device-assignment: Byte-wise ROM read
[qemu-kvm/stefanha.git] / kvm-all.c
blob0b5ce9281305de00e7930be4eb3814db5ffb7cc6
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
31 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
32 #define PAGE_SIZE TARGET_PAGE_SIZE
34 //#define DEBUG_KVM
36 #ifdef DEBUG_KVM
37 #define DPRINTF(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39 #else
40 #define DPRINTF(fmt, ...) \
41 do { } while (0)
42 #endif
44 #ifdef KVM_UPSTREAM
46 typedef struct KVMSlot
48 target_phys_addr_t start_addr;
49 ram_addr_t memory_size;
50 ram_addr_t phys_offset;
51 int slot;
52 int flags;
53 } KVMSlot;
55 typedef struct kvm_dirty_log KVMDirtyLog;
57 struct KVMState
59 KVMSlot slots[32];
60 int fd;
61 int vmfd;
62 int coalesced_mmio;
63 #ifdef KVM_CAP_COALESCED_MMIO
64 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
65 #endif
66 int broken_set_mem_region;
67 int migration_log;
68 int vcpu_events;
69 int robust_singlestep;
70 int debugregs;
71 #ifdef KVM_CAP_SET_GUEST_DEBUG
72 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
73 #endif
74 int irqchip_in_kernel;
75 int pit_in_kernel;
76 int xsave, xcrs;
79 static KVMState *kvm_state;
81 #endif
83 static KVMSlot *kvm_alloc_slot(KVMState *s)
85 int i;
87 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
88 /* KVM private memory slots */
89 if (i >= 8 && i < 12)
90 continue;
91 if (s->slots[i].memory_size == 0)
92 return &s->slots[i];
95 fprintf(stderr, "%s: no free slot available\n", __func__);
96 abort();
99 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
100 target_phys_addr_t start_addr,
101 target_phys_addr_t end_addr)
103 int i;
105 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
106 KVMSlot *mem = &s->slots[i];
108 if (start_addr == mem->start_addr &&
109 end_addr == mem->start_addr + mem->memory_size) {
110 return mem;
114 return NULL;
118 * Find overlapping slot with lowest start address
120 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
121 target_phys_addr_t start_addr,
122 target_phys_addr_t end_addr)
124 KVMSlot *found = NULL;
125 int i;
127 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
128 KVMSlot *mem = &s->slots[i];
130 if (mem->memory_size == 0 ||
131 (found && found->start_addr < mem->start_addr)) {
132 continue;
135 if (end_addr > mem->start_addr &&
136 start_addr < mem->start_addr + mem->memory_size) {
137 found = mem;
141 return found;
144 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
146 struct kvm_userspace_memory_region mem;
148 mem.slot = slot->slot;
149 mem.guest_phys_addr = slot->start_addr;
150 mem.memory_size = slot->memory_size;
151 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
152 mem.flags = slot->flags;
153 if (s->migration_log) {
154 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
156 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
159 #ifdef KVM_UPSTREAM
160 static void kvm_reset_vcpu(void *opaque)
162 CPUState *env = opaque;
164 kvm_arch_reset_vcpu(env);
166 #endif
168 int kvm_irqchip_in_kernel(void)
170 return kvm_state->irqchip_in_kernel;
173 int kvm_pit_in_kernel(void)
175 return kvm_state->pit_in_kernel;
179 #ifdef KVM_UPSTREAM
180 int kvm_init_vcpu(CPUState *env)
182 KVMState *s = kvm_state;
183 long mmap_size;
184 int ret;
186 DPRINTF("kvm_init_vcpu\n");
188 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
189 if (ret < 0) {
190 DPRINTF("kvm_create_vcpu failed\n");
