mem: add share parameter to memory-backend-ram
[qemu.git] / include / exec / memory.h
blob15e81113bac9db591ba731e817124bbe7f6a63a3
1 /*
2 * Physical memory management API
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
14 #ifndef MEMORY_H
15 #define MEMORY_H
17 #ifndef CONFIG_USER_ONLY
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/ramlist.h"
23 #include "qemu/queue.h"
24 #include "qemu/int128.h"
25 #include "qemu/notify.h"
26 #include "qom/object.h"
27 #include "qemu/rcu.h"
28 #include "hw/qdev-core.h"
30 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32 #define MAX_PHYS_ADDR_SPACE_BITS 62
33 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35 #define TYPE_MEMORY_REGION "qemu:memory-region"
36 #define MEMORY_REGION(obj) \
37 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
40 #define IOMMU_MEMORY_REGION(obj) \
41 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
42 #define IOMMU_MEMORY_REGION_CLASS(klass) \
43 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
44 TYPE_IOMMU_MEMORY_REGION)
45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
46 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
47 TYPE_IOMMU_MEMORY_REGION)
49 typedef struct MemoryRegionOps MemoryRegionOps;
50 typedef struct MemoryRegionMmio MemoryRegionMmio;
52 struct MemoryRegionMmio {
53 CPUReadMemoryFunc *read[3];
54 CPUWriteMemoryFunc *write[3];
57 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
59 /* See address_space_translate: bit 0 is read, bit 1 is write. */
60 typedef enum {
61 IOMMU_NONE = 0,
62 IOMMU_RO = 1,
63 IOMMU_WO = 2,
64 IOMMU_RW = 3,
65 } IOMMUAccessFlags;
67 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
69 struct IOMMUTLBEntry {
70 AddressSpace *target_as;
71 hwaddr iova;
72 hwaddr translated_addr;
73 hwaddr addr_mask; /* 0xfff = 4k translation */
74 IOMMUAccessFlags perm;
78 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
79 * register with one or multiple IOMMU Notifier capability bit(s).
81 typedef enum {
82 IOMMU_NOTIFIER_NONE = 0,
83 /* Notify cache invalidations */
84 IOMMU_NOTIFIER_UNMAP = 0x1,
85 /* Notify entry changes (newly created entries) */
86 IOMMU_NOTIFIER_MAP = 0x2,
87 } IOMMUNotifierFlag;
89 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
91 struct IOMMUNotifier;
92 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
93 IOMMUTLBEntry *data);
95 struct IOMMUNotifier {
96 IOMMUNotify notify;
97 IOMMUNotifierFlag notifier_flags;
98 /* Notify for address space range start <= addr <= end */
99 hwaddr start;
100 hwaddr end;
101 QLIST_ENTRY(IOMMUNotifier) node;
103 typedef struct IOMMUNotifier IOMMUNotifier;
105 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
106 IOMMUNotifierFlag flags,
107 hwaddr start, hwaddr end)
109 n->notify = fn;
110 n->notifier_flags = flags;
111 n->start = start;
112 n->end = end;
116 * Memory region callbacks
118 struct MemoryRegionOps {
119 /* Read from the memory region. @addr is relative to @mr; @size is
120 * in bytes. */
121 uint64_t (*read)(void *opaque,
122 hwaddr addr,
123 unsigned size);
124 /* Write to the memory region. @addr is relative to @mr; @size is
125 * in bytes. */
126 void (*write)(void *opaque,
127 hwaddr addr,
128 uint64_t data,
129 unsigned size);
131 MemTxResult (*read_with_attrs)(void *opaque,
132 hwaddr addr,
133 uint64_t *data,
134 unsigned size,
135 MemTxAttrs attrs);
136 MemTxResult (*write_with_attrs)(void *opaque,
137 hwaddr addr,
138 uint64_t data,
139 unsigned size,
140 MemTxAttrs attrs);
141 /* Instruction execution pre-callback:
142 * @addr is the address of the access relative to the @mr.
143 * @size is the size of the area returned by the callback.
144 * @offset is the location of the pointer inside @mr.
146 * Returns a pointer to a location which contains guest code.
148 void *(*request_ptr)(void *opaque, hwaddr addr, unsigned *size,
149 unsigned *offset);
151 enum device_endian endianness;
152 /* Guest-visible constraints: */
153 struct {
154 /* If nonzero, specify bounds on access sizes beyond which a machine
155 * check is thrown.
157 unsigned min_access_size;
158 unsigned max_access_size;
159 /* If true, unaligned accesses are supported. Otherwise unaligned
160 * accesses throw machine checks.
162 bool unaligned;
164 * If present, and returns #false, the transaction is not accepted
165 * by the device (and results in machine dependent behaviour such
166 * as a machine check exception).
168 bool (*accepts)(void *opaque, hwaddr addr,
169 unsigned size, bool is_write);
170 } valid;
171 /* Internal implementation constraints: */
172 struct {
173 /* If nonzero, specifies the minimum size implemented. Smaller sizes
174 * will be rounded upwards and a partial result will be returned.
176 unsigned min_access_size;
177 /* If nonzero, specifies the maximum size implemented. Larger sizes
178 * will be done as a series of accesses with smaller sizes.
180 unsigned max_access_size;
181 /* If true, unaligned accesses are supported. Otherwise all accesses
182 * are converted to (possibly multiple) naturally aligned accesses.
184 bool unaligned;
185 } impl;
187 /* If .read and .write are not present, old_mmio may be used for
188 * backwards compatibility with old mmio registration
190 const MemoryRegionMmio old_mmio;
193 enum IOMMUMemoryRegionAttr {
194 IOMMU_ATTR_SPAPR_TCE_FD
197 typedef struct IOMMUMemoryRegionClass {
198 /* private */
199 struct DeviceClass parent_class;
202 * Return a TLB entry that contains a given address. Flag should
203 * be the access permission of this translation operation. We can
204 * set flag to IOMMU_NONE to mean that we don't need any
205 * read/write permission checks, like, when for region replay.
207 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
208 IOMMUAccessFlags flag);
209 /* Returns minimum supported page size */
210 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
211 /* Called when IOMMU Notifier flag changed */
212 void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
213 IOMMUNotifierFlag old_flags,
214 IOMMUNotifierFlag new_flags);
215 /* Set this up to provide customized IOMMU replay function */
216 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
218 /* Get IOMMU misc attributes */
219 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr,
220 void *data);
221 } IOMMUMemoryRegionClass;
223 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
224 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
226 struct MemoryRegion {
227 Object parent_obj;
229 /* All fields are private - violators will be prosecuted */
231 /* The following fields should fit in a cache line */
232 bool romd_mode;
233 bool ram;
234 bool subpage;
235 bool readonly; /* For RAM regions */
236 bool rom_device;
237 bool flush_coalesced_mmio;
238 bool global_locking;
239 uint8_t dirty_log_mask;
240 bool is_iommu;
241 RAMBlock *ram_block;
242 Object *owner;
244 const MemoryRegionOps *ops;
245 void *opaque;
246 MemoryRegion *container;
247 Int128 size;
248 hwaddr addr;
249 void (*destructor)(MemoryRegion *mr);
250 uint64_t align;
251 bool terminates;
252 bool ram_device;
253 bool enabled;
254 bool warning_printed; /* For reservations */
255 uint8_t vga_logging_count;
256 MemoryRegion *alias;
257 hwaddr alias_offset;
258 int32_t priority;
259 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
260 QTAILQ_ENTRY(MemoryRegion) subregions_link;
261 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
262 const char *name;
263 unsigned ioeventfd_nb;
264 MemoryRegionIoeventfd *ioeventfds;
267 struct IOMMUMemoryRegion {
268 MemoryRegion parent_obj;
270 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
271 IOMMUNotifierFlag iommu_notify_flags;
274 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
275 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
278 * MemoryListener: callbacks structure for updates to the physical memory map
280 * Allows a component to adjust to changes in the guest-visible memory map.
