet, q->pid, devadr, endp);
1364 usb_packet_map(&q->packet, &q->sgl);
1366 // TO-DO: associating device with ehci port
1367 for(i = 0; i < NB_PORTS; i++) {
1368 port = &q->ehci->ports[i];
1369 dev = port->dev;
1371 if (!(q->ehci->portsc[i] &(PORTSC_CONNECT))) {
1372 DPRINTF("Port %d, no exec, not connected(%08X)\n",
1373 i, q->ehci->portsc[i]);
1374 continue;
1377 ret = usb_handle_packet(dev, &q->packet);
1379 DPRINTF("submit: qh %x next %x qtd %x pid %x len %zd "
1380 "(total %d) endp %x ret %d\n",
1381 q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1382 q->packet.iov.size, q->tbytes, endp, ret);
1384 if (ret != USB_RET_NODEV) {
1385 break;
1389 if (ret > BUFF_SIZE) {
1390 fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1391 return USB_RET_PROCERR;
1394 return ret;
1397 /* 4.7.2
1400 static int ehci_process_itd(EHCIState *ehci,
1401 EHCIitd *itd)
1403 USBPort *port;
1404 USBDevice *dev;
1405 int ret;
1406 uint32_t i, j, len, pid, dir, devaddr, endp;
1407 uint32_t pg, off, ptr1, ptr2, max, mult;
1409 dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1410 devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1411 endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1412 max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
1413 mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT);
1415 for(i = 0; i < 8; i++) {
1416 if (itd->transact[i] & ITD_XACT_ACTIVE) {
1417 pg = get_field(itd->transact[i], ITD_XACT_PGSEL);
1418 off = itd->transact[i] & ITD_XACT_OFFSET_MASK;
1419 ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK);
1420 ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK);
1421 len = get_field(itd->transact[i], ITD_XACT_LENGTH);
1423 if (len > max * mult) {
1424 len = max * mult;
1427 if (len > BUFF_SIZE) {
1428 return USB_RET_PROCERR;
1431 qemu_sglist_init(&ehci->isgl, 2);
1432 if (off + len > 4096) {
1433 /* transfer crosses page border */
1434 uint32_t len2 = off + len - 4096;
1435 uint32_t len1 = len - len2;
1436 qemu_sglist_add(&ehci->isgl, ptr1 + off, len1);
1437 qemu_sglist_add(&ehci->isgl, ptr2, len2);
1438 } else {
1439 qemu_sglist_add(&ehci->isgl, ptr1 + off, len);
1442 pid = dir ? USB_TOKEN_IN : USB_TOKEN_OUT;
1444 usb_packet_setup(&ehci->ipacket, pid, devaddr, endp);
1445 usb_packet_map(&ehci->ipacket, &ehci->isgl);
1447 ret = USB_RET_NODEV;
1448 for (j = 0; j < NB_PORTS; j++) {
1449 port = &ehci->ports[j];
1450 dev = port->dev;
1452 if (!(ehci->portsc[j] &(PORTSC_CONNECT))) {
1453 continue;
1456 ret = usb_handle_packet(dev, &ehci->ipacket);
1458 if (ret != USB_RET_NODEV) {
1459 break;
1463 usb_packet_unmap(&ehci->ipacket);
1464 qemu_sglist_destroy(&ehci->isgl);
1466 #if 0
1467 /* In isoch, there is no facility to indicate a NAK so let's
1468 * instead just complete a zero-byte transaction. Setting
1469 * DBERR seems too draconian.