191 goto err;
194 env->kvm_fd = ret;
195 env->kvm_state = s;
197 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
198 if (mmap_size < 0) {
199 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
200 goto err;
203 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
204 env->kvm_fd, 0);
205 if (env->kvm_run == MAP_FAILED) {
206 ret = -errno;
207 DPRINTF("mmap'ing vcpu state failed\n");
208 goto err;
211 #ifdef KVM_CAP_COALESCED_MMIO
212 if (s->coalesced_mmio && !s->coalesced_mmio_ring)
213 s->coalesced_mmio_ring = (void *) env->kvm_run +
214 s->coalesced_mmio * PAGE_SIZE;
215 #endif
217 ret = kvm_arch_init_vcpu(env);
218 if (ret == 0) {
219 qemu_register_reset(kvm_reset_vcpu, env);
220 kvm_arch_reset_vcpu(env);
222 err:
223 return ret;
225 #endif
228 * dirty pages logging control
230 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
231 ram_addr_t size, int flags, int mask)
233 KVMState *s = kvm_state;
234 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
235 int old_flags;
237 if (mem == NULL) {
238 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
239 TARGET_FMT_plx "\n", __func__, phys_addr,
240 (target_phys_addr_t)(phys_addr + size - 1));
241 return -EINVAL;
244 old_flags = mem->flags;
246 flags = (mem->flags & ~mask) | flags;
247 mem->flags = flags;
249 /* If nothing changed effectively, no need to issue ioctl */
250 if (s->migration_log) {
251 flags |= KVM_MEM_LOG_DIRTY_PAGES;
253 if (flags == old_flags) {
254 return 0;
257 return kvm_set_user_memory_region(s, mem);
260 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
262 return kvm_dirty_pages_log_change(phys_addr, size,
263 KVM_MEM_LOG_DIRTY_PAGES,
264 KVM_MEM_LOG_DIRTY_PAGES);
267 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
269 return kvm_dirty_pages_log_change(phys_addr, size,
271 KVM_MEM_LOG_DIRTY_PAGES);
274 static int kvm_set_migration_log(int enable)
276 KVMState *s = kvm_state;
277 KVMSlot *mem;
278 int i, err;
280 s->migration_log = enable;
282 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
283 mem = &s->slots[i];
285 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
286 continue;
288 err = kvm_set_user_memory_region(s, mem);
289 if (err) {
290 return err;
293 return 0;
296 /* get kvm's dirty pages bitmap and update qemu's */
297 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
298 unsigned long *bitmap,
299 unsigned long offset,
300 unsigned long mem_size)
302 unsigned int i, j;
303 unsigned long page_number, addr, addr1, c;
304 ram_addr_t ram_addr;
305 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
306 HOST_LONG_BITS;
309 * bitmap-traveling is faster than memory-traveling (for addr...)
310 * especially when most of the memory is not dirty.
312 for (i = 0; i < len; i++) {
313 if (bitmap[i] != 0) {
314 c = leul_to_cpu(bitmap[i]);
315 do {
316 j = ffsl(c) - 1;
317 c &= ~(1ul << j);
318 page_number = i * HOST_LONG_BITS + j;
319 addr1 = page_number * TARGET_PAGE_SIZE;
320 addr = offset + addr1;
321 ram_addr = cpu_get_physical_page_desc(addr);
322 cpu_physical_memory_set_dirty(ram_addr);
323 } while (c != 0);
326 return 0;
329 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
332 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
333 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
334 * This means all bits are set to dirty.
336 * @start_add: start of logged region.
337 * @end_addr: end of logged region.
