Merge commit '70783b9c9be31e98421f17327a1127021abae672' into upstream-merge
[qemu-kvm/markmc.git] / kvm-all.c
blobd02e94b0884e4908b5ca14bba19323ef8e268a50
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "hw/hw.h"
26 #include "gdbstub.h"
27 #include "kvm.h"
29 #ifdef KVM_UPSTREAM
30 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
31 #define PAGE_SIZE TARGET_PAGE_SIZE
33 //#define DEBUG_KVM
35 #ifdef DEBUG_KVM
36 #define dprintf(fmt, ...) \
37 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #else
39 #define dprintf(fmt, ...) \
40 do { } while (0)
41 #endif
43 typedef struct KVMSlot
45 target_phys_addr_t start_addr;
46 ram_addr_t memory_size;
47 ram_addr_t phys_offset;
48 int slot;
49 int flags;
50 } KVMSlot;
52 typedef struct kvm_dirty_log KVMDirtyLog;
54 int kvm_allowed = 0;
56 struct KVMState
58 KVMSlot slots[32];
59 int fd;
60 int vmfd;
61 int coalesced_mmio;
62 int broken_set_mem_region;
63 int migration_log;
64 #ifdef KVM_CAP_SET_GUEST_DEBUG
65 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
66 #endif
67 int irqchip_in_kernel;
68 int pit_in_kernel;
71 static KVMState *kvm_state;
73 static KVMSlot *kvm_alloc_slot(KVMState *s)
75 int i;
77 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
78 /* KVM private memory slots */
79 if (i >= 8 && i < 12)
80 continue;
81 if (s->slots[i].memory_size == 0)
82 return &s->slots[i];
85 fprintf(stderr, "%s: no free slot available\n", __func__);
86 abort();
89 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
90 target_phys_addr_t start_addr,
91 target_phys_addr_t end_addr)
93 int i;
95 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
96 KVMSlot *mem = &s->slots[i];
98 if (start_addr == mem->start_addr &&
99 end_addr == mem->start_addr + mem->memory_size) {
100 return mem;
104 return NULL;
108 * Find overlapping slot with lowest start address
110 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
111 target_phys_addr_t start_addr,
112 target_phys_addr_t end_addr)
114 KVMSlot *found = NULL;
115 int i;
117 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
118 KVMSlot *mem = &s->slots[i];
120 if (mem->memory_size == 0 ||
121 (found && found->start_addr < mem->start_addr)) {
122 continue;
125 if (end_addr > mem->start_addr &&
126 start_addr < mem->start_addr + mem->memory_size) {
127 found = mem;
131 return found;
134 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
136 struct kvm_userspace_memory_region mem;
138 mem.slot = slot->slot;
139 mem.guest_phys_addr = slot->start_addr;
140 mem.memory_size = slot->memory_size;
141 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
142 mem.flags = slot->flags;
143 if (s->migration_log) {
144 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
146 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
149 static void kvm_reset_vcpu(void *opaque)
151 CPUState *env = opaque;
153 if (kvm_arch_put_registers(env)) {
154 fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
155 abort();
158 #endif
160 int kvm_irqchip_in_kernel(void)
162 return kvm_state->irqchip_in_kernel;
165 #ifdef KVM_UPSTREAM
166 int kvm_pit_in_kernel(void)
168 return kvm_state->pit_in_kernel;
172 int kvm_init_vcpu(CPUState *env)
174 KVMState *s = kvm_state;
175 long mmap_size;
176 int ret;
178 dprintf("kvm_init_vcpu\n");
180 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
181 if (ret < 0) {
182 dprintf("kvm_create_vcpu failed\n");
183 goto err;
186 env->kvm_fd = ret;
187 env->kvm_state = s;
189 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
190 if (mmap_size < 0) {
191 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
192 goto err;
195 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
196 env->kvm_fd, 0);
197 if (env->kvm_run == MAP_FAILED) {
198 ret = -errno;
199 dprintf("mmap'ing vcpu state failed\n");
200 goto err;
203 ret = kvm_arch_init_vcpu(env);
204 if (ret == 0) {
205 qemu_register_reset(kvm_reset_vcpu, env);
206 ret = kvm_arch_put_registers(env);
208 err:
209 return ret;
212 int kvm_put_mp_state(CPUState *env)
