qemu-kvm: kill xsave/xcrs helpers
[qemu-kvm/stefanha.git] / qemu-kvm-x86.c
blobf678c536229637b27fe7017fab9d4ae39be28e87
1 /*
2 * qemu/kvm integration, x86 specific code
4 * Copyright (C) 2006-2008 Qumranet Technologies
6 * Licensed under the terms of the GNU GPL version 2 or higher.
7 */
9 #include "config.h"
10 #include "config-host.h"
12 #include <string.h>
13 #include "hw/hw.h"
14 #include "gdbstub.h"
15 #include <sys/io.h>
17 #include "qemu-kvm.h"
18 #include "libkvm.h"
19 #include <pthread.h>
20 #include <sys/utsname.h>
21 #include <linux/kvm_para.h>
22 #include <sys/ioctl.h>
24 #include "kvm.h"
25 #include "hw/apic.h"
27 #define MSR_IA32_TSC 0x10
29 static struct kvm_msr_list *kvm_msr_list;
30 extern unsigned int kvm_shadow_memory;
31 static int kvm_has_msr_star;
32 static int kvm_has_vm_hsave_pa;
34 static int _lm_capable_kernel;
36 int kvm_set_tss_addr(kvm_context_t kvm, unsigned long addr)
38 int r;
40 * Tell fw_cfg to notify the BIOS to reserve the range.
42 if (e820_add_entry(addr, 0x4000, E820_RESERVED) < 0) {
43 perror("e820_add_entry() table is full");
44 exit(1);
47 r = kvm_vm_ioctl(kvm_state, KVM_SET_TSS_ADDR, addr);
48 if (r < 0) {
49 fprintf(stderr, "kvm_set_tss_addr: %m\n");
50 return r;
52 return 0;
55 static int kvm_init_tss(kvm_context_t kvm)
57 int r;
59 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
60 if (r > 0) {
62 * this address is 3 pages before the bios, and the bios should present
63 * as unavaible memory
65 r = kvm_set_tss_addr(kvm, 0xfeffd000);
66 if (r < 0) {
67 fprintf(stderr, "kvm_init_tss: unable to set tss addr\n");
68 return r;
70 } else {
71 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
73 return 0;
76 static int kvm_set_identity_map_addr(kvm_context_t kvm, uint64_t addr)
78 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
79 int r;
81 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_SET_IDENTITY_MAP_ADDR);
82 if (r > 0) {
83 r = kvm_vm_ioctl(kvm_state, KVM_SET_IDENTITY_MAP_ADDR, &addr);
84 if (r == -1) {
85 fprintf(stderr, "kvm_set_identity_map_addr: %m\n");
86 return -errno;
88 return 0;
90 #endif
91 return -ENOSYS;
94 static int kvm_init_identity_map_page(kvm_context_t kvm)
96 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
97 int r;
99 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_SET_IDENTITY_MAP_ADDR);
100 if (r > 0) {
102 * this address is 4 pages before the bios, and the bios should present
103 * as unavaible memory
105 r = kvm_set_identity_map_addr(kvm, 0xfeffc000);
106 if (r < 0) {
107 fprintf(stderr, "kvm_init_identity_map_page: "
108 "unable to set identity mapping addr\n");
109 return r;
112 #endif
113 return 0;
116 static int kvm_create_pit(kvm_context_t kvm)
118 #ifdef KVM_CAP_PIT
119 int r;
121 kvm_state->pit_in_kernel = 0;
122 if (!kvm->no_pit_creation) {
123 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_PIT);
124 if (r > 0) {
125 r = kvm_vm_ioctl(kvm_state, KVM_CREATE_PIT);
126 if (r >= 0) {
127 kvm_state->pit_in_kernel = 1;
128 } else {
129 fprintf(stderr, "Create kernel PIC irqchip failed\n");
130 return r;
134 #endif
135 return 0;
138 int kvm_arch_create(kvm_context_t kvm, unsigned long phys_mem_bytes,
139 void **vm_mem)
141 int r = 0;
143 r = kvm_init_tss(kvm);
144 if (r < 0) {
145 return r;
148 r = kvm_init_identity_map_page(kvm);
149 if (r < 0) {
150 return r;
