kvm: bios: KVM does not support SMM, so disable it
[qemu-kvm/fedora.git] / gdbstub.c
blob4d99efd45ba1065ea5356f2c175993c889bf41bd
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #include "qemu-common.h"
22 #ifdef CONFIG_USER_ONLY
23 #include <stdlib.h>
24 #include <stdio.h>
25 #include <stdarg.h>
26 #include <string.h>
27 #include <errno.h>
28 #include <unistd.h>
29 #include <fcntl.h>
31 #include "qemu.h"
32 #else
33 #include "qemu-char.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #include "qemu-kvm.h"
37 #endif
39 #define MAX_PACKET_LENGTH 4096
41 #include "qemu_socket.h"
44 enum {
45 GDB_SIGNAL_0 = 0,
46 GDB_SIGNAL_INT = 2,
47 GDB_SIGNAL_TRAP = 5,
48 GDB_SIGNAL_UNKNOWN = 143
51 #ifdef CONFIG_USER_ONLY
53 /* Map target signal numbers to GDB protocol signal numbers and vice
54 * versa. For user emulation's currently supported systems, we can
55 * assume most signals are defined.
58 static int gdb_signal_table[] = {
60 TARGET_SIGHUP,
61 TARGET_SIGINT,
62 TARGET_SIGQUIT,
63 TARGET_SIGILL,
64 TARGET_SIGTRAP,
65 TARGET_SIGABRT,
66 -1, /* SIGEMT */
67 TARGET_SIGFPE,
68 TARGET_SIGKILL,
69 TARGET_SIGBUS,
70 TARGET_SIGSEGV,
71 TARGET_SIGSYS,
72 TARGET_SIGPIPE,
73 TARGET_SIGALRM,
74 TARGET_SIGTERM,
75 TARGET_SIGURG,
76 TARGET_SIGSTOP,
77 TARGET_SIGTSTP,
78 TARGET_SIGCONT,
79 TARGET_SIGCHLD,
80 TARGET_SIGTTIN,
81 TARGET_SIGTTOU,
82 TARGET_SIGIO,
83 TARGET_SIGXCPU,
84 TARGET_SIGXFSZ,
85 TARGET_SIGVTALRM,
86 TARGET_SIGPROF,
87 TARGET_SIGWINCH,
88 -1, /* SIGLOST */
89 TARGET_SIGUSR1,
90 TARGET_SIGUSR2,
91 TARGET_SIGPWR,
92 -1, /* SIGPOLL */
93 -1,
94 -1,
95 -1,
96 -1,
97 -1,
98 -1,
99 -1,
104 __SIGRTMIN + 1,
105 __SIGRTMIN + 2,
106 __SIGRTMIN + 3,
107 __SIGRTMIN + 4,
108 __SIGRTMIN + 5,
109 __SIGRTMIN + 6,
110 __SIGRTMIN + 7,
111 __SIGRTMIN + 8,
112 __SIGRTMIN + 9,
113 __SIGRTMIN + 10,
114 __SIGRTMIN + 11,
115 __SIGRTMIN + 12,
116 __SIGRTMIN + 13,
117 __SIGRTMIN + 14,
118 __SIGRTMIN + 15,
119 __SIGRTMIN + 16,
120 __SIGRTMIN + 17,
121 __SIGRTMIN + 18,
122 __SIGRTMIN + 19,
123 __SIGRTMIN + 20,
124 __SIGRTMIN + 21,
125 __SIGRTMIN + 22,
126 __SIGRTMIN + 23,
127 __SIGRTMIN + 24,
128 __SIGRTMIN + 25,
129 __SIGRTMIN + 26,
130 __SIGRTMIN + 27,
131 __SIGRTMIN + 28,
132 __SIGRTMIN + 29,
133 __SIGRTMIN + 30,
134 __SIGRTMIN + 31,
135 -1, /* SIGCANCEL */
136 __SIGRTMIN,
137 __SIGRTMIN + 32,
138 __SIGRTMIN + 33,
139 __SIGRTMIN + 34,
140 __SIGRTMIN + 35,
141 __SIGRTMIN + 36,
142 __SIGRTMIN + 37,
143 __SIGRTMIN + 38,
144 __SIGRTMIN + 39,
145 __SIGRTMIN + 40,
146 __SIGRTMIN + 41,
147 __SIGRTMIN + 42,
148 __SIGRTMIN + 43,
149 __SIGRTMIN + 44,
150 __SIGRTMIN + 45,
151 __SIGRTMIN + 46,
152 __SIGRTMIN + 47,
153 __SIGRTMIN + 48,
154 __SIGRTMIN + 49,
155 __SIGRTMIN + 50,
156 __SIGRTMIN + 51,
157 __SIGRTMIN + 52,
158 __SIGRTMIN + 53,
159 __SIGRTMIN + 54,
160 __SIGRTMIN + 55,
161 __SIGRTMIN + 56,
162 __SIGRTMIN + 57,
163 __SIGRTMIN + 58,
164 __SIGRTMIN + 59,
165 __SIGRTMIN + 60,
166 __SIGRTMIN + 61,
167 __SIGRTMIN + 62,
168 __SIGRTMIN + 63,
169 __SIGRTMIN + 64,
170 __SIGRTMIN + 65,
171 __SIGRTMIN + 66,
172 __SIGRTMIN + 67,
173 __SIGRTMIN + 68,
174 __SIGRTMIN + 69,
175 __SIGRTMIN + 70,
176 __SIGRTMIN + 71,
177 __SIGRTMIN + 72,
178 __SIGRTMIN + 73,
179 __SIGRTMIN + 74,
180 __SIGRTMIN + 75,
181 __SIGRTMIN + 76,
182 __SIGRTMIN + 77,
183 __SIGRTMIN + 78,
184 __SIGRTMIN + 79,
185 __SIGRTMIN + 80,
186 __SIGRTMIN + 81,
187 __SIGRTMIN + 82,
188 __SIGRTMIN + 83,
189 __SIGRTMIN + 84,
190 __SIGRTMIN + 85,
191 __SIGRTMIN + 86,
192 __SIGRTMIN + 87,
193 __SIGRTMIN + 88,
194 __SIGRTMIN + 89,
195 __SIGRTMIN + 90,
196 __SIGRTMIN + 91,
197 __SIGRTMIN + 92,
198 __SIGRTMIN + 93,
199 __SIGRTMIN + 94,
200 __SIGRTMIN + 95,
201 -1, /* SIGINFO */
202 -1, /* UNKNOWN */
203 -1, /* DEFAULT */
211 #else
212 /* In system mode we only need SIGINT and SIGTRAP; other signals
213 are not yet supported. */
215 enum {
216 TARGET_SIGINT = 2,
217 TARGET_SIGTRAP = 5
220 static int gdb_signal_table[] = {
223 TARGET_SIGINT,
226 TARGET_SIGTRAP
228 #endif
230 #ifdef CONFIG_USER_ONLY
231 static int target_signal_to_gdb (int sig)
233 int i;
234 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
235 if (gdb_signal_table[i] == sig)
236 return i;
237 return GDB_SIGNAL_UNKNOWN;
239 #endif
241 static int gdb_signal_to_target (int sig)
243 if (sig < ARRAY_SIZE (gdb_signal_table))
244 return gdb_signal_table[sig];
245 else
246 return -1;
249 //#define DEBUG_GDB
251 typedef struct GDBRegisterState {
252 int base_reg;
253 int num_regs;
254 gdb_reg_cb get_reg;
255 gdb_reg_cb set_reg;
256 const char *xml;
257 struct GDBRegisterState *next;
258 } GDBRegisterState;
260 enum RSState {
261 RS_IDLE,
262 RS_GETLINE,
263 RS_CHKSUM1,
264 RS_CHKSUM2,
265 RS_SYSCALL,
267 typedef struct GDBState {
268 CPUState *c_cpu; /* current CPU for step/continue ops */
269 CPUState *g_cpu; /* current CPU for other ops */
270 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
271 enum RSState state; /* parsing state */
272 char line_buf[MAX_PACKET_LENGTH];
273 int line_buf_index;
274 int line_csum;
275 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
276 int last_packet_len;
277 int signal;
278 #ifdef CONFIG_USER_ONLY
279 int fd;
280 int running_state;
281 #else
282 CharDriverState *chr;
283 #endif
284 } GDBState;
286 /* By default use no IRQs and no timers while single stepping so as to
287 * make single stepping like an ICE HW step.
