Merge branch 'upstream-merge'
[qemu-kvm/stefanha.git] / kvm-all.c
blob0e6074821ebd81e3661f1a135b735adfb37bac2e
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
31 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
32 #define PAGE_SIZE TARGET_PAGE_SIZE
34 //#define DEBUG_KVM
36 #ifdef DEBUG_KVM
37 #define DPRINTF(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39 #else
40 #define DPRINTF(fmt, ...) \
41 do { } while (0)
42 #endif
44 #ifdef OBSOLETE_KVM_IMPL
46 typedef struct KVMSlot
48 target_phys_addr_t start_addr;
49 ram_addr_t memory_size;
50 ram_addr_t phys_offset;
51 int slot;
52 int flags;
53 } KVMSlot;
55 typedef struct kvm_dirty_log KVMDirtyLog;
57 struct KVMState
59 KVMSlot slots[32];
60 int fd;
61 int vmfd;
62 int coalesced_mmio;
63 #ifdef KVM_CAP_COALESCED_MMIO
64 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
65 #endif
66 int broken_set_mem_region;
67 int migration_log;
68 int vcpu_events;
69 int robust_singlestep;
70 int debugregs;
71 #ifdef KVM_CAP_SET_GUEST_DEBUG
72 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
73 #endif
74 int irqchip_in_kernel;
75 int pit_in_kernel;
76 int xsave, xcrs;
79 static KVMState *kvm_state;
81 #endif
83 static KVMSlot *kvm_alloc_slot(KVMState *s)
85 int i;
87 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
88 /* KVM private memory slots */
89 if (i >= 8 && i < 12)
90 continue;
91 if (s->slots[i].memory_size == 0)
92 return &s->slots[i];
95 fprintf(stderr, "%s: no free slot available\n", __func__);
96 abort();
99 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
100 target_phys_addr_t start_addr,
101 target_phys_addr_t end_addr)
103 int i;
105 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
106 KVMSlot *mem = &s->slots[i];
108 if (start_addr == mem->start_addr &&
109 end_addr == mem->start_addr + mem->memory_size) {
110 return mem;
114 return NULL;
118 * Find overlapping slot with lowest start address
120 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
121 target_phys_addr_t start_addr,
122 target_phys_addr_t end_addr)
124 KVMSlot *found = NULL;
125 int i;
127 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
128 KVMSlot *mem = &s->slots[i];
130 if (mem->memory_size == 0 ||
131 (found && found->start_addr < mem->start_addr)) {
132 continue;
135 if (end_addr > mem->start_addr &&
136 start_addr < mem->start_addr + mem->memory_size) {
137 found = mem;
141 return found;
144 int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
145 target_phys_addr_t *phys_addr)
147 int i;
149 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
150 KVMSlot *mem = &s->slots[i];
152 if (ram_addr >= mem->phys_offset &&
153 ram_addr < mem->phys_offset + mem->memory_size) {
154 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
155 return 1;
159 return 0;
162 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
164 struct kvm_userspace_memory_region mem;
166 mem.slot = slot->slot;
167 mem.guest_phys_addr = slot->start_addr;
168 mem.memory_size = slot->memory_size;
169 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
170 mem.flags = slot->flags;
171 if (s->migration_log) {
172 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
174 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
177 #ifdef OBSOLETE_KVM_IMPL
178 static void kvm_reset_vcpu(void *opaque)
180 CPUState *env = opaque;
182 kvm_arch_reset_vcpu(env);
184 #endif
186 int kvm_irqchip_in_kernel(void)
188 return kvm_state->irqchip_in_kernel;
191 int kvm_pit_in_kernel(void)
193 return kvm_state->pit_in_kernel;
197 #ifdef OBSOLETE_KVM_IMPL
198 int kvm_init_vcpu(CPUState *env)
200 KVMState *s = kvm_state;