1472 if (ret == USB_RET_NAK) {
1473 if (ehci->isoch_pause > 0) {
1474 DPRINTF("ISOCH: received a NAK but paused so returning\n");
1475 ehci->isoch_pause--;
1476 return 0;
1477 } else if (ehci->isoch_pause == -1) {
1478 DPRINTF("ISOCH: recv NAK & isoch pause inactive, setting\n");
1479 // Pause frindex for up to 50 msec waiting for data from
1480 // remote
1481 ehci->isoch_pause = 50;
1482 return 0;
1483 } else {
1484 DPRINTF("ISOCH: isoch pause timeout! return 0\n");
1485 ret = 0;
1487 } else {
1488 DPRINTF("ISOCH: received ACK, clearing pause\n");
1489 ehci->isoch_pause = -1;
1491 #else
1492 if (ret == USB_RET_NAK) {
1493 ret = 0;
1495 #endif
1497 if (ret >= 0) {
1498 if (!dir) {
1499 /* OUT */
1500 set_field(&itd->transact[i], len - ret, ITD_XACT_LENGTH);
1501 } else {
1502 /* IN */
1503 set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1506 if (itd->transact[i] & ITD_XACT_IOC) {
1507 ehci_record_interrupt(ehci, USBSTS_INT);
1510 itd->transact[i] &= ~ITD_XACT_ACTIVE;
1513 return 0;
1516 /* This state is the entry point for asynchronous schedule
1517 * processing. Entry here consitutes a EHCI start event state (4.8.5)
1519 static int ehci_state_waitlisthead(EHCIState *ehci, int async)
1521 EHCIqh qh;
1522 int i = 0;
1523 int again = 0;
1524 uint32_t entry = ehci->asynclistaddr;
1526 /* set reclamation flag at start event (4.8.6) */
1527 if (async) {
1528 ehci_set_usbsts(ehci, USBSTS_REC);
1531 ehci_queues_rip_unused(ehci);
1533 /* Find the head of the list (4.9.1.1) */
1534 for(i = 0; i < MAX_QH; i++) {
1535 get_dwords(NLPTR_GET(entry), (uint32_t *) &qh, sizeof(EHCIqh) >> 2);
1536 ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
1538 if (qh.epchar & QH_EPCHAR_H) {
1539 if (async) {
1540 entry |= (NLPTR_TYPE_QH << 1);
1543 ehci_set_fetch_addr(ehci, async, entry);
1544 ehci_set_state(ehci, async, EST_FETCHENTRY);
1545 again = 1;
1546 goto out;
1549 entry = qh.next;
1550 if (entry == ehci->asynclistaddr) {
1551 break;
1555 /* no head found for list. */
1557 ehci_set_state(ehci, async, EST_ACTIVE);
1559 out:
1560 return again;
1564 /* This state is the entry point for periodic schedule processing as
1565 * well as being a continuation state for async processing.
1567 static int ehci_state_fetchentry(EHCIState *ehci, int async)
1569 int again = 0;
1570 uint32_t entry = ehci_get_fetch_addr(ehci, async);
1572 if (entry < 0x1000) {
1573 DPRINTF("fetchentry: entry invalid (0x%08x)\n", entry);
1574 ehci_set_state(ehci, async, EST_ACTIVE);
1575 goto out;
1578 /* section 4.8, only QH in async schedule */
1579 if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1580 fprintf(stderr, "non queue head request in async schedule\n");
1581 return -1;
1584 switch (NLPTR_TYPE_GET(entry)) {
1585 case NLPTR_TYPE_QH:
1586 ehci_set_state(ehci, async, EST_FETCHQH);
1587 again = 1;
1588 break;
1590 case NLPTR_TYPE_ITD:
1591 ehci_set_state(ehci, async, EST_FETCHITD);
1592 again = 1;
1593 break;
1595 case NLPTR_TYPE_STITD:
1596 ehci_set_state(ehci, async, EST_FETCHSITD);
1597 again = 1;
1598 break;
1600 default:
1601 /* TODO: handle FSTN type */
1602 fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1603 "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1604 return -1;