289 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
291 static GDBState *gdbserver_state;
293 /* This is an ugly hack to cope with both new and old gdb.
294 If gdb sends qXfer:features:read then assume we're talking to a newish
295 gdb that understands target descriptions. */
296 static int gdb_has_xml;
298 #ifdef CONFIG_USER_ONLY
299 /* XXX: This is not thread safe. Do we care? */
300 static int gdbserver_fd = -1;
302 static int get_char(GDBState *s)
304 uint8_t ch;
305 int ret;
307 for(;;) {
308 ret = recv(s->fd, &ch, 1, 0);
309 if (ret < 0) {
310 if (errno == ECONNRESET)
311 s->fd = -1;
312 if (errno != EINTR && errno != EAGAIN)
313 return -1;
314 } else if (ret == 0) {
315 close(s->fd);
316 s->fd = -1;
317 return -1;
318 } else {
319 break;
322 return ch;
324 #endif
326 static gdb_syscall_complete_cb gdb_current_syscall_cb;
328 enum {
329 GDB_SYS_UNKNOWN,
330 GDB_SYS_ENABLED,
331 GDB_SYS_DISABLED,
332 } gdb_syscall_mode;
334 /* If gdb is connected when the first semihosting syscall occurs then use
335 remote gdb syscalls. Otherwise use native file IO. */
336 int use_gdb_syscalls(void)
338 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
339 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
340 : GDB_SYS_DISABLED);
342 return gdb_syscall_mode == GDB_SYS_ENABLED;
345 /* Resume execution. */
346 static inline void gdb_continue(GDBState *s)
348 #ifdef CONFIG_USER_ONLY
349 s->running_state = 1;
350 #else
351 vm_start();
352 #endif
355 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
357 #ifdef CONFIG_USER_ONLY
358 int ret;
360 while (len > 0) {
361 ret = send(s->fd, buf, len, 0);
362 if (ret < 0) {
363 if (errno != EINTR && errno != EAGAIN)
364 return;
365 } else {
366 buf += ret;
367 len -= ret;
370 #else
371 qemu_chr_write(s->chr, buf, len);
372 #endif
375 static inline int fromhex(int v)
377 if (v >= '0' && v <= '9')
378 return v - '0';
379 else if (v >= 'A' && v <= 'F')
380 return v - 'A' + 10;
381 else if (v >= 'a' && v <= 'f')
382 return v - 'a' + 10;
383 else
384 return 0;
387 static inline int tohex(int v)
389 if (v < 10)
390 return v + '0';
391 else
392 return v - 10 + 'a';
395 static void memtohex(char *buf, const uint8_t *mem, int len)
397 int i, c;
398 char *q;
399 q = buf;
400 for(i = 0; i < len; i++) {
401 c = mem[i];
402 *q++ = tohex(c >> 4);
403 *q++ = tohex(c & 0xf);
405 *q = '\0';
408 static void hextomem(uint8_t *mem, const char *buf, int len)
410 int i;
412 for(i = 0; i < len; i++) {
413 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
414 buf += 2;
418 /* return -1 if error, 0 if OK */
419 static int put_packet_binary(GDBState *s, const char *buf, int len)
421 int csum, i;
422 uint8_t *p;
424 for(;;) {
425 p = s->last_packet;
426 *(p++) = '$';
427 memcpy(p, buf, len);
428 p += len;
429 csum = 0;
430 for(i = 0; i < len; i++) {
431 csum += buf[i];
433 *(p++) = '#';
434 *(p++) = tohex((csum >> 4) & 0xf);
435 *(p++) = tohex((csum) & 0xf);
437 s->last_packet_len = p - s->last_packet;
438 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
440 #ifdef CONFIG_USER_ONLY
441 i = get_char(s);
442 if (i < 0)
443 return -1;
444 if (i == '+')
445 break;
446 #else
447 break;
448 #endif
450 return 0;
453 /* return -1 if error, 0 if OK */
454 static int put_packet(GDBState *s, const char *buf)
456 #ifdef DEBUG_GDB
457 printf("reply='%s'\n", buf);
458 #endif
460 return put_packet_binary(s, buf, strlen(buf));
463 /* The GDB remote protocol transfers values in target byte order. This means
464 we can use the raw memory access routines to access the value buffer.