339 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
340 target_phys_addr_t end_addr)
342 KVMState *s = kvm_state;
343 unsigned long size, allocated_size = 0;
344 KVMDirtyLog d;
345 KVMSlot *mem;
346 int ret = 0;
348 d.dirty_bitmap = NULL;
349 while (start_addr < end_addr) {
350 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
351 if (mem == NULL) {
352 break;
355 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
356 if (!d.dirty_bitmap) {
357 d.dirty_bitmap = qemu_malloc(size);
358 } else if (size > allocated_size) {
359 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
361 allocated_size = size;
362 memset(d.dirty_bitmap, 0, allocated_size);
364 d.slot = mem->slot;
366 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
367 DPRINTF("ioctl failed %d\n", errno);
368 ret = -1;
369 break;
372 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
373 mem->start_addr, mem->memory_size);
374 start_addr = mem->start_addr + mem->memory_size;
376 qemu_free(d.dirty_bitmap);
378 return ret;
381 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
383 int ret = -ENOSYS;
384 #ifdef KVM_CAP_COALESCED_MMIO
385 KVMState *s = kvm_state;
387 if (s->coalesced_mmio) {
388 struct kvm_coalesced_mmio_zone zone;
390 zone.addr = start;
391 zone.size = size;
393 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
395 #endif
397 return ret;
400 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
402 int ret = -ENOSYS;
403 #ifdef KVM_CAP_COALESCED_MMIO
404 KVMState *s = kvm_state;
406 if (s->coalesced_mmio) {
407 struct kvm_coalesced_mmio_zone zone;
409 zone.addr = start;
410 zone.size = size;
412 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
414 #endif
416 return ret;
419 int kvm_check_extension(KVMState *s, unsigned int extension)
421 int ret;
423 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
424 if (ret < 0) {
425 ret = 0;
428 return ret;
431 static void kvm_set_phys_mem(target_phys_addr_t start_addr,
432 ram_addr_t size,
433 ram_addr_t phys_offset)
435 KVMState *s = kvm_state;
436 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
437 KVMSlot *mem, old;
438 int err;
440 if (start_addr & ~TARGET_PAGE_MASK) {
441 if (flags >= IO_MEM_UNASSIGNED) {
442 if (!kvm_lookup_overlapping_slot(s, start_addr,
443 start_addr + size)) {
444 return;
446 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
447 } else {
448 fprintf(stderr, "Only page-aligned memory slots supported\n");
450 abort();
453 /* KVM does not support read-only slots */
454 phys_offset &= ~IO_MEM_ROM;
456 while (1) {
457 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
458 if (!mem) {
459 break;
462 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
463 (start_addr + size <= mem->start_addr + mem->memory_size) &&
464 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
465 /* The new slot fits into the existing one and comes with
466 * identical parameters - nothing to be done. */
467 return;
470 old = *mem;
472 /* unregister the overlapping slot */
473 mem->memory_size = 0;
474 err = kvm_set_user_memory_region(s, mem);
475 if (err) {
476 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
477 __func__, strerror(-err));
478 abort();
481 /* Workaround for older KVM versions: we can't join slots, even not by
482 * unregistering the previous ones and then registering the larger
483 * slot. We have to maintain the existing fragmentation. Sigh.
485 * This workaround assumes that the new slot starts at the same
486 * address as the first existing one. If not or if some overlapping
487 * slot comes around later, we will fail (not seen in practice so far)
488 * - and actually require a recent KVM version. */
489 if (s->broken_set_mem_region &&
490 old.start_addr == start_addr && old.memory_size < size &&
491 flags < IO_MEM_UNASSIGNED) {
492 mem = kvm_alloc_slot(s);
493 mem->memory_size = old.memory_size;
494 mem->start_addr = old.start_addr;
495 mem->phys_offset = old.phys_offset;
496 mem->flags = 0;
498 err = kvm_set_user_memory_region(s, mem);
499 if (err) {
500 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
501 strerror(-err));
502 abort();
505 start_addr += old.memory_size;
506 phys_offset += old.memory_size;
507 size -= old.memory_size;
508 continue;
511 /* register prefix slot */
512 if (old.start_addr < start_addr) {
513 mem = kvm_alloc_slot(s);
514 mem->memory_size = start_addr - old.start_addr;
515 mem->start_addr = old.start_addr;
516 mem->phys_offset = old.phys_offset;
517 mem->flags = 0;
519 err = kvm_set_user_memory_region(s, mem);
520 if (err) {
521 fprintf(stderr, "%s: error registering prefix slot: %s\n",
522 __func__, strerror(-err));
523 abort();
527 /* register suffix slot */
528 if (old.start_addr + old.memory_size > start_addr + size) {
529 ram_addr_t size_delta;
531 mem = kvm_alloc_slot(s);
532 mem->start_addr = start_addr + size;
533 size_delta = mem->start_addr - old.start_addr;
534 mem->memory_size = old.memory_size - size_delta;
535 mem->phys_offset = old.phys_offset + size_delta;
536 mem->flags = 0;
538 err = kvm_set_user_memory_region(s, mem);
539 if (err) {
540 fprintf(stderr, "%s: error registering suffix slot: %s\n",
541 __func__, strerror(-err));
542 abort();
547 /* in case the KVM bug workaround already "consumed" the new slot */
548 if (!size)
549 return;
551 /* KVM does not need to know about this memory */
552 if (flags >= IO_MEM_UNASSIGNED)
553 return;
555 mem = kvm_alloc_slot(s);
556 mem->memory_size = size;
557 mem->start_addr = start_addr;
558 mem->phys_offset = phys_offset;
559 mem->flags = 0;
561 err = kvm_set_user_memory_region(s, mem);