1607 out:
1608 return again;
1611 static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1613 uint32_t entry;
1614 EHCIQueue *q;
1615 int reload;
1617 entry = ehci_get_fetch_addr(ehci, async);
1618 q = ehci_find_queue_by_qh(ehci, entry);
1619 if (NULL == q) {
1620 q = ehci_alloc_queue(ehci, async);
1622 q->qhaddr = entry;
1623 q->seen++;
1625 if (q->seen > 1) {
1626 /* we are going in circles -- stop processing */
1627 ehci_set_state(ehci, async, EST_ACTIVE);
1628 q = NULL;
1629 goto out;
1632 get_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1633 ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
1635 if (q->async == EHCI_ASYNC_INFLIGHT) {
1636 /* I/O still in progress -- skip queue */
1637 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1638 goto out;
1640 if (q->async == EHCI_ASYNC_FINISHED) {
1641 /* I/O finished -- continue processing queue */
1642 trace_usb_ehci_queue_action(q, "resume");
1643 ehci_set_state(ehci, async, EST_EXECUTING);
1644 goto out;
1647 if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1649 /* EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1650 if (ehci->usbsts & USBSTS_REC) {
1651 ehci_clear_usbsts(ehci, USBSTS_REC);
1652 } else {
1653 DPRINTF("FETCHQH: QH 0x%08x. H-bit set, reclamation status reset"
1654 " - done processing\n", q->qhaddr);
1655 ehci_set_state(ehci, async, EST_ACTIVE);
1656 q = NULL;
1657 goto out;
1661 #if EHCI_DEBUG
1662 if (q->qhaddr != q->qh.next) {
1663 DPRINTF("FETCHQH: QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1664 q->qhaddr,
1665 q->qh.epchar & QH_EPCHAR_H,
1666 q->qh.token & QTD_TOKEN_HALT,
1667 q->qh.token & QTD_TOKEN_ACTIVE,
1668 q->qh.next);
1670 #endif
1672 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1673 if (reload) {
1674 set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1677 if (q->qh.token & QTD_TOKEN_HALT) {
1678 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1680 } else if ((q->qh.token & QTD_TOKEN_ACTIVE) && (q->qh.current_qtd > 0x1000)) {
1681 q->qtdaddr = q->qh.current_qtd;
1682 ehci_set_state(ehci, async, EST_FETCHQTD);
1684 } else {
1685 /* EHCI spec version 1.0 Section 4.10.2 */
1686 ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1689 out:
1690 return q;
1693 static int ehci_state_fetchitd(EHCIState *ehci, int async)
1695 uint32_t entry;
1696 EHCIitd itd;
1698 assert(!async);
1699 entry = ehci_get_fetch_addr(ehci, async);
1701 get_dwords(NLPTR_GET(entry),(uint32_t *) &itd,
1702 sizeof(EHCIitd) >> 2);
1703 ehci_trace_itd(ehci, entry, &itd);
1705 if (ehci_process_itd(ehci, &itd) != 0) {
1706 return -1;
1709 put_dwords(NLPTR_GET(entry), (uint32_t *) &itd,
1710 sizeof(EHCIitd) >> 2);
1711 ehci_set_fetch_addr(ehci, async, itd.next);
1712 ehci_set_state(ehci, async, EST_FETCHENTRY);
1714 return 1;
1717 static int ehci_state_fetchsitd(EHCIState *ehci, int async)
1719 uint32_t entry;
1720 EHCIsitd sitd;
1722 assert(!async);
1723 entry = ehci_get_fetch_addr(ehci, async);
1725 get_dwords(NLPTR_GET(entry), (uint32_t *)&sitd,
1726 sizeof(EHCIsitd) >> 2);
1727 ehci_trace_sitd(ehci, entry, &sitd);
1729 if (!(sitd.results & SITD_RESULTS_ACTIVE)) {
