target-arm: Report a valid L1Ip field in CTR_EL0 for CPU type "any"
[qemu.git] / kvm-all.c
blob44a5e724ea726f4c177b4c7c66dc9b7b9b30dee7
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/accel.h"
29 #include "hw/hw.h"
30 #include "hw/pci/msi.h"
31 #include "hw/s390x/adapter.h"
32 #include "exec/gdbstub.h"
33 #include "sysemu/kvm.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "trace.h"
41 #include "hw/boards.h"
43 /* This check must be after config-host.h is included */
44 #ifdef CONFIG_EVENTFD
45 #include <sys/eventfd.h>
46 #endif
48 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
49 #define PAGE_SIZE TARGET_PAGE_SIZE
51 //#define DEBUG_KVM
53 #ifdef DEBUG_KVM
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58 do { } while (0)
59 #endif
61 #define KVM_MSI_HASHTAB_SIZE 256
63 typedef struct KVMSlot
65 hwaddr start_addr;
66 ram_addr_t memory_size;
67 void *ram;
68 int slot;
69 int flags;
70 } KVMSlot;
72 typedef struct kvm_dirty_log KVMDirtyLog;
74 struct KVMState
76 AccelState parent_obj;
78 KVMSlot *slots;
79 int nr_slots;
80 int fd;
81 int vmfd;
82 int coalesced_mmio;
83 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
84 bool coalesced_flush_in_progress;
85 int broken_set_mem_region;
86 int migration_log;
87 int vcpu_events;
88 int robust_singlestep;
89 int debugregs;
90 #ifdef KVM_CAP_SET_GUEST_DEBUG
91 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
92 #endif
93 int pit_state2;
94 int xsave, xcrs;
95 int many_ioeventfds;
96 int intx_set_mask;
97 /* The man page (and posix) say ioctl numbers are signed int, but
98 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
99 * unsigned, and treating them as signed here can break things */
100 unsigned irq_set_ioctl;
101 unsigned int sigmask_len;
102 #ifdef KVM_CAP_IRQ_ROUTING
103 struct kvm_irq_routing *irq_routes;
104 int nr_allocated_irq_routes;
105 uint32_t *used_gsi_bitmap;
106 unsigned int gsi_count;
107 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
108 bool direct_msi;
109 #endif
112 #define TYPE_KVM_ACCEL ACCEL_CLASS_NAME("kvm")
114 #define KVM_STATE(obj) \
115 OBJECT_CHECK(KVMState, (obj), TYPE_KVM_ACCEL)
117 KVMState *kvm_state;
118 bool kvm_kernel_irqchip;
119 bool kvm_async_interrupts_allowed;
120 bool kvm_halt_in_kernel_allowed;
121 bool kvm_eventfds_allowed;
122 bool kvm_irqfds_allowed;
123 bool kvm_msi_via_irqfd_allowed;
124 bool kvm_gsi_routing_allowed;
125 bool kvm_gsi_direct_mapping;
126 bool kvm_allowed;
127 bool kvm_readonly_mem_allowed;
129 static const KVMCapabilityInfo kvm_required_capabilites[] = {
130 KVM_CAP_INFO(USER_MEMORY),
131 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
132 KVM_CAP_LAST_INFO
135 static KVMSlot *kvm_alloc_slot(KVMState *s)
137 int i;
139 for (i = 0; i < s->nr_slots; i++) {
140 if (s->slots[i].memory_size == 0) {
141 return &s->slots[i];
145 fprintf(stderr, "%s: no free slot available\n", __func__);
146 abort();
149 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
150 hwaddr start_addr,
151 hwaddr end_addr)
153 int i;
155 for (i = 0; i < s->nr_slots; i++) {
156 KVMSlot *mem = &s->slots[i];
158 if (start_addr == mem->start_addr &&
159 end_addr == mem->start_addr + mem->memory_size) {
160 return mem;
164 return NULL;
168 * Find overlapping slot with lowest start address
170 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
171 hwaddr start_addr,
172 hwaddr end_addr)
174 KVMSlot *found = NULL;
175 int i;
177 for (i = 0; i < s->nr_slots; i++) {
178 KVMSlot *mem = &s->slots[i];
180 if (mem->memory_size == 0 ||
181 (found && found->start_addr < mem->start_addr)) {
182 continue;
185 if (end_addr > mem->start_addr &&
186 start_addr < mem->start_addr + mem->memory_size) {
187 found = mem;
191 return found;
194 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
195 hwaddr *phys_addr)
197 int i;
199 for (i = 0; i < s->nr_slots; i++) {
200 KVMSlot *mem = &s->slots[i];
202 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
203 *phys_addr = mem->start_addr + (ram - mem->ram);
204 return 1;
208 return 0;
211 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
213 struct kvm_userspace_memory_region mem;
215 mem.slot = slot->slot;
216 mem.guest_phys_addr = slot->start_addr;
217 mem.userspace_addr = (unsigned long)slot->ram;
218 mem.flags = slot->flags;
219 if (s->migration_log) {
220 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
223 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
224 /* Set the slot size to 0 before setting the slot to the desired
225 * value. This is needed based on KVM commit 75d61fbc. */
226 mem.memory_size = 0;
227 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
229 mem.memory_size = slot->memory_size;
230 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
233 int kvm_init_vcpu(CPUState *cpu)
235 KVMState *s = kvm_state;
236 long mmap_size;
237 int ret;
239 DPRINTF("kvm_init_vcpu\n");
241 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
242 if (ret < 0) {
243 DPRINTF("kvm_create_vcpu failed\n");
244 goto err;
247 cpu->kvm_fd = ret;
248 cpu->kvm_state = s;
249 cpu->kvm_vcpu_dirty = true;
251 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
252 if (mmap_size < 0) {
253 ret = mmap_size;
254 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
255 goto err;
258 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
259 cpu->kvm_fd, 0);
260 if (cpu->kvm_run == MAP_FAILED) {
261 ret = -errno;
262 DPRINTF("mmap'ing vcpu state failed\n");
263 goto err;
266 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
267 s->coalesced_mmio_ring =
268 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
271 ret = kvm_arch_init_vcpu(cpu);
272 err:
273 return ret;
277 * dirty pages logging control
280 static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
282 int flags = 0;
283 flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
284 if (readonly && kvm_readonly_mem_allowed) {
285 flags |= KVM_MEM_READONLY;
287 return flags;
290 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
292 KVMState *s = kvm_state;
293 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
294 int old_flags;
296 old_flags = mem->flags;
298 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
299 mem->flags = flags;
301 /* If nothing changed effectively, no need to issue ioctl */
302 if (s->migration_log) {
303 flags |= KVM_MEM_LOG_DIRTY_PAGES;
306 if (flags == old_flags) {
307 return 0;
310 return kvm_set_user_memory_region(s, mem);
313 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
314 ram_addr_t size, bool log_dirty)
316 KVMState *s = kvm_state;
317 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
319 if (mem == NULL) {
320 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
321 TARGET_FMT_plx "\n", __func__, phys_addr,
322 (hwaddr)(phys_addr + size - 1));
323 return -EINVAL;
325 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
328 static void kvm_log_start(MemoryListener *listener,
329 MemoryRegionSection *section)
331 int r;
333 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
334 int128_get64(section->size), true);
335 if (r < 0) {
336 abort();
340 static void kvm_log_stop(MemoryListener *listener,
341 MemoryRegionSection *section)
343 int r;
345 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
346 int128_get64(section->size), false);
347 if (r < 0) {
348 abort();
352 static int kvm_set_migration_log(int enable)
354 KVMState *s = kvm_state;
355 KVMSlot *mem;
356 int i, err;
358 s->migration_log = enable;
360 for (i = 0; i < s->nr_slots; i++) {
361 mem = &s->slots[i];
363 if (!mem->memory_size) {
364 continue;
366 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
367 continue;
369 err = kvm_set_user_memory_region(s, mem);
370 if (err) {
371 return err;
374 return 0;
377 /* get kvm's dirty pages bitmap and update qemu's */
378 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
379 unsigned long *bitmap)
381 ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
382 ram_addr_t pages = int128_get64(section->size) / getpagesize();
384 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
385 return 0;
388 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
391 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
392 * This function updates qemu's dirty bitmap using
393 * memory_region_set_dirty(). This means all bits are set
394 * to dirty.