153 r = kvm_create_pit(kvm);
154 if (r < 0) {
155 return r;
158 r = kvm_init_coalesced_mmio(kvm);
159 if (r < 0) {
160 return r;
163 return 0;
166 #ifdef KVM_EXIT_TPR_ACCESS
168 static int kvm_handle_tpr_access(CPUState *env)
170 struct kvm_run *run = env->kvm_run;
171 kvm_tpr_access_report(env,
172 run->tpr_access.rip,
173 run->tpr_access.is_write);
174 return 0;
178 int kvm_enable_vapic(CPUState *env, uint64_t vapic)
180 struct kvm_vapic_addr va = {
181 .vapic_addr = vapic,
184 return kvm_vcpu_ioctl(env, KVM_SET_VAPIC_ADDR, &va);
187 #endif
189 int kvm_arch_run(CPUState *env)
191 int r = 0;
192 struct kvm_run *run = env->kvm_run;
194 switch (run->exit_reason) {
195 #ifdef KVM_EXIT_SET_TPR
196 case KVM_EXIT_SET_TPR:
197 break;
198 #endif
199 #ifdef KVM_EXIT_TPR_ACCESS
200 case KVM_EXIT_TPR_ACCESS:
201 r = kvm_handle_tpr_access(env);
202 break;
203 #endif
204 default:
205 r = 1;
206 break;
209 return r;
212 #ifdef KVM_CAP_IRQCHIP
214 int kvm_get_lapic(CPUState *env, struct kvm_lapic_state *s)
216 int r = 0;
218 if (!kvm_irqchip_in_kernel()) {
219 return r;
222 r = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, s);
223 if (r < 0) {
224 fprintf(stderr, "KVM_GET_LAPIC failed\n");
226 return r;
229 int kvm_set_lapic(CPUState *env, struct kvm_lapic_state *s)
231 int r = 0;
233 if (!kvm_irqchip_in_kernel()) {
234 return 0;
237 r = kvm_vcpu_ioctl(env, KVM_SET_LAPIC, s);
239 if (r < 0) {
240 fprintf(stderr, "KVM_SET_LAPIC failed\n");
242 return r;
245 #endif
247 #ifdef KVM_CAP_PIT
249 int kvm_get_pit(kvm_context_t kvm, struct kvm_pit_state *s)
251 if (!kvm_pit_in_kernel()) {
252 return 0;
254 return kvm_vm_ioctl(kvm_state, KVM_GET_PIT, s);
257 int kvm_set_pit(kvm_context_t kvm, struct kvm_pit_state *s)
259 if (!kvm_pit_in_kernel()) {
260 return 0;
262 return kvm_vm_ioctl(kvm_state, KVM_SET_PIT, s);
265 #ifdef KVM_CAP_PIT_STATE2
266 int kvm_get_pit2(kvm_context_t kvm, struct kvm_pit_state2 *ps2)
268 if (!kvm_pit_in_kernel()) {
269 return 0;
271 return kvm_vm_ioctl(kvm_state, KVM_GET_PIT2, ps2);
274 int kvm_set_pit2(kvm_context_t kvm, struct kvm_pit_state2 *ps2)
276 if (!kvm_pit_in_kernel()) {
277 return 0;
279 return kvm_vm_ioctl(kvm_state, KVM_SET_PIT2, ps2);
282 #endif
283 #endif
285 int kvm_has_pit_state2(kvm_context_t kvm)
287 int r = 0;
289 #ifdef KVM_CAP_PIT_STATE2
290 r = kvm_check_extension(kvm_state, KVM_CAP_PIT_STATE2);
291 #endif
292 return r;
295 void kvm_show_code(CPUState *env)
297 #define SHOW_CODE_LEN 50
298 struct kvm_regs regs;
299 struct kvm_sregs sregs;
300 int r, n;
301 int back_offset;
302 unsigned char code;
303 char code_str[SHOW_CODE_LEN * 3 + 1];
304 unsigned long rip;
306 r = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
307 if (r < 0 ) {
308 perror("KVM_GET_SREGS");
309 return;
311 r = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
312 if (r < 0) {
313 perror("KVM_GET_REGS");
314 return;
316 rip = sregs.cs.base + regs.rip;
317 back_offset = regs.rip;
318 if (back_offset > 20) {
319 back_offset = 20;
321 *code_str = 0;
322 for (n = -back_offset; n < SHOW_CODE_LEN-back_offset; ++n) {
323 if (n == 0) {
324 strcat(code_str, " -->");
326 cpu_physical_memory_rw(rip + n, &code, 1, 1);
327 sprintf(code_str + strlen(code_str), " %02x", code);
329 fprintf(stderr, "code:%s\n", code_str);
334 * Returns available msr list. User must free.