1730 /* siTD is not active, nothing to do */;
1731 } else {
1732 /* TODO: split transfers are not implemented */
1733 fprintf(stderr, "WARNING: Skipping active siTD\n");
1736 ehci_set_fetch_addr(ehci, async, sitd.next);
1737 ehci_set_state(ehci, async, EST_FETCHENTRY);
1738 return 1;
1741 /* Section 4.10.2 - paragraph 3 */
1742 static int ehci_state_advqueue(EHCIQueue *q, int async)
1744 #if 0
1745 /* TO-DO: 4.10.2 - paragraph 2
1746 * if I-bit is set to 1 and QH is not active
1747 * go to horizontal QH
1749 if (I-bit set) {
1750 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1751 goto out;
1753 #endif
1756 * want data and alt-next qTD is valid
1758 if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1759 (q->qh.altnext_qtd > 0x1000) &&
1760 (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1761 q->qtdaddr = q->qh.altnext_qtd;
1762 ehci_set_state(q->ehci, async, EST_FETCHQTD);
1765 * next qTD is valid
1767 } else if ((q->qh.next_qtd > 0x1000) &&
1768 (NLPTR_TBIT(q->qh.next_qtd) == 0)) {
1769 q->qtdaddr = q->qh.next_qtd;
1770 ehci_set_state(q->ehci, async, EST_FETCHQTD);
1773 * no valid qTD, try next QH
1775 } else {
1776 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1779 return 1;
1782 /* Section 4.10.2 - paragraph 4 */
1783 static int ehci_state_fetchqtd(EHCIQueue *q, int async)
1785 int again = 0;
1787 get_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qtd, sizeof(EHCIqtd) >> 2);
1788 ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &q->qtd);
1790 if (q->qtd.token & QTD_TOKEN_ACTIVE) {
1791 ehci_set_state(q->ehci, async, EST_EXECUTE);
1792 again = 1;
1793 } else {
1794 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1795 again = 1;
1798 return again;
1801 static int ehci_state_horizqh(EHCIQueue *q, int async)
1803 int again = 0;
1805 if (ehci_get_fetch_addr(q->ehci, async) != q->qh.next) {
1806 ehci_set_fetch_addr(q->ehci, async, q->qh.next);
1807 ehci_set_state(q->ehci, async, EST_FETCHENTRY);
1808 again = 1;
1809 } else {
1810 ehci_set_state(q->ehci, async, EST_ACTIVE);
1813 return again;
1817 * Write the qh back to guest physical memory. This step isn't
1818 * in the EHCI spec but we need to do it since we don't share
1819 * physical memory with our guest VM.
1821 * The first three dwords are read-only for the EHCI, so skip them
1822 * when writing back the qh.
1824 static void ehci_flush_qh(EHCIQueue *q)
1826 uint32_t *qh = (uint32_t *) &q->qh;
1827 uint32_t dwords = sizeof(EHCIqh) >> 2;
1828 uint32_t addr = NLPTR_GET(q->qhaddr);
1830 put_dwords(addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1833 static int ehci_state_execute(EHCIQueue *q, int async)
1835 int again = 0;
1836 int reload, nakcnt;
1837 int smask;
1839 if (ehci_qh_do_overlay(q) != 0) {
1840 return -1;
1843 smask = get_field(q->qh.epcap, QH_EPCAP_SMASK);
1845 if (!smask) {
1846 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1847 nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1848 if (reload && !nakcnt) {
1849 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1850 again = 1;
1851 goto out;
1855 // TODO verify enough time remains in the uframe as in 4.4.1.1
1856 // TODO write back ptr to async list when done or out of time