465 Conveniently, these also handle the case where the buffer is mis-aligned.
467 #define GET_REG8(val) do { \
468 stb_p(mem_buf, val); \
469 return 1; \
470 } while(0)
471 #define GET_REG16(val) do { \
472 stw_p(mem_buf, val); \
473 return 2; \
474 } while(0)
475 #define GET_REG32(val) do { \
476 stl_p(mem_buf, val); \
477 return 4; \
478 } while(0)
479 #define GET_REG64(val) do { \
480 stq_p(mem_buf, val); \
481 return 8; \
482 } while(0)
484 #if TARGET_LONG_BITS == 64
485 #define GET_REGL(val) GET_REG64(val)
486 #define ldtul_p(addr) ldq_p(addr)
487 #else
488 #define GET_REGL(val) GET_REG32(val)
489 #define ldtul_p(addr) ldl_p(addr)
490 #endif
492 #if defined(TARGET_I386)
494 #ifdef TARGET_X86_64
495 static const int gpr_map[16] = {
496 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
497 8, 9, 10, 11, 12, 13, 14, 15
499 #else
500 static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
501 #endif
503 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
505 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
507 if (n < CPU_NB_REGS) {
508 GET_REGL(env->regs[gpr_map[n]]);
509 } else if (n >= CPU_NB_REGS + 8 && n < CPU_NB_REGS + 16) {
510 /* FIXME: byteswap float values. */
511 #ifdef USE_X86LDOUBLE
512 memcpy(mem_buf, &env->fpregs[n - (CPU_NB_REGS + 8)], 10);
513 #else
514 memset(mem_buf, 0, 10);
515 #endif
516 return 10;
517 } else if (n >= CPU_NB_REGS + 24) {
518 n -= CPU_NB_REGS + 24;
519 if (n < CPU_NB_REGS) {
520 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
521 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
522 return 16;
523 } else if (n == CPU_NB_REGS) {
524 GET_REG32(env->mxcsr);
526 } else {
527 n -= CPU_NB_REGS;
528 switch (n) {
529 case 0: GET_REGL(env->eip);
530 case 1: GET_REG32(env->eflags);
531 case 2: GET_REG32(env->segs[R_CS].selector);
532 case 3: GET_REG32(env->segs[R_SS].selector);
533 case 4: GET_REG32(env->segs[R_DS].selector);
534 case 5: GET_REG32(env->segs[R_ES].selector);
535 case 6: GET_REG32(env->segs[R_FS].selector);
536 case 7: GET_REG32(env->segs[R_GS].selector);
537 /* 8...15 x87 regs. */
538 case 16: GET_REG32(env->fpuc);
539 case 17: GET_REG32((env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11);
540 case 18: GET_REG32(0); /* ftag */
541 case 19: GET_REG32(0); /* fiseg */
542 case 20: GET_REG32(0); /* fioff */
543 case 21: GET_REG32(0); /* foseg */
544 case 22: GET_REG32(0); /* fooff */
545 case 23: GET_REG32(0); /* fop */
546 /* 24+ xmm regs. */
549 return 0;
552 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int i)
554 uint32_t tmp;
556 if (i < CPU_NB_REGS) {
557 env->regs[gpr_map[i]] = ldtul_p(mem_buf);
558 return sizeof(target_ulong);
559 } else if (i >= CPU_NB_REGS + 8 && i < CPU_NB_REGS + 16) {
560 i -= CPU_NB_REGS + 8;
561 #ifdef USE_X86LDOUBLE
562 memcpy(&env->fpregs[i], mem_buf, 10);
563 #endif
564 return 10;
565 } else if (i >= CPU_NB_REGS + 24) {
566 i -= CPU_NB_REGS + 24;
567 if (i < CPU_NB_REGS) {
568 env->xmm_regs[i].XMM_Q(0) = ldq_p(mem_buf);
569 env->xmm_regs[i].XMM_Q(1) = ldq_p(mem_buf + 8);
570 return 16;
571 } else if (i == CPU_NB_REGS) {
572 env->mxcsr = ldl_p(mem_buf);
573 return 4;
575 } else {
576 i -= CPU_NB_REGS;
577 switch (i) {
578 case 0: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong);
579 case 1: env->eflags = ldl_p(mem_buf); return 4;
580 #if defined(CONFIG_USER_ONLY)
581 #define LOAD_SEG(index, sreg)\
582 tmp = ldl_p(mem_buf);\
583 if (tmp != env->segs[sreg].selector)\
584 cpu_x86_load_seg(env, sreg, tmp);
585 #else
586 /* FIXME: Honor segment registers. Needs to avoid raising an exception
587 when the selector is invalid. */
588 #define LOAD_SEG(index, sreg) do {} while(0)
589 #endif
590 case 2: LOAD_SEG(10, R_CS); return 4;
591 case 3: LOAD_SEG(11, R_SS); return 4;
592 case 4: LOAD_SEG(12, R_DS); return 4;
593 case 5: LOAD_SEG(13, R_ES); return 4;
594 case 6: LOAD_SEG(14, R_FS); return 4;
595 case 7: LOAD_SEG(15, R_GS); return 4;
596 /* 8...15 x87 regs. */
597 case 16: env->fpuc = ldl_p(mem_buf); return 4;
598 case 17:
599 tmp = ldl_p(mem_buf);
600 env->fpstt = (tmp >> 11) & 7;
601 env->fpus = tmp & ~0x3800;
602 return 4;
603 case 18: /* ftag */ return 4;
604 case 19: /* fiseg */ return 4;
605 case 20: /* fioff */ return 4;
606 case 21: /* foseg */ return 4;
607 case 22: /* fooff */ return 4;
608 case 23: /* fop */ return 4;
609 /* 24+ xmm regs. */
612 /* Unrecognised register. */
613 return 0;
616 #elif defined (TARGET_PPC)
618 #define NUM_CORE_REGS 71
620 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
622 if (n < 32) {
623 /* gprs */
624 GET_REGL(env->gpr[n]);
625 } else if (n < 64) {
626 /* fprs */
627 stfq_p(mem_buf, env->fpr[n-32]);
628 return 8;
629 } else {
630 switch (n) {
631 case 64: GET_REGL(env->nip);
632 case 65: GET_REGL(env->msr);
633 case 66:
635 uint32_t cr = 0;
636 int i;
637 for (i = 0; i < 8; i++)
638 cr |= env->crf[i] << (32 - ((i + 1) * 4));
639 GET_REG32(cr);
641 case 67: GET_REGL(env->lr);
642 case 68: GET_REGL(env->ctr);
643 case 69: GET_REGL(env->xer);
644 case 70: GET_REG32(0); /* fpscr */
647 return 0;
650 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
652 if (n < 32) {
653 /* gprs */
654 env->gpr[n] = ldtul_p(mem_buf);
655 return sizeof(target_ulong);
656 } else if (n < 64) {
657 /* fprs */
658 env->fpr[n-32] = ldfq_p(mem_buf);
659 return 8;
660 } else {
661 switch (n) {
662 case 64:
663 env->nip = ldtul_p(mem_buf);
664 return sizeof(target_ulong);
665 case 65:
666 ppc_store_msr(env, ldtul_p(mem_buf));
667 return sizeof(target_ulong);
668 case 66:
670 uint32_t cr = ldl_p(mem_buf);
671 int i;
672 for (i = 0; i < 8; i++)
673 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
674 return 4;
676 case 67:
677 env->lr = ldtul_p(mem_buf);
678 return sizeof(target_ulong);
679 case 68:
680 env->ctr = ldtul_p(mem_buf);
681 return sizeof(target_ulong);
682 case 69:
683 env->xer = ldtul_p(mem_buf);
684 return sizeof(target_ulong);
685 case 70:
686 /* fpscr */
687 return 4;
690 return 0;
693 #elif defined (TARGET_SPARC)
695 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
696 #define NUM_CORE_REGS 86
697 #else
698 #define NUM_CORE_REGS 73
699 #endif
701 #ifdef TARGET_ABI32
702 #define GET_REGA(val) GET_REG32(val)
703 #else
704 #define GET_REGA(val) GET_REGL(val)
705 #endif
707 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
709 if (n < 8) {
710 /* g0..g7 */
711 GET_REGA(env->gregs[n]);
713 if (n < 32) {
714 /* register window */
715 GET_REGA(env->regwptr[n - 8]);
717 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
718 if (n < 64) {
719 /* fprs */
720 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
722 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
723 switch (n) {
724 case 64: GET_REGA(env->y);
725 case 65: GET_REGA(GET_PSR(env));
726 case 66: GET_REGA(env->wim);
727 case 67: GET_REGA(env->tbr);
728 case 68: GET_REGA(env->pc);
729 case 69: GET_REGA(env->npc);
730 case 70: GET_REGA(env->fsr);
731 case 71: GET_REGA(0); /* csr */
732 case 72: GET_REGA(0);
734 #else
735 if (n < 64) {
736 /* f0-f31 */
737 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
739 if (n < 80) {
740 /* f32-f62 (double width, even numbers only) */
741 uint64_t val;
743 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
744 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
745 GET_REG64(val);
747 switch (n) {
748 case 80: GET_REGL(env->pc);
749 case 81: GET_REGL(env->npc);
750 case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
751 ((env->asi & 0xff) << 24) |
752 ((env->pstate & 0xfff) << 8) |
753 GET_CWP64(env));
754 case 83: GET_REGL(env->fsr);
755 case 84: GET_REGL(env->fprs);
756 case 85: GET_REGL(env->y);
758 #endif
759 return 0;
762 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
764 #if defined(TARGET_ABI32)
765 abi_ulong tmp;
767 tmp = ldl_p(mem_buf);
768 #else
769 target_ulong tmp;
771 tmp = ldtul_p(mem_buf);
772 #endif
774 if (n < 8) {
775 /* g0..g7 */
776 env->gregs[n] = tmp;
777 } else if (n < 32) {
778 /* register window */
779 env->regwptr[n - 8] = tmp;
781 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
782 else if (n < 64) {
783 /* fprs */
784 *((uint32_t *)&env->fpr[n - 32]) = tmp;
785 } else {
786 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
787 switch (n) {
788 case 64: env->y = tmp; break;
789 case 65: PUT_PSR(env, tmp); break;
790 case 66: env->wim = tmp; break;
791 case 67: env->tbr = tmp; break;
792 case 68: env->pc = tmp; break;
793 case 69: env->npc = tmp; break;
794 case 70: env->fsr = tmp; break;
795 default: return 0;
798 return 4;
799 #else
800 else if (n < 64) {
801 /* f0-f31 */
802 env->fpr[n] = ldfl_p(mem_buf);
803 return 4;
804 } else if (n < 80) {
805 /* f32-f62 (double width, even numbers only) */
806 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
807 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
808 } else {
809 switch (n) {
810 case 80: env->pc = tmp; break;
811 case 81: env->npc = tmp; break;
812 case 82:
813 PUT_CCR(env, tmp >> 32);
814 env->asi = (tmp >> 24) & 0xff;
815 env->pstate = (tmp >> 8) & 0xfff;
816 PUT_CWP64(env, tmp & 0xff);
817 break;
818 case 83: env->fsr = tmp; break;
819 case 84: env->fprs = tmp; break;
820 case 85: env->y = tmp; break;
821 default: return 0;
824 return 8;
825 #endif
827 #elif defined (TARGET_ARM)
829 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
830 whatever the target description contains. Due to a historical mishap
831 the FPA registers appear in between core integer regs and the CPSR.