281 * Use with memory_listener_register() and memory_listener_unregister().
283 struct MemoryListener {
284 void (*begin)(MemoryListener *listener);
285 void (*commit)(MemoryListener *listener);
286 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
287 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
288 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
289 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
290 int old, int new);
291 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
292 int old, int new);
293 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
294 void (*log_global_start)(MemoryListener *listener);
295 void (*log_global_stop)(MemoryListener *listener);
296 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
297 bool match_data, uint64_t data, EventNotifier *e);
298 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
299 bool match_data, uint64_t data, EventNotifier *e);
300 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
301 hwaddr addr, hwaddr len);
302 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
303 hwaddr addr, hwaddr len);
304 /* Lower = earlier (during add), later (during del) */
305 unsigned priority;
306 AddressSpace *address_space;
307 QTAILQ_ENTRY(MemoryListener) link;
308 QTAILQ_ENTRY(MemoryListener) link_as;
312 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
314 struct AddressSpace {
315 /* All fields are private. */
316 struct rcu_head rcu;
317 char *name;
318 MemoryRegion *root;
320 /* Accessed via RCU. */
321 struct FlatView *current_map;
323 int ioeventfd_nb;
324 struct MemoryRegionIoeventfd *ioeventfds;
325 QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
326 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
329 FlatView *address_space_to_flatview(AddressSpace *as);
332 * MemoryRegionSection: describes a fragment of a #MemoryRegion
334 * @mr: the region, or %NULL if empty
335 * @fv: the flat view of the address space the region is mapped in
336 * @offset_within_region: the beginning of the section, relative to @mr's start
337 * @size: the size of the section; will not exceed @mr's boundaries
338 * @offset_within_address_space: the address of the first byte of the section
339 * relative to the region's address space
340 * @readonly: writes to this section are ignored
342 struct MemoryRegionSection {
343 MemoryRegion *mr;
344 FlatView *fv;
345 hwaddr offset_within_region;
346 Int128 size;
347 hwaddr offset_within_address_space;
348 bool readonly;
352 * memory_region_init: Initialize a memory region
354 * The region typically acts as a container for other memory regions. Use
355 * memory_region_add_subregion() to add subregions.
357 * @mr: the #MemoryRegion to be initialized
358 * @owner: the object that tracks the region's reference count
359 * @name: used for debugging; not visible to the user or ABI
360 * @size: size of the region; any subregions beyond this size will be clipped
362 void memory_region_init(MemoryRegion *mr,
363 struct Object *owner,
364 const char *name,
365 uint64_t size);
368 * memory_region_ref: Add 1 to a memory region's reference count
370 * Whenever memory regions are accessed outside the BQL, they need to be
371 * preserved against hot-unplug. MemoryRegions actually do not have their
372 * own reference count; they piggyback on a QOM object, their "owner".
373 * This function adds a reference to the owner.
375 * All MemoryRegions must have an owner if they can disappear, even if the
376 * device they belong to operates exclusively under the BQL. This is because
377 * the region could be returned at any time by memory_region_find, and this
378 * is usually under guest control.
380 * @mr: the #MemoryRegion
382 void memory_region_ref(MemoryRegion *mr);
385 * memory_region_unref: Remove 1 to a memory region's reference count
387 * Whenever memory regions are accessed outside the BQL, they need to be
388 * preserved against hot-unplug. MemoryRegions actually do not have their
389 * own reference count; they piggyback on a QOM object, their "owner".
390 * This function removes a reference to the owner and possibly destroys it.
392 * @mr: the #MemoryRegion
394 void memory_region_unref(MemoryRegion *mr);
397 * memory_region_init_io: Initialize an I/O memory region.
399 * Accesses into the region will cause the callbacks in @ops to be called.
400 * if @size is nonzero, subregions will be clipped to @size.
402 * @mr: the #MemoryRegion to be initialized.
403 * @owner: the object that tracks the region's reference count
404 * @ops: a structure containing read and write callbacks to be used when
405 * I/O is performed on the region.
406 * @opaque: passed to the read and write callbacks of the @ops structure.
407 * @name: used for debugging; not visible to the user or ABI
408 * @size: size of the region.
410 void memory_region_init_io(MemoryRegion *mr,
411 struct Object *owner,
412 const MemoryRegionOps *ops,
413 void *opaque,
414 const char *name,
415 uint64_t size);
418 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
419 * into the region will modify memory
420 * directly.
422 * @mr: the #MemoryRegion to be initialized.
423 * @owner: the object that tracks the region's reference count
424 * @name: Region name, becomes part of RAMBlock name used in migration stream
425 * must be unique within any device
426 * @size: size of the region.
427 * @errp: pointer to Error*, to store an error if it happens.
429 * Note that this function does not do anything to cause the data in the
430 * RAM memory region to be migrated; that is the responsibility of the caller.
432 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
433 struct Object *owner,
434 const char *name,
435 uint64_t size,
436 Error **errp);
439 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region.
440 * Accesses into the region will
441 * modify memory directly.
443 * @mr: the #MemoryRegion to be initialized.
444 * @owner: the object that tracks the region's reference count
445 * @name: Region name, becomes part of RAMBlock name used in migration stream
446 * must be unique within any device
447 * @size: size of the region.
448 * @share: allow remapping RAM to different addresses
449 * @errp: pointer to Error*, to store an error if it happens.
451 * Note that this function is similar to memory_region_init_ram_nomigrate.
452 * The only difference is part of the RAM region can be remapped.
454 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
455 struct Object *owner,
456 const char *name,
457 uint64_t size,
458 bool share,
459 Error **errp);
462 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
463 * RAM. Accesses into the region will
464 * modify memory directly. Only an initial
465 * portion of this RAM is actually used.
466 * The used size can change across reboots.
468 * @mr: the #MemoryRegion to be initialized.
469 * @owner: the object that tracks the region's reference count
470 * @name: Region name, becomes part of RAMBlock name used in migration stream
471 * must be unique within any device
472 * @size: used size of the region.
473 * @max_size: max size of the region.
474 * @resized: callback to notify owner about used size change.
475 * @errp: pointer to Error*, to store an error if it happens.
477 * Note that this function does not do anything to cause the data in the
478 * RAM memory region to be migrated; that is the responsibility of the caller.
480 void memory_region_init_resizeable_ram(MemoryRegion *mr,
481 struct Object *owner,
482 const char *name,
483 uint64_t size,
484 uint64_t max_size,
485 void (*resized)(const char*,
486 uint64_t length,
487 void *host),
488 Error **errp);
489 #ifdef __linux__
491 * memory_region_init_ram_from_file: Initialize RAM memory region with a
492 * mmap-ed backend.
494 * @mr: the #MemoryRegion to be initialized.
495 * @owner: the object that tracks the region's reference count
496 * @name: Region name, becomes part of RAMBlock name used in migration stream
497 * must be unique within any device
498 * @size: size of the region.