201 long mmap_size;
202 int ret;
204 DPRINTF("kvm_init_vcpu\n");
206 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
207 if (ret < 0) {
208 DPRINTF("kvm_create_vcpu failed\n");
209 goto err;
212 env->kvm_fd = ret;
213 env->kvm_state = s;
215 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
216 if (mmap_size < 0) {
217 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
218 goto err;
221 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
222 env->kvm_fd, 0);
223 if (env->kvm_run == MAP_FAILED) {
224 ret = -errno;
225 DPRINTF("mmap'ing vcpu state failed\n");
226 goto err;
229 #ifdef KVM_CAP_COALESCED_MMIO
230 if (s->coalesced_mmio && !s->coalesced_mmio_ring)
231 s->coalesced_mmio_ring = (void *) env->kvm_run +
232 s->coalesced_mmio * PAGE_SIZE;
233 #endif
235 ret = kvm_arch_init_vcpu(env);
236 if (ret == 0) {
237 qemu_register_reset(kvm_reset_vcpu, env);
238 kvm_arch_reset_vcpu(env);
240 err:
241 return ret;
243 #endif
246 * dirty pages logging control
248 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
249 ram_addr_t size, int flags, int mask)
251 KVMState *s = kvm_state;
252 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
253 int old_flags;
255 if (mem == NULL) {
256 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
257 TARGET_FMT_plx "\n", __func__, phys_addr,
258 (target_phys_addr_t)(phys_addr + size - 1));
259 return -EINVAL;
262 old_flags = mem->flags;
264 flags = (mem->flags & ~mask) | flags;
265 mem->flags = flags;
267 /* If nothing changed effectively, no need to issue ioctl */
268 if (s->migration_log) {
269 flags |= KVM_MEM_LOG_DIRTY_PAGES;
271 if (flags == old_flags) {
272 return 0;
275 return kvm_set_user_memory_region(s, mem);
278 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
280 return kvm_dirty_pages_log_change(phys_addr, size,
281 KVM_MEM_LOG_DIRTY_PAGES,
282 KVM_MEM_LOG_DIRTY_PAGES);
285 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
287 return kvm_dirty_pages_log_change(phys_addr, size,
289 KVM_MEM_LOG_DIRTY_PAGES);
292 static int kvm_set_migration_log(int enable)
294 KVMState *s = kvm_state;
295 KVMSlot *mem;
296 int i, err;
298 s->migration_log = enable;
300 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
301 mem = &s->slots[i];
303 if (!mem->memory_size) {
304 continue;
306 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
307 continue;
309 err = kvm_set_user_memory_region(s, mem);
310 if (err) {
311 return err;
314 return 0;
317 /* get kvm's dirty pages bitmap and update qemu's */
318 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
319 unsigned long *bitmap,
320 unsigned long offset,
321 unsigned long mem_size)
323 unsigned int i, j;
324 unsigned long page_number, addr, addr1, c;
325 ram_addr_t ram_addr;
326 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
327 HOST_LONG_BITS;
330 * bitmap-traveling is faster than memory-traveling (for addr...)
331 * especially when most of the memory is not dirty.
333 for (i = 0; i < len; i++) {
334 if (bitmap[i] != 0) {
335 c = leul_to_cpu(bitmap[i]);
336 do {
337 j = ffsl(c) - 1;
338 c &= ~(1ul << j);
339 page_number = i * HOST_LONG_BITS + j;
340 addr1 = page_number * TARGET_PAGE_SIZE;
341 addr = offset + addr1;
342 ram_addr = cpu_get_physical_page_desc(addr);
343 cpu_physical_memory_set_dirty(ram_addr);
344 } while (c != 0);
347 return 0;
350 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
353 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
354 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
355 * This means all bits are set to dirty.
357 * @start_add: start of logged region.
358 * @end_addr: end of logged region.