832 We hack round this by giving the FPA regs zero size when talking to a
833 newer gdb. */
834 #define NUM_CORE_REGS 26
835 #define GDB_CORE_XML "arm-core.xml"
837 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
839 if (n < 16) {
840 /* Core integer register. */
841 GET_REG32(env->regs[n]);
843 if (n < 24) {
844 /* FPA registers. */
845 if (gdb_has_xml)
846 return 0;
847 memset(mem_buf, 0, 12);
848 return 12;
850 switch (n) {
851 case 24:
852 /* FPA status register. */
853 if (gdb_has_xml)
854 return 0;
855 GET_REG32(0);
856 case 25:
857 /* CPSR */
858 GET_REG32(cpsr_read(env));
860 /* Unknown register. */
861 return 0;
864 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
866 uint32_t tmp;
868 tmp = ldl_p(mem_buf);
870 /* Mask out low bit of PC to workaround gdb bugs. This will probably
871 cause problems if we ever implement the Jazelle DBX extensions. */
872 if (n == 15)
873 tmp &= ~1;
875 if (n < 16) {
876 /* Core integer register. */
877 env->regs[n] = tmp;
878 return 4;
880 if (n < 24) { /* 16-23 */
881 /* FPA registers (ignored). */
882 if (gdb_has_xml)
883 return 0;
884 return 12;
886 switch (n) {
887 case 24:
888 /* FPA status register (ignored). */
889 if (gdb_has_xml)
890 return 0;
891 return 4;
892 case 25:
893 /* CPSR */
894 cpsr_write (env, tmp, 0xffffffff);
895 return 4;
897 /* Unknown register. */
898 return 0;
901 #elif defined (TARGET_M68K)
903 #define NUM_CORE_REGS 18
905 #define GDB_CORE_XML "cf-core.xml"
907 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
909 if (n < 8) {
910 /* D0-D7 */
911 GET_REG32(env->dregs[n]);
912 } else if (n < 16) {
913 /* A0-A7 */
914 GET_REG32(env->aregs[n - 8]);
915 } else {
916 switch (n) {
917 case 16: GET_REG32(env->sr);
918 case 17: GET_REG32(env->pc);
921 /* FP registers not included here because they vary between
922 ColdFire and m68k. Use XML bits for these. */
923 return 0;
926 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
928 uint32_t tmp;
930 tmp = ldl_p(mem_buf);
932 if (n < 8) {
933 /* D0-D7 */
934 env->dregs[n] = tmp;
935 } else if (n < 8) {
936 /* A0-A7 */
937 env->aregs[n - 8] = tmp;
938 } else {
939 switch (n) {
940 case 16: env->sr = tmp; break;
941 case 17: env->pc = tmp; break;
942 default: return 0;
945 return 4;
947 #elif defined (TARGET_MIPS)
949 #define NUM_CORE_REGS 73
951 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
953 if (n < 32) {
954 GET_REGL(env->active_tc.gpr[n]);
956 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
957 if (n >= 38 && n < 70) {
958 if (env->CP0_Status & (1 << CP0St_FR))
959 GET_REGL(env->active_fpu.fpr[n - 38].d);
960 else
961 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
963 switch (n) {
964 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
965 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
968 switch (n) {
969 case 32: GET_REGL((int32_t)env->CP0_Status);
970 case 33: GET_REGL(env->active_tc.LO[0]);
971 case 34: GET_REGL(env->active_tc.HI[0]);
972 case 35: GET_REGL(env->CP0_BadVAddr);
973 case 36: GET_REGL((int32_t)env->CP0_Cause);
974 case 37: GET_REGL(env->active_tc.PC);
975 case 72: GET_REGL(0); /* fp */
976 case 89: GET_REGL((int32_t)env->CP0_PRid);
978 if (n >= 73 && n <= 88) {
979 /* 16 embedded regs. */
980 GET_REGL(0);
983 return 0;
986 /* convert MIPS rounding mode in FCR31 to IEEE library */
987 static unsigned int ieee_rm[] =
989 float_round_nearest_even,
990 float_round_to_zero,
991 float_round_up,
992 float_round_down
994 #define RESTORE_ROUNDING_MODE \
995 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
997 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
999 target_ulong tmp;
1001 tmp = ldtul_p(mem_buf);
1003 if (n < 32) {
1004 env->active_tc.gpr[n] = tmp;
1005 return sizeof(target_ulong);
1007 if (env->CP0_Config1 & (1 << CP0C1_FP)
1008 && n >= 38 && n < 73) {
1009 if (n < 70) {
1010 if (env->CP0_Status & (1 << CP0St_FR))
1011 env->active_fpu.fpr[n - 38].d = tmp;
1012 else
1013 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1015 switch (n) {
1016 case 70:
1017 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1018 /* set rounding mode */
1019 RESTORE_ROUNDING_MODE;
1020 #ifndef CONFIG_SOFTFLOAT
1021 /* no floating point exception for native float */
1022 SET_FP_ENABLE(env->active_fpu.fcr31, 0);
1023 #endif
1024 break;
1025 case 71: env->active_fpu.fcr0 = tmp; break;
1027 return sizeof(target_ulong);
1029 switch (n) {
1030 case 32: env->CP0_Status = tmp; break;
1031 case 33: env->active_tc.LO[0] = tmp; break;
1032 case 34: env->active_tc.HI[0] = tmp; break;
1033 case 35: env->CP0_BadVAddr = tmp; break;
1034 case 36: env->CP0_Cause = tmp; break;
1035 case 37: env->active_tc.PC = tmp; break;
1036 case 72: /* fp, ignored */ break;
1037 default:
1038 if (n > 89)
1039 return 0;
1040 /* Other registers are readonly. Ignore writes. */
1041 break;
1044 return sizeof(target_ulong);
1046 #elif defined (TARGET_SH4)
1048 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1049 /* FIXME: We should use XML for this. */
1051 #define NUM_CORE_REGS 59
1053 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1055 if (n < 8) {
1056 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1057 GET_REGL(env->gregs[n + 16]);
1058 } else {
1059 GET_REGL(env->gregs[n]);
1061 } else if (n < 16) {
1062 GET_REGL(env->gregs[n - 8]);
1063 } else if (n >= 25 && n < 41) {
1064 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
1065 } else if (n >= 43 && n < 51) {
1066 GET_REGL(env->gregs[n - 43]);
1067 } else if (n >= 51 && n < 59) {
1068 GET_REGL(env->gregs[n - (51 - 16)]);
1070 switch (n) {
1071 case 16: GET_REGL(env->pc);
1072 case 17: GET_REGL(env->pr);
1073 case 18: GET_REGL(env->gbr);
1074 case 19: GET_REGL(env->vbr);
1075 case 20: GET_REGL(env->mach);
1076 case 21: GET_REGL(env->macl);
1077 case 22: GET_REGL(env->sr);