214 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
216 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
219 int kvm_get_mp_state(CPUState *env)
221 struct kvm_mp_state mp_state;
222 int ret;
224 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
225 if (ret < 0) {
226 return ret;
228 env->mp_state = mp_state.mp_state;
229 return 0;
233 * dirty pages logging control
235 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
236 ram_addr_t size, int flags, int mask)
238 KVMState *s = kvm_state;
239 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
240 int old_flags;
242 if (mem == NULL) {
243 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
244 TARGET_FMT_plx "\n", __func__, phys_addr,
245 (target_phys_addr_t)(phys_addr + size - 1));
246 return -EINVAL;
249 old_flags = mem->flags;
251 flags = (mem->flags & ~mask) | flags;
252 mem->flags = flags;
254 /* If nothing changed effectively, no need to issue ioctl */
255 if (s->migration_log) {
256 flags |= KVM_MEM_LOG_DIRTY_PAGES;
258 if (flags == old_flags) {
259 return 0;
262 return kvm_set_user_memory_region(s, mem);
265 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
267 return kvm_dirty_pages_log_change(phys_addr, size,
268 KVM_MEM_LOG_DIRTY_PAGES,
269 KVM_MEM_LOG_DIRTY_PAGES);
272 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
274 return kvm_dirty_pages_log_change(phys_addr, size,
276 KVM_MEM_LOG_DIRTY_PAGES);
279 int kvm_set_migration_log(int enable)
281 KVMState *s = kvm_state;
282 KVMSlot *mem;
283 int i, err;
285 s->migration_log = enable;
287 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
288 mem = &s->slots[i];
290 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
291 continue;
293 err = kvm_set_user_memory_region(s, mem);
294 if (err) {
295 return err;
298 return 0;
301 static int test_le_bit(unsigned long nr, unsigned char *addr)
303 return (addr[nr >> 3] >> (nr & 7)) & 1;
307 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
308 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
309 * This means all bits are set to dirty.
311 * @start_add: start of logged region.
312 * @end_addr: end of logged region.
314 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
315 target_phys_addr_t end_addr)
317 KVMState *s = kvm_state;
318 unsigned long size, allocated_size = 0;
319 target_phys_addr_t phys_addr;
320 ram_addr_t addr;
321 KVMDirtyLog d;
322 KVMSlot *mem;
323 int ret = 0;
325 d.dirty_bitmap = NULL;
326 while (start_addr < end_addr) {
327 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
328 if (mem == NULL) {
329 break;
332 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
333 if (!d.dirty_bitmap) {
334 d.dirty_bitmap = qemu_malloc(size);
335 } else if (size > allocated_size) {
336 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
338 allocated_size = size;
339 memset(d.dirty_bitmap, 0, allocated_size);
341 d.slot = mem->slot;
343 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
344 dprintf("ioctl failed %d\n", errno);
345 ret = -1;
346 break;
349 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
350 phys_addr < mem->start_addr + mem->memory_size;
351 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
352 unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
353 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
355 if (test_le_bit(nr, bitmap)) {
356 cpu_physical_memory_set_dirty(addr);
359 start_addr = phys_addr;
361 qemu_free(d.dirty_bitmap);
363 return ret;
365 #endif
367 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
369 int ret = -ENOSYS;
370 #ifdef KVM_CAP_COALESCED_MMIO
371 KVMState *s = kvm_state;
373 if (s->coalesced_mmio) {
374 struct kvm_coalesced_mmio_zone zone;
376 zone.addr = start;
377 zone.size = size;
379 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
381 #endif
383 return ret;
386 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
388 int ret = -ENOSYS;
389 #ifdef KVM_CAP_COALESCED_MMIO
390 KVMState *s = kvm_state;
392 if (s->coalesced_mmio) {