1857 // TODO Windows does not seem to ever set the MULT field
1859 if (!async) {
1860 int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1861 if (!transactCtr) {
1862 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1863 again = 1;
1864 goto out;
1868 if (async) {
1869 ehci_set_usbsts(q->ehci, USBSTS_REC);
1872 q->usb_status = ehci_execute(q);
1873 if (q->usb_status == USB_RET_PROCERR) {
1874 again = -1;
1875 goto out;
1877 if (q->usb_status == USB_RET_ASYNC) {
1878 ehci_flush_qh(q);
1879 trace_usb_ehci_queue_action(q, "suspend");
1880 q->async = EHCI_ASYNC_INFLIGHT;
1881 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1882 again = 1;
1883 goto out;
1886 ehci_set_state(q->ehci, async, EST_EXECUTING);
1887 again = 1;
1889 out:
1890 return again;
1893 static int ehci_state_executing(EHCIQueue *q, int async)
1895 int again = 0;
1896 int reload, nakcnt;
1898 ehci_execute_complete(q);
1899 if (q->usb_status == USB_RET_ASYNC) {
1900 goto out;
1902 if (q->usb_status == USB_RET_PROCERR) {
1903 again = -1;
1904 goto out;
1907 // 4.10.3
1908 if (!async) {
1909 int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1910 transactCtr--;
1911 set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
1912 // 4.10.3, bottom of page 82, should exit this state when transaction
1913 // counter decrements to 0
1916 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1917 if (reload) {
1918 nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1919 if (q->usb_status == USB_RET_NAK) {
1920 if (nakcnt) {
1921 nakcnt--;
1923 } else {
1924 nakcnt = reload;
1926 set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1929 /* 4.10.5 */
1930 if ((q->usb_status == USB_RET_NAK) || (q->qh.token & QTD_TOKEN_ACTIVE)) {
1931 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1932 } else {
1933 ehci_set_state(q->ehci, async, EST_WRITEBACK);
1936 again = 1;
1938 out:
1939 ehci_flush_qh(q);
1940 return again;
1944 static int ehci_state_writeback(EHCIQueue *q, int async)
1946 int again = 0;
1948 /* Write back the QTD from the QH area */
1949 ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), (EHCIqtd*) &q->qh.next_qtd);
1950 put_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qh.next_qtd,
1951 sizeof(EHCIqtd) >> 2);
1954 * EHCI specs say go horizontal here.
1956 * We can also advance the queue here for performance reasons. We
1957 * need to take care to only take that shortcut in case we've
1958 * processed the qtd just written back without errors, i.e. halt
1959 * bit is clear.
1961 if (q->qh.token & QTD_TOKEN_HALT) {
1962 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1963 again = 1;
1964 } else {
1965 ehci_set_state(q->ehci, async, EST_ADVANCEQUEUE);
1966 again = 1;
1968 return again;
1972 * This is the state machine that is common to both async and periodic
1975 static void ehci_advance_state(EHCIState *ehci,
1976 int async)
1978 EHCIQueue *q = NULL;
1979 int again;
1980 int iter = 0;
1982 do {
1983 if (ehci_get_state(ehci, async) == EST_FETCHQH) {
1984 iter++;
1985 /* if we are roaming a lot of QH without executing a qTD
1986 * something is wrong with the linked list. TO-DO: why is
1987 * this hack needed?