499 * @align: alignment of the region base address; if 0, the default alignment
500 * (getpagesize()) will be used.
501 * @share: %true if memory must be mmaped with the MAP_SHARED flag
502 * @path: the path in which to allocate the RAM.
503 * @errp: pointer to Error*, to store an error if it happens.
505 * Note that this function does not do anything to cause the data in the
506 * RAM memory region to be migrated; that is the responsibility of the caller.
508 void memory_region_init_ram_from_file(MemoryRegion *mr,
509 struct Object *owner,
510 const char *name,
511 uint64_t size,
512 uint64_t align,
513 bool share,
514 const char *path,
515 Error **errp);
518 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
519 * mmap-ed backend.
521 * @mr: the #MemoryRegion to be initialized.
522 * @owner: the object that tracks the region's reference count
523 * @name: the name of the region.
524 * @size: size of the region.
525 * @share: %true if memory must be mmaped with the MAP_SHARED flag
526 * @fd: the fd to mmap.
527 * @errp: pointer to Error*, to store an error if it happens.
529 * Note that this function does not do anything to cause the data in the
530 * RAM memory region to be migrated; that is the responsibility of the caller.
532 void memory_region_init_ram_from_fd(MemoryRegion *mr,
533 struct Object *owner,
534 const char *name,
535 uint64_t size,
536 bool share,
537 int fd,
538 Error **errp);
539 #endif
542 * memory_region_init_ram_ptr: Initialize RAM memory region from a
543 * user-provided pointer. Accesses into the
544 * region will modify memory directly.
546 * @mr: the #MemoryRegion to be initialized.
547 * @owner: the object that tracks the region's reference count
548 * @name: Region name, becomes part of RAMBlock name used in migration stream
549 * must be unique within any device
550 * @size: size of the region.
551 * @ptr: memory to be mapped; must contain at least @size bytes.
553 * Note that this function does not do anything to cause the data in the
554 * RAM memory region to be migrated; that is the responsibility of the caller.
556 void memory_region_init_ram_ptr(MemoryRegion *mr,
557 struct Object *owner,
558 const char *name,
559 uint64_t size,
560 void *ptr);
563 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
564 * a user-provided pointer.
566 * A RAM device represents a mapping to a physical device, such as to a PCI
567 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
568 * into the VM address space and access to the region will modify memory
569 * directly. However, the memory region should not be included in a memory
570 * dump (device may not be enabled/mapped at the time of the dump), and
571 * operations incompatible with manipulating MMIO should be avoided. Replaces
572 * skip_dump flag.
574 * @mr: the #MemoryRegion to be initialized.
575 * @owner: the object that tracks the region's reference count
576 * @name: the name of the region.
577 * @size: size of the region.
578 * @ptr: memory to be mapped; must contain at least @size bytes.
580 * Note that this function does not do anything to cause the data in the
581 * RAM memory region to be migrated; that is the responsibility of the caller.
582 * (For RAM device memory regions, migrating the contents rarely makes sense.)
584 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
585 struct Object *owner,
586 const char *name,
587 uint64_t size,
588 void *ptr);
591 * memory_region_init_alias: Initialize a memory region that aliases all or a
592 * part of another memory region.
594 * @mr: the #MemoryRegion to be initialized.
595 * @owner: the object that tracks the region's reference count
596 * @name: used for debugging; not visible to the user or ABI
597 * @orig: the region to be referenced; @mr will be equivalent to
598 * @orig between @offset and @offset + @size - 1.
599 * @offset: start of the section in @orig to be referenced.
600 * @size: size of the region.
602 void memory_region_init_alias(MemoryRegion *mr,
603 struct Object *owner,
604 const char *name,
605 MemoryRegion *orig,
606 hwaddr offset,
607 uint64_t size);
610 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
612 * This has the same effect as calling memory_region_init_ram_nomigrate()
613 * and then marking the resulting region read-only with
614 * memory_region_set_readonly().
616 * Note that this function does not do anything to cause the data in the
617 * RAM side of the memory region to be migrated; that is the responsibility
618 * of the caller.
620 * @mr: the #MemoryRegion to be initialized.
621 * @owner: the object that tracks the region's reference count
622 * @name: Region name, becomes part of RAMBlock name used in migration stream
623 * must be unique within any device
624 * @size: size of the region.
625 * @errp: pointer to Error*, to store an error if it happens.
627 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
628 struct Object *owner,
629 const char *name,
630 uint64_t size,
631 Error **errp);
634 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
635 * Writes are handled via callbacks.
637 * Note that this function does not do anything to cause the data in the
638 * RAM side of the memory region to be migrated; that is the responsibility
639 * of the caller.
641 * @mr: the #MemoryRegion to be initialized.
642 * @owner: the object that tracks the region's reference count
643 * @ops: callbacks for write access handling (must not be NULL).
644 * @opaque: passed to the read and write callbacks of the @ops structure.
645 * @name: Region name, becomes part of RAMBlock name used in migration stream
646 * must be unique within any device
647 * @size: size of the region.
648 * @errp: pointer to Error*, to store an error if it happens.
650 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
651 struct Object *owner,
652 const MemoryRegionOps *ops,
653 void *opaque,
654 const char *name,
655 uint64_t size,
656 Error **errp);
659 * memory_region_init_reservation: Initialize a memory region that reserves
660 * I/O space.
662 * A reservation region primariy serves debugging purposes. It claims I/O
663 * space that is not supposed to be handled by QEMU itself. Any access via
664 * the memory API will cause an abort().
665 * This function is deprecated. Use memory_region_init_io() with NULL
666 * callbacks instead.
668 * @mr: the #MemoryRegion to be initialized
669 * @owner: the object that tracks the region's reference count
670 * @name: used for debugging; not visible to the user or ABI
671 * @size: size of the region.
673 static inline void memory_region_init_reservation(MemoryRegion *mr,
674 Object *owner,
675 const char *name,
676 uint64_t size)
678 memory_region_init_io(mr, owner, NULL, mr, name, size);
682 * memory_region_init_iommu: Initialize a memory region of a custom type
683 * that translates addresses
685 * An IOMMU region translates addresses and forwards accesses to a target
686 * memory region.
688 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
689 * @instance_size: the IOMMUMemoryRegion subclass instance size
690 * @mrtypename: the type name of the #IOMMUMemoryRegion
691 * @owner: the object that tracks the region's reference count
692 * @name: used for debugging; not visible to the user or ABI
693 * @size: size of the region.
695 void memory_region_init_iommu(void *_iommu_mr,
696 size_t instance_size,
697 const char *mrtypename,
698 Object *owner,
699 const char *name,
700 uint64_t size);
703 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
704 * region will modify memory directly.
706 * @mr: the #MemoryRegion to be initialized
707 * @owner: the object that tracks the region's reference count (must be
708 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
709 * @name: name of the memory region
710 * @size: size of the region in bytes
711 * @errp: pointer to Error*, to store an error if it happens.
713 * This function allocates RAM for a board model or device, and
714 * arranges for it to be migrated (by calling vmstate_register_ram()
715 * if @owner is a DeviceState, or vmstate_register_ram_global() if
716 * @owner is NULL).
718 * TODO: Currently we restrict @owner to being either NULL (for
719 * global RAM regions with no owner) or devices, so that we can
720 * give the RAM block a unique name for migration purposes.