336 static struct kvm_msr_list *kvm_get_msr_list(void)
338 struct kvm_msr_list sizer, *msrs;
339 int r;
341 sizer.nmsrs = 0;
342 r = kvm_ioctl(kvm_state, KVM_GET_MSR_INDEX_LIST, &sizer);
343 if (r < 0 && r != -E2BIG) {
344 return NULL;
346 /* Old kernel modules had a bug and could write beyond the provided
347 memory. Allocate at least a safe amount of 1K. */
348 msrs = qemu_malloc(MAX(1024, sizeof(*msrs) +
349 sizer.nmsrs * sizeof(*msrs->indices)));
351 msrs->nmsrs = sizer.nmsrs;
352 r = kvm_ioctl(kvm_state, KVM_GET_MSR_INDEX_LIST, msrs);
353 if (r < 0) {
354 free(msrs);
355 errno = r;
356 return NULL;
358 return msrs;
361 int kvm_get_msrs(CPUState *env, struct kvm_msr_entry *msrs, int n)
363 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
364 int r;
366 kmsrs->nmsrs = n;
367 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
368 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
369 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
370 free(kmsrs);
371 return r;
374 int kvm_set_msrs(CPUState *env, struct kvm_msr_entry *msrs, int n)
376 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
377 int r;
379 kmsrs->nmsrs = n;
380 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
381 r = kvm_vcpu_ioctl(env, KVM_SET_MSRS, kmsrs);
382 free(kmsrs);
383 return r;
386 static void print_seg(FILE *file, const char *name, struct kvm_segment *seg)
388 fprintf(stderr,
389 "%s %04x (%08llx/%08x p %d dpl %d db %d s %d type %x l %d"
390 " g %d avl %d)\n",
391 name, seg->selector, seg->base, seg->limit, seg->present,
392 seg->dpl, seg->db, seg->s, seg->type, seg->l, seg->g,
393 seg->avl);
396 static void print_dt(FILE *file, const char *name, struct kvm_dtable *dt)
398 fprintf(stderr, "%s %llx/%x\n", name, dt->base, dt->limit);
401 void kvm_show_regs(CPUState *env)
403 struct kvm_regs regs;
404 struct kvm_sregs sregs;
405 int r;
407 r = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
408 if (r < 0) {
409 perror("KVM_GET_REGS");
410 return;
412 fprintf(stderr,
413 "rax %016llx rbx %016llx rcx %016llx rdx %016llx\n"
414 "rsi %016llx rdi %016llx rsp %016llx rbp %016llx\n"
415 "r8 %016llx r9 %016llx r10 %016llx r11 %016llx\n"
416 "r12 %016llx r13 %016llx r14 %016llx r15 %016llx\n"
417 "rip %016llx rflags %08llx\n",
418 regs.rax, regs.rbx, regs.rcx, regs.rdx,
419 regs.rsi, regs.rdi, regs.rsp, regs.rbp,
420 regs.r8, regs.r9, regs.r10, regs.r11,
421 regs.r12, regs.r13, regs.r14, regs.r15,
422 regs.rip, regs.rflags);
423 r = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
424 if (r < 0) {
425 perror("KVM_GET_SREGS");
426 return;
428 print_seg(stderr, "cs", &sregs.cs);
429 print_seg(stderr, "ds", &sregs.ds);
430 print_seg(stderr, "es", &sregs.es);
431 print_seg(stderr, "ss", &sregs.ss);
432 print_seg(stderr, "fs", &sregs.fs);
433 print_seg(stderr, "gs", &sregs.gs);
434 print_seg(stderr, "tr", &sregs.tr);
435 print_seg(stderr, "ldt", &sregs.ldt);
436 print_dt(stderr, "gdt", &sregs.gdt);
437 print_dt(stderr, "idt", &sregs.idt);
438 fprintf(stderr, "cr0 %llx cr2 %llx cr3 %llx cr4 %llx cr8 %llx"
439 " efer %llx\n",
440 sregs.cr0, sregs.cr2, sregs.cr3, sregs.cr4, sregs.cr8,
441 sregs.efer);
444 static void kvm_set_cr8(CPUState *env, uint64_t cr8)
446 env->kvm_run->cr8 = cr8;
449 int kvm_setup_cpuid(CPUState *env, int nent,
450 struct kvm_cpuid_entry *entries)
452 struct kvm_cpuid *cpuid;
453 int r;
455 cpuid = qemu_malloc(sizeof(*cpuid) + nent * sizeof(*entries));
457 cpuid->nent = nent;
458 memcpy(cpuid->entries, entries, nent * sizeof(*entries));
459 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID, cpuid);
461 free(cpuid);
462 return r;
465 int kvm_setup_cpuid2(CPUState *env, int nent,
466 struct kvm_cpuid_entry2 *entries)
468 struct kvm_cpuid2 *cpuid;
469 int r;
471 cpuid = qemu_malloc(sizeof(*cpuid) + nent * sizeof(*entries));
473 cpuid->nent = nent;
474 memcpy(cpuid->entries, entries, nent * sizeof(*entries));
475 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, cpuid);
476 free(cpuid);
477 return r;
480 int kvm_set_shadow_pages(kvm_context_t kvm, unsigned int nrshadow_pages)
482 #ifdef KVM_CAP_MMU_SHADOW_CACHE_CONTROL
483 int r;
485 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION,
486 KVM_CAP_MMU_SHADOW_CACHE_CONTROL);
487 if (r > 0) {
488 r = kvm_vm_ioctl(kvm_state, KVM_SET_NR_MMU_PAGES, nrshadow_pages);
489 if (r < 0) {
490 fprintf(stderr, "kvm_set_shadow_pages: %m\n");
491 return r;
493 return 0;