360 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
361 target_phys_addr_t end_addr)
363 KVMState *s = kvm_state;
364 unsigned long size, allocated_size = 0;
365 KVMDirtyLog d;
366 KVMSlot *mem;
367 int ret = 0;
369 d.dirty_bitmap = NULL;
370 while (start_addr < end_addr) {
371 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
372 if (mem == NULL) {
373 break;
376 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
377 if (!d.dirty_bitmap) {
378 d.dirty_bitmap = qemu_malloc(size);
379 } else if (size > allocated_size) {
380 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
382 allocated_size = size;
383 memset(d.dirty_bitmap, 0, allocated_size);
385 d.slot = mem->slot;
387 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
388 DPRINTF("ioctl failed %d\n", errno);
389 ret = -1;
390 break;
393 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
394 mem->start_addr, mem->memory_size);
395 start_addr = mem->start_addr + mem->memory_size;
397 qemu_free(d.dirty_bitmap);
399 return ret;
402 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
404 int ret = -ENOSYS;
405 #ifdef KVM_CAP_COALESCED_MMIO
406 KVMState *s = kvm_state;
408 if (s->coalesced_mmio) {
409 struct kvm_coalesced_mmio_zone zone;
411 zone.addr = start;
412 zone.size = size;
414 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
416 #endif
418 return ret;
421 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
423 int ret = -ENOSYS;
424 #ifdef KVM_CAP_COALESCED_MMIO
425 KVMState *s = kvm_state;
427 if (s->coalesced_mmio) {
428 struct kvm_coalesced_mmio_zone zone;
430 zone.addr = start;
431 zone.size = size;
433 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
435 #endif
437 return ret;
440 int kvm_check_extension(KVMState *s, unsigned int extension)
442 int ret;
444 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
445 if (ret < 0) {
446 ret = 0;
449 return ret;
452 static void kvm_set_phys_mem(target_phys_addr_t start_addr,
453 ram_addr_t size,
454 ram_addr_t phys_offset)
456 KVMState *s = kvm_state;
457 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
458 KVMSlot *mem, old;
459 int err;
461 /* kvm works in page size chunks, but the function may be called
462 with sub-page size and unaligned start address. */
463 size = TARGET_PAGE_ALIGN(size);
464 start_addr = TARGET_PAGE_ALIGN(start_addr);
466 /* KVM does not support read-only slots */
467 phys_offset &= ~IO_MEM_ROM;
469 while (1) {
470 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
471 if (!mem) {
472 break;
475 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
476 (start_addr + size <= mem->start_addr + mem->memory_size) &&
477 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
478 /* The new slot fits into the existing one and comes with
479 * identical parameters - nothing to be done. */
480 return;
483 old = *mem;
485 /* unregister the overlapping slot */
486 mem->memory_size = 0;
487 err = kvm_set_user_memory_region(s, mem);
488 if (err) {
489 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
490 __func__, strerror(-err));
491 abort();
494 /* Workaround for older KVM versions: we can't join slots, even not by
495 * unregistering the previous ones and then registering the larger
496 * slot. We have to maintain the existing fragmentation. Sigh.
498 * This workaround assumes that the new slot starts at the same
499 * address as the first existing one. If not or if some overlapping
500 * slot comes around later, we will fail (not seen in practice so far)
501 * - and actually require a recent KVM version. */
502 if (s->broken_set_mem_region &&
503 old.start_addr == start_addr && old.memory_size < size &&
504 flags < IO_MEM_UNASSIGNED) {
505 mem = kvm_alloc_slot(s);
506 mem->memory_size = old.memory_size;
507 mem->start_addr = old.start_addr;
508 mem->phys_offset = old.phys_offset;
509 mem->flags = 0;
511 err = kvm_set_user_memory_region(s, mem);
512 if (err) {
513 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
514 strerror(-err));
515 abort();
518 start_addr += old.memory_size;
519 phys_offset += old.memory_size;
520 size -= old.memory_size;
521 continue;
524 /* register prefix slot */
525 if (old.start_addr < start_addr) {
526 mem = kvm_alloc_slot(s);
527 mem->memory_size = start_addr - old.start_addr;
528 mem->start_addr = old.start_addr;
529 mem->phys_offset = old.phys_offset;
530 mem->flags = 0;
532 err = kvm_set_user_memory_region(s, mem);
533 if (err) {
534 fprintf(stderr, "%s: error registering prefix slot: %s\n",
535 __func__, strerror(-err));
536 abort();
540 /* register suffix slot */
541 if (old.start_addr + old.memory_size > start_addr + size) {
542 ram_addr_t size_delta;
544 mem = kvm_alloc_slot(s);
545 mem->start_addr = start_addr + size;
546 size_delta = mem->start_addr - old.start_addr;
547 mem->memory_size = old.memory_size - size_delta;
548 mem->phys_offset = old.phys_offset + size_delta;
549 mem->flags = 0;
551 err = kvm_set_user_memory_region(s, mem);
552 if (err) {
553 fprintf(stderr, "%s: error registering suffix slot: %s\n",
554 __func__, strerror(-err));
555 abort();
560 /* in case the KVM bug workaround already "consumed" the new slot */
561 if (!size)
562 return;
564 /* KVM does not need to know about this memory */
565 if (flags >= IO_MEM_UNASSIGNED)
566 return;
568 mem = kvm_alloc_slot(s);
569 mem->memory_size = size;
570 mem->start_addr = start_addr;
571 mem->phys_offset = phys_offset;
572 mem->flags = 0;
574 err = kvm_set_user_memory_region(s, mem);
575 if (err) {
576 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