396 * @start_add: start of logged region.
397 * @end_addr: end of logged region.
399 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
401 KVMState *s = kvm_state;
402 unsigned long size, allocated_size = 0;
403 KVMDirtyLog d;
404 KVMSlot *mem;
405 int ret = 0;
406 hwaddr start_addr = section->offset_within_address_space;
407 hwaddr end_addr = start_addr + int128_get64(section->size);
409 d.dirty_bitmap = NULL;
410 while (start_addr < end_addr) {
411 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
412 if (mem == NULL) {
413 break;
416 /* XXX bad kernel interface alert
417 * For dirty bitmap, kernel allocates array of size aligned to
418 * bits-per-long. But for case when the kernel is 64bits and
419 * the userspace is 32bits, userspace can't align to the same
420 * bits-per-long, since sizeof(long) is different between kernel
421 * and user space. This way, userspace will provide buffer which
422 * may be 4 bytes less than the kernel will use, resulting in
423 * userspace memory corruption (which is not detectable by valgrind
424 * too, in most cases).
425 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
426 * a hope that sizeof(long) wont become >8 any time soon.
428 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
429 /*HOST_LONG_BITS*/ 64) / 8;
430 if (!d.dirty_bitmap) {
431 d.dirty_bitmap = g_malloc(size);
432 } else if (size > allocated_size) {
433 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
435 allocated_size = size;
436 memset(d.dirty_bitmap, 0, allocated_size);
438 d.slot = mem->slot;
440 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
441 DPRINTF("ioctl failed %d\n", errno);
442 ret = -1;
443 break;
446 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
447 start_addr = mem->start_addr + mem->memory_size;
449 g_free(d.dirty_bitmap);
451 return ret;
454 static void kvm_coalesce_mmio_region(MemoryListener *listener,
455 MemoryRegionSection *secion,
456 hwaddr start, hwaddr size)
458 KVMState *s = kvm_state;
460 if (s->coalesced_mmio) {
461 struct kvm_coalesced_mmio_zone zone;
463 zone.addr = start;
464 zone.size = size;
465 zone.pad = 0;
467 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
471 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
472 MemoryRegionSection *secion,
473 hwaddr start, hwaddr size)
475 KVMState *s = kvm_state;
477 if (s->coalesced_mmio) {
478 struct kvm_coalesced_mmio_zone zone;
480 zone.addr = start;
481 zone.size = size;
482 zone.pad = 0;
484 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
488 int kvm_check_extension(KVMState *s, unsigned int extension)
490 int ret;
492 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
493 if (ret < 0) {
494 ret = 0;
497 return ret;
500 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
502 int ret;
504 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
505 if (ret < 0) {
506 /* VM wide version not implemented, use global one instead */
507 ret = kvm_check_extension(s, extension);
510 return ret;
513 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
514 bool assign, uint32_t size, bool datamatch)
516 int ret;
517 struct kvm_ioeventfd iofd;
519 iofd.datamatch = datamatch ? val : 0;
520 iofd.addr = addr;
521 iofd.len = size;
522 iofd.flags = 0;
523 iofd.fd = fd;
525 if (!kvm_enabled()) {
526 return -ENOSYS;
529 if (datamatch) {
530 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
532 if (!assign) {
533 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
536 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
538 if (ret < 0) {
539 return -errno;
542 return 0;
545 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
546 bool assign, uint32_t size, bool datamatch)
548 struct kvm_ioeventfd kick = {
549 .datamatch = datamatch ? val : 0,
550 .addr = addr,
551 .flags = KVM_IOEVENTFD_FLAG_PIO,
552 .len = size,
553 .fd = fd,
555 int r;
556 if (!kvm_enabled()) {
557 return -ENOSYS;
559 if (datamatch) {
560 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
562 if (!assign) {
563 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
565 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
566 if (r < 0) {
567 return r;
569 return 0;
573 static int kvm_check_many_ioeventfds(void)
575 /* Userspace can use ioeventfd for io notification. This requires a host
576 * that supports eventfd(2) and an I/O thread; since eventfd does not
577 * support SIGIO it cannot interrupt the vcpu.
579 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
580 * can avoid creating too many ioeventfds.