393 struct kvm_coalesced_mmio_zone zone;
395 zone.addr = start;
396 zone.size = size;
398 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
400 #endif
402 return ret;
405 int kvm_check_extension(KVMState *s, unsigned int extension)
407 int ret;
409 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
410 if (ret < 0) {
411 ret = 0;
414 return ret;
416 #ifdef KVM_UPSTREAM
418 int kvm_init(int smp_cpus)
420 static const char upgrade_note[] =
421 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
422 "(see http://sourceforge.net/projects/kvm).\n";
423 KVMState *s;
424 int ret;
425 int i;
427 if (smp_cpus > 1) {
428 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
429 return -EINVAL;
432 s = qemu_mallocz(sizeof(KVMState));
434 #ifdef KVM_CAP_SET_GUEST_DEBUG
435 QTAILQ_INIT(&s->kvm_sw_breakpoints);
436 #endif
437 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
438 s->slots[i].slot = i;
440 s->vmfd = -1;
441 s->fd = open("/dev/kvm", O_RDWR);
442 if (s->fd == -1) {
443 fprintf(stderr, "Could not access KVM kernel module: %m\n");
444 ret = -errno;
445 goto err;
448 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
449 if (ret < KVM_API_VERSION) {
450 if (ret > 0)
451 ret = -EINVAL;
452 fprintf(stderr, "kvm version too old\n");
453 goto err;
456 if (ret > KVM_API_VERSION) {
457 ret = -EINVAL;
458 fprintf(stderr, "kvm version not supported\n");
459 goto err;
462 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
463 if (s->vmfd < 0)
464 goto err;
466 /* initially, KVM allocated its own memory and we had to jump through
467 * hooks to make phys_ram_base point to this. Modern versions of KVM
468 * just use a user allocated buffer so we can use regular pages
469 * unmodified. Make sure we have a sufficiently modern version of KVM.
471 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
472 ret = -EINVAL;
473 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
474 upgrade_note);
475 goto err;
478 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
479 * destroyed properly. Since we rely on this capability, refuse to work
480 * with any kernel without this capability. */
481 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
482 ret = -EINVAL;
484 fprintf(stderr,
485 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
486 upgrade_note);
487 goto err;
490 #ifdef KVM_CAP_COALESCED_MMIO
491 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
492 #else
493 s->coalesced_mmio = 0;
494 #endif
496 s->broken_set_mem_region = 1;
497 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
498 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
499 if (ret > 0) {
500 s->broken_set_mem_region = 0;
502 #endif
504 ret = kvm_arch_init(s, smp_cpus);
505 if (ret < 0)
506 goto err;
508 kvm_state = s;
510 return 0;
512 err:
513 if (s) {
514 if (s->vmfd != -1)
515 close(s->vmfd);
516 if (s->fd != -1)
517 close(s->fd);
519 qemu_free(s);
521 return ret;
523 #endif
525 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
526 uint32_t count)
528 int i;
529 uint8_t *ptr = data;
531 for (i = 0; i < count; i++) {
532 if (direction == KVM_EXIT_IO_IN) {
533 switch (size) {
534 case 1:
535 stb_p(ptr, cpu_inb(port));
536 break;
537 case 2:
538 stw_p(ptr, cpu_inw(port));
539 break;
540 case 4:
541 stl_p(ptr, cpu_inl(port));
542 break;
544 } else {
545 switch (size) {
546 case 1:
547 cpu_outb(port, ldub_p(ptr));
548 break;
549 case 2:
550 cpu_outw(port, lduw_p(ptr));
551 break;
552 case 4:
553 cpu_outl(port, ldl_p(ptr));
554 break;
558 ptr += size;
561 return 1;
564 #ifdef KVM_UPSTREAM
565 static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
567 #ifdef KVM_CAP_COALESCED_MMIO
568 KVMState *s = kvm_state;
569 if (s->coalesced_mmio) {
570 struct kvm_coalesced_mmio_ring *ring;
572 ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
573 while (ring->first != ring->last) {
574 struct kvm_coalesced_mmio *ent;
576 ent = &ring->coalesced_mmio[ring->first];
578 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