495 #endif
496 return -1;
499 int kvm_get_shadow_pages(kvm_context_t kvm, unsigned int *nrshadow_pages)
501 #ifdef KVM_CAP_MMU_SHADOW_CACHE_CONTROL
502 int r;
504 r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION,
505 KVM_CAP_MMU_SHADOW_CACHE_CONTROL);
506 if (r > 0) {
507 *nrshadow_pages = kvm_vm_ioctl(kvm_state, KVM_GET_NR_MMU_PAGES);
508 return 0;
510 #endif
511 return -1;
514 #ifdef KVM_CAP_VAPIC
515 static int kvm_enable_tpr_access_reporting(CPUState *env)
517 int r;
518 struct kvm_tpr_access_ctl tac = { .enabled = 1 };
520 r = kvm_ioctl(env->kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_VAPIC);
521 if (r <= 0) {
522 return -ENOSYS;
524 return kvm_vcpu_ioctl(env, KVM_TPR_ACCESS_REPORTING, &tac);
526 #endif
528 #ifdef KVM_CAP_ADJUST_CLOCK
529 static struct kvm_clock_data kvmclock_data;
531 static void kvmclock_pre_save(void *opaque)
533 struct kvm_clock_data *cl = opaque;
535 kvm_vm_ioctl(kvm_state, KVM_GET_CLOCK, cl);
538 static int kvmclock_post_load(void *opaque, int version_id)
540 struct kvm_clock_data *cl = opaque;
542 return kvm_vm_ioctl(kvm_state, KVM_SET_CLOCK, cl);
545 static const VMStateDescription vmstate_kvmclock= {
546 .name = "kvmclock",
547 .version_id = 1,
548 .minimum_version_id = 1,
549 .minimum_version_id_old = 1,
550 .pre_save = kvmclock_pre_save,
551 .post_load = kvmclock_post_load,
552 .fields = (VMStateField []) {
553 VMSTATE_U64(clock, struct kvm_clock_data),
554 VMSTATE_END_OF_LIST()
557 #endif
559 int kvm_arch_qemu_create_context(void)
561 int i, r;
562 struct utsname utsname;
564 uname(&utsname);
565 _lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
567 if (kvm_shadow_memory) {
568 kvm_set_shadow_pages(kvm_context, kvm_shadow_memory);
571 kvm_msr_list = kvm_get_msr_list();
572 if (!kvm_msr_list) {
573 return -1;
575 for (i = 0; i < kvm_msr_list->nmsrs; ++i) {
576 if (kvm_msr_list->indices[i] == MSR_STAR) {
577 kvm_has_msr_star = 1;
579 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
580 kvm_has_vm_hsave_pa = 1;
584 #ifdef KVM_CAP_ADJUST_CLOCK
585 if (kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK)) {
586 vmstate_register(NULL, 0, &vmstate_kvmclock, &kvmclock_data);
588 #endif
590 r = kvm_set_boot_cpu_id(0);
591 if (r < 0 && r != -ENOSYS) {
592 return r;
595 return 0;
598 /* returns 0 on success, non-0 on failure */
599 static int get_msr_entry(struct kvm_msr_entry *entry, CPUState *env)
601 switch (entry->index) {
602 case MSR_IA32_SYSENTER_CS:
603 env->sysenter_cs = entry->data;
604 break;
605 case MSR_IA32_SYSENTER_ESP:
606 env->sysenter_esp = entry->data;
607 break;
608 case MSR_IA32_SYSENTER_EIP:
609 env->sysenter_eip = entry->data;
610 break;
611 case MSR_STAR:
612 env->star = entry->data;
613 break;
614 #ifdef TARGET_X86_64
615 case MSR_CSTAR:
616 env->cstar = entry->data;
617 break;
618 case MSR_KERNELGSBASE:
619 env->kernelgsbase = entry->data;
620 break;
621 case MSR_FMASK:
622 env->fmask = entry->data;
623 break;
624 case MSR_LSTAR:
625 env->lstar = entry->data;
626 break;
627 #endif
628 case MSR_IA32_TSC:
629 env->tsc = entry->data;
630 break;
631 case MSR_VM_HSAVE_PA:
632 env->vm_hsave = entry->data;
633 break;
634 case MSR_KVM_SYSTEM_TIME:
635 env->system_time_msr = entry->data;
636 break;
637 case MSR_KVM_WALL_CLOCK:
638 env->wall_clock_msr = entry->data;
639 break;
640 #ifdef KVM_CAP_MCE
641 case MSR_MCG_STATUS:
642 env->mcg_status = entry->data;
643 break;
644 case MSR_MCG_CTL:
645 env->mcg_ctl = entry->data;
646 break;
647 #endif
648 default:
649 #ifdef KVM_CAP_MCE
650 if (entry->index >= MSR_MC0_CTL &&
651 entry->index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
652 env->mce_banks[entry->index - MSR_MC0_CTL] = entry->data;
653 break;
655 #endif
656 printf("Warning unknown msr index 0x%x\n", entry->index);
657 return 1;
659 return 0;
662 static void kvm_arch_save_mpstate(CPUState *env)
664 #ifdef KVM_CAP_MP_STATE
665 int r;
666 struct kvm_mp_state mp_state;
668 r = kvm_get_mpstate(env, &mp_state);
669 if (r < 0) {
670 env->mp_state = -1;
671 } else {
672 env->mp_state = mp_state.mp_state;
673 if (kvm_irqchip_in_kernel()) {
674 env->halted = (env->mp_state == KVM_MP_STATE_HALTED);
677 #else
678 env->mp_state = -1;
679 #endif
682 static void kvm_arch_load_mpstate(CPUState *env)
684 #ifdef KVM_CAP_MP_STATE
685 struct kvm_mp_state mp_state;
688 * -1 indicates that the host did not support GET_MP_STATE ioctl,
689 * so don't touch it.