582 #if defined(CONFIG_EVENTFD)
583 int ioeventfds[7];
584 int i, ret = 0;
585 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
586 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
587 if (ioeventfds[i] < 0) {
588 break;
590 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
591 if (ret < 0) {
592 close(ioeventfds[i]);
593 break;
597 /* Decide whether many devices are supported or not */
598 ret = i == ARRAY_SIZE(ioeventfds);
600 while (i-- > 0) {
601 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
602 close(ioeventfds[i]);
604 return ret;
605 #else
606 return 0;
607 #endif
610 static const KVMCapabilityInfo *
611 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
613 while (list->name) {
614 if (!kvm_check_extension(s, list->value)) {
615 return list;
617 list++;
619 return NULL;
622 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
624 KVMState *s = kvm_state;
625 KVMSlot *mem, old;
626 int err;
627 MemoryRegion *mr = section->mr;
628 bool log_dirty = memory_region_is_logging(mr);
629 bool writeable = !mr->readonly && !mr->rom_device;
630 bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
631 hwaddr start_addr = section->offset_within_address_space;
632 ram_addr_t size = int128_get64(section->size);
633 void *ram = NULL;
634 unsigned delta;
636 /* kvm works in page size chunks, but the function may be called
637 with sub-page size and unaligned start address. */
638 delta = TARGET_PAGE_ALIGN(size) - size;
639 if (delta > size) {
640 return;
642 start_addr += delta;
643 size -= delta;
644 size &= TARGET_PAGE_MASK;
645 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
646 return;
649 if (!memory_region_is_ram(mr)) {
650 if (writeable || !kvm_readonly_mem_allowed) {
651 return;
652 } else if (!mr->romd_mode) {
653 /* If the memory device is not in romd_mode, then we actually want
654 * to remove the kvm memory slot so all accesses will trap. */
655 add = false;
659 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
661 while (1) {
662 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
663 if (!mem) {
664 break;
667 if (add && start_addr >= mem->start_addr &&
668 (start_addr + size <= mem->start_addr + mem->memory_size) &&
669 (ram - start_addr == mem->ram - mem->start_addr)) {
670 /* The new slot fits into the existing one and comes with
671 * identical parameters - update flags and done. */
672 kvm_slot_dirty_pages_log_change(mem, log_dirty);
673 return;
676 old = *mem;
678 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
679 kvm_physical_sync_dirty_bitmap(section);
682 /* unregister the overlapping slot */
683 mem->memory_size = 0;
684 err = kvm_set_user_memory_region(s, mem);
685 if (err) {
686 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
687 __func__, strerror(-err));
688 abort();
691 /* Workaround for older KVM versions: we can't join slots, even not by
692 * unregistering the previous ones and then registering the larger
693 * slot. We have to maintain the existing fragmentation. Sigh.
695 * This workaround assumes that the new slot starts at the same
696 * address as the first existing one. If not or if some overlapping
697 * slot comes around later, we will fail (not seen in practice so far)
698 * - and actually require a recent KVM version. */
699 if (s->broken_set_mem_region &&
700 old.start_addr == start_addr && old.memory_size < size && add) {
701 mem = kvm_alloc_slot(s);
702 mem->memory_size = old.memory_size;
703 mem->start_addr = old.start_addr;
704 mem->ram = old.ram;
705 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
707 err = kvm_set_user_memory_region(s, mem);
708 if (err) {
709 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
710 strerror(-err));
711 abort();
714 start_addr += old.memory_size;
715 ram += old.memory_size;
716 size -= old.memory_size;
717 continue;
720 /* register prefix slot */
721 if (old.start_addr < start_addr) {
722 mem = kvm_alloc_slot(s);
723 mem->memory_size = start_addr - old.start_addr;
724 mem->start_addr = old.start_addr;
725 mem->ram = old.ram;
726 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
728 err = kvm_set_user_memory_region(s, mem);
729 if (err) {
730 fprintf(stderr, "%s: error registering prefix slot: %s\n",
731 __func__, strerror(-err));
732 #ifdef TARGET_PPC
733 fprintf(stderr, "%s: This is probably because your kernel's " \
734 "PAGE_SIZE is too big. Please try to use 4k " \
735 "PAGE_SIZE!\n", __func__);
736 #endif
737 abort();
741 /* register suffix slot */
742 if (old.start_addr + old.memory_size > start_addr + size) {
743 ram_addr_t size_delta;
745 mem = kvm_alloc_slot(s);
746 mem->start_addr = start_addr + size;
747 size_delta = mem->start_addr - old.start_addr;
748 mem->memory_size = old.memory_size - size_delta;
749 mem->ram = old.ram + size_delta;
750 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
752 err = kvm_set_user_memory_region(s, mem);
753 if (err) {
754 fprintf(stderr, "%s: error registering suffix slot: %s\n",
755 __func__, strerror(-err));
756 abort();
761 /* in case the KVM bug workaround already "consumed" the new slot */
762 if (!size) {
763 return;
765 if (!add) {
766 return;
768 mem = kvm_alloc_slot(s);
769 mem->memory_size = size;
770 mem->start_addr = start_addr;
771 mem->ram = ram;
772 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
774 err = kvm_set_user_memory_region(s, mem);
775 if (err) {
776 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
777 strerror(-err));
778 abort();
782 static void kvm_region_add(MemoryListener *listener,
783 MemoryRegionSection *section)
785 memory_region_ref(section->mr);
786 kvm_set_phys_mem(section, true);
789 static void kvm_region_del(MemoryListener *listener,
790 MemoryRegionSection *section)
792 kvm_set_phys_mem(section, false);
793 memory_region_unref(section->mr);
796 static void kvm_log_sync(MemoryListener *listener,
797 MemoryRegionSection *section)
799 int r;
801 r = kvm_physical_sync_dirty_bitmap(section);
802 if (r < 0) {
803 abort();
807 static void kvm_log_global_start(struct MemoryListener *listener)
809 int r;
811 r = kvm_set_migration_log(1);
812 assert(r >= 0);
815 static void kvm_log_global_stop(struct MemoryListener *listener)
817 int r;
819 r = kvm_set_migration_log(0);
820 assert(r >= 0);
823 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
824 MemoryRegionSection *section,