579 /* FIXME smp_wmb() */
580 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
583 #endif
586 void kvm_cpu_synchronize_state(CPUState *env)
588 if (!env->kvm_state->regs_modified) {
589 kvm_arch_get_registers(env);
590 env->kvm_state->regs_modified = 1;
594 int kvm_cpu_exec(CPUState *env)
596 struct kvm_run *run = env->kvm_run;
597 int ret;
599 dprintf("kvm_cpu_exec()\n");
601 do {
602 if (env->exit_request) {
603 dprintf("interrupt exit requested\n");
604 ret = 0;
605 break;
608 if (env->kvm_state->regs_modified) {
609 kvm_arch_put_registers(env);
610 env->kvm_state->regs_modified = 0;
613 kvm_arch_pre_run(env, run);
614 qemu_mutex_unlock_iothread();
615 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
616 qemu_mutex_lock_iothread();
617 kvm_arch_post_run(env, run);
619 if (ret == -EINTR || ret == -EAGAIN) {
620 dprintf("io window exit\n");
621 ret = 0;
622 break;
625 if (ret < 0) {
626 dprintf("kvm run failed %s\n", strerror(-ret));
627 abort();
630 kvm_run_coalesced_mmio(env, run);
632 ret = 0; /* exit loop */
633 switch (run->exit_reason) {
634 case KVM_EXIT_IO:
635 dprintf("handle_io\n");
636 ret = kvm_handle_io(run->io.port,
637 (uint8_t *)run + run->io.data_offset,
638 run->io.direction,
639 run->io.size,
640 run->io.count);
641 break;
642 case KVM_EXIT_MMIO:
643 dprintf("handle_mmio\n");
644 cpu_physical_memory_rw(run->mmio.phys_addr,
645 run->mmio.data,
646 run->mmio.len,
647 run->mmio.is_write);
648 ret = 1;
649 break;
650 case KVM_EXIT_IRQ_WINDOW_OPEN:
651 dprintf("irq_window_open\n");
652 break;
653 case KVM_EXIT_SHUTDOWN:
654 dprintf("shutdown\n");
655 qemu_system_reset_request();
656 ret = 1;
657 break;
658 case KVM_EXIT_UNKNOWN:
659 dprintf("kvm_exit_unknown\n");
660 break;
661 case KVM_EXIT_FAIL_ENTRY:
662 dprintf("kvm_exit_fail_entry\n");
663 break;
664 case KVM_EXIT_EXCEPTION:
665 dprintf("kvm_exit_exception\n");
666 break;
667 case KVM_EXIT_DEBUG:
668 dprintf("kvm_exit_debug\n");
669 #ifdef KVM_CAP_SET_GUEST_DEBUG
670 if (kvm_arch_debug(&run->debug.arch)) {
671 gdb_set_stop_cpu(env);
672 vm_stop(EXCP_DEBUG);
673 env->exception_index = EXCP_DEBUG;
674 return 0;
676 /* re-enter, this exception was guest-internal */
677 ret = 1;
678 #endif /* KVM_CAP_SET_GUEST_DEBUG */
679 break;
680 default:
681 dprintf("kvm_arch_handle_exit\n");
682 ret = kvm_arch_handle_exit(env, run);
683 break;
685 } while (ret > 0);
687 if (env->exit_request) {
688 env->exit_request = 0;
689 env->exception_index = EXCP_INTERRUPT;
692 return ret;
695 void kvm_set_phys_mem(target_phys_addr_t start_addr,
696 ram_addr_t size,
697 ram_addr_t phys_offset)
699 KVMState *s = kvm_state;
700 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
701 KVMSlot *mem, old;
702 int err;
704 if (start_addr & ~TARGET_PAGE_MASK) {
705 if (flags >= IO_MEM_UNASSIGNED) {
706 if (!kvm_lookup_overlapping_slot(s, start_addr,
707 start_addr + size)) {
708 return;
710 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
711 } else {
712 fprintf(stderr, "Only page-aligned memory slots supported\n");
714 abort();
717 /* KVM does not support read-only slots */
718 phys_offset &= ~IO_MEM_ROM;
720 while (1) {
721 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
722 if (!mem) {
723 break;
726 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
727 (start_addr + size <= mem->start_addr + mem->memory_size) &&
728 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
729 /* The new slot fits into the existing one and comes with
730 * identical parameters - nothing to be done. */
731 return;
734 old = *mem;
736 /* unregister the overlapping slot */
737 mem->memory_size = 0;
738 err = kvm_set_user_memory_region(s, mem);
739 if (err) {
740 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
741 __func__, strerror(-err));
742 abort();
745 /* Workaround for older KVM versions: we can't join slots, even not by
746 * unregistering the previous ones and then registering the larger
747 * slot. We have to maintain the existing fragmentation. Sigh.