691 if (env->mp_state != -1) {
692 mp_state.mp_state = env->mp_state;
693 kvm_set_mpstate(env, &mp_state);
695 #endif
698 static void kvm_reset_mpstate(CPUState *env)
700 #ifdef KVM_CAP_MP_STATE
701 if (kvm_check_extension(kvm_state, KVM_CAP_MP_STATE)) {
702 if (kvm_irqchip_in_kernel()) {
703 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
704 KVM_MP_STATE_UNINITIALIZED;
705 } else {
706 env->mp_state = KVM_MP_STATE_RUNNABLE;
709 #endif
712 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
714 lhs->selector = rhs->selector;
715 lhs->base = rhs->base;
716 lhs->limit = rhs->limit;
717 lhs->type = 3;
718 lhs->present = 1;
719 lhs->dpl = 3;
720 lhs->db = 0;
721 lhs->s = 1;
722 lhs->l = 0;
723 lhs->g = 0;
724 lhs->avl = 0;
725 lhs->unusable = 0;
728 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
730 unsigned flags = rhs->flags;
731 lhs->selector = rhs->selector;
732 lhs->base = rhs->base;
733 lhs->limit = rhs->limit;
734 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
735 lhs->present = (flags & DESC_P_MASK) != 0;
736 lhs->dpl = rhs->selector & 3;
737 lhs->db = (flags >> DESC_B_SHIFT) & 1;
738 lhs->s = (flags & DESC_S_MASK) != 0;
739 lhs->l = (flags >> DESC_L_SHIFT) & 1;
740 lhs->g = (flags & DESC_G_MASK) != 0;
741 lhs->avl = (flags & DESC_AVL_MASK) != 0;
742 lhs->unusable = 0;
745 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
747 lhs->selector = rhs->selector;
748 lhs->base = rhs->base;
749 lhs->limit = rhs->limit;
750 lhs->flags =
751 (rhs->type << DESC_TYPE_SHIFT)
752 | (rhs->present * DESC_P_MASK)
753 | (rhs->dpl << DESC_DPL_SHIFT)
754 | (rhs->db << DESC_B_SHIFT)
755 | (rhs->s * DESC_S_MASK)
756 | (rhs->l << DESC_L_SHIFT)
757 | (rhs->g * DESC_G_MASK)
758 | (rhs->avl * DESC_AVL_MASK);
761 #define XSAVE_CWD_RIP 2
762 #define XSAVE_CWD_RDP 4
763 #define XSAVE_MXCSR 6
764 #define XSAVE_ST_SPACE 8
765 #define XSAVE_XMM_SPACE 40
766 #define XSAVE_XSTATE_BV 128
767 #define XSAVE_YMMH_SPACE 144
769 void kvm_arch_load_regs(CPUState *env, int level)
771 struct kvm_regs regs;
772 struct kvm_fpu fpu;
773 struct kvm_sregs sregs;
774 struct kvm_msr_entry msrs[100];
775 int rc, n, i;
777 assert(kvm_cpu_is_stopped(env) || env->thread_id == kvm_get_thread_id());
779 regs.rax = env->regs[R_EAX];
780 regs.rbx = env->regs[R_EBX];
781 regs.rcx = env->regs[R_ECX];
782 regs.rdx = env->regs[R_EDX];
783 regs.rsi = env->regs[R_ESI];
784 regs.rdi = env->regs[R_EDI];
785 regs.rsp = env->regs[R_ESP];
786 regs.rbp = env->regs[R_EBP];
787 #ifdef TARGET_X86_64
788 regs.r8 = env->regs[8];
789 regs.r9 = env->regs[9];
790 regs.r10 = env->regs[10];
791 regs.r11 = env->regs[11];
792 regs.r12 = env->regs[12];
793 regs.r13 = env->regs[13];
794 regs.r14 = env->regs[14];
795 regs.r15 = env->regs[15];
796 #endif
798 regs.rflags = env->eflags;
799 regs.rip = env->eip;
801 kvm_set_regs(env, &regs);
803 #ifdef KVM_CAP_XSAVE
804 if (kvm_check_extension(kvm_state, KVM_CAP_XSAVE)) {
805 struct kvm_xsave* xsave;
807 uint16_t cwd, swd, twd, fop;
809 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
810 memset(xsave, 0, sizeof(struct kvm_xsave));
811 cwd = swd = twd = fop = 0;
812 swd = env->fpus & ~(7 << 11);
813 swd |= (env->fpstt & 7) << 11;
814 cwd = env->fpuc;
815 for (i = 0; i < 8; ++i) {
816 twd |= (!env->fptags[i]) << i;
818 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
819 xsave->region[1] = (uint32_t)(fop << 16) + twd;
820 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
821 sizeof env->fpregs);
822 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
823 sizeof env->xmm_regs);
824 xsave->region[XSAVE_MXCSR] = env->mxcsr;
825 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
826 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
827 sizeof env->ymmh_regs);
828 kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
829 if (kvm_check_extension(kvm_state, KVM_CAP_XCRS)) {
830 struct kvm_xcrs xcrs;
832 xcrs.nr_xcrs = 1;
833 xcrs.flags = 0;
834 xcrs.xcrs[0].xcr = 0;
835 xcrs.xcrs[0].value = env->xcr0;
836 kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
838 qemu_free(xsave);
839 } else {
840 #endif
841 memset(&fpu, 0, sizeof fpu);
842 fpu.fsw = env->fpus & ~(7 << 11);
843 fpu.fsw |= (env->fpstt & 7) << 11;
844 fpu.fcw = env->fpuc;
845 for (i = 0; i < 8; ++i) {
846 fpu.ftwx |= (!env->fptags[i]) << i;
848 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
849 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
850 fpu.mxcsr = env->mxcsr;
851 kvm_set_fpu(env, &fpu);
852 #ifdef KVM_CAP_XSAVE
854 #endif
856 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
857 if (env->interrupt_injected >= 0) {