825 bool match_data, uint64_t data,
826 EventNotifier *e)
828 int fd = event_notifier_get_fd(e);
829 int r;
831 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
832 data, true, int128_get64(section->size),
833 match_data);
834 if (r < 0) {
835 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
836 __func__, strerror(-r));
837 abort();
841 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
842 MemoryRegionSection *section,
843 bool match_data, uint64_t data,
844 EventNotifier *e)
846 int fd = event_notifier_get_fd(e);
847 int r;
849 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
850 data, false, int128_get64(section->size),
851 match_data);
852 if (r < 0) {
853 abort();
857 static void kvm_io_ioeventfd_add(MemoryListener *listener,
858 MemoryRegionSection *section,
859 bool match_data, uint64_t data,
860 EventNotifier *e)
862 int fd = event_notifier_get_fd(e);
863 int r;
865 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
866 data, true, int128_get64(section->size),
867 match_data);
868 if (r < 0) {
869 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
870 __func__, strerror(-r));
871 abort();
875 static void kvm_io_ioeventfd_del(MemoryListener *listener,
876 MemoryRegionSection *section,
877 bool match_data, uint64_t data,
878 EventNotifier *e)
881 int fd = event_notifier_get_fd(e);
882 int r;
884 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
885 data, false, int128_get64(section->size),
886 match_data);
887 if (r < 0) {
888 abort();
892 static MemoryListener kvm_memory_listener = {
893 .region_add = kvm_region_add,
894 .region_del = kvm_region_del,
895 .log_start = kvm_log_start,
896 .log_stop = kvm_log_stop,
897 .log_sync = kvm_log_sync,
898 .log_global_start = kvm_log_global_start,
899 .log_global_stop = kvm_log_global_stop,
900 .eventfd_add = kvm_mem_ioeventfd_add,
901 .eventfd_del = kvm_mem_ioeventfd_del,
902 .coalesced_mmio_add = kvm_coalesce_mmio_region,
903 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
904 .priority = 10,
907 static MemoryListener kvm_io_listener = {
908 .eventfd_add = kvm_io_ioeventfd_add,
909 .eventfd_del = kvm_io_ioeventfd_del,
910 .priority = 10,
913 static void kvm_handle_interrupt(CPUState *cpu, int mask)
915 cpu->interrupt_request |= mask;
917 if (!qemu_cpu_is_self(cpu)) {
918 qemu_cpu_kick(cpu);
922 int kvm_set_irq(KVMState *s, int irq, int level)
924 struct kvm_irq_level event;
925 int ret;
927 assert(kvm_async_interrupts_enabled());
929 event.level = level;
930 event.irq = irq;
931 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
932 if (ret < 0) {
933 perror("kvm_set_irq");
934 abort();
937 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
940 #ifdef KVM_CAP_IRQ_ROUTING
941 typedef struct KVMMSIRoute {
942 struct kvm_irq_routing_entry kroute;
943 QTAILQ_ENTRY(KVMMSIRoute) entry;
944 } KVMMSIRoute;
946 static void set_gsi(KVMState *s, unsigned int gsi)
948 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
951 static void clear_gsi(KVMState *s, unsigned int gsi)
953 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
956 void kvm_init_irq_routing(KVMState *s)
958 int gsi_count, i;
960 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
961 if (gsi_count > 0) {
962 unsigned int gsi_bits, i;
964 /* Round up so we can search ints using ffs */
965 gsi_bits = ALIGN(gsi_count, 32);
966 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
967 s->gsi_count = gsi_count;
969 /* Mark any over-allocated bits as already in use */
970 for (i = gsi_count; i < gsi_bits; i++) {
971 set_gsi(s, i);
975 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
976 s->nr_allocated_irq_routes = 0;
978 if (!s->direct_msi) {
979 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
980 QTAILQ_INIT(&s->msi_hashtab[i]);
984 kvm_arch_init_irq_routing(s);
987 void kvm_irqchip_commit_routes(KVMState *s)
989 int ret;
991 s->irq_routes->flags = 0;
992 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
993 assert(ret == 0);
996 static void kvm_add_routing_entry(KVMState *s,
997 struct kvm_irq_routing_entry *entry)
999 struct kvm_irq_routing_entry *new;
1000 int n, size;
1002 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1003 n = s->nr_allocated_irq_routes * 2;
1004 if (n < 64) {
1005 n = 64;
1007 size = sizeof(struct kvm_irq_routing);
1008 size += n * sizeof(*new);
1009 s->irq_routes = g_realloc(s->irq_routes, size);
1010 s->nr_allocated_irq_routes = n;
1012 n = s->irq_routes->nr++;
1013 new = &s->irq_routes->entries[n];
1015 *new = *entry;
1017 set_gsi(s, entry->gsi);
1020 static int kvm_update_routing_entry(KVMState *s,
1021 struct kvm_irq_routing_entry *new_entry)
1023 struct kvm_irq_routing_entry *entry;
1024 int n;
1026 for (n = 0; n < s->irq_routes->nr; n++) {
1027 entry = &s->irq_routes->entries[n];
1028 if (entry->gsi != new_entry->gsi) {
1029 continue;
1032 if(!memcmp(entry, new_entry, sizeof *entry)) {
1033 return 0;
1036 *entry = *new_entry;
1038 kvm_irqchip_commit_routes(s);
1040 return 0;
1043 return -ESRCH;
1046 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1048 struct kvm_irq_routing_entry e = {};
1050 assert(pin < s->gsi_count);
1052 e.gsi = irq;
1053 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1054 e.flags = 0;
1055 e.u.irqchip.irqchip = irqchip;
1056 e.u.irqchip.pin = pin;
1057 kvm_add_routing_entry(s, &e);
1060 void kvm_irqchip_release_virq(KVMState *s, int virq)
1062 struct kvm_irq_routing_entry *e;
1063 int i;
1065 if (kvm_gsi_direct_mapping()) {
1066 return;
1069 for (i = 0; i < s->irq_routes->nr; i++) {
1070 e = &s->irq_routes->entries[i];
1071 if (e->gsi == virq) {
1072 s->irq_routes->nr--;
1073 *e = s->irq_routes->entries[s->irq_routes->nr];
1076 clear_gsi(s, virq);
1079 static unsigned int kvm_hash_msi(uint32_t data)
1081 /* This is optimized for IA32 MSI layout. However, no other arch shall
1082 * repeat the mistake of not providing a direct MSI injection API. */
1083 return data & 0xff;
1086 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1088 KVMMSIRoute *route, *next;
1089 unsigned int hash;
1091 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1092 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1093 kvm_irqchip_release_virq(s, route->kroute.gsi);
1094 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1095 g_free(route);
1100 static int kvm_irqchip_get_virq(KVMState *s)