1078 case 23: GET_REGL(env->fpul);
1079 case 24: GET_REGL(env->fpscr);
1080 case 41: GET_REGL(env->ssr);
1081 case 42: GET_REGL(env->spc);
1084 return 0;
1087 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1089 uint32_t tmp;
1091 tmp = ldl_p(mem_buf);
1093 if (n < 8) {
1094 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1095 env->gregs[n + 16] = tmp;
1096 } else {
1097 env->gregs[n] = tmp;
1099 return 4;
1100 } else if (n < 16) {
1101 env->gregs[n - 8] = tmp;
1102 return 4;
1103 } else if (n >= 25 && n < 41) {
1104 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
1105 } else if (n >= 43 && n < 51) {
1106 env->gregs[n - 43] = tmp;
1107 return 4;
1108 } else if (n >= 51 && n < 59) {
1109 env->gregs[n - (51 - 16)] = tmp;
1110 return 4;
1112 switch (n) {
1113 case 16: env->pc = tmp;
1114 case 17: env->pr = tmp;
1115 case 18: env->gbr = tmp;
1116 case 19: env->vbr = tmp;
1117 case 20: env->mach = tmp;
1118 case 21: env->macl = tmp;
1119 case 22: env->sr = tmp;
1120 case 23: env->fpul = tmp;
1121 case 24: env->fpscr = tmp;
1122 case 41: env->ssr = tmp;
1123 case 42: env->spc = tmp;
1124 default: return 0;
1127 return 4;
1129 #elif defined (TARGET_CRIS)
1131 #define NUM_CORE_REGS 49
1133 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1135 uint8_t srs;
1137 srs = env->pregs[PR_SRS];
1138 if (n < 16) {
1139 GET_REG32(env->regs[n]);
1142 if (n >= 21 && n < 32) {
1143 GET_REG32(env->pregs[n - 16]);
1145 if (n >= 33 && n < 49) {
1146 GET_REG32(env->sregs[srs][n - 33]);
1148 switch (n) {
1149 case 16: GET_REG8(env->pregs[0]);
1150 case 17: GET_REG8(env->pregs[1]);
1151 case 18: GET_REG32(env->pregs[2]);
1152 case 19: GET_REG8(srs);
1153 case 20: GET_REG16(env->pregs[4]);
1154 case 32: GET_REG32(env->pc);
1157 return 0;
1160 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1162 uint32_t tmp;
1164 if (n > 49)
1165 return 0;
1167 tmp = ldl_p(mem_buf);
1169 if (n < 16) {
1170 env->regs[n] = tmp;
1173 if (n >= 21 && n < 32) {
1174 env->pregs[n - 16] = tmp;
1177 /* FIXME: Should support function regs be writable? */
1178 switch (n) {
1179 case 16: return 1;
1180 case 17: return 1;
1181 case 18: env->pregs[PR_PID] = tmp; break;
1182 case 19: return 1;
1183 case 20: return 2;
1184 case 32: env->pc = tmp; break;
1187 return 4;
1189 #elif defined (TARGET_ALPHA)
1191 #define NUM_CORE_REGS 65
1193 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1195 if (n < 31) {
1196 GET_REGL(env->ir[n]);
1198 else if (n == 31) {
1199 GET_REGL(0);
1201 else if (n<63) {
1202 uint64_t val;
1204 val=*((uint64_t *)&env->fir[n-32]);
1205 GET_REGL(val);
1207 else if (n==63) {
1208 GET_REGL(env->fpcr);
1210 else if (n==64) {
1211 GET_REGL(env->pc);
1213 else {
1214 GET_REGL(0);
1217 return 0;
1220 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1222 target_ulong tmp;
1223 tmp = ldtul_p(mem_buf);
1225 if (n < 31) {
1226 env->ir[n] = tmp;
1229 if (n > 31 && n < 63) {
1230 env->fir[n - 32] = ldfl_p(mem_buf);
1233 if (n == 64 ) {
1234 env->pc=tmp;
1237 return 8;
1239 #else
1241 #define NUM_CORE_REGS 0
1243 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1245 return 0;
1248 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1250 return 0;
1253 #endif
1255 static int num_g_regs = NUM_CORE_REGS;
1257 #ifdef GDB_CORE_XML
1258 /* Encode data using the encoding for 'x' packets. */
1259 static int memtox(char *buf, const char *mem, int len)
1261 char *p = buf;
1262 char c;
1264 while (len--) {
1265 c = *(mem++);
1266 switch (c) {
1267 case '#': case '$': case '*': case '}':
1268 *(p++) = '}';
1269 *(p++) = c ^ 0x20;
1270 break;
1271 default:
1272 *(p++) = c;
1273 break;
1276 return p - buf;
1279 static const char *get_feature_xml(const char *p, const char **newp)
1281 extern const char *const xml_builtin[][2];
1282 size_t len;
1283 int i;
1284 const char *name;
1285 static char target_xml[1024];
1287 len = 0;
1288 while (p[len] && p[len] != ':')
1289 len++;
1290 *newp = p + len;
1292 name = NULL;
1293 if (strncmp(p, "target.xml", len) == 0) {
1294 /* Generate the XML description for this CPU. */
1295 if (!target_xml[0]) {
1296 GDBRegisterState *r;
1298 snprintf(target_xml, sizeof(target_xml),
1299 "<?xml version=\"1.0\"?>"
1300 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1301 "<target>"
1302 "<xi:include href=\"%s\"/>",
1303 GDB_CORE_XML);
1305 for (r = first_cpu->gdb_regs; r; r = r->next) {
1306 strcat(target_xml, "<xi:include href=\"");
1307 strcat(target_xml, r->xml);
1308 strcat(target_xml, "\"/>");
1310 strcat(target_xml, "</target>");
1312 return target_xml;
1314 for (i = 0; ; i++) {
1315 name = xml_builtin[i][0];
1316 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1317 break;
1319 return name ? xml_builtin[i][1] : NULL;
1321 #endif
1323 static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
1325 GDBRegisterState *r;
1327 if (reg < NUM_CORE_REGS)
1328 return cpu_gdb_read_register(env, mem_buf, reg);
1330 for (r = env->gdb_regs; r; r = r->next) {
1331 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1332 return r->get_reg(env, mem_buf, reg - r->base_reg);
1335 return 0;
1338 static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1340 GDBRegisterState *r;
1342 if (reg < NUM_CORE_REGS)
1343 return cpu_gdb_write_register(env, mem_buf, reg);
1345 for (r = env->gdb_regs; r; r = r->next) {
1346 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1347 return r->set_reg(env, mem_buf, reg - r->base_reg);
1350 return 0;
1353 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1354 specifies the first register number and these registers are included in
1355 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1356 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1359 void gdb_register_coprocessor(CPUState * env,
1360 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1361 int num_regs, const char *xml, int g_pos)