858 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
859 (uint64_t)1 << (env->interrupt_injected % 64);
862 if ((env->eflags & VM_MASK)) {
863 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
864 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
865 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
866 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
867 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
868 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
869 } else {
870 set_seg(&sregs.cs, &env->segs[R_CS]);
871 set_seg(&sregs.ds, &env->segs[R_DS]);
872 set_seg(&sregs.es, &env->segs[R_ES]);
873 set_seg(&sregs.fs, &env->segs[R_FS]);
874 set_seg(&sregs.gs, &env->segs[R_GS]);
875 set_seg(&sregs.ss, &env->segs[R_SS]);
877 if (env->cr[0] & CR0_PE_MASK) {
878 /* force ss cpl to cs cpl */
879 sregs.ss.selector = (sregs.ss.selector & ~3) |
880 (sregs.cs.selector & 3);
881 sregs.ss.dpl = sregs.ss.selector & 3;
885 set_seg(&sregs.tr, &env->tr);
886 set_seg(&sregs.ldt, &env->ldt);
888 sregs.idt.limit = env->idt.limit;
889 sregs.idt.base = env->idt.base;
890 sregs.gdt.limit = env->gdt.limit;
891 sregs.gdt.base = env->gdt.base;
893 sregs.cr0 = env->cr[0];
894 sregs.cr2 = env->cr[2];
895 sregs.cr3 = env->cr[3];
896 sregs.cr4 = env->cr[4];
898 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
899 sregs.apic_base = cpu_get_apic_base(env->apic_state);
901 sregs.efer = env->efer;
903 kvm_set_sregs(env, &sregs);
905 /* msrs */
906 n = 0;
907 /* Remember to increase msrs size if you add new registers below */
908 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
909 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
910 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
911 if (kvm_has_msr_star) {
912 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
914 if (kvm_has_vm_hsave_pa) {
915 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
917 #ifdef TARGET_X86_64
918 if (_lm_capable_kernel) {
919 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
920 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
921 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
922 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR , env->lstar);
924 #endif
925 if (level == KVM_PUT_FULL_STATE) {
927 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
928 * writeback. Until this is fixed, we only write the offset to SMP
929 * guests after migration, desynchronizing the VCPUs, but avoiding
930 * huge jump-backs that would occur without any writeback at all.
932 if (smp_cpus == 1 || env->tsc != 0) {
933 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
935 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, env->system_time_msr);
936 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
938 #ifdef KVM_CAP_MCE
939 if (env->mcg_cap) {
940 if (level == KVM_PUT_RESET_STATE) {
941 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
942 } else if (level == KVM_PUT_FULL_STATE) {
943 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
944 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
945 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
946 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
950 #endif
952 rc = kvm_set_msrs(env, msrs, n);
953 if (rc == -1) {
954 perror("kvm_set_msrs FAILED");
957 if (level >= KVM_PUT_RESET_STATE) {
958 kvm_arch_load_mpstate(env);
959 kvm_load_lapic(env);
961 if (level == KVM_PUT_FULL_STATE) {
962 if (env->kvm_vcpu_update_vapic) {
963 kvm_tpr_enable_vapic(env);
967 kvm_put_vcpu_events(env, level);
968 kvm_put_debugregs(env);
970 /* must be last */
971 kvm_guest_debug_workarounds(env);
974 void kvm_arch_save_regs(CPUState *env)
976 struct kvm_regs regs;
977 struct kvm_fpu fpu;
978 struct kvm_sregs sregs;
979 struct kvm_msr_entry msrs[100];
980 uint32_t hflags;
981 uint32_t i, n, rc, bit;
983 assert(kvm_cpu_is_stopped(env) || env->thread_id == kvm_get_thread_id());
985 kvm_get_regs(env, &regs);
987 env->regs[R_EAX] = regs.rax;
988 env->regs[R_EBX] = regs.rbx;
989 env->regs[R_ECX] = regs.rcx;
990 env->regs[R_EDX] = regs.rdx;
991 env->regs[R_ESI] = regs.rsi;
992 env->regs[R_EDI] = regs.rdi;
993 env->regs[R_ESP] = regs.rsp;
994 env->regs[R_EBP] = regs.rbp;
995 #ifdef TARGET_X86_64
996 env->regs[8] = regs.r8;
997 env->regs[9] = regs.r9;
998 env->regs[10] = regs.r10;
999 env->regs[11] = regs.r11;
1000 env->regs[12] = regs.r12;
1001 env->regs[13] = regs.r13;
1002 env->regs[14] = regs.r14;
1003 env->regs[15] = regs.r15;
1004 #endif
1006 env->eflags = regs.rflags;
1007 env->eip = regs.rip;
1009 #ifdef KVM_CAP_XSAVE
1010 if (kvm_check_extension(kvm_state, KVM_CAP_XSAVE)) {