577 strerror(-err));
578 abort();
582 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
583 target_phys_addr_t start_addr,
584 ram_addr_t size,
585 ram_addr_t phys_offset)
587 kvm_set_phys_mem(start_addr, size, phys_offset);
590 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
591 target_phys_addr_t start_addr,
592 target_phys_addr_t end_addr)
594 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
597 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
598 int enable)
600 return kvm_set_migration_log(enable);
603 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
604 .set_memory = kvm_client_set_memory,
605 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
606 .migration_log = kvm_client_migration_log,
610 void kvm_cpu_register_phys_memory_client(void)
612 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
615 #ifdef OBSOLETE_KVM_IMPL
617 int kvm_init(int smp_cpus)
619 static const char upgrade_note[] =
620 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
621 "(see http://sourceforge.net/projects/kvm).\n";
622 KVMState *s;
623 int ret;
624 int i;
626 s = qemu_mallocz(sizeof(KVMState));
628 #ifdef KVM_CAP_SET_GUEST_DEBUG
629 QTAILQ_INIT(&s->kvm_sw_breakpoints);
630 #endif
631 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
632 s->slots[i].slot = i;
634 s->vmfd = -1;
635 s->fd = qemu_open("/dev/kvm", O_RDWR);
636 if (s->fd == -1) {
637 fprintf(stderr, "Could not access KVM kernel module: %m\n");
638 ret = -errno;
639 goto err;
642 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
643 if (ret < KVM_API_VERSION) {
644 if (ret > 0)
645 ret = -EINVAL;
646 fprintf(stderr, "kvm version too old\n");
647 goto err;
650 if (ret > KVM_API_VERSION) {
651 ret = -EINVAL;
652 fprintf(stderr, "kvm version not supported\n");
653 goto err;
656 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
657 if (s->vmfd < 0) {
658 #ifdef TARGET_S390X
659 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
660 "your host kernel command line\n");
661 #endif
662 goto err;
665 /* initially, KVM allocated its own memory and we had to jump through
666 * hooks to make phys_ram_base point to this. Modern versions of KVM
667 * just use a user allocated buffer so we can use regular pages
668 * unmodified. Make sure we have a sufficiently modern version of KVM.
670 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
671 ret = -EINVAL;
672 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
673 upgrade_note);
674 goto err;
677 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
678 * destroyed properly. Since we rely on this capability, refuse to work
679 * with any kernel without this capability. */
680 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
681 ret = -EINVAL;
683 fprintf(stderr,
684 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
685 upgrade_note);
686 goto err;
689 s->coalesced_mmio = 0;
690 #ifdef KVM_CAP_COALESCED_MMIO
691 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
692 s->coalesced_mmio_ring = NULL;
693 #endif
695 s->broken_set_mem_region = 1;
696 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
697 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
698 if (ret > 0) {
699 s->broken_set_mem_region = 0;
701 #endif
703 s->vcpu_events = 0;
704 #ifdef KVM_CAP_VCPU_EVENTS
705 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
706 #endif
708 s->robust_singlestep = 0;
709 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
710 s->robust_singlestep =
711 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
712 #endif
714 s->debugregs = 0;
715 #ifdef KVM_CAP_DEBUGREGS
716 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
717 #endif
719 s->xsave = 0;
720 #ifdef KVM_CAP_XSAVE
721 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
722 #endif
724 s->xcrs = 0;
725 #ifdef KVM_CAP_XCRS
726 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
727 #endif
729 ret = kvm_arch_init(s, smp_cpus);
730 if (ret < 0)
731 goto err;
733 kvm_state = s;
734 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
736 return 0;
738 err:
739 if (s) {
740 if (s->vmfd != -1)
741 close(s->vmfd);
742 if (s->fd != -1)
743 close(s->fd);
745 qemu_free(s);
747 return ret;
749 #endif
751 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
752 uint32_t count)
754 int i;
755 uint8_t *ptr = data;
757 for (i = 0; i < count; i++) {
758 if (direction == KVM_EXIT_IO_IN) {
759 switch (size) {
760 case 1:
761 stb_p(ptr, cpu_inb(port));
762 break;
763 case 2:
764 stw_p(ptr, cpu_inw(port));
765 break;
766 case 4:
767 stl_p(ptr, cpu_inl(port));
768 break;
770 } else {
771 switch (size) {
772 case 1:
773 cpu_outb(port, ldub_p(ptr));
774 break;
775 case 2:
776 cpu_outw(port, lduw_p(ptr));
777 break;
778 case 4:
779 cpu_outl(port, ldl_p(ptr));
780 break;
784 ptr += size;
787 return 1;
790 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
791 static void kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
794 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
795 int i;
797 fprintf(stderr, "KVM internal error. Suberror: %d\n",
798 run->internal.suberror);
800 for (i = 0; i < run->internal.ndata; ++i) {
801 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
802 i, (uint64_t)run->internal.data[i]);
805 cpu_dump_state(env, stderr, fprintf, 0);
806 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
807 fprintf(stderr, "emulation failure\n");
808 if (!kvm_arch_stop_on_emulation_error(env))
809 return;
811 /* FIXME: Should trigger a qmp message to let management know
812 * something went wrong.