749 * This workaround assumes that the new slot starts at the same
750 * address as the first existing one. If not or if some overlapping
751 * slot comes around later, we will fail (not seen in practice so far)
752 * - and actually require a recent KVM version. */
753 if (s->broken_set_mem_region &&
754 old.start_addr == start_addr && old.memory_size < size &&
755 flags < IO_MEM_UNASSIGNED) {
756 mem = kvm_alloc_slot(s);
757 mem->memory_size = old.memory_size;
758 mem->start_addr = old.start_addr;
759 mem->phys_offset = old.phys_offset;
760 mem->flags = 0;
762 err = kvm_set_user_memory_region(s, mem);
763 if (err) {
764 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
765 strerror(-err));
766 abort();
769 start_addr += old.memory_size;
770 phys_offset += old.memory_size;
771 size -= old.memory_size;
772 continue;
775 /* register prefix slot */
776 if (old.start_addr < start_addr) {
777 mem = kvm_alloc_slot(s);
778 mem->memory_size = start_addr - old.start_addr;
779 mem->start_addr = old.start_addr;
780 mem->phys_offset = old.phys_offset;
781 mem->flags = 0;
783 err = kvm_set_user_memory_region(s, mem);
784 if (err) {
785 fprintf(stderr, "%s: error registering prefix slot: %s\n",
786 __func__, strerror(-err));
787 abort();
791 /* register suffix slot */
792 if (old.start_addr + old.memory_size > start_addr + size) {
793 ram_addr_t size_delta;
795 mem = kvm_alloc_slot(s);
796 mem->start_addr = start_addr + size;
797 size_delta = mem->start_addr - old.start_addr;
798 mem->memory_size = old.memory_size - size_delta;
799 mem->phys_offset = old.phys_offset + size_delta;
800 mem->flags = 0;
802 err = kvm_set_user_memory_region(s, mem);
803 if (err) {
804 fprintf(stderr, "%s: error registering suffix slot: %s\n",
805 __func__, strerror(-err));
806 abort();
811 /* in case the KVM bug workaround already "consumed" the new slot */
812 if (!size)
813 return;
815 /* KVM does not need to know about this memory */
816 if (flags >= IO_MEM_UNASSIGNED)
817 return;
819 mem = kvm_alloc_slot(s);
820 mem->memory_size = size;
821 mem->start_addr = start_addr;
822 mem->phys_offset = phys_offset;
823 mem->flags = 0;
825 err = kvm_set_user_memory_region(s, mem);
826 if (err) {
827 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
828 strerror(-err));
829 abort();
833 #endif
834 int kvm_ioctl(KVMState *s, int type, ...)
836 int ret;
837 void *arg;
838 va_list ap;
840 va_start(ap, type);
841 arg = va_arg(ap, void *);
842 va_end(ap);
844 ret = ioctl(s->fd, type, arg);
845 if (ret == -1)
846 ret = -errno;
848 return ret;
851 int kvm_vm_ioctl(KVMState *s, int type, ...)