721 * We should lift this restriction and allow arbitrary Objects.
722 * If you pass a non-NULL non-device @owner then we will assert.
724 void memory_region_init_ram(MemoryRegion *mr,
725 struct Object *owner,
726 const char *name,
727 uint64_t size,
728 Error **errp);
731 * memory_region_init_rom: Initialize a ROM memory region.
733 * This has the same effect as calling memory_region_init_ram()
734 * and then marking the resulting region read-only with
735 * memory_region_set_readonly(). This includes arranging for the
736 * contents to be migrated.
738 * TODO: Currently we restrict @owner to being either NULL (for
739 * global RAM regions with no owner) or devices, so that we can
740 * give the RAM block a unique name for migration purposes.
741 * We should lift this restriction and allow arbitrary Objects.
742 * If you pass a non-NULL non-device @owner then we will assert.
744 * @mr: the #MemoryRegion to be initialized.
745 * @owner: the object that tracks the region's reference count
746 * @name: Region name, becomes part of RAMBlock name used in migration stream
747 * must be unique within any device
748 * @size: size of the region.
749 * @errp: pointer to Error*, to store an error if it happens.
751 void memory_region_init_rom(MemoryRegion *mr,
752 struct Object *owner,
753 const char *name,
754 uint64_t size,
755 Error **errp);
758 * memory_region_init_rom_device: Initialize a ROM memory region.
759 * Writes are handled via callbacks.
761 * This function initializes a memory region backed by RAM for reads
762 * and callbacks for writes, and arranges for the RAM backing to
763 * be migrated (by calling vmstate_register_ram()
764 * if @owner is a DeviceState, or vmstate_register_ram_global() if
765 * @owner is NULL).
767 * TODO: Currently we restrict @owner to being either NULL (for
768 * global RAM regions with no owner) or devices, so that we can
769 * give the RAM block a unique name for migration purposes.
770 * We should lift this restriction and allow arbitrary Objects.
771 * If you pass a non-NULL non-device @owner then we will assert.
773 * @mr: the #MemoryRegion to be initialized.
774 * @owner: the object that tracks the region's reference count
775 * @ops: callbacks for write access handling (must not be NULL).
776 * @name: Region name, becomes part of RAMBlock name used in migration stream
777 * must be unique within any device
778 * @size: size of the region.
779 * @errp: pointer to Error*, to store an error if it happens.
781 void memory_region_init_rom_device(MemoryRegion *mr,
782 struct Object *owner,
783 const MemoryRegionOps *ops,
784 void *opaque,
785 const char *name,
786 uint64_t size,
787 Error **errp);
791 * memory_region_owner: get a memory region's owner.
793 * @mr: the memory region being queried.
795 struct Object *memory_region_owner(MemoryRegion *mr);
798 * memory_region_size: get a memory region's size.
800 * @mr: the memory region being queried.
802 uint64_t memory_region_size(MemoryRegion *mr);
805 * memory_region_is_ram: check whether a memory region is random access
807 * Returns %true is a memory region is random access.
809 * @mr: the memory region being queried
811 static inline bool memory_region_is_ram(MemoryRegion *mr)
813 return mr->ram;
817 * memory_region_is_ram_device: check whether a memory region is a ram device
819 * Returns %true is a memory region is a device backed ram region
821 * @mr: the memory region being queried
823 bool memory_region_is_ram_device(MemoryRegion *mr);
826 * memory_region_is_romd: check whether a memory region is in ROMD mode
828 * Returns %true if a memory region is a ROM device and currently set to allow
829 * direct reads.
831 * @mr: the memory region being queried
833 static inline bool memory_region_is_romd(MemoryRegion *mr)
835 return mr->rom_device && mr->romd_mode;
839 * memory_region_get_iommu: check whether a memory region is an iommu
841 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
842 * otherwise NULL.
844 * @mr: the memory region being queried
846 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
848 if (mr->alias) {
849 return memory_region_get_iommu(mr->alias);
851 if (mr->is_iommu) {
852 return (IOMMUMemoryRegion *) mr;
854 return NULL;
858 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
859 * if an iommu or NULL if not
861 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
862 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
864 * @mr: the memory region being queried
866 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
867 IOMMUMemoryRegion *iommu_mr)
869 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
872 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
875 * memory_region_iommu_get_min_page_size: get minimum supported page size
876 * for an iommu
878 * Returns minimum supported page size for an iommu.
880 * @iommu_mr: the memory region being queried
882 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
885 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
887 * The notification type will be decided by entry.perm bits:
889 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
890 * - For MAP (newly added entry) notifies: set entry.perm to the
891 * permission of the page (which is definitely !IOMMU_NONE).
893 * Note: for any IOMMU implementation, an in-place mapping change
894 * should be notified with an UNMAP followed by a MAP.
896 * @iommu_mr: the memory region that was changed
897 * @entry: the new entry in the IOMMU translation table. The entry
898 * replaces all old entries for the same virtual I/O address range.
899 * Deleted entries have .@perm == 0.
901 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
902 IOMMUTLBEntry entry);
905 * memory_region_notify_one: notify a change in an IOMMU translation
906 * entry to a single notifier
908 * This works just like memory_region_notify_iommu(), but it only
909 * notifies a specific notifier, not all of them.
911 * @notifier: the notifier to be notified
912 * @entry: the new entry in the IOMMU translation table. The entry
913 * replaces all old entries for the same virtual I/O address range.
914 * Deleted entries have .@perm == 0.
916 void memory_region_notify_one(IOMMUNotifier *notifier,
917 IOMMUTLBEntry *entry);
920 * memory_region_register_iommu_notifier: register a notifier for changes to
921 * IOMMU translation entries.
923 * @mr: the memory region to observe
924 * @n: the IOMMUNotifier to be added; the notify callback receives a
925 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
926 * ceases to be valid on exit from the notifier.
928 void memory_region_register_iommu_notifier(MemoryRegion *mr,
929 IOMMUNotifier *n);
932 * memory_region_iommu_replay: replay existing IOMMU translations to
933 * a notifier with the minimum page granularity returned by
934 * mr->iommu_ops->get_page_size().
936 * @iommu_mr: the memory region to observe
937 * @n: the notifier to which to replay iommu mappings
939 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
942 * memory_region_iommu_replay_all: replay existing IOMMU translations
943 * to all the notifiers registered.
945 * @iommu_mr: the memory region to observe
947 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr);
950 * memory_region_unregister_iommu_notifier: unregister a notifier for
951 * changes to IOMMU translation entries.
953 * @mr: the memory region which was observed and for which notity_stopped()
954 * needs to be called
955 * @n: the notifier to be removed.
957 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
958 IOMMUNotifier *n);
961 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
962 * defined on the IOMMU.
964 * Returns 0 if succeded, error code otherwise.
966 * @iommu_mr: the memory region
967 * @attr: the requested attribute
968 * @data: a pointer to the requested attribute data
970 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
971 enum IOMMUMemoryRegionAttr attr,
972 void *data);
975 * memory_region_name: get a memory region's name
977 * Returns the string that was used to initialize the memory region.
979 * @mr: the memory region being queried
981 const char *memory_region_name(const MemoryRegion *mr);
984 * memory_region_is_logging: return whether a memory region is logging writes
986 * Returns %true if the memory region is logging writes for the given client
988 * @mr: the memory region being queried
989 * @client: the client being queried
991 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
994 * memory_region_get_dirty_log_mask: return the clients for which a
995 * memory region is logging writes.