562 if (err) {
563 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
564 strerror(-err));
565 abort();
569 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
570 target_phys_addr_t start_addr,
571 ram_addr_t size,
572 ram_addr_t phys_offset)
574 kvm_set_phys_mem(start_addr, size, phys_offset);
577 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
578 target_phys_addr_t start_addr,
579 target_phys_addr_t end_addr)
581 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
584 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
585 int enable)
587 return kvm_set_migration_log(enable);
590 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
591 .set_memory = kvm_client_set_memory,
592 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
593 .migration_log = kvm_client_migration_log,
597 void kvm_cpu_register_phys_memory_client(void)
599 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
602 #ifdef KVM_UPSTREAM
604 int kvm_init(int smp_cpus)
606 static const char upgrade_note[] =
607 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
608 "(see http://sourceforge.net/projects/kvm).\n";
609 KVMState *s;
610 int ret;
611 int i;
613 s = qemu_mallocz(sizeof(KVMState));
615 #ifdef KVM_CAP_SET_GUEST_DEBUG
616 QTAILQ_INIT(&s->kvm_sw_breakpoints);
617 #endif
618 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
619 s->slots[i].slot = i;
621 s->vmfd = -1;
622 s->fd = qemu_open("/dev/kvm", O_RDWR);
623 if (s->fd == -1) {
624 fprintf(stderr, "Could not access KVM kernel module: %m\n");
625 ret = -errno;
626 goto err;
629 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
630 if (ret < KVM_API_VERSION) {
631 if (ret > 0)
632 ret = -EINVAL;
633 fprintf(stderr, "kvm version too old\n");
634 goto err;
637 if (ret > KVM_API_VERSION) {
638 ret = -EINVAL;
639 fprintf(stderr, "kvm version not supported\n");
640 goto err;
643 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
644 if (s->vmfd < 0) {
645 #ifdef TARGET_S390X
646 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
647 "your host kernel command line\n");
648 #endif
649 goto err;
652 /* initially, KVM allocated its own memory and we had to jump through
653 * hooks to make phys_ram_base point to this. Modern versions of KVM
654 * just use a user allocated buffer so we can use regular pages
655 * unmodified. Make sure we have a sufficiently modern version of KVM.
657 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
658 ret = -EINVAL;
659 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
660 upgrade_note);
661 goto err;
664 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
665 * destroyed properly. Since we rely on this capability, refuse to work
666 * with any kernel without this capability. */
667 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
668 ret = -EINVAL;
670 fprintf(stderr,
671 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
672 upgrade_note);
673 goto err;
676 s->coalesced_mmio = 0;
677 #ifdef KVM_CAP_COALESCED_MMIO
678 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
679 s->coalesced_mmio_ring = NULL;
680 #endif
682 s->broken_set_mem_region = 1;
683 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
684 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
685 if (ret > 0) {
686 s->broken_set_mem_region = 0;
688 #endif
690 s->vcpu_events = 0;
691 #ifdef KVM_CAP_VCPU_EVENTS
692 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
693 #endif
695 s->robust_singlestep = 0;
696 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
697 s->robust_singlestep =
698 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
699 #endif
701 s->debugregs = 0;
702 #ifdef KVM_CAP_DEBUGREGS
703 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
704 #endif
706 s->xsave = 0;
707 #ifdef KVM_CAP_XSAVE
708 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
709 #endif
711 s->xcrs = 0;
712 #ifdef KVM_CAP_XCRS
713 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
714 #endif
716 ret = kvm_arch_init(s, smp_cpus);
717 if (ret < 0)
718 goto err;
720 kvm_state = s;
721 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
723 return 0;
725 err:
726 if (s) {
727 if (s->vmfd != -1)
728 close(s->vmfd);
729 if (s->fd != -1)
730 close(s->fd);
732 qemu_free(s);
734 return ret;
736 #endif
738 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
739 uint32_t count)
741 int i;
742 uint8_t *ptr = data;
744 for (i = 0; i < count; i++) {
745 if (direction == KVM_EXIT_IO_IN) {
746 switch (size) {
747 case 1:
748 stb_p(ptr, cpu_inb(port));
749 break;
750 case 2:
751 stw_p(ptr, cpu_inw(port));
752 break;
753 case 4:
754 stl_p(ptr, cpu_inl(port));
755 break;
757 } else {
758 switch (size) {
759 case 1:
760 cpu_outb(port, ldub_p(ptr));
761 break;
762 case 2:
763 cpu_outw(port, lduw_p(ptr));
764 break;
765 case 4:
766 cpu_outl(port, ldl_p(ptr));
767 break;
771 ptr += size;
774 return 1;
777 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
778 static void kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
781 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
782 int i;
784 fprintf(stderr, "KVM internal error. Suberror: %d\n",
785 run->internal.suberror);
787 for (i = 0; i < run->internal.ndata; ++i) {
788 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
789 i, (uint64_t)run->internal.data[i]);
792 cpu_dump_state(env, stderr, fprintf, 0);
793 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
794 fprintf(stderr, "emulation failure\n");
795 if (!kvm_arch_stop_on_emulation_error(env))
796 return;
798 /* FIXME: Should trigger a qmp message to let management know
799 * something went wrong.