1363 GDBRegisterState *s;
1364 GDBRegisterState **p;
1365 static int last_reg = NUM_CORE_REGS;
1367 s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
1368 s->base_reg = last_reg;
1369 s->num_regs = num_regs;
1370 s->get_reg = get_reg;
1371 s->set_reg = set_reg;
1372 s->xml = xml;
1373 p = &env->gdb_regs;
1374 while (*p) {
1375 /* Check for duplicates. */
1376 if (strcmp((*p)->xml, xml) == 0)
1377 return;
1378 p = &(*p)->next;
1380 /* Add to end of list. */
1381 last_reg += num_regs;
1382 *p = s;
1383 if (g_pos) {
1384 if (g_pos != s->base_reg) {
1385 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1386 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1387 } else {
1388 num_g_regs = last_reg;
1393 #ifndef CONFIG_USER_ONLY
1394 static const int xlat_gdb_type[] = {
1395 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1396 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1397 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1399 #endif
1401 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1403 CPUState *env;
1404 int err = 0;
1406 if (kvm_enabled())
1407 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1409 switch (type) {
1410 case GDB_BREAKPOINT_SW:
1411 case GDB_BREAKPOINT_HW:
1412 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1413 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1414 if (err)
1415 break;
1417 return err;
1418 #ifndef CONFIG_USER_ONLY
1419 case GDB_WATCHPOINT_WRITE:
1420 case GDB_WATCHPOINT_READ:
1421 case GDB_WATCHPOINT_ACCESS:
1422 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1423 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1424 NULL);
1425 if (err)
1426 break;
1428 return err;
1429 #endif
1430 default:
1431 return -ENOSYS;
1435 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1437 CPUState *env;
1438 int err = 0;
1440 if (kvm_enabled())
1441 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1443 switch (type) {
1444 case GDB_BREAKPOINT_SW:
1445 case GDB_BREAKPOINT_HW:
1446 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1447 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1448 if (err)
1449 break;
1451 return err;
1452 #ifndef CONFIG_USER_ONLY
1453 case GDB_WATCHPOINT_WRITE:
1454 case GDB_WATCHPOINT_READ:
1455 case GDB_WATCHPOINT_ACCESS:
1456 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1457 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
1458 if (err)
1459 break;
1461 return err;
1462 #endif
1463 default:
1464 return -ENOSYS;
1468 static void gdb_breakpoint_remove_all(void)
1470 CPUState *env;
1472 if (kvm_enabled()) {
1473 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1474 return;
1477 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1478 cpu_breakpoint_remove_all(env, BP_GDB);
1479 #ifndef CONFIG_USER_ONLY
1480 cpu_watchpoint_remove_all(env, BP_GDB);
1481 #endif
1485 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1487 CPUState *env;
1488 const char *p;
1489 int ch, reg_size, type, res, thread;
1490 char buf[MAX_PACKET_LENGTH];
1491 uint8_t mem_buf[MAX_PACKET_LENGTH];
1492 uint8_t *registers;
1493 target_ulong addr, len;
1495 #ifdef DEBUG_GDB
1496 printf("command='%s'\n", line_buf);
1497 #endif
1498 p = line_buf;
1499 ch = *p++;
1500 switch(ch) {
1501 case '?':
1502 /* TODO: Make this return the correct value for user-mode. */
1503 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1504 s->c_cpu->cpu_index+1);
1505 put_packet(s, buf);
1506 /* Remove all the breakpoints when this query is issued,
1507 * because gdb is doing and initial connect and the state
1508 * should be cleaned up.
1510 gdb_breakpoint_remove_all();
1511 break;
1512 case 'c':
1513 if (*p != '\0') {
1514 addr = strtoull(p, (char **)&p, 16);
1515 #if defined(TARGET_I386)
1516 s->c_cpu->eip = addr;
1517 kvm_load_registers(s->c_cpu);
1518 #elif defined (TARGET_PPC)
1519 s->c_cpu->nip = addr;
1520 kvm_load_registers(s->c_cpu);
1521 #elif defined (TARGET_SPARC)
1522 s->c_cpu->pc = addr;
1523 s->c_cpu->npc = addr + 4;
1524 #elif defined (TARGET_ARM)
1525 s->c_cpu->regs[15] = addr;
1526 #elif defined (TARGET_SH4)
1527 s->c_cpu->pc = addr;
1528 #elif defined (TARGET_MIPS)
1529 s->c_cpu->active_tc.PC = addr;
1530 #elif defined (TARGET_CRIS)
1531 s->c_cpu->pc = addr;
1532 #elif defined (TARGET_ALPHA)
1533 s->c_cpu->pc = addr;
1534 #endif
1536 s->signal = 0;
1537 gdb_continue(s);
1538 return RS_IDLE;
1539 case 'C':
1540 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
1541 if (s->signal == -1)
1542 s->signal = 0;
1543 gdb_continue(s);
1544 return RS_IDLE;
1545 case 'k':
1546 /* Kill the target */
1547 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1548 exit(0);
1549 case 'D':
1550 /* Detach packet */
1551 gdb_breakpoint_remove_all();
1552 gdb_continue(s);
1553 put_packet(s, "OK");
1554 break;
1555 case 's':
1556 if (*p != '\0') {
1557 addr = strtoull(p, (char **)&p, 16);
1558 #if defined(TARGET_I386)
1559 s->c_cpu->eip = addr;
1560 kvm_load_registers(s->c_cpu);
1561 #elif defined (TARGET_PPC)
1562 s->c_cpu->nip = addr;
1563 kvm_load_registers(s->c_cpu);
1564 #elif defined (TARGET_SPARC)
1565 s->c_cpu->pc = addr;
1566 s->c_cpu->npc = addr + 4;
1567 #elif defined (TARGET_ARM)
1568 s->c_cpu->regs[15] = addr;
1569 #elif defined (TARGET_SH4)
1570 s->c_cpu->pc = addr;
1571 #elif defined (TARGET_MIPS)
1572 s->c_cpu->active_tc.PC = addr;
1573 #elif defined (TARGET_CRIS)
1574 s->c_cpu->pc = addr;
1575 #elif defined (TARGET_ALPHA)
1576 s->c_cpu->pc = addr;
1577 #endif
1579 cpu_single_step(s->c_cpu, sstep_flags);
1580 gdb_continue(s);
1581 return RS_IDLE;
1582 case 'F':
1584 target_ulong ret;
1585 target_ulong err;
1587 ret = strtoull(p, (char **)&p, 16);
1588 if (*p == ',') {
1589 p++;
1590 err = strtoull(p, (char **)&p, 16);
1591 } else {
1592 err = 0;
1594 if (*p == ',')