997 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
998 * are the bit indices.
1000 * @mr: the memory region being queried
1002 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1005 * memory_region_is_rom: check whether a memory region is ROM
1007 * Returns %true is a memory region is read-only memory.
1009 * @mr: the memory region being queried
1011 static inline bool memory_region_is_rom(MemoryRegion *mr)
1013 return mr->ram && mr->readonly;
1018 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1020 * Returns a file descriptor backing a file-based RAM memory region,
1021 * or -1 if the region is not a file-based RAM memory region.
1023 * @mr: the RAM or alias memory region being queried.
1025 int memory_region_get_fd(MemoryRegion *mr);
1028 * memory_region_from_host: Convert a pointer into a RAM memory region
1029 * and an offset within it.
1031 * Given a host pointer inside a RAM memory region (created with
1032 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1033 * the MemoryRegion and the offset within it.
1035 * Use with care; by the time this function returns, the returned pointer is
1036 * not protected by RCU anymore. If the caller is not within an RCU critical
1037 * section and does not hold the iothread lock, it must have other means of
1038 * protecting the pointer, such as a reference to the region that includes
1039 * the incoming ram_addr_t.
1041 * @ptr: the host pointer to be converted
1042 * @offset: the offset within memory region
1044 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1047 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1049 * Returns a host pointer to a RAM memory region (created with
1050 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1052 * Use with care; by the time this function returns, the returned pointer is
1053 * not protected by RCU anymore. If the caller is not within an RCU critical
1054 * section and does not hold the iothread lock, it must have other means of
1055 * protecting the pointer, such as a reference to the region that includes
1056 * the incoming ram_addr_t.
1058 * @mr: the memory region being queried.
1060 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1062 /* memory_region_ram_resize: Resize a RAM region.
1064 * Only legal before guest might have detected the memory size: e.g. on
1065 * incoming migration, or right after reset.
1067 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1068 * @newsize: the new size the region
1069 * @errp: pointer to Error*, to store an error if it happens.
1071 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1072 Error **errp);
1075 * memory_region_set_log: Turn dirty logging on or off for a region.
1077 * Turns dirty logging on or off for a specified client (display, migration).
1078 * Only meaningful for RAM regions.
1080 * @mr: the memory region being updated.
1081 * @log: whether dirty logging is to be enabled or disabled.
1082 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1084 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1087 * memory_region_get_dirty: Check whether a range of bytes is dirty
1088 * for a specified client.
1090 * Checks whether a range of bytes has been written to since the last
1091 * call to memory_region_reset_dirty() with the same @client. Dirty logging
1092 * must be enabled.
1094 * @mr: the memory region being queried.
1095 * @addr: the address (relative to the start of the region) being queried.
1096 * @size: the size of the range being queried.
1097 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1098 * %DIRTY_MEMORY_VGA.
1100 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1101 hwaddr size, unsigned client);
1104 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1106 * Marks a range of bytes as dirty, after it has been dirtied outside
1107 * guest code.
1109 * @mr: the memory region being dirtied.
1110 * @addr: the address (relative to the start of the region) being dirtied.
1111 * @size: size of the range being dirtied.
1113 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1114 hwaddr size);
1117 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1118 * bitmap and clear it.
1120 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1121 * returns the snapshot. The snapshot can then be used to query dirty
1122 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
1123 * querying the same page multiple times, which is especially useful for
1124 * display updates where the scanlines often are not page aligned.
1126 * The dirty bitmap region which gets copyed into the snapshot (and
1127 * cleared afterwards) can be larger than requested. The boundaries
1128 * are rounded up/down so complete bitmap longs (covering 64 pages on
1129 * 64bit hosts) can be copied over into the bitmap snapshot. Which
1130 * isn't a problem for display updates as the extra pages are outside
1131 * the visible area, and in case the visible area changes a full
1132 * display redraw is due anyway. Should other use cases for this
1133 * function emerge we might have to revisit this implementation
1134 * detail.
1136 * Use g_free to release DirtyBitmapSnapshot.
1138 * @mr: the memory region being queried.
1139 * @addr: the address (relative to the start of the region) being queried.
1140 * @size: the size of the range being queried.
1141 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1143 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1144 hwaddr addr,
1145 hwaddr size,
1146 unsigned client);
1149 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1150 * in the specified dirty bitmap snapshot.
1152 * @mr: the memory region being queried.
1153 * @snap: the dirty bitmap snapshot
1154 * @addr: the address (relative to the start of the region) being queried.
1155 * @size: the size of the range being queried.
1157 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1158 DirtyBitmapSnapshot *snap,
1159 hwaddr addr, hwaddr size);
1162 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1163 * client.
1165 * Marks a range of pages as no longer dirty.
1167 * @mr: the region being updated.
1168 * @addr: the start of the subrange being cleaned.
1169 * @size: the size of the subrange being cleaned.
1170 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1171 * %DIRTY_MEMORY_VGA.
1173 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1174 hwaddr size, unsigned client);
1177 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1179 * Allows a memory region to be marked as read-only (turning it into a ROM).
1180 * only useful on RAM regions.
1182 * @mr: the region being updated.
1183 * @readonly: whether rhe region is to be ROM or RAM.
1185 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1188 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1190 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1191 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
1192 * device is mapped to guest memory and satisfies read access directly.
1193 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1194 * Writes are always handled by the #MemoryRegion.write function.
1196 * @mr: the memory region to be updated
1197 * @romd_mode: %true to put the region into ROMD mode
1199 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1202 * memory_region_set_coalescing: Enable memory coalescing for the region.
1204 * Enabled writes to a region to be queued for later processing. MMIO ->write
1205 * callbacks may be delayed until a non-coalesced MMIO is issued.
1206 * Only useful for IO regions. Roughly similar to write-combining hardware.
1208 * @mr: the memory region to be write coalesced
1210 void memory_region_set_coalescing(MemoryRegion *mr);
1213 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1214 * a region.
1216 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1217 * Multiple calls can be issued coalesced disjoint ranges.
1219 * @mr: the memory region to be updated.
1220 * @offset: the start of the range within the region to be coalesced.
1221 * @size: the size of the subrange to be coalesced.
1223 void memory_region_add_coalescing(MemoryRegion *mr,
1224 hwaddr offset,
1225 uint64_t size);
1228 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1230 * Disables any coalescing caused by memory_region_set_coalescing() or
1231 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
1232 * hardware.
1234 * @mr: the memory region to be updated.
1236 void memory_region_clear_coalescing(MemoryRegion *mr);
1239 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1240 * accesses.
1242 * Ensure that pending coalesced MMIO request are flushed before the memory
1243 * region is accessed. This property is automatically enabled for all regions
1244 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1246 * @mr: the memory region to be updated.
1248 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1251 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1252 * accesses.
1254 * Clear the automatic coalesced MMIO flushing enabled via
1255 * memory_region_set_flush_coalesced. Note that this service has no effect on
1256 * memory regions that have MMIO coalescing enabled for themselves. For them,
1257 * automatic flushing will stop once coalescing is disabled.
1259 * @mr: the memory region to be updated.
1261 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1264 * memory_region_clear_global_locking: Declares that access processing does
1265 * not depend on the QEMU global lock.
1267 * By clearing this property, accesses to the memory region will be processed
1268 * outside of QEMU's global lock (unless the lock is held on when issuing the
1269 * access request). In this case, the device model implementing the access
1270 * handlers is responsible for synchronization of concurrency.