1011 struct kvm_xsave* xsave;
1012 uint16_t cwd, swd, twd, fop;
1013 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
1014 kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
1015 cwd = (uint16_t)xsave->region[0];
1016 swd = (uint16_t)(xsave->region[0] >> 16);
1017 twd = (uint16_t)xsave->region[1];
1018 fop = (uint16_t)(xsave->region[1] >> 16);
1019 env->fpstt = (swd >> 11) & 7;
1020 env->fpus = swd;
1021 env->fpuc = cwd;
1022 for (i = 0; i < 8; ++i) {
1023 env->fptags[i] = !((twd >> i) & 1);
1025 env->mxcsr = xsave->region[XSAVE_MXCSR];
1026 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1027 sizeof env->fpregs);
1028 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1029 sizeof env->xmm_regs);
1030 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1031 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1032 sizeof env->ymmh_regs);
1033 if (kvm_check_extension(kvm_state, KVM_CAP_XCRS)) {
1034 struct kvm_xcrs xcrs;
1036 kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1037 if (xcrs.xcrs[0].xcr == 0) {
1038 env->xcr0 = xcrs.xcrs[0].value;
1041 qemu_free(xsave);
1042 } else {
1043 #endif
1044 kvm_get_fpu(env, &fpu);
1045 env->fpstt = (fpu.fsw >> 11) & 7;
1046 env->fpus = fpu.fsw;
1047 env->fpuc = fpu.fcw;
1048 for (i = 0; i < 8; ++i) {
1049 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1051 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1052 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1053 env->mxcsr = fpu.mxcsr;
1054 #ifdef KVM_CAP_XSAVE
1056 #endif
1058 kvm_get_sregs(env, &sregs);
1060 /* There can only be one pending IRQ set in the bitmap at a time, so try
1061 to find it and save its number instead (-1 for none). */
1062 env->interrupt_injected = -1;
1063 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1064 if (sregs.interrupt_bitmap[i]) {
1065 bit = ctz64(sregs.interrupt_bitmap[i]);
1066 env->interrupt_injected = i * 64 + bit;
1067 break;
1071 get_seg(&env->segs[R_CS], &sregs.cs);
1072 get_seg(&env->segs[R_DS], &sregs.ds);
1073 get_seg(&env->segs[R_ES], &sregs.es);
1074 get_seg(&env->segs[R_FS], &sregs.fs);
1075 get_seg(&env->segs[R_GS], &sregs.gs);
1076 get_seg(&env->segs[R_SS], &sregs.ss);
1078 get_seg(&env->tr, &sregs.tr);
1079 get_seg(&env->ldt, &sregs.ldt);
1081 env->idt.limit = sregs.idt.limit;
1082 env->idt.base = sregs.idt.base;
1083 env->gdt.limit = sregs.gdt.limit;
1084 env->gdt.base = sregs.gdt.base;
1086 env->cr[0] = sregs.cr0;
1087 env->cr[2] = sregs.cr2;
1088 env->cr[3] = sregs.cr3;
1089 env->cr[4] = sregs.cr4;
1091 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1093 env->efer = sregs.efer;
1094 //cpu_set_apic_tpr(env, sregs.cr8);
1096 #define HFLAG_COPY_MASK ~( \
1097 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1098 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1099 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1100 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1102 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1103 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1104 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1105 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1106 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1107 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1108 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1110 if (env->efer & MSR_EFER_LMA) {
1111 hflags |= HF_LMA_MASK;
1114 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1115 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1116 } else {
1117 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1118 (DESC_B_SHIFT - HF_CS32_SHIFT);
1119 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1120 (DESC_B_SHIFT - HF_SS32_SHIFT);
1121 if (!(env->cr[0] & CR0_PE_MASK) ||
1122 (env->eflags & VM_MASK) ||
1123 !(hflags & HF_CS32_MASK)) {
1124 hflags |= HF_ADDSEG_MASK;
1125 } else {
1126 hflags |= ((env->segs[R_DS].base |
1127 env->segs[R_ES].base |
1128 env->segs[R_SS].base) != 0) <<
1129 HF_ADDSEG_SHIFT;
1132 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1134 /* msrs */
1135 n = 0;
1136 /* Remember to increase msrs size if you add new registers below */
1137 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1138 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1139 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1140 if (kvm_has_msr_star) {
1141 msrs[n++].index = MSR_STAR;
1143 msrs[n++].index = MSR_IA32_TSC;
1144 if (kvm_has_vm_hsave_pa)
1145 msrs[n++].index = MSR_VM_HSAVE_PA;
1146 #ifdef TARGET_X86_64
1147 if (_lm_capable_kernel) {
1148 msrs[n++].index = MSR_CSTAR;