814 vm_stop(0);
816 #endif
818 void kvm_flush_coalesced_mmio_buffer(void)
820 #ifdef KVM_CAP_COALESCED_MMIO
821 KVMState *s = kvm_state;
822 if (s->coalesced_mmio_ring) {
823 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
824 while (ring->first != ring->last) {
825 struct kvm_coalesced_mmio *ent;
827 ent = &ring->coalesced_mmio[ring->first];
829 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
830 smp_wmb();
831 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
834 #endif
837 #ifdef OBSOLETE_KVM_IMPL
839 static void do_kvm_cpu_synchronize_state(void *_env)
841 CPUState *env = _env;
843 if (!env->kvm_vcpu_dirty) {
844 kvm_arch_get_registers(env);
845 env->kvm_vcpu_dirty = 1;
849 void kvm_cpu_synchronize_state(CPUState *env)
851 if (!env->kvm_vcpu_dirty)
852 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
855 void kvm_cpu_synchronize_post_reset(CPUState *env)
857 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
858 env->kvm_vcpu_dirty = 0;
861 void kvm_cpu_synchronize_post_init(CPUState *env)
863 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
864 env->kvm_vcpu_dirty = 0;
867 int kvm_cpu_exec(CPUState *env)
869 struct kvm_run *run = env->kvm_run;
870 int ret;
872 DPRINTF("kvm_cpu_exec()\n");
874 do {
875 #ifndef CONFIG_IOTHREAD
876 if (env->exit_request) {
877 DPRINTF("interrupt exit requested\n");
878 ret = 0;
879 break;
881 #endif
883 if (kvm_arch_process_irqchip_events(env)) {
884 ret = 0;
885 break;
888 if (env->kvm_vcpu_dirty) {
889 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
890 env->kvm_vcpu_dirty = 0;
893 kvm_arch_pre_run(env, run);
894 cpu_single_env = NULL;
895 qemu_mutex_unlock_iothread();
896 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
897 qemu_mutex_lock_iothread();
898 cpu_single_env = env;
899 kvm_arch_post_run(env, run);
901 if (ret == -EINTR || ret == -EAGAIN) {
902 cpu_exit(env);
903 DPRINTF("io window exit\n");
904 ret = 0;
905 break;
908 if (ret < 0) {
909 DPRINTF("kvm run failed %s\n", strerror(-ret));
910 abort();
913 kvm_flush_coalesced_mmio_buffer();
915 ret = 0; /* exit loop */
916 switch (run->exit_reason) {
917 case KVM_EXIT_IO:
918 DPRINTF("handle_io\n");
919 ret = kvm_handle_io(run->io.port,
920 (uint8_t *)run + run->io.data_offset,
921 run->io.direction,
922 run->io.size,
923 run->io.count);
924 break;
925 case KVM_EXIT_MMIO:
926 DPRINTF("handle_mmio\n");
927 cpu_physical_memory_rw(run->mmio.phys_addr,
928 run->mmio.data,
929 run->mmio.len,
930 run->mmio.is_write);
931 ret = 1;
932 break;
933 case KVM_EXIT_IRQ_WINDOW_OPEN:
934 DPRINTF("irq_window_open\n");
935 break;
936 case KVM_EXIT_SHUTDOWN:
937 DPRINTF("shutdown\n");
938 qemu_system_reset_request();
939 ret = 1;
940 break;
941 case KVM_EXIT_UNKNOWN:
942 DPRINTF("kvm_exit_unknown\n");
943 break;
944 case KVM_EXIT_FAIL_ENTRY:
945 DPRINTF("kvm_exit_fail_entry\n");
946 break;
947 case KVM_EXIT_EXCEPTION:
948 DPRINTF("kvm_exit_exception\n");
949 break;
950 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
951 case KVM_EXIT_INTERNAL_ERROR:
952 kvm_handle_internal_error(env, run);
953 break;
954 #endif
955 case KVM_EXIT_DEBUG:
956 DPRINTF("kvm_exit_debug\n");
957 #ifdef KVM_CAP_SET_GUEST_DEBUG
958 if (kvm_arch_debug(&run->debug.arch)) {
959 env->exception_index = EXCP_DEBUG;
960 return 0;
962 /* re-enter, this exception was guest-internal */
963 ret = 1;
964 #endif /* KVM_CAP_SET_GUEST_DEBUG */
965 break;
966 default:
967 DPRINTF("kvm_arch_handle_exit\n");
968 ret = kvm_arch_handle_exit(env, run);
969 break;
971 } while (ret > 0);
973 if (env->exit_request) {
974 env->exit_request = 0;
975 env->exception_index = EXCP_INTERRUPT;
978 return ret;
981 #endif
982 int kvm_ioctl(KVMState *s, int type, ...)
984 int ret;