1272 * @mr: the memory region to be updated.
1274 void memory_region_clear_global_locking(MemoryRegion *mr);
1277 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1278 * is written to a location.
1280 * Marks a word in an IO region (initialized with memory_region_init_io())
1281 * as a trigger for an eventfd event. The I/O callback will not be called.
1282 * The caller must be prepared to handle failure (that is, take the required
1283 * action if the callback _is_ called).
1285 * @mr: the memory region being updated.
1286 * @addr: the address within @mr that is to be monitored
1287 * @size: the size of the access to trigger the eventfd
1288 * @match_data: whether to match against @data, instead of just @addr
1289 * @data: the data to match against the guest write
1290 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1292 void memory_region_add_eventfd(MemoryRegion *mr,
1293 hwaddr addr,
1294 unsigned size,
1295 bool match_data,
1296 uint64_t data,
1297 EventNotifier *e);
1300 * memory_region_del_eventfd: Cancel an eventfd.
1302 * Cancels an eventfd trigger requested by a previous
1303 * memory_region_add_eventfd() call.
1305 * @mr: the memory region being updated.
1306 * @addr: the address within @mr that is to be monitored
1307 * @size: the size of the access to trigger the eventfd
1308 * @match_data: whether to match against @data, instead of just @addr
1309 * @data: the data to match against the guest write
1310 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1312 void memory_region_del_eventfd(MemoryRegion *mr,
1313 hwaddr addr,
1314 unsigned size,
1315 bool match_data,
1316 uint64_t data,
1317 EventNotifier *e);
1320 * memory_region_add_subregion: Add a subregion to a container.
1322 * Adds a subregion at @offset. The subregion may not overlap with other
1323 * subregions (except for those explicitly marked as overlapping). A region
1324 * may only be added once as a subregion (unless removed with
1325 * memory_region_del_subregion()); use memory_region_init_alias() if you
1326 * want a region to be a subregion in multiple locations.
1328 * @mr: the region to contain the new subregion; must be a container
1329 * initialized with memory_region_init().
1330 * @offset: the offset relative to @mr where @subregion is added.
1331 * @subregion: the subregion to be added.
1333 void memory_region_add_subregion(MemoryRegion *mr,
1334 hwaddr offset,
1335 MemoryRegion *subregion);
1337 * memory_region_add_subregion_overlap: Add a subregion to a container
1338 * with overlap.
1340 * Adds a subregion at @offset. The subregion may overlap with other
1341 * subregions. Conflicts are resolved by having a higher @priority hide a
1342 * lower @priority. Subregions without priority are taken as @priority 0.
1343 * A region may only be added once as a subregion (unless removed with
1344 * memory_region_del_subregion()); use memory_region_init_alias() if you
1345 * want a region to be a subregion in multiple locations.
1347 * @mr: the region to contain the new subregion; must be a container
1348 * initialized with memory_region_init().
1349 * @offset: the offset relative to @mr where @subregion is added.
1350 * @subregion: the subregion to be added.
1351 * @priority: used for resolving overlaps; highest priority wins.
1353 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1354 hwaddr offset,
1355 MemoryRegion *subregion,
1356 int priority);
1359 * memory_region_get_ram_addr: Get the ram address associated with a memory
1360 * region
1362 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1364 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1366 * memory_region_del_subregion: Remove a subregion.
1368 * Removes a subregion from its container.
1370 * @mr: the container to be updated.
1371 * @subregion: the region being removed; must be a current subregion of @mr.
1373 void memory_region_del_subregion(MemoryRegion *mr,
1374 MemoryRegion *subregion);
1377 * memory_region_set_enabled: dynamically enable or disable a region
1379 * Enables or disables a memory region. A disabled memory region
1380 * ignores all accesses to itself and its subregions. It does not
1381 * obscure sibling subregions with lower priority - it simply behaves as
1382 * if it was removed from the hierarchy.
1384 * Regions default to being enabled.
1386 * @mr: the region to be updated
1387 * @enabled: whether to enable or disable the region
1389 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1392 * memory_region_set_address: dynamically update the address of a region
1394 * Dynamically updates the address of a region, relative to its container.
1395 * May be used on regions are currently part of a memory hierarchy.
1397 * @mr: the region to be updated
1398 * @addr: new address, relative to container region
1400 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1403 * memory_region_set_size: dynamically update the size of a region.
1405 * Dynamically updates the size of a region.
1407 * @mr: the region to be updated
1408 * @size: used size of the region.
1410 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1413 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1415 * Dynamically updates the offset into the target region that an alias points
1416 * to, as if the fourth argument to memory_region_init_alias() has changed.
1418 * @mr: the #MemoryRegion to be updated; should be an alias.
1419 * @offset: the new offset into the target memory region
1421 void memory_region_set_alias_offset(MemoryRegion *mr,
1422 hwaddr offset);
1425 * memory_region_present: checks if an address relative to a @container
1426 * translates into #MemoryRegion within @container
1428 * Answer whether a #MemoryRegion within @container covers the address
1429 * @addr.
1431 * @container: a #MemoryRegion within which @addr is a relative address
1432 * @addr: the area within @container to be searched
1434 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1437 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1438 * into any address space.
1440 * @mr: a #MemoryRegion which should be checked if it's mapped
1442 bool memory_region_is_mapped(MemoryRegion *mr);
1445 * memory_region_find: translate an address/size relative to a
1446 * MemoryRegion into a #MemoryRegionSection.
1448 * Locates the first #MemoryRegion within @mr that overlaps the range
1449 * given by @addr and @size.
1451 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1452 * It will have the following characteristics:
1453 * .@size = 0 iff no overlap was found
1454 * .@mr is non-%NULL iff an overlap was found
1456 * Remember that in the return value the @offset_within_region is
1457 * relative to the returned region (in the .@mr field), not to the
1458 * @mr argument.
1460 * Similarly, the .@offset_within_address_space is relative to the
1461 * address space that contains both regions, the passed and the
1462 * returned one. However, in the special case where the @mr argument
1463 * has no container (and thus is the root of the address space), the
1464 * following will hold:
1465 * .@offset_within_address_space >= @addr
1466 * .@offset_within_address_space + .@size <= @addr + @size
1468 * @mr: a MemoryRegion within which @addr is a relative address
1469 * @addr: start of the area within @as to be searched
1470 * @size: size of the area to be searched
1472 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1473 hwaddr addr, uint64_t size);
1476 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1478 * Synchronizes the dirty page log for all address spaces.
1480 void memory_global_dirty_log_sync(void);
1483 * memory_region_transaction_begin: Start a transaction.
1485 * During a transaction, changes will be accumulated and made visible
1486 * only when the transaction ends (is committed).
1488 void memory_region_transaction_begin(void);
1491 * memory_region_transaction_commit: Commit a transaction and make changes
1492 * visible to the guest.