801 vm_stop(0);
803 #endif
805 void kvm_flush_coalesced_mmio_buffer(void)
807 #ifdef KVM_CAP_COALESCED_MMIO
808 KVMState *s = kvm_state;
809 if (s->coalesced_mmio_ring) {
810 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
811 while (ring->first != ring->last) {
812 struct kvm_coalesced_mmio *ent;
814 ent = &ring->coalesced_mmio[ring->first];
816 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
817 smp_wmb();
818 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
821 #endif
824 #ifdef KVM_UPSTREAM
826 static void do_kvm_cpu_synchronize_state(void *_env)
828 CPUState *env = _env;
830 if (!env->kvm_vcpu_dirty) {
831 kvm_arch_get_registers(env);
832 env->kvm_vcpu_dirty = 1;
836 void kvm_cpu_synchronize_state(CPUState *env)
838 if (!env->kvm_vcpu_dirty)
839 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
842 void kvm_cpu_synchronize_post_reset(CPUState *env)
844 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
845 env->kvm_vcpu_dirty = 0;
848 void kvm_cpu_synchronize_post_init(CPUState *env)
850 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
851 env->kvm_vcpu_dirty = 0;
854 int kvm_cpu_exec(CPUState *env)
856 struct kvm_run *run = env->kvm_run;
857 int ret;
859 DPRINTF("kvm_cpu_exec()\n");
861 do {
862 #ifndef CONFIG_IOTHREAD
863 if (env->exit_request) {
864 DPRINTF("interrupt exit requested\n");
865 ret = 0;
866 break;
868 #endif
870 if (kvm_arch_process_irqchip_events(env)) {
871 ret = 0;
872 break;
875 if (env->kvm_vcpu_dirty) {
876 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
877 env->kvm_vcpu_dirty = 0;
880 kvm_arch_pre_run(env, run);
881 cpu_single_env = NULL;
882 qemu_mutex_unlock_iothread();
883 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
884 qemu_mutex_lock_iothread();
885 cpu_single_env = env;
886 kvm_arch_post_run(env, run);
888 if (ret == -EINTR || ret == -EAGAIN) {
889 cpu_exit(env);
890 DPRINTF("io window exit\n");
891 ret = 0;
892 break;
895 if (ret < 0) {
896 DPRINTF("kvm run failed %s\n", strerror(-ret));
897 abort();
900 kvm_flush_coalesced_mmio_buffer();
902 ret = 0; /* exit loop */
903 switch (run->exit_reason) {
904 case KVM_EXIT_IO:
905 DPRINTF("handle_io\n");
906 ret = kvm_handle_io(run->io.port,
907 (uint8_t *)run + run->io.data_offset,
908 run->io.direction,
909 run->io.size,
910 run->io.count);
911 break;
912 case KVM_EXIT_MMIO:
913 DPRINTF("handle_mmio\n");
914 cpu_physical_memory_rw(run->mmio.phys_addr,
915 run->mmio.data,
916 run->mmio.len,
917 run->mmio.is_write);
918 ret = 1;
919 break;
920 case KVM_EXIT_IRQ_WINDOW_OPEN:
921 DPRINTF("irq_window_open\n");
922 break;
923 case KVM_EXIT_SHUTDOWN:
924 DPRINTF("shutdown\n");
925 qemu_system_reset_request();
926 ret = 1;
927 break;
928 case KVM_EXIT_UNKNOWN:
929 DPRINTF("kvm_exit_unknown\n");
930 break;
931 case KVM_EXIT_FAIL_ENTRY:
932 DPRINTF("kvm_exit_fail_entry\n");
933 break;
934 case KVM_EXIT_EXCEPTION:
935 DPRINTF("kvm_exit_exception\n");
936 break;
937 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
938 case KVM_EXIT_INTERNAL_ERROR:
939 kvm_handle_internal_error(env, run);
940 break;
941 #endif
942 case KVM_EXIT_DEBUG:
943 DPRINTF("kvm_exit_debug\n");
944 #ifdef KVM_CAP_SET_GUEST_DEBUG
945 if (kvm_arch_debug(&run->debug.arch)) {
946 env->exception_index = EXCP_DEBUG;
947 return 0;
949 /* re-enter, this exception was guest-internal */
950 ret = 1;
951 #endif /* KVM_CAP_SET_GUEST_DEBUG */
952 break;
953 default:
954 DPRINTF("kvm_arch_handle_exit\n");
955 ret = kvm_arch_handle_exit(env, run);
956 break;
958 } while (ret > 0);
960 if (env->exit_request) {
961 env->exit_request = 0;