1989 assert(iter < MAX_ITERATIONS);
1990 #if 0
1991 if (iter > MAX_ITERATIONS) {
1992 DPRINTF("\n*** advance_state: bailing on MAX ITERATIONS***\n");
1993 ehci_set_state(ehci, async, EST_ACTIVE);
1994 break;
1996 #endif
1998 switch(ehci_get_state(ehci, async)) {
1999 case EST_WAITLISTHEAD:
2000 again = ehci_state_waitlisthead(ehci, async);
2001 break;
2003 case EST_FETCHENTRY:
2004 again = ehci_state_fetchentry(ehci, async);
2005 break;
2007 case EST_FETCHQH:
2008 q = ehci_state_fetchqh(ehci, async);
2009 again = q ? 1 : 0;
2010 break;
2012 case EST_FETCHITD:
2013 again = ehci_state_fetchitd(ehci, async);
2014 break;
2016 case EST_FETCHSITD:
2017 again = ehci_state_fetchsitd(ehci, async);
2018 break;
2020 case EST_ADVANCEQUEUE:
2021 again = ehci_state_advqueue(q, async);
2022 break;
2024 case EST_FETCHQTD:
2025 again = ehci_state_fetchqtd(q, async);
2026 break;
2028 case EST_HORIZONTALQH:
2029 again = ehci_state_horizqh(q, async);
2030 break;
2032 case EST_EXECUTE:
2033 iter = 0;
2034 again = ehci_state_execute(q, async);
2035 break;
2037 case EST_EXECUTING:
2038 assert(q != NULL);
2039 again = ehci_state_executing(q, async);
2040 break;
2042 case EST_WRITEBACK:
2043 again = ehci_state_writeback(q, async);
2044 break;
2046 default:
2047 fprintf(stderr, "Bad state!\n");
2048 again = -1;
2049 assert(0);
2050 break;
2053 if (again < 0) {
2054 fprintf(stderr, "processing error - resetting ehci HC\n");
2055 ehci_reset(ehci);
2056 again = 0;
2057 assert(0);
2060 while (again);
2062 ehci_commit_interrupt(ehci);
2065 static void ehci_advance_async_state(EHCIState *ehci)
2067 int async = 1;
2069 switch(ehci_get_state(ehci, async)) {
2070 case EST_INACTIVE:
2071 if (!(ehci->usbcmd & USBCMD_ASE)) {
2072 break;
2074 ehci_set_usbsts(ehci, USBSTS_ASS);
2075 ehci_set_state(ehci, async, EST_ACTIVE);
2076 // No break, fall through to ACTIVE
2078 case EST_ACTIVE:
2079 if ( !(ehci->usbcmd & USBCMD_ASE)) {
2080 ehci_clear_usbsts(ehci, USBSTS_ASS);
2081 ehci_set_state(ehci, async, EST_INACTIVE);
2082 break;
2085 /* If the doorbell is set, the guest wants to make a change to the
2086 * schedule. The host controller needs to release cached data.
2087 * (section 4.8.2)
2089 if (ehci->usbcmd & USBCMD_IAAD) {
2090 DPRINTF("ASYNC: doorbell request acknowledged\n");
2091 ehci->usbcmd &= ~USBCMD_IAAD;
2092 ehci_set_interrupt(ehci, USBSTS_IAA);
2093 break;
2096 /* make sure guest has acknowledged */
2097 /* TO-DO: is this really needed? */
2098 if (ehci->usbsts & USBSTS_IAA) {
2099 DPRINTF("IAA status bit still set.\n");
2100 break;
2103 /* check that address register has been set */
2104 if (ehci->asynclistaddr == 0) {
2105 break;
2108 ehci_set_state(ehci, async, EST_WAITLISTHEAD);
2109 ehci_advance_state(ehci, async);
2110 break;
2112 default:
2113 /* this should only be due to a developer mistake */
2114 fprintf(stderr, "ehci: Bad asynchronous state %d. "
2115 "Resetting to active\n", ehci->astate);
2116 assert(0);
2120 static void ehci_advance_periodic_state(EHCIState *ehci)
2122 uint32_t entry;
2123 uint32_t list;
2124 int async = 0;
2126 // 4.6
2128 switch(ehci_get_state(ehci, async)) {
2129 case EST_INACTIVE:
2130 if ( !(ehci->frindex & 7) && (ehci->usbcmd & USBCMD_PSE)) {
2131 ehci_set_usbsts(ehci, USBSTS_PSS);
2132 ehci_set_state(ehci, async, EST_ACTIVE);
2133 // No break, fall through to ACTIVE
2134 } else
2135 break;
2137 case EST_ACTIVE:
2138 if ( !(ehci->frindex & 7) && !(ehci->usbcmd & USBCMD_PSE)) {
2139 ehci_clear_usbsts(ehci, USBSTS_PSS);
2140 ehci_set_state(ehci, async, EST_INACTIVE);
2141 break;
2144 list = ehci->periodiclistbase & 0xfffff000;
2145 /* check that register has been set */
2146 if (list == 0) {
2147 break;
2149 list |= ((ehci->frindex & 0x1ff8) >> 1);
2151 cpu_physical_memory_rw(list, (uint8_t *) &entry, sizeof entry, 0);
2152 entry = le32_to_cpu(entry);
2154 DPRINTF("PERIODIC state adv fr=%d. [%08X] -> %08X\n",
2155 ehci->frindex / 8, list, entry);
2156 ehci_set_fetch_addr(ehci, async,entry);
2157 ehci_set_state(ehci, async, EST_FETCHENTRY);
2158 ehci_advance_state(ehci, async);
2159 break;
2161 default:
2162 /* this should only be due to a developer mistake */
2163 fprintf(stderr, "ehci: Bad periodic state %d. "
2164 "Resetting to active\n", ehci->pstate);
2165 assert(0);
2169 static void ehci_frame_timer(void *opaque)
2171 EHCIState *ehci = opaque;
2172 int64_t expire_time, t_now;
2173 uint64_t ns_elapsed;
2174 int frames;
2175 int i;
2176 int skipped_frames = 0;
2178 t_now = qemu_get_clock_ns(vm_clock);
2179 expire_time = t_now + (get_ticks_per_sec() / ehci->freq);
2181 ns_elapsed = t_now - ehci->last_run_ns;
2182 frames = ns_elapsed / FRAME_TIMER_NS;
2184 for (i = 0; i < frames; i++) {
2185 if ( !(ehci->usbsts & USBSTS_HALT)) {
2186 if (ehci->isoch_pause <= 0) {
2187 ehci->frindex += 8;
2190 if (ehci->frindex > 0x00001fff) {
2191 ehci->frindex = 0;
2192 ehci_set_interrupt(ehci, USBSTS_FLR);
2195 ehci->sofv = (ehci->frindex - 1) >> 3;
2196 ehci->sofv &= 0x000003ff;
2199 if (frames - i > ehci->maxframes) {
2200 skipped_frames++;
2201 } else {
2202 ehci_advance_periodic_state(ehci);
2205 ehci->last_run_ns += FRAME_TIMER_NS;
2208 #if 0
2209 if (skipped_frames) {
2210 DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2212 #endif
2214 /* Async is not inside loop since it executes everything it can once
2215 * called
2217 ehci_advance_async_state(ehci);
2219 qemu_mod_timer(ehci->frame_timer, expire_time);
2223 static const MemoryRegionOps ehci_mem_ops = {
2224 .old_mmio = {
2225 .read = { ehci_mem_readb, ehci_mem_readw, ehci_mem_readl },
2226 .write = { ehci_mem_writeb, ehci_mem_writew, ehci_mem_writel },
2228 .endianness = DEVICE_LITTLE_ENDIAN,
2231 static int usb_ehci_initfn(PCIDevice *dev);
2233 static USBPortOps ehci_port_ops = {
2234 .attach = ehci_attach,
2235 .detach = ehci_detach,
2236 .child_detach = ehci_child_detach,
2237 .wakeup = ehci_wakeup,
2238 .complete = ehci_async_complete_packet,
2241 static USBBusOps ehci_bus_ops = {
2242 .register_companion = ehci_register_companion,
2245 static const VMStateDescription vmstate_ehci = {
2246 .name = "ehci",
2247 .unmigratable = 1,
2250 static Property ehci_properties[] = {
2251 DEFINE_PROP_UINT32("freq", EHCIState, freq, FRAME_TIMER_FREQ),
2252 DEFINE_PROP_UINT32("maxframes", EHCIState, maxframes, 128),
2253 DEFINE_PROP_END_OF_LIST(),
2256 static PCIDeviceInfo ehci_info[] = {