853 int ret;
854 void *arg;
855 va_list ap;
857 va_start(ap, type);
858 arg = va_arg(ap, void *);
859 va_end(ap);
861 ret = ioctl(s->vmfd, type, arg);
862 if (ret == -1)
863 ret = -errno;
865 return ret;
868 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
870 int ret;
871 void *arg;
872 va_list ap;
874 va_start(ap, type);
875 arg = va_arg(ap, void *);
876 va_end(ap);
878 ret = ioctl(env->kvm_fd, type, arg);
879 if (ret == -1)
880 ret = -errno;
882 return ret;
885 int kvm_has_sync_mmu(void)
887 #ifdef KVM_CAP_SYNC_MMU
888 KVMState *s = kvm_state;
890 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
891 #else
892 return 0;
893 #endif
896 #ifdef KVM_UPSTREAM
897 void kvm_setup_guest_memory(void *start, size_t size)
899 if (!kvm_has_sync_mmu()) {
900 #ifdef MADV_DONTFORK
901 int ret = madvise(start, size, MADV_DONTFORK);
903 if (ret) {
904 perror("madvice");
905 exit(1);
907 #else
908 fprintf(stderr,
909 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
910 exit(1);
911 #endif
915 #endif /* KVM_UPSTREAM */
917 #ifdef KVM_CAP_SET_GUEST_DEBUG
919 #ifdef KVM_UPSTREAM
920 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
922 #ifdef CONFIG_IOTHREAD
923 if (env == cpu_single_env) {
924 func(data);
925 return;
927 abort();
928 #else
929 func(data);
930 #endif
932 #endif /* KVM_UPSTREAM */
934 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
935 target_ulong pc)
937 struct kvm_sw_breakpoint *bp;
939 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
940 if (bp->pc == pc)
941 return bp;
943 return NULL;
946 int kvm_sw_breakpoints_active(CPUState *env)
948 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
951 #ifdef KVM_UPSTREAM
953 struct kvm_set_guest_debug_data {
954 struct kvm_guest_debug dbg;
955 CPUState *env;
956 int err;
959 static void kvm_invoke_set_guest_debug(void *data)
961 struct kvm_set_guest_debug_data *dbg_data = data;
962 CPUState *env = dbg_data->env;
964 if (env->kvm_state->regs_modified) {
965 kvm_arch_put_registers(env);
966 env->kvm_state->regs_modified = 0;
968 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
971 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
973 struct kvm_set_guest_debug_data data;
975 data.dbg.control = 0;
976 if (env->singlestep_enabled)
977 data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
979 kvm_arch_update_guest_debug(env, &data.dbg);
980 data.dbg.control |= reinject_trap;
981 data.env = env;
983 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
984 return data.err;
986 #endif
988 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
989 target_ulong len, int type)
991 struct kvm_sw_breakpoint *bp;
992 CPUState *env;
993 int err;
995 if (type == GDB_BREAKPOINT_SW) {
996 bp = kvm_find_sw_breakpoint(current_env, addr);
997 if (bp) {
998 bp->use_count++;
999 return 0;
1002 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1003 if (!bp)
1004 return -ENOMEM;
1006 bp->pc = addr;
1007 bp->use_count = 1;
1008 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1009 if (err) {
1010 free(bp);
1011 return err;
1014 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1015 bp, entry);
1016 } else {
1017 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1018 if (err)
1019 return err;
1022 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1023 err = kvm_update_guest_debug(env, 0);
1024 if (err)
1025 return err;
1027 return 0;
1030 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1031 target_ulong len, int type)
1033 struct kvm_sw_breakpoint *bp;
1034 CPUState *env;
1035 int err;
1037 if (type == GDB_BREAKPOINT_SW) {
1038 bp = kvm_find_sw_breakpoint(current_env, addr);
1039 if (!bp)
1040 return -ENOENT;
1042 if (bp->use_count > 1) {
1043 bp->use_count--;
1044 return 0;
1047 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1048 if (err)
1049 return err;
1051 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1052 qemu_free(bp);
1053 } else {
1054 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1055 if (err)
1056 return err;
1059 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1060 err = kvm_update_guest_debug(env, 0);
1061 if (err)
1062 return err;
1064 return 0;
1067 void kvm_remove_all_breakpoints(CPUState *current_env)
1069 struct kvm_sw_breakpoint *bp, *next;
1070 KVMState *s = current_env->kvm_state;
1071 CPUState *env;
1073 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1074 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1075 /* Try harder to find a CPU that currently sees the breakpoint. */
1076 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1077 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1078 break;
1082 kvm_arch_remove_all_hw_breakpoints();
1084 for (env = first_cpu; env != NULL; env = env->next_cpu)
1085 kvm_update_guest_debug(env, 0);
1088 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1090 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1092 return -EINVAL;
1095 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1096 target_ulong len, int type)
1098 return -EINVAL;
1101 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1102 target_ulong len, int type)
1104 return -EINVAL;
1107 void kvm_remove_all_breakpoints(CPUState *current_env)
1110 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1112 #include "qemu-kvm.c"