1595 p++;
1596 type = *p;
1597 if (gdb_current_syscall_cb)
1598 gdb_current_syscall_cb(s->c_cpu, ret, err);
1599 if (type == 'C') {
1600 put_packet(s, "T02");
1601 } else {
1602 gdb_continue(s);
1605 break;
1606 case 'g':
1607 kvm_save_registers(s->g_cpu);
1608 len = 0;
1609 for (addr = 0; addr < num_g_regs; addr++) {
1610 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1611 len += reg_size;
1613 memtohex(buf, mem_buf, len);
1614 put_packet(s, buf);
1615 break;
1616 case 'G':
1617 registers = mem_buf;
1618 len = strlen(p) / 2;
1619 hextomem((uint8_t *)registers, p, len);
1620 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1621 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1622 len -= reg_size;
1623 registers += reg_size;
1625 kvm_load_registers(s->g_cpu);
1626 put_packet(s, "OK");
1627 break;
1628 case 'm':
1629 addr = strtoull(p, (char **)&p, 16);
1630 if (*p == ',')
1631 p++;
1632 len = strtoull(p, NULL, 16);
1633 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
1634 put_packet (s, "E14");
1635 } else {
1636 memtohex(buf, mem_buf, len);
1637 put_packet(s, buf);
1639 break;
1640 case 'M':
1641 addr = strtoull(p, (char **)&p, 16);
1642 if (*p == ',')
1643 p++;
1644 len = strtoull(p, (char **)&p, 16);
1645 if (*p == ':')
1646 p++;
1647 hextomem(mem_buf, p, len);
1648 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
1649 put_packet(s, "E14");
1650 else
1651 put_packet(s, "OK");
1652 break;
1653 case 'p':
1654 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1655 This works, but can be very slow. Anything new enough to
1656 understand XML also knows how to use this properly. */
1657 if (!gdb_has_xml)
1658 goto unknown_command;
1659 addr = strtoull(p, (char **)&p, 16);
1660 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1661 if (reg_size) {
1662 memtohex(buf, mem_buf, reg_size);
1663 put_packet(s, buf);
1664 } else {
1665 put_packet(s, "E14");
1667 break;
1668 case 'P':
1669 if (!gdb_has_xml)
1670 goto unknown_command;
1671 addr = strtoull(p, (char **)&p, 16);
1672 if (*p == '=')
1673 p++;
1674 reg_size = strlen(p) / 2;
1675 hextomem(mem_buf, p, reg_size);
1676 gdb_write_register(s->g_cpu, mem_buf, addr);
1677 put_packet(s, "OK");
1678 break;
1679 case 'Z':
1680 case 'z':
1681 type = strtoul(p, (char **)&p, 16);
1682 if (*p == ',')
1683 p++;
1684 addr = strtoull(p, (char **)&p, 16);
1685 if (*p == ',')
1686 p++;
1687 len = strtoull(p, (char **)&p, 16);
1688 if (ch == 'Z')
1689 res = gdb_breakpoint_insert(addr, len, type);
1690 else
1691 res = gdb_breakpoint_remove(addr, len, type);
1692 if (res >= 0)
1693 put_packet(s, "OK");
1694 else if (res == -ENOSYS)
1695 put_packet(s, "");
1696 else
1697 put_packet(s, "E22");
1698 break;
1699 case 'H':
1700 type = *p++;
1701 thread = strtoull(p, (char **)&p, 16);
1702 if (thread == -1 || thread == 0) {
1703 put_packet(s, "OK");
1704 break;
1706 for (env = first_cpu; env != NULL; env = env->next_cpu)
1707 if (env->cpu_index + 1 == thread)
1708 break;
1709 if (env == NULL) {
1710 put_packet(s, "E22");
1711 break;
1713 switch (type) {
1714 case 'c':
1715 s->c_cpu = env;
1716 put_packet(s, "OK");
1717 break;
1718 case 'g':
1719 s->g_cpu = env;
1720 put_packet(s, "OK");
1721 break;
1722 default:
1723 put_packet(s, "E22");
1724 break;
1726 break;
1727 case 'T':
1728 thread = strtoull(p, (char **)&p, 16);
1729 #ifndef CONFIG_USER_ONLY
1730 if (thread > 0 && thread < smp_cpus + 1)
1731 #else
1732 if (thread == 1)
1733 #endif
1734 put_packet(s, "OK");
1735 else
1736 put_packet(s, "E22");
1737 break;
1738 case 'q':
1739 case 'Q':
1740 /* parse any 'q' packets here */
1741 if (!strcmp(p,"qemu.sstepbits")) {
1742 /* Query Breakpoint bit definitions */
1743 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1744 SSTEP_ENABLE,
1745 SSTEP_NOIRQ,
1746 SSTEP_NOTIMER);
1747 put_packet(s, buf);
1748 break;
1749 } else if (strncmp(p,"qemu.sstep",10) == 0) {
1750 /* Display or change the sstep_flags */
1751 p += 10;
1752 if (*p != '=') {
1753 /* Display current setting */
1754 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1755 put_packet(s, buf);
1756 break;
1758 p++;
1759 type = strtoul(p, (char **)&p, 16);
1760 sstep_flags = type;
1761 put_packet(s, "OK");
1762 break;
1763 } else if (strcmp(p,"C") == 0) {
1764 /* "Current thread" remains vague in the spec, so always return
1765 * the first CPU (gdb returns the first thread). */
1766 put_packet(s, "QC1");
1767 break;
1768 } else if (strcmp(p,"fThreadInfo") == 0) {
1769 s->query_cpu = first_cpu;
1770 goto report_cpuinfo;
1771 } else if (strcmp(p,"sThreadInfo") == 0) {
1772 report_cpuinfo:
1773 if (s->query_cpu) {
1774 snprintf(buf, sizeof(buf), "m%x", s->query_cpu->cpu_index+1);
1775 put_packet(s, buf);
1776 s->query_cpu = s->query_cpu->next_cpu;
1777 } else
1778 put_packet(s, "l");
1779 break;
1780 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
1781 thread = strtoull(p+16, (char **)&p, 16);
1782 for (env = first_cpu; env != NULL; env = env->next_cpu)
1783 if (env->cpu_index + 1 == thread) {
1784 kvm_save_registers(env);
1785 len = snprintf((char *)mem_buf, sizeof(mem_buf),
1786 "CPU#%d [%s]", env->cpu_index,
1787 env->halted ? "halted " : "running");
1788 memtohex(buf, mem_buf, len);
1789 put_packet(s, buf);
1790 break;
1792 break;
1794 #ifdef CONFIG_LINUX_USER
1795 else if (strncmp(p, "Offsets", 7) == 0) {
1796 TaskState *ts = s->c_cpu->opaque;
1798 snprintf(buf, sizeof(buf),
1799 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1800 ";Bss=" TARGET_ABI_FMT_lx,
1801 ts->info->code_offset,
1802 ts->info->data_offset,
1803 ts->info->data_offset);
1804 put_packet(s, buf);
1805 break;
1807 #endif
1808 if (strncmp(p, "Supported", 9) == 0) {
1809 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1810 #ifdef GDB_CORE_XML
1811 strcat(buf, ";qXfer:features:read+");