2258 .qdev.name = "usb-ehci",
2259 .qdev.size = sizeof(EHCIState),
2260 .qdev.vmsd = &vmstate_ehci,
2261 .init = usb_ehci_initfn,
2262 .vendor_id = PCI_VENDOR_ID_INTEL,
2263 .device_id = PCI_DEVICE_ID_INTEL_82801D, /* ich4 */
2264 .revision = 0x10,
2265 .class_id = PCI_CLASS_SERIAL_USB,
2266 .qdev.props = ehci_properties,
2268 .qdev.name = "ich9-usb-ehci1",
2269 .qdev.size = sizeof(EHCIState),
2270 .qdev.vmsd = &vmstate_ehci,
2271 .init = usb_ehci_initfn,
2272 .vendor_id = PCI_VENDOR_ID_INTEL,
2273 .device_id = PCI_DEVICE_ID_INTEL_82801I_EHCI1,
2274 .revision = 0x03,
2275 .class_id = PCI_CLASS_SERIAL_USB,
2276 .qdev.props = ehci_properties,
2278 /* end of list */
2282 static int usb_ehci_initfn(PCIDevice *dev)
2284 EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2285 uint8_t *pci_conf = s->dev.config;
2286 int i;
2288 pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2290 /* capabilities pointer */
2291 pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2292 //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2294 pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); // interrupt pin 3
2295 pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2296 pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2298 // pci_conf[0x50] = 0x01; // power management caps
2300 pci_set_byte(&pci_conf[USB_SBRN], USB_RELEASE_2); // release number (2.1.4)
2301 pci_set_byte(&pci_conf[0x61], 0x20); // frame length adjustment (2.1.5)
2302 pci_set_word(&pci_conf[0x62], 0x00); // port wake up capability (2.1.6)
2304 pci_conf[0x64] = 0x00;
2305 pci_conf[0x65] = 0x00;
2306 pci_conf[0x66] = 0x00;
2307 pci_conf[0x67] = 0x00;
2308 pci_conf[0x68] = 0x01;
2309 pci_conf[0x69] = 0x00;
2310 pci_conf[0x6a] = 0x00;
2311 pci_conf[0x6b] = 0x00; // USBLEGSUP
2312 pci_conf[0x6c] = 0x00;
2313 pci_conf[0x6d] = 0x00;
2314 pci_conf[0x6e] = 0x00;
2315 pci_conf[0x6f] = 0xc0; // USBLEFCTLSTS
2317 // 2.2 host controller interface version
2318 s->mmio[0x00] = (uint8_t) OPREGBASE;
2319 s->mmio[0x01] = 0x00;
2320 s->mmio[0x02] = 0x00;
2321 s->mmio[0x03] = 0x01; // HC version
2322 s->mmio[0x04] = NB_PORTS; // Number of downstream ports
2323 s->mmio[0x05] = 0x00; // No companion ports at present
2324 s->mmio[0x06] = 0x00;
2325 s->mmio[0x07] = 0x00;
2326 s->mmio[0x08] = 0x80; // We can cache whole frame, not 64-bit capable
2327 s->mmio[0x09] = 0x68; // EECP
2328 s->mmio[0x0a] = 0x00;
2329 s->mmio[0x0b] = 0x00;
2331 s->irq = s->dev.irq[3];
2333 usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev);
2334 for(i = 0; i < NB_PORTS; i++) {
2335 usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2336 USB_SPEED_MASK_HIGH);
2337 s->ports[i].dev = 0;
2340 s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2341 QTAILQ_INIT(&s->queues);
2343 qemu_register_reset(ehci_reset, s);
2345 memory_region_init_io(&s->mem, &ehci_mem_ops, s, "ehci", MMIO_SIZE);
2346 pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mem);
2348 fprintf(stderr, "*** EHCI support is under development ***\n");
2350 return 0;
2353 static void ehci_register(void)
2355 pci_qdev_register_many(ehci_info);
2357 device_init(ehci_register);
2360 * vim: expandtab ts=4