1102 uint32_t *word = s->used_gsi_bitmap;
1103 int max_words = ALIGN(s->gsi_count, 32) / 32;
1104 int i, bit;
1105 bool retry = true;
1107 again:
1108 /* Return the lowest unused GSI in the bitmap */
1109 for (i = 0; i < max_words; i++) {
1110 bit = ffs(~word[i]);
1111 if (!bit) {
1112 continue;
1115 return bit - 1 + i * 32;
1117 if (!s->direct_msi && retry) {
1118 retry = false;
1119 kvm_flush_dynamic_msi_routes(s);
1120 goto again;
1122 return -ENOSPC;
1126 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1128 unsigned int hash = kvm_hash_msi(msg.data);
1129 KVMMSIRoute *route;
1131 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1132 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1133 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1134 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1135 return route;
1138 return NULL;
1141 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1143 struct kvm_msi msi;
1144 KVMMSIRoute *route;
1146 if (s->direct_msi) {
1147 msi.address_lo = (uint32_t)msg.address;
1148 msi.address_hi = msg.address >> 32;
1149 msi.data = le32_to_cpu(msg.data);
1150 msi.flags = 0;
1151 memset(msi.pad, 0, sizeof(msi.pad));
1153 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1156 route = kvm_lookup_msi_route(s, msg);
1157 if (!route) {
1158 int virq;
1160 virq = kvm_irqchip_get_virq(s);
1161 if (virq < 0) {
1162 return virq;
1165 route = g_malloc0(sizeof(KVMMSIRoute));
1166 route->kroute.gsi = virq;
1167 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1168 route->kroute.flags = 0;
1169 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1170 route->kroute.u.msi.address_hi = msg.address >> 32;
1171 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1173 kvm_add_routing_entry(s, &route->kroute);
1174 kvm_irqchip_commit_routes(s);
1176 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1177 entry);
1180 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1182 return kvm_set_irq(s, route->kroute.gsi, 1);
1185 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1187 struct kvm_irq_routing_entry kroute = {};
1188 int virq;
1190 if (kvm_gsi_direct_mapping()) {
1191 return msg.data & 0xffff;
1194 if (!kvm_gsi_routing_enabled()) {
1195 return -ENOSYS;
1198 virq = kvm_irqchip_get_virq(s);
1199 if (virq < 0) {
1200 return virq;
1203 kroute.gsi = virq;
1204 kroute.type = KVM_IRQ_ROUTING_MSI;
1205 kroute.flags = 0;
1206 kroute.u.msi.address_lo = (uint32_t)msg.address;
1207 kroute.u.msi.address_hi = msg.address >> 32;
1208 kroute.u.msi.data = le32_to_cpu(msg.data);
1210 kvm_add_routing_entry(s, &kroute);
1211 kvm_irqchip_commit_routes(s);
1213 return virq;
1216 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1218 struct kvm_irq_routing_entry kroute = {};
1220 if (kvm_gsi_direct_mapping()) {
1221 return 0;
1224 if (!kvm_irqchip_in_kernel()) {
1225 return -ENOSYS;
1228 kroute.gsi = virq;
1229 kroute.type = KVM_IRQ_ROUTING_MSI;
1230 kroute.flags = 0;
1231 kroute.u.msi.address_lo = (uint32_t)msg.address;
1232 kroute.u.msi.address_hi = msg.address >> 32;
1233 kroute.u.msi.data = le32_to_cpu(msg.data);
1235 return kvm_update_routing_entry(s, &kroute);
1238 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1239 bool assign)
1241 struct kvm_irqfd irqfd = {
1242 .fd = fd,
1243 .gsi = virq,
1244 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1247 if (rfd != -1) {
1248 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1249 irqfd.resamplefd = rfd;
1252 if (!kvm_irqfds_enabled()) {
1253 return -ENOSYS;
1256 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1259 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1261 struct kvm_irq_routing_entry kroute;
1262 int virq;
1264 if (!kvm_gsi_routing_enabled()) {
1265 return -ENOSYS;
1268 virq = kvm_irqchip_get_virq(s);
1269 if (virq < 0) {
1270 return virq;
1273 kroute.gsi = virq;
1274 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1275 kroute.flags = 0;
1276 kroute.u.adapter.summary_addr = adapter->summary_addr;
1277 kroute.u.adapter.ind_addr = adapter->ind_addr;
1278 kroute.u.adapter.summary_offset = adapter->summary_offset;
1279 kroute.u.adapter.ind_offset = adapter->ind_offset;
1280 kroute.u.adapter.adapter_id = adapter->adapter_id;
1282 kvm_add_routing_entry(s, &kroute);
1283 kvm_irqchip_commit_routes(s);
1285 return virq;
1288 #else /* !KVM_CAP_IRQ_ROUTING */
1290 void kvm_init_irq_routing(KVMState *s)
1294 void kvm_irqchip_release_virq(KVMState *s, int virq)
1298 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1300 abort();
1303 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1305 return -ENOSYS;
1308 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1310 return -ENOSYS;
1313 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1315 abort();
1318 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1320 return -ENOSYS;
1322 #endif /* !KVM_CAP_IRQ_ROUTING */
1324 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1325 EventNotifier *rn, int virq)
1327 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1328 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1331 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1333 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1334 false);
1337 static int kvm_irqchip_create(KVMState *s)
1339 int ret;
1341 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
1342 (!kvm_check_extension(s, KVM_CAP_IRQCHIP) &&
1343 (kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0) < 0))) {
1344 return 0;
1347 /* First probe and see if there's a arch-specific hook to create the
1348 * in-kernel irqchip for us */
1349 ret = kvm_arch_irqchip_create(s);
1350 if (ret < 0) {
1351 return ret;
1352 } else if (ret == 0) {
1353 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1354 if (ret < 0) {
1355 fprintf(stderr, "Create kernel irqchip failed\n");
1356 return ret;
1360 kvm_kernel_irqchip = true;
1361 /* If we have an in-kernel IRQ chip then we must have asynchronous
1362 * interrupt delivery (though the reverse is not necessarily true)
1364 kvm_async_interrupts_allowed = true;
1365 kvm_halt_in_kernel_allowed = true;
1367 kvm_init_irq_routing(s);
1369 return 0;
1372 /* Find number of supported CPUs using the recommended
1373 * procedure from the kernel API documentation to cope with
1374 * older kernels that may be missing capabilities.