1494 void memory_region_transaction_commit(void);
1497 * memory_listener_register: register callbacks to be called when memory
1498 * sections are mapped or unmapped into an address
1499 * space
1501 * @listener: an object containing the callbacks to be called
1502 * @filter: if non-%NULL, only regions in this address space will be observed
1504 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1507 * memory_listener_unregister: undo the effect of memory_listener_register()
1509 * @listener: an object containing the callbacks to be removed
1511 void memory_listener_unregister(MemoryListener *listener);
1514 * memory_global_dirty_log_start: begin dirty logging for all regions
1516 void memory_global_dirty_log_start(void);
1519 * memory_global_dirty_log_stop: end dirty logging for all regions
1521 void memory_global_dirty_log_stop(void);
1523 void mtree_info(fprintf_function mon_printf, void *f, bool flatview,
1524 bool dispatch_tree);
1527 * memory_region_request_mmio_ptr: request a pointer to an mmio
1528 * MemoryRegion. If it is possible map a RAM MemoryRegion with this pointer.
1529 * When the device wants to invalidate the pointer it will call
1530 * memory_region_invalidate_mmio_ptr.
1532 * @mr: #MemoryRegion to check
1533 * @addr: address within that region
1535 * Returns true on success, false otherwise.
1537 bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr);
1540 * memory_region_invalidate_mmio_ptr: invalidate the pointer to an mmio
1541 * previously requested.
1542 * In the end that means that if something wants to execute from this area it
1543 * will need to request the pointer again.
1545 * @mr: #MemoryRegion associated to the pointer.
1546 * @offset: offset within the memory region
1547 * @size: size of that area.
1549 void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
1550 unsigned size);
1553 * memory_region_dispatch_read: perform a read directly to the specified
1554 * MemoryRegion.
1556 * @mr: #MemoryRegion to access
1557 * @addr: address within that region
1558 * @pval: pointer to uint64_t which the data is written to
1559 * @size: size of the access in bytes
1560 * @attrs: memory transaction attributes to use for the access
1562 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1563 hwaddr addr,
1564 uint64_t *pval,
1565 unsigned size,
1566 MemTxAttrs attrs);
1568 * memory_region_dispatch_write: perform a write directly to the specified
1569 * MemoryRegion.
1571 * @mr: #MemoryRegion to access
1572 * @addr: address within that region
1573 * @data: data to write
1574 * @size: size of the access in bytes
1575 * @attrs: memory transaction attributes to use for the access
1577 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1578 hwaddr addr,
1579 uint64_t data,
1580 unsigned size,
1581 MemTxAttrs attrs);
1584 * address_space_init: initializes an address space
1586 * @as: an uninitialized #AddressSpace
1587 * @root: a #MemoryRegion that routes addresses for the address space
1588 * @name: an address space name. The name is only used for debugging
1589 * output.
1591 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1594 * address_space_destroy: destroy an address space
1596 * Releases all resources associated with an address space. After an address space
1597 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1598 * as well.
1600 * @as: address space to be destroyed
1602 void address_space_destroy(AddressSpace *as);
1605 * address_space_rw: read from or write to an address space.
1607 * Return a MemTxResult indicating whether the operation succeeded
1608 * or failed (eg unassigned memory, device rejected the transaction,
1609 * IOMMU fault).
1611 * @as: #AddressSpace to be accessed
1612 * @addr: address within that address space
1613 * @attrs: memory transaction attributes
1614 * @buf: buffer with the data transferred
1615 * @len: the number of bytes to read or write
1616 * @is_write: indicates the transfer direction
1618 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1619 MemTxAttrs attrs, uint8_t *buf,
1620 int len, bool is_write);
1623 * address_space_write: write to address space.
1625 * Return a MemTxResult indicating whether the operation succeeded
1626 * or failed (eg unassigned memory, device rejected the transaction,
1627 * IOMMU fault).
1629 * @as: #AddressSpace to be accessed
1630 * @addr: address within that address space
1631 * @attrs: memory transaction attributes
1632 * @buf: buffer with the data transferred
1633 * @len: the number of bytes to write
1635 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1636 MemTxAttrs attrs,
1637 const uint8_t *buf, int len);
1639 /* address_space_ld*: load from an address space
1640 * address_space_st*: store to an address space
1642 * These functions perform a load or store of the byte, word,
1643 * longword or quad to the specified address within the AddressSpace.
1644 * The _le suffixed functions treat the data as little endian;
1645 * _be indicates big endian; no suffix indicates "same endianness
1646 * as guest CPU".
1648 * The "guest CPU endianness" accessors are deprecated for use outside
1649 * target-* code; devices should be CPU-agnostic and use either the LE
1650 * or the BE accessors.
1652 * @as #AddressSpace to be accessed
1653 * @addr: address within that address space
1654 * @val: data value, for stores
1655 * @attrs: memory transaction attributes
1656 * @result: location to write the success/failure of the transaction;
1657 * if NULL, this information is discarded
1659 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1660 MemTxAttrs attrs, MemTxResult *result);
1661 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1662 MemTxAttrs attrs, MemTxResult *result);
1663 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1664 MemTxAttrs attrs, MemTxResult *result);
1665 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1666 MemTxAttrs attrs, MemTxResult *result);
1667 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1668 MemTxAttrs attrs, MemTxResult *result);
1669 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1670 MemTxAttrs attrs, MemTxResult *result);
1671 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1672 MemTxAttrs attrs, MemTxResult *result);
1673 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1674 MemTxAttrs attrs, MemTxResult *result);
1675 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1676 MemTxAttrs attrs, MemTxResult *result);
1677 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1678 MemTxAttrs attrs, MemTxResult *result);
1679 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1680 MemTxAttrs attrs, MemTxResult *result);
1681 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1682 MemTxAttrs attrs, MemTxResult *result);
1683 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1684 MemTxAttrs attrs, MemTxResult *result);
1685 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1686 MemTxAttrs attrs, MemTxResult *result);
1688 uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1689 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1690 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1691 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1692 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1693 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1694 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1695 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1696 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1697 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1698 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1699 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1700 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1701 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1703 struct MemoryRegionCache {
1704 hwaddr xlat;
1705 hwaddr len;
1706 AddressSpace *as;
1709 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL })
1711 /* address_space_cache_init: prepare for repeated access to a physical
1712 * memory region
1714 * @cache: #MemoryRegionCache to be filled
1715 * @as: #AddressSpace to be accessed
1716 * @addr: address within that address space
1717 * @len: length of buffer
1718 * @is_write: indicates the transfer direction
1720 * Will only work with RAM, and may map a subset of the requested range by
1721 * returning a value that is less than @len. On failure, return a negative
1722 * errno value.
1724 * Because it only works with RAM, this function can be used for
1725 * read-modify-write operations. In this case, is_write should be %true.
1727 * Note that addresses passed to the address_space_*_cached functions
1728 * are relative to @addr.
1730 int64_t address_space_cache_init(MemoryRegionCache *cache,
1731 AddressSpace *as,
1732 hwaddr addr,
1733 hwaddr len,
1734 bool is_write);
1737 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1739 * @cache: The #MemoryRegionCache to operate on.
1740 * @addr: The first physical address that was written, relative to the
1741 * address that was passed to @address_space_cache_init.
1742 * @access_len: The number of bytes that were written starting at @addr.
1744 void address_space_cache_invalidate(MemoryRegionCache *cache,
1745 hwaddr addr,
1746 hwaddr access_len);
1749 * address_space_cache_destroy: free a #MemoryRegionCache
1751 * @cache: The #MemoryRegionCache whose memory should be released.
1753 void address_space_cache_destroy(MemoryRegionCache *cache);
1755 /* address_space_ld*_cached: load from a cached #MemoryRegion
1756 * address_space_st*_cached: store into a cached #MemoryRegion
1758 * These functions perform a load or store of the byte, word,
1759 * longword or quad to the specified address. The address is
1760 * a physical address in the AddressSpace, but it must lie within
1761 * a #MemoryRegion that was mapped with address_space_cache_init.