962 env->exception_index = EXCP_INTERRUPT;
965 return ret;
968 #endif
969 int kvm_ioctl(KVMState *s, int type, ...)
971 int ret;
972 void *arg;
973 va_list ap;
975 va_start(ap, type);
976 arg = va_arg(ap, void *);
977 va_end(ap);
979 ret = ioctl(s->fd, type, arg);
980 if (ret == -1)
981 ret = -errno;
983 return ret;
986 int kvm_vm_ioctl(KVMState *s, int type, ...)
988 int ret;
989 void *arg;
990 va_list ap;
992 va_start(ap, type);
993 arg = va_arg(ap, void *);
994 va_end(ap);
996 ret = ioctl(s->vmfd, type, arg);
997 if (ret == -1)
998 ret = -errno;
1000 return ret;
1003 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1005 int ret;
1006 void *arg;
1007 va_list ap;
1009 va_start(ap, type);
1010 arg = va_arg(ap, void *);
1011 va_end(ap);
1013 ret = ioctl(env->kvm_fd, type, arg);
1014 if (ret == -1)
1015 ret = -errno;
1017 return ret;
1020 int kvm_has_sync_mmu(void)
1022 #ifdef KVM_CAP_SYNC_MMU
1023 KVMState *s = kvm_state;
1025 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
1026 #else
1027 return 0;
1028 #endif
1031 int kvm_has_vcpu_events(void)
1033 return kvm_state->vcpu_events;
1036 int kvm_has_robust_singlestep(void)
1038 return kvm_state->robust_singlestep;
1041 int kvm_has_debugregs(void)
1043 return kvm_state->debugregs;
1046 #ifdef KVM_UPSTREAM
1047 int kvm_has_xsave(void)
1049 return kvm_state->xsave;
1052 int kvm_has_xcrs(void)
1054 return kvm_state->xcrs;
1056 #endif
1058 void kvm_setup_guest_memory(void *start, size_t size)
1060 if (!kvm_has_sync_mmu()) {
1061 #ifdef MADV_DONTFORK
1062 int ret = madvise(start, size, MADV_DONTFORK);
1064 if (ret) {
1065 perror("madvice");
1066 exit(1);
1068 #else
1069 fprintf(stderr,
1070 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1071 exit(1);
1072 #endif
1076 #ifdef KVM_CAP_SET_GUEST_DEBUG
1077 #ifndef KVM_UPSTREAM
1078 #define run_on_cpu on_vcpu
1079 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data);
1080 #endif /* !KVM_UPSTREAM */
1082 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1083 target_ulong pc)
1085 struct kvm_sw_breakpoint *bp;
1087 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1088 if (bp->pc == pc)
1089 return bp;
1091 return NULL;
1094 int kvm_sw_breakpoints_active(CPUState *env)
1096 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1099 struct kvm_set_guest_debug_data {
1100 struct kvm_guest_debug dbg;
1101 CPUState *env;
1102 int err;
1105 static void kvm_invoke_set_guest_debug(void *data)
1107 struct kvm_set_guest_debug_data *dbg_data = data;
1108 CPUState *env = dbg_data->env;
1110 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1113 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1115 struct kvm_set_guest_debug_data data;
1117 data.dbg.control = reinject_trap;
1119 if (env->singlestep_enabled) {
1120 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1122 kvm_arch_update_guest_debug(env, &data.dbg);
1123 data.env = env;
1125 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1126 return data.err;
1129 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1130 target_ulong len, int type)
1132 struct kvm_sw_breakpoint *bp;
1133 CPUState *env;
1134 int err;
1136 if (type == GDB_BREAKPOINT_SW) {
1137 bp = kvm_find_sw_breakpoint(current_env, addr);
1138 if (bp) {
1139 bp->use_count++;
1140 return 0;
1143 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1144 if (!bp)
1145 return -ENOMEM;
1147 bp->pc = addr;
1148 bp->use_count = 1;
1149 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1150 if (err) {
1151 free(bp);
1152 return err;
1155 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1156 bp, entry);