1376 static int kvm_recommended_vcpus(KVMState *s)
1378 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1379 return (ret) ? ret : 4;
1382 static int kvm_max_vcpus(KVMState *s)
1384 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1385 return (ret) ? ret : kvm_recommended_vcpus(s);
1388 static int kvm_init(MachineState *ms)
1390 MachineClass *mc = MACHINE_GET_CLASS(ms);
1391 static const char upgrade_note[] =
1392 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1393 "(see http://sourceforge.net/projects/kvm).\n";
1394 struct {
1395 const char *name;
1396 int num;
1397 } num_cpus[] = {
1398 { "SMP", smp_cpus },
1399 { "hotpluggable", max_cpus },
1400 { NULL, }
1401 }, *nc = num_cpus;
1402 int soft_vcpus_limit, hard_vcpus_limit;
1403 KVMState *s;
1404 const KVMCapabilityInfo *missing_cap;
1405 int ret;
1406 int i, type = 0;
1407 const char *kvm_type;
1409 s = KVM_STATE(ms->accelerator);
1412 * On systems where the kernel can support different base page
1413 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1414 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1415 * page size for the system though.
1417 assert(TARGET_PAGE_SIZE <= getpagesize());
1418 page_size_init();
1420 s->sigmask_len = 8;
1422 #ifdef KVM_CAP_SET_GUEST_DEBUG
1423 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1424 #endif
1425 s->vmfd = -1;
1426 s->fd = qemu_open("/dev/kvm", O_RDWR);
1427 if (s->fd == -1) {
1428 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1429 ret = -errno;
1430 goto err;
1433 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1434 if (ret < KVM_API_VERSION) {
1435 if (ret >= 0) {
1436 ret = -EINVAL;
1438 fprintf(stderr, "kvm version too old\n");
1439 goto err;
1442 if (ret > KVM_API_VERSION) {
1443 ret = -EINVAL;
1444 fprintf(stderr, "kvm version not supported\n");
1445 goto err;
1448 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1450 /* If unspecified, use the default value */
1451 if (!s->nr_slots) {
1452 s->nr_slots = 32;
1455 s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1457 for (i = 0; i < s->nr_slots; i++) {
1458 s->slots[i].slot = i;
1461 /* check the vcpu limits */
1462 soft_vcpus_limit = kvm_recommended_vcpus(s);
1463 hard_vcpus_limit = kvm_max_vcpus(s);
1465 while (nc->name) {
1466 if (nc->num > soft_vcpus_limit) {
1467 fprintf(stderr,
1468 "Warning: Number of %s cpus requested (%d) exceeds "
1469 "the recommended cpus supported by KVM (%d)\n",
1470 nc->name, nc->num, soft_vcpus_limit);
1472 if (nc->num > hard_vcpus_limit) {
1473 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1474 "the maximum cpus supported by KVM (%d)\n",
1475 nc->name, nc->num, hard_vcpus_limit);
1476 exit(1);
1479 nc++;
1482 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1483 if (mc->kvm_type) {
1484 type = mc->kvm_type(kvm_type);
1485 } else if (kvm_type) {
1486 ret = -EINVAL;
1487 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1488 goto err;
1491 do {
1492 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1493 } while (ret == -EINTR);
1495 if (ret < 0) {
1496 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1497 strerror(-ret));
1499 #ifdef TARGET_S390X
1500 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1501 "your host kernel command line\n");
1502 #endif
1503 goto err;
1506 s->vmfd = ret;
1507 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1508 if (!missing_cap) {
1509 missing_cap =
1510 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1512 if (missing_cap) {
1513 ret = -EINVAL;
1514 fprintf(stderr, "kvm does not support %s\n%s",
1515 missing_cap->name, upgrade_note);
1516 goto err;
1519 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1521 s->broken_set_mem_region = 1;
1522 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1523 if (ret > 0) {
1524 s->broken_set_mem_region = 0;
1527 #ifdef KVM_CAP_VCPU_EVENTS
1528 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1529 #endif
1531 s->robust_singlestep =
1532 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1534 #ifdef KVM_CAP_DEBUGREGS
1535 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1536 #endif
1538 #ifdef KVM_CAP_XSAVE
1539 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1540 #endif
1542 #ifdef KVM_CAP_XCRS
1543 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1544 #endif
1546 #ifdef KVM_CAP_PIT_STATE2
1547 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1548 #endif
1550 #ifdef KVM_CAP_IRQ_ROUTING
1551 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1552 #endif
1554 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1556 s->irq_set_ioctl = KVM_IRQ_LINE;
1557 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1558 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1561 #ifdef KVM_CAP_READONLY_MEM
1562 kvm_readonly_mem_allowed =
1563 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1564 #endif
1566 kvm_eventfds_allowed =
1567 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1569 ret = kvm_arch_init(s);
1570 if (ret < 0) {
1571 goto err;
1574 ret = kvm_irqchip_create(s);
1575 if (ret < 0) {
1576 goto err;
1579 kvm_state = s;
1580 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1581 memory_listener_register(&kvm_io_listener, &address_space_io);
1583 s->many_ioeventfds = kvm_check_many_ioeventfds();
1585 cpu_interrupt_handler = kvm_handle_interrupt;
1587 return 0;
1589 err:
1590 assert(ret < 0);
1591 if (s->vmfd >= 0) {
1592 close(s->vmfd);
1594 if (s->fd != -1) {
1595 close(s->fd);
1597 g_free(s->slots);
1599 return ret;
1602 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1604 s->sigmask_len = sigmask_len;
1607 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1608 uint32_t count)
1610 int i;
1611 uint8_t *ptr = data;
1613 for (i = 0; i < count; i++) {
1614 address_space_rw(&address_space_io, port, ptr, size,
1615 direction == KVM_EXIT_IO_OUT);
1616 ptr += size;
1620 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1622 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1623 run->internal.suberror);
1625 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1626 int i;
1628 for (i = 0; i < run->internal.ndata; ++i) {
1629 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1630 i, (uint64_t)run->internal.data[i]);
1633 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1634 fprintf(stderr, "emulation failure\n");
1635 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1636 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1637 return EXCP_INTERRUPT;
1640 /* FIXME: Should trigger a qmp message to let management know
1641 * something went wrong.