1763 * The _le suffixed functions treat the data as little endian;
1764 * _be indicates big endian; no suffix indicates "same endianness
1765 * as guest CPU".
1767 * The "guest CPU endianness" accessors are deprecated for use outside
1768 * target-* code; devices should be CPU-agnostic and use either the LE
1769 * or the BE accessors.
1771 * @cache: previously initialized #MemoryRegionCache to be accessed
1772 * @addr: address within the address space
1773 * @val: data value, for stores
1774 * @attrs: memory transaction attributes
1775 * @result: location to write the success/failure of the transaction;
1776 * if NULL, this information is discarded
1778 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1779 MemTxAttrs attrs, MemTxResult *result);
1780 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1781 MemTxAttrs attrs, MemTxResult *result);
1782 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1783 MemTxAttrs attrs, MemTxResult *result);
1784 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1785 MemTxAttrs attrs, MemTxResult *result);
1786 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1787 MemTxAttrs attrs, MemTxResult *result);
1788 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1789 MemTxAttrs attrs, MemTxResult *result);
1790 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1791 MemTxAttrs attrs, MemTxResult *result);
1792 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1793 MemTxAttrs attrs, MemTxResult *result);
1794 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1795 MemTxAttrs attrs, MemTxResult *result);
1796 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1797 MemTxAttrs attrs, MemTxResult *result);
1798 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1799 MemTxAttrs attrs, MemTxResult *result);
1800 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1801 MemTxAttrs attrs, MemTxResult *result);
1802 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1803 MemTxAttrs attrs, MemTxResult *result);
1804 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1805 MemTxAttrs attrs, MemTxResult *result);
1807 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1808 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1809 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1810 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1811 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1812 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1813 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1814 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1815 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1816 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1817 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1818 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1819 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1820 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1821 /* address_space_get_iotlb_entry: translate an address into an IOTLB
1822 * entry. Should be called from an RCU critical section.
1824 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1825 bool is_write);
1827 /* address_space_translate: translate an address range into an address space
1828 * into a MemoryRegion and an address range into that section. Should be
1829 * called from an RCU critical section, to avoid that the last reference
1830 * to the returned region disappears after address_space_translate returns.
1832 * @fv: #FlatView to be accessed
1833 * @addr: address within that address space
1834 * @xlat: pointer to address within the returned memory region section's
1835 * #MemoryRegion.
1836 * @len: pointer to length
1837 * @is_write: indicates the transfer direction
1839 MemoryRegion *flatview_translate(FlatView *fv,
1840 hwaddr addr, hwaddr *xlat,
1841 hwaddr *len, bool is_write);
1843 static inline MemoryRegion *address_space_translate(AddressSpace *as,
1844 hwaddr addr, hwaddr *xlat,
1845 hwaddr *len, bool is_write)
1847 return flatview_translate(address_space_to_flatview(as),
1848 addr, xlat, len, is_write);
1851 /* address_space_access_valid: check for validity of accessing an address
1852 * space range
1854 * Check whether memory is assigned to the given address space range, and
1855 * access is permitted by any IOMMU regions that are active for the address
1856 * space.
1858 * For now, addr and len should be aligned to a page size. This limitation
1859 * will be lifted in the future.
1861 * @as: #AddressSpace to be accessed
1862 * @addr: address within that address space
1863 * @len: length of the area to be checked
1864 * @is_write: indicates the transfer direction
1866 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1868 /* address_space_map: map a physical memory region into a host virtual address
1870 * May map a subset of the requested range, given by and returned in @plen.
1871 * May return %NULL if resources needed to perform the mapping are exhausted.
1872 * Use only for reads OR writes - not for read-modify-write operations.
1873 * Use cpu_register_map_client() to know when retrying the map operation is
1874 * likely to succeed.
1876 * @as: #AddressSpace to be accessed
1877 * @addr: address within that address space
1878 * @plen: pointer to length of buffer; updated on return
1879 * @is_write: indicates the transfer direction
1881 void *address_space_map(AddressSpace *as, hwaddr addr,
1882 hwaddr *plen, bool is_write);
1884 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1886 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1887 * the amount of memory that was actually read or written by the caller.
1889 * @as: #AddressSpace used
1890 * @buffer: host pointer as returned by address_space_map()
1891 * @len: buffer length as returned by address_space_map()
1892 * @access_len: amount of data actually transferred
1893 * @is_write: indicates the transfer direction
1895 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1896 int is_write, hwaddr access_len);
1899 /* Internal functions, part of the implementation of address_space_read. */
1900 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
1901 MemTxAttrs attrs, uint8_t *buf,
1902 int len, hwaddr addr1, hwaddr l,
1903 MemoryRegion *mr);
1905 MemTxResult flatview_read_full(FlatView *fv, hwaddr addr,
1906 MemTxAttrs attrs, uint8_t *buf, int len);
1907 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1909 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1911 if (is_write) {
1912 return memory_region_is_ram(mr) &&
1913 !mr->readonly && !memory_region_is_ram_device(mr);
1914 } else {
1915 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1916 memory_region_is_romd(mr);
1921 * address_space_read: read from an address space.
1923 * Return a MemTxResult indicating whether the operation succeeded
1924 * or failed (eg unassigned memory, device rejected the transaction,
1925 * IOMMU fault).
1927 * @fv: #FlatView to be accessed
1928 * @addr: address within that address space
1929 * @attrs: memory transaction attributes
1930 * @buf: buffer with the data transferred
1932 static inline __attribute__((__always_inline__))
1933 MemTxResult flatview_read(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
1934 uint8_t *buf, int len)
1936 MemTxResult result = MEMTX_OK;
1937 hwaddr l, addr1;
1938 void *ptr;
1939 MemoryRegion *mr;
1941 if (__builtin_constant_p(len)) {
1942 if (len) {
1943 rcu_read_lock();
1944 l = len;
1945 mr = flatview_translate(fv, addr, &addr1, &l, false);
1946 if (len == l && memory_access_is_direct(mr, false)) {
1947 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1948 memcpy(buf, ptr, len);
1949 } else {
1950 result = flatview_read_continue(fv, addr, attrs, buf, len,
1951 addr1, l, mr);
1953 rcu_read_unlock();
1955 } else {
1956 result = flatview_read_full(fv, addr, attrs, buf, len);
1958 return result;
1961 static inline MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
1962 MemTxAttrs attrs, uint8_t *buf,
1963 int len)
1965 return flatview_read(address_space_to_flatview(as), addr, attrs, buf, len);
1969 * address_space_read_cached: read from a cached RAM region
1971 * @cache: Cached region to be addressed
1972 * @addr: address relative to the base of the RAM region
1973 * @buf: buffer with the data transferred
1974 * @len: length of the data transferred
1976 static inline void
1977 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1978 void *buf, int len)
1980 assert(addr < cache->len && len <= cache->len - addr);
1981 address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1985 * address_space_write_cached: write to a cached RAM region
1987 * @cache: Cached region to be addressed
1988 * @addr: address relative to the base of the RAM region
1989 * @buf: buffer with the data transferred
1990 * @len: length of the data transferred
1992 static inline void
1993 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
1994 void *buf, int len)
1996 assert(addr < cache->len && len <= cache->len - addr);
1997 address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
2000 #endif
2002 #endif