1157 } else {
1158 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1159 if (err)
1160 return err;
1163 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1164 err = kvm_update_guest_debug(env, 0);
1165 if (err)
1166 return err;
1168 return 0;
1171 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1172 target_ulong len, int type)
1174 struct kvm_sw_breakpoint *bp;
1175 CPUState *env;
1176 int err;
1178 if (type == GDB_BREAKPOINT_SW) {
1179 bp = kvm_find_sw_breakpoint(current_env, addr);
1180 if (!bp)
1181 return -ENOENT;
1183 if (bp->use_count > 1) {
1184 bp->use_count--;
1185 return 0;
1188 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1189 if (err)
1190 return err;
1192 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1193 qemu_free(bp);
1194 } else {
1195 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1196 if (err)
1197 return err;
1200 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1201 err = kvm_update_guest_debug(env, 0);
1202 if (err)
1203 return err;
1205 return 0;
1208 void kvm_remove_all_breakpoints(CPUState *current_env)
1210 struct kvm_sw_breakpoint *bp, *next;
1211 KVMState *s = current_env->kvm_state;
1212 CPUState *env;
1214 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1215 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1216 /* Try harder to find a CPU that currently sees the breakpoint. */
1217 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1218 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1219 break;
1223 kvm_arch_remove_all_hw_breakpoints();
1225 for (env = first_cpu; env != NULL; env = env->next_cpu)
1226 kvm_update_guest_debug(env, 0);
1229 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1231 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1233 return -EINVAL;
1236 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1237 target_ulong len, int type)
1239 return -EINVAL;
1242 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1243 target_ulong len, int type)
1245 return -EINVAL;
1248 void kvm_remove_all_breakpoints(CPUState *current_env)
1251 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1253 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1255 struct kvm_signal_mask *sigmask;
1256 int r;
1258 if (!sigset)
1259 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1261 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1263 sigmask->len = 8;
1264 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1265 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1266 free(sigmask);
1268 return r;
1271 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1273 #ifdef KVM_IOEVENTFD
1274 struct kvm_ioeventfd kick = {
1275 .datamatch = val,
1276 .addr = addr,
1277 .len = 2,
1278 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1279 .fd = fd,
1281 int r;
1282 if (!kvm_enabled())
1283 return -ENOSYS;
1284 if (!assign)
1285 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1286 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1287 if (r < 0)
1288 return r;
1289 return 0;
1290 #else
1291 return -ENOSYS;
1292 #endif
1295 #if defined(KVM_IRQFD)
1296 int kvm_set_irqfd(int gsi, int fd, bool assigned)
1298 struct kvm_irqfd irqfd = {
1299 .fd = fd,
1300 .gsi = gsi,
1301 .flags = assigned ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1303 int r;
1304 if (!kvm_enabled() || !kvm_irqchip_in_kernel())
1305 return -ENOSYS;
1307 r = kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd);
1308 if (r < 0)
1309 return r;
1310 return 0;
1312 #endif
1314 #undef PAGE_SIZE
1315 #include "qemu-kvm.c"