1643 return -1;
1646 void kvm_flush_coalesced_mmio_buffer(void)
1648 KVMState *s = kvm_state;
1650 if (s->coalesced_flush_in_progress) {
1651 return;
1654 s->coalesced_flush_in_progress = true;
1656 if (s->coalesced_mmio_ring) {
1657 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1658 while (ring->first != ring->last) {
1659 struct kvm_coalesced_mmio *ent;
1661 ent = &ring->coalesced_mmio[ring->first];
1663 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1664 smp_wmb();
1665 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1669 s->coalesced_flush_in_progress = false;
1672 static void do_kvm_cpu_synchronize_state(void *arg)
1674 CPUState *cpu = arg;
1676 if (!cpu->kvm_vcpu_dirty) {
1677 kvm_arch_get_registers(cpu);
1678 cpu->kvm_vcpu_dirty = true;
1682 void kvm_cpu_synchronize_state(CPUState *cpu)
1684 if (!cpu->kvm_vcpu_dirty) {
1685 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1689 static void do_kvm_cpu_synchronize_post_reset(void *arg)
1691 CPUState *cpu = arg;
1693 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1694 cpu->kvm_vcpu_dirty = false;
1697 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1699 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu);
1702 static void do_kvm_cpu_synchronize_post_init(void *arg)
1704 CPUState *cpu = arg;
1706 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1707 cpu->kvm_vcpu_dirty = false;
1710 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1712 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu);
1715 void kvm_cpu_clean_state(CPUState *cpu)
1717 cpu->kvm_vcpu_dirty = false;
1720 int kvm_cpu_exec(CPUState *cpu)
1722 struct kvm_run *run = cpu->kvm_run;
1723 int ret, run_ret;
1725 DPRINTF("kvm_cpu_exec()\n");
1727 if (kvm_arch_process_async_events(cpu)) {
1728 cpu->exit_request = 0;
1729 return EXCP_HLT;
1732 do {
1733 if (cpu->kvm_vcpu_dirty) {
1734 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1735 cpu->kvm_vcpu_dirty = false;
1738 kvm_arch_pre_run(cpu, run);
1739 if (cpu->exit_request) {
1740 DPRINTF("interrupt exit requested\n");
1742 * KVM requires us to reenter the kernel after IO exits to complete
1743 * instruction emulation. This self-signal will ensure that we
1744 * leave ASAP again.
1746 qemu_cpu_kick_self();
1748 qemu_mutex_unlock_iothread();
1750 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1752 qemu_mutex_lock_iothread();
1753 kvm_arch_post_run(cpu, run);
1755 if (run_ret < 0) {
1756 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1757 DPRINTF("io window exit\n");
1758 ret = EXCP_INTERRUPT;
1759 break;
1761 fprintf(stderr, "error: kvm run failed %s\n",
1762 strerror(-run_ret));
1763 ret = -1;
1764 break;
1767 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1768 switch (run->exit_reason) {
1769 case KVM_EXIT_IO:
1770 DPRINTF("handle_io\n");
1771 kvm_handle_io(run->io.port,
1772 (uint8_t *)run + run->io.data_offset,
1773 run->io.direction,
1774 run->io.size,
1775 run->io.count);
1776 ret = 0;
1777 break;
1778 case KVM_EXIT_MMIO:
1779 DPRINTF("handle_mmio\n");
1780 cpu_physical_memory_rw(run->mmio.phys_addr,
1781 run->mmio.data,
1782 run->mmio.len,
1783 run->mmio.is_write);
1784 ret = 0;
1785 break;
1786 case KVM_EXIT_IRQ_WINDOW_OPEN:
1787 DPRINTF("irq_window_open\n");
1788 ret = EXCP_INTERRUPT;
1789 break;
1790 case KVM_EXIT_SHUTDOWN:
1791 DPRINTF("shutdown\n");
1792 qemu_system_reset_request();
1793 ret = EXCP_INTERRUPT;
1794 break;
1795 case KVM_EXIT_UNKNOWN:
1796 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1797 (uint64_t)run->hw.hardware_exit_reason);
1798 ret = -1;
1799 break;
1800 case KVM_EXIT_INTERNAL_ERROR:
1801 ret = kvm_handle_internal_error(cpu, run);
1802 break;
1803 case KVM_EXIT_SYSTEM_EVENT:
1804 switch (run->system_event.type) {
1805 case KVM_SYSTEM_EVENT_SHUTDOWN:
1806 qemu_system_shutdown_request();
1807 ret = EXCP_INTERRUPT;
1808 break;
1809 case KVM_SYSTEM_EVENT_RESET:
1810 qemu_system_reset_request();
1811 ret = EXCP_INTERRUPT;
1812 break;
1813 default:
1814 DPRINTF("kvm_arch_handle_exit\n");
1815 ret = kvm_arch_handle_exit(cpu, run);
1816 break;
1818 break;
1819 default:
1820 DPRINTF("kvm_arch_handle_exit\n");
1821 ret = kvm_arch_handle_exit(cpu, run);
1822 break;
1824 } while (ret == 0);
1826 if (ret < 0) {
1827 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1828 vm_stop(RUN_STATE_INTERNAL_ERROR);
1831 cpu->exit_request = 0;
1832 return ret;
1835 int kvm_ioctl(KVMState *s, int type, ...)
1837 int ret;
1838 void *arg;
1839 va_list ap;
1841 va_start(ap, type);
1842 arg = va_arg(ap, void *);
1843 va_end(ap);
1845 trace_kvm_ioctl(type, arg);
1846 ret = ioctl(s->fd, type, arg);
1847 if (ret == -1) {
1848 ret = -errno;
1850 return ret;
1853 int kvm_vm_ioctl(KVMState *s, int type, ...)
1855 int ret;
1856 void *arg;
1857 va_list ap;
1859 va_start(ap, type);
1860 arg = va_arg(ap, void *);
1861 va_end(ap);
1863 trace_kvm_vm_ioctl(type, arg);
1864 ret = ioctl(s->vmfd, type, arg);
1865 if (ret == -1) {
1866 ret = -errno;
1868 return ret;
1871 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1873 int ret;
1874 void *arg;
1875 va_list ap;
1877 va_start(ap, type);
1878 arg = va_arg(ap, void *);
1879 va_end(ap);
1881 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1882 ret = ioctl(cpu->kvm_fd, type, arg);
1883 if (ret == -1) {
1884 ret = -errno;
1886 return ret;
1889 int kvm_device_ioctl(int fd, int type, ...)