1149 msrs[n++].index = MSR_KERNELGSBASE;
1150 msrs[n++].index = MSR_FMASK;
1151 msrs[n++].index = MSR_LSTAR;
1153 #endif
1154 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1155 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1157 #ifdef KVM_CAP_MCE
1158 if (env->mcg_cap) {
1159 msrs[n++].index = MSR_MCG_STATUS;
1160 msrs[n++].index = MSR_MCG_CTL;
1161 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
1162 msrs[n++].index = MSR_MC0_CTL + i;
1164 #endif
1166 rc = kvm_get_msrs(env, msrs, n);
1167 if (rc == -1) {
1168 perror("kvm_get_msrs FAILED");
1169 } else {
1170 n = rc; /* actual number of MSRs */
1171 for (i=0 ; i<n; i++) {
1172 if (get_msr_entry(&msrs[i], env)) {
1173 return;
1177 kvm_arch_save_mpstate(env);
1178 kvm_save_lapic(env);
1179 kvm_get_vcpu_events(env);
1180 kvm_get_debugregs(env);
1183 static int _kvm_arch_init_vcpu(CPUState *env)
1185 kvm_arch_reset_vcpu(env);
1187 #ifdef KVM_EXIT_TPR_ACCESS
1188 kvm_enable_tpr_access_reporting(env);
1189 #endif
1190 kvm_reset_mpstate(env);
1191 return 0;
1194 int kvm_arch_halt(CPUState *env)
1197 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1198 (env->eflags & IF_MASK)) &&
1199 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1200 env->halted = 1;
1202 return 1;
1205 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1207 if (!kvm_irqchip_in_kernel()) {
1208 kvm_set_cr8(env, cpu_get_apic_tpr(env->apic_state));
1210 return 0;
1213 int kvm_arch_has_work(CPUState *env)
1215 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1216 (env->eflags & IF_MASK)) ||
1217 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1218 return 1;
1220 return 0;
1223 int kvm_arch_try_push_interrupts(void *opaque)
1225 CPUState *env = cpu_single_env;
1226 int r, irq;
1228 if (kvm_is_ready_for_interrupt_injection(env) &&
1229 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1230 (env->eflags & IF_MASK)) {
1231 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1232 irq = cpu_get_pic_interrupt(env);
1233 if (irq >= 0) {
1234 r = kvm_inject_irq(env, irq);
1235 if (r < 0) {
1236 printf("cpu %d fail inject %x\n", env->cpu_index, irq);
1241 return (env->interrupt_request & CPU_INTERRUPT_HARD) != 0;
1244 #ifdef KVM_CAP_USER_NMI
1245 void kvm_arch_push_nmi(void *opaque)
1247 CPUState *env = cpu_single_env;
1248 int r;
1250 if (likely(!(env->interrupt_request & CPU_INTERRUPT_NMI))) {
1251 return;
1254 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1255 r = kvm_inject_nmi(env);
1256 if (r < 0) {
1257 printf("cpu %d fail inject NMI\n", env->cpu_index);
1260 #endif /* KVM_CAP_USER_NMI */
1262 static int kvm_reset_msrs(CPUState *env)
1264 struct {
1265 struct kvm_msrs info;
1266 struct kvm_msr_entry entries[100];
1267 } msr_data;
1268 int n;
1269 struct kvm_msr_entry *msrs = msr_data.entries;
1270 uint32_t index;
1271 uint64_t data;
1273 if (!kvm_msr_list) {
1274 return -1;
1277 for (n = 0; n < kvm_msr_list->nmsrs; n++) {
1278 index = kvm_msr_list->indices[n];
1279 switch (index) {
1280 case MSR_PAT:
1281 data = 0x0007040600070406ULL;
1282 break;
1283 default:
1284 data = 0;
1286 kvm_msr_entry_set(&msrs[n], kvm_msr_list->indices[n], data);
1289 msr_data.info.nmsrs = n;
1291 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1295 void kvm_arch_cpu_reset(CPUState *env)
1297 kvm_reset_msrs(env);
1298 kvm_arch_reset_vcpu(env);
1299 kvm_reset_mpstate(env);
1302 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
1303 void kvm_arch_do_ioperm(void *_data)
1305 struct ioperm_data *data = _data;
1306 ioperm(data->start_port, data->num, data->turn_on);
1308 #endif
1311 * Setup x86 specific IRQ routing
1313 int kvm_arch_init_irq_routing(void)
1315 int i, r;
1317 if (kvm_irqchip && kvm_has_gsi_routing()) {
1318 kvm_clear_gsi_routes();
1319 for (i = 0; i < 8; ++i) {
1320 if (i == 2) {
1321 continue;
1323 r = kvm_add_irq_route(i, KVM_IRQCHIP_PIC_MASTER, i);
1324 if (r < 0) {
1325 return r;
1328 for (i = 8; i < 16; ++i) {
1329 r = kvm_add_irq_route(i, KVM_IRQCHIP_PIC_SLAVE, i - 8);
1330 if (r < 0) {
1331 return r;
1334 for (i = 0; i < 24; ++i) {
1335 if (i == 0 && irq0override) {
1336 r = kvm_add_irq_route(i, KVM_IRQCHIP_IOAPIC, 2);
1337 } else if (i != 2 || !irq0override) {
1338 r = kvm_add_irq_route(i, KVM_IRQCHIP_IOAPIC, i);
1340 if (r < 0) {
1341 return r;
1344 kvm_commit_irq_routes();
1346 return 0;
1349 void kvm_arch_process_irqchip_events(CPUState *env)
1351 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1352 kvm_cpu_synchronize_state(env);
1353 do_cpu_init(env);
1355 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1356 kvm_cpu_synchronize_state(env);
1357 do_cpu_sipi(env);