985 void *arg;
986 va_list ap;
988 va_start(ap, type);
989 arg = va_arg(ap, void *);
990 va_end(ap);
992 ret = ioctl(s->fd, type, arg);
993 if (ret == -1)
994 ret = -errno;
996 return ret;
999 int kvm_vm_ioctl(KVMState *s, int type, ...)
1001 int ret;
1002 void *arg;
1003 va_list ap;
1005 va_start(ap, type);
1006 arg = va_arg(ap, void *);
1007 va_end(ap);
1009 ret = ioctl(s->vmfd, type, arg);
1010 if (ret == -1)
1011 ret = -errno;
1013 return ret;
1016 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1018 int ret;
1019 void *arg;
1020 va_list ap;
1022 va_start(ap, type);
1023 arg = va_arg(ap, void *);
1024 va_end(ap);
1026 ret = ioctl(env->kvm_fd, type, arg);
1027 if (ret == -1)
1028 ret = -errno;
1030 return ret;
1033 int kvm_has_sync_mmu(void)
1035 #ifdef KVM_CAP_SYNC_MMU
1036 KVMState *s = kvm_state;
1038 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
1039 #else
1040 return 0;
1041 #endif
1044 int kvm_has_vcpu_events(void)
1046 return kvm_state->vcpu_events;
1049 int kvm_has_robust_singlestep(void)
1051 return kvm_state->robust_singlestep;
1054 int kvm_has_debugregs(void)
1056 return kvm_state->debugregs;
1059 int kvm_has_xsave(void)
1061 return kvm_state->xsave;
1064 int kvm_has_xcrs(void)
1066 return kvm_state->xcrs;
1069 void kvm_setup_guest_memory(void *start, size_t size)
1071 if (!kvm_has_sync_mmu()) {
1072 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1074 if (ret) {
1075 perror("qemu_madvise");
1076 fprintf(stderr,
1077 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1078 exit(1);
1083 #ifdef KVM_CAP_SET_GUEST_DEBUG
1084 #ifndef OBSOLETE_KVM_IMPL
1085 #define run_on_cpu on_vcpu
1086 #endif /* !OBSOLETE_KVM_IMPL */
1088 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1089 target_ulong pc)
1091 struct kvm_sw_breakpoint *bp;
1093 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1094 if (bp->pc == pc)
1095 return bp;
1097 return NULL;
1100 int kvm_sw_breakpoints_active(CPUState *env)
1102 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1105 struct kvm_set_guest_debug_data {
1106 struct kvm_guest_debug dbg;
1107 CPUState *env;
1108 int err;
1111 static void kvm_invoke_set_guest_debug(void *data)
1113 struct kvm_set_guest_debug_data *dbg_data = data;
1114 CPUState *env = dbg_data->env;
1116 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1119 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1121 struct kvm_set_guest_debug_data data;
1123 data.dbg.control = reinject_trap;
1125 if (env->singlestep_enabled) {
1126 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1128 kvm_arch_update_guest_debug(env, &data.dbg);
1129 data.env = env;
1131 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1132 return data.err;
1135 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1136 target_ulong len, int type)
1138 struct kvm_sw_breakpoint *bp;
1139 CPUState *env;
1140 int err;
1142 if (type == GDB_BREAKPOINT_SW) {
1143 bp = kvm_find_sw_breakpoint(current_env, addr);
1144 if (bp) {
1145 bp->use_count++;
1146 return 0;
1149 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1150 if (!bp)
1151 return -ENOMEM;
1153 bp->pc = addr;
1154 bp->use_count = 1;
1155 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1156 if (err) {
1157 free(bp);
1158 return err;
1161 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1162 bp, entry);
1163 } else {
1164 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1165 if (err)
1166 return err;
1169 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1170 err = kvm_update_guest_debug(env, 0);
1171 if (err)
1172 return err;
1174 return 0;
1177 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1178 target_ulong len, int type)
1180 struct kvm_sw_breakpoint *bp;
1181 CPUState *env;