1891 int ret;
1892 void *arg;
1893 va_list ap;
1895 va_start(ap, type);
1896 arg = va_arg(ap, void *);
1897 va_end(ap);
1899 trace_kvm_device_ioctl(fd, type, arg);
1900 ret = ioctl(fd, type, arg);
1901 if (ret == -1) {
1902 ret = -errno;
1904 return ret;
1907 int kvm_has_sync_mmu(void)
1909 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1912 int kvm_has_vcpu_events(void)
1914 return kvm_state->vcpu_events;
1917 int kvm_has_robust_singlestep(void)
1919 return kvm_state->robust_singlestep;
1922 int kvm_has_debugregs(void)
1924 return kvm_state->debugregs;
1927 int kvm_has_xsave(void)
1929 return kvm_state->xsave;
1932 int kvm_has_xcrs(void)
1934 return kvm_state->xcrs;
1937 int kvm_has_pit_state2(void)
1939 return kvm_state->pit_state2;
1942 int kvm_has_many_ioeventfds(void)
1944 if (!kvm_enabled()) {
1945 return 0;
1947 return kvm_state->many_ioeventfds;
1950 int kvm_has_gsi_routing(void)
1952 #ifdef KVM_CAP_IRQ_ROUTING
1953 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1954 #else
1955 return false;
1956 #endif
1959 int kvm_has_intx_set_mask(void)
1961 return kvm_state->intx_set_mask;
1964 void kvm_setup_guest_memory(void *start, size_t size)
1966 if (!kvm_has_sync_mmu()) {
1967 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1969 if (ret) {
1970 perror("qemu_madvise");
1971 fprintf(stderr,
1972 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1973 exit(1);
1978 #ifdef KVM_CAP_SET_GUEST_DEBUG
1979 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1980 target_ulong pc)
1982 struct kvm_sw_breakpoint *bp;
1984 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1985 if (bp->pc == pc) {
1986 return bp;
1989 return NULL;
1992 int kvm_sw_breakpoints_active(CPUState *cpu)
1994 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1997 struct kvm_set_guest_debug_data {
1998 struct kvm_guest_debug dbg;
1999 CPUState *cpu;
2000 int err;
2003 static void kvm_invoke_set_guest_debug(void *data)
2005 struct kvm_set_guest_debug_data *dbg_data = data;
2007 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
2008 &dbg_data->dbg);
2011 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2013 struct kvm_set_guest_debug_data data;
2015 data.dbg.control = reinject_trap;
2017 if (cpu->singlestep_enabled) {
2018 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2020 kvm_arch_update_guest_debug(cpu, &data.dbg);
2021 data.cpu = cpu;
2023 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
2024 return data.err;
2027 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2028 target_ulong len, int type)
2030 struct kvm_sw_breakpoint *bp;
2031 int err;
2033 if (type == GDB_BREAKPOINT_SW) {
2034 bp = kvm_find_sw_breakpoint(cpu, addr);
2035 if (bp) {
2036 bp->use_count++;
2037 return 0;
2040 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2041 if (!bp) {
2042 return -ENOMEM;
2045 bp->pc = addr;
2046 bp->use_count = 1;
2047 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2048 if (err) {
2049 g_free(bp);
2050 return err;
2053 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2054 } else {
2055 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2056 if (err) {
2057 return err;
2061 CPU_FOREACH(cpu) {
2062 err = kvm_update_guest_debug(cpu, 0);
2063 if (err) {
2064 return err;
2067 return 0;
2070 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2071 target_ulong len, int type)
2073 struct kvm_sw_breakpoint *bp;
2074 int err;
2076 if (type == GDB_BREAKPOINT_SW) {
2077 bp = kvm_find_sw_breakpoint(cpu, addr);
2078 if (!bp) {
2079 return -ENOENT;
2082 if (bp->use_count > 1) {
2083 bp->use_count--;
2084 return 0;
2087 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2088 if (err) {
2089 return err;
2092 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2093 g_free(bp);
2094 } else {
2095 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2096 if (err) {
2097 return err;
2101 CPU_FOREACH(cpu) {
2102 err = kvm_update_guest_debug(cpu, 0);
2103 if (err) {
2104 return err;
2107 return 0;
2110 void kvm_remove_all_breakpoints(CPUState *cpu)
2112 struct kvm_sw_breakpoint *bp, *next;
2113 KVMState *s = cpu->kvm_state;
2114 CPUState *tmpcpu;
2116 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2117 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2118 /* Try harder to find a CPU that currently sees the breakpoint. */
2119 CPU_FOREACH(tmpcpu) {
2120 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2121 break;
2125 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2126 g_free(bp);
2128 kvm_arch_remove_all_hw_breakpoints();
2130 CPU_FOREACH(cpu) {
2131 kvm_update_guest_debug(cpu, 0);
2135 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2137 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2139 return -EINVAL;
2142 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2143 target_ulong len, int type)
2145 return -EINVAL;
2148 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2149 target_ulong len, int type)
2151 return -EINVAL;
2154 void kvm_remove_all_breakpoints(CPUState *cpu)
2157 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2159 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2161 KVMState *s = kvm_state;
2162 struct kvm_signal_mask *sigmask;
2163 int r;
2165 if (!sigset) {
2166 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2169 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2171 sigmask->len = s->sigmask_len;
2172 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2173 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2174 g_free(sigmask);
2176 return r;
2178 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2180 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2183 int kvm_on_sigbus(int code, void *addr)
2185 return kvm_arch_on_sigbus(code, addr);
2188 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2190 int ret;
2191 struct kvm_create_device create_dev;
2193 create_dev.type = type;
2194 create_dev.fd = -1;
2195 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2197 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2198 return -ENOTSUP;
2201 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2202 if (ret) {
2203 return ret;
2206 return test ? 0 : create_dev.fd;
2209 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2211 struct kvm_one_reg reg;
2212 int r;
2214 reg.id = id;
2215 reg.addr = (uintptr_t) source;
2216 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2217 if (r) {
2218 trace_kvm_failed_reg_set(id, strerror(r));
2220 return r;
2223 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2225 struct kvm_one_reg reg;
2226 int r;
2228 reg.id = id;
2229 reg.addr = (uintptr_t) target;
2230 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2231 if (r) {
2232 trace_kvm_failed_reg_get(id, strerror(r));
2234 return r;
2237 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2239 AccelClass *ac = ACCEL_CLASS(oc);
2240 ac->name = "KVM";
2241 ac->init_machine = kvm_init;
2242 ac->allowed = &kvm_allowed;
2245 static const TypeInfo kvm_accel_type = {
2246 .name = TYPE_KVM_ACCEL,
2247 .parent = TYPE_ACCEL,
2248 .class_init = kvm_accel_class_init,
2249 .instance_size = sizeof(KVMState),
2252 static void kvm_type_init(void)
2254 type_register_static(&kvm_accel_type);
2257 type_init(kvm_type_init);