1182 int err;
1184 if (type == GDB_BREAKPOINT_SW) {
1185 bp = kvm_find_sw_breakpoint(current_env, addr);
1186 if (!bp)
1187 return -ENOENT;
1189 if (bp->use_count > 1) {
1190 bp->use_count--;
1191 return 0;
1194 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1195 if (err)
1196 return err;
1198 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1199 qemu_free(bp);
1200 } else {
1201 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1202 if (err)
1203 return err;
1206 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1207 err = kvm_update_guest_debug(env, 0);
1208 if (err)
1209 return err;
1211 return 0;
1214 void kvm_remove_all_breakpoints(CPUState *current_env)
1216 struct kvm_sw_breakpoint *bp, *next;
1217 KVMState *s = current_env->kvm_state;
1218 CPUState *env;
1220 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1221 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1222 /* Try harder to find a CPU that currently sees the breakpoint. */
1223 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1224 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1225 break;
1229 kvm_arch_remove_all_hw_breakpoints();
1231 for (env = first_cpu; env != NULL; env = env->next_cpu)
1232 kvm_update_guest_debug(env, 0);
1235 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1237 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1239 return -EINVAL;
1242 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1243 target_ulong len, int type)
1245 return -EINVAL;
1248 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1249 target_ulong len, int type)
1251 return -EINVAL;
1254 void kvm_remove_all_breakpoints(CPUState *current_env)
1257 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1259 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1261 struct kvm_signal_mask *sigmask;
1262 int r;
1264 if (!sigset)
1265 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1267 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1269 sigmask->len = 8;
1270 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1271 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1272 free(sigmask);
1274 return r;
1277 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1279 #ifdef KVM_IOEVENTFD
1280 int ret;
1281 struct kvm_ioeventfd iofd;
1283 iofd.datamatch = val;
1284 iofd.addr = addr;
1285 iofd.len = 4;
1286 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1287 iofd.fd = fd;
1289 if (!kvm_enabled()) {
1290 return -ENOSYS;
1293 if (!assign) {
1294 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1297 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1299 if (ret < 0) {
1300 return -errno;
1303 return 0;
1304 #else
1305 return -ENOSYS;
1306 #endif
1309 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1311 #ifdef KVM_IOEVENTFD
1312 struct kvm_ioeventfd kick = {
1313 .datamatch = val,
1314 .addr = addr,
1315 .len = 2,
1316 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1317 .fd = fd,
1319 int r;
1320 if (!kvm_enabled())
1321 return -ENOSYS;
1322 if (!assign)
1323 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1324 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1325 if (r < 0)
1326 return r;
1327 return 0;
1328 #else
1329 return -ENOSYS;
1330 #endif
1333 #if defined(KVM_IRQFD)
1334 int kvm_set_irqfd(int gsi, int fd, bool assigned)
1336 struct kvm_irqfd irqfd = {
1337 .fd = fd,
1338 .gsi = gsi,
1339 .flags = assigned ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1341 int r;
1342 if (!kvm_enabled() || !kvm_irqchip_in_kernel())
1343 return -ENOSYS;
1345 r = kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd);
1346 if (r < 0)
1347 return r;
1348 return 0;
1350 #endif
1352 #undef PAGE_SIZE
1353 #include "qemu-kvm.c"