1812 #endif
1813 put_packet(s, buf);
1814 break;
1816 #ifdef GDB_CORE_XML
1817 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
1818 const char *xml;
1819 target_ulong total_len;
1821 gdb_has_xml = 1;
1822 p += 19;
1823 xml = get_feature_xml(p, &p);
1824 if (!xml) {
1825 snprintf(buf, sizeof(buf), "E00");
1826 put_packet(s, buf);
1827 break;
1830 if (*p == ':')
1831 p++;
1832 addr = strtoul(p, (char **)&p, 16);
1833 if (*p == ',')
1834 p++;
1835 len = strtoul(p, (char **)&p, 16);
1837 total_len = strlen(xml);
1838 if (addr > total_len) {
1839 snprintf(buf, sizeof(buf), "E00");
1840 put_packet(s, buf);
1841 break;
1843 if (len > (MAX_PACKET_LENGTH - 5) / 2)
1844 len = (MAX_PACKET_LENGTH - 5) / 2;
1845 if (len < total_len - addr) {
1846 buf[0] = 'm';
1847 len = memtox(buf + 1, xml + addr, len);
1848 } else {
1849 buf[0] = 'l';
1850 len = memtox(buf + 1, xml + addr, total_len - addr);
1852 put_packet_binary(s, buf, len + 1);
1853 break;
1855 #endif
1856 /* Unrecognised 'q' command. */
1857 goto unknown_command;
1859 default:
1860 unknown_command:
1861 /* put empty packet */
1862 buf[0] = '\0';
1863 put_packet(s, buf);
1864 break;
1866 return RS_IDLE;
1869 void gdb_set_stop_cpu(CPUState *env)
1871 gdbserver_state->c_cpu = env;
1872 gdbserver_state->g_cpu = env;
1875 #ifndef CONFIG_USER_ONLY
1876 static void gdb_vm_stopped(void *opaque, int reason)
1878 GDBState *s = gdbserver_state;
1879 CPUState *env = s->c_cpu;
1880 char buf[256];
1881 const char *type;
1882 int ret;
1884 if (s->state == RS_SYSCALL)
1885 return;
1887 /* disable single step if it was enable */
1888 cpu_single_step(env, 0);
1890 if (reason == EXCP_DEBUG) {
1891 if (env->watchpoint_hit) {
1892 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
1893 case BP_MEM_READ:
1894 type = "r";
1895 break;
1896 case BP_MEM_ACCESS:
1897 type = "a";
1898 break;
1899 default:
1900 type = "";
1901 break;
1903 snprintf(buf, sizeof(buf),
1904 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
1905 GDB_SIGNAL_TRAP, env->cpu_index+1, type,
1906 env->watchpoint_hit->vaddr);
1907 put_packet(s, buf);
1908 env->watchpoint_hit = NULL;
1909 return;
1911 tb_flush(env);
1912 ret = GDB_SIGNAL_TRAP;
1913 } else if (reason == EXCP_INTERRUPT) {
1914 ret = GDB_SIGNAL_INT;
1915 } else {
1916 ret = 0;
1918 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, env->cpu_index+1);
1919 put_packet(s, buf);
1921 #endif
1923 /* Send a gdb syscall request.
1924 This accepts limited printf-style format specifiers, specifically:
1925 %x - target_ulong argument printed in hex.
1926 %lx - 64-bit argument printed in hex.
1927 %s - string pointer (target_ulong) and length (int) pair. */
1928 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
1930 va_list va;
1931 char buf[256];
1932 char *p;
1933 target_ulong addr;
1934 uint64_t i64;
1935 GDBState *s;
1937 s = gdbserver_state;
1938 if (!s)
1939 return;
1940 gdb_current_syscall_cb = cb;
1941 s->state = RS_SYSCALL;
1942 #ifndef CONFIG_USER_ONLY
1943 vm_stop(EXCP_DEBUG);
1944 #endif
1945 s->state = RS_IDLE;
1946 va_start(va, fmt);
1947 p = buf;
1948 *(p++) = 'F';
1949 while (*fmt) {
1950 if (*fmt == '%') {
1951 fmt++;
1952 switch (*fmt++) {
1953 case 'x':
1954 addr = va_arg(va, target_ulong);
1955 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
1956 break;
1957 case 'l':
1958 if (*(fmt++) != 'x')
1959 goto bad_format;
1960 i64 = va_arg(va, uint64_t);
1961 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
1962 break;
1963 case 's':
1964 addr = va_arg(va, target_ulong);
1965 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
1966 addr, va_arg(va, int));
1967 break;
1968 default:
1969 bad_format:
1970 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
1971 fmt - 1);
1972 break;
1974 } else {
1975 *(p++) = *(fmt++);
1978 *p = 0;
1979 va_end(va);
1980 put_packet(s, buf);
1981 #ifdef CONFIG_USER_ONLY
1982 gdb_handlesig(s->c_cpu, 0);
1983 #else
1984 cpu_interrupt(s->c_cpu, CPU_INTERRUPT_EXIT);
1985 #endif
1988 static void gdb_read_byte(GDBState *s, int ch)
1990 int i, csum;
1991 uint8_t reply;
1993 #ifndef CONFIG_USER_ONLY
1994 if (s->last_packet_len) {
1995 /* Waiting for a response to the last packet. If we see the start
1996 of a new command then abandon the previous response. */
1997 if (ch == '-') {
1998 #ifdef DEBUG_GDB
1999 printf("Got NACK, retransmitting\n");
2000 #endif
2001 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2003 #ifdef DEBUG_GDB
2004 else if (ch == '+')
2005 printf("Got ACK\n");
2006 else
2007 printf("Got '%c' when expecting ACK/NACK\n", ch);
2008 #endif
2009 if (ch == '+' || ch == '$')
2010 s->last_packet_len = 0;
2011 if (ch != '$')
2012 return;
2014 if (vm_running) {
2015 /* when the CPU is running, we cannot do anything except stop
2016 it when receiving a char */
2017 vm_stop(EXCP_INTERRUPT);
2018 } else
2019 #endif
2021 switch(s->state) {
2022 case RS_IDLE:
2023 if (ch == '$') {
2024 s->line_buf_index = 0;
2025 s->state = RS_GETLINE;
2027 break;
2028 case RS_GETLINE:
2029 if (ch == '#') {
2030 s->state = RS_CHKSUM1;
2031 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2032 s->state = RS_IDLE;
2033 } else {
2034 s->line_buf[s->line_buf_index++] = ch;
2036 break;
2037 case RS_CHKSUM1:
2038 s->line_buf[s->line_buf_index] = '\0';
2039 s->line_csum = fromhex(ch) << 4;
2040 s->state = RS_CHKSUM2;
2041 break;
2042 case RS_CHKSUM2:
2043 s->line_csum |= fromhex(ch);
2044 csum = 0;
2045 for(i = 0; i < s->line_buf_index; i++) {
2046 csum += s->line_buf[i];
2048 if (s->line_csum != (csum & 0xff)) {
2049 reply = '-';
2050 put_buffer(s, &reply, 1);
2051 s->state = RS_IDLE;
2052 } else {
2053 reply = '+';
2054 put_buffer(s, &reply, 1);
2055 s->state = gdb_handle_packet(s, s->line_buf);
2057 break;
2058 default:
2059 abort();
2064 #ifdef CONFIG_USER_ONLY
2066 gdb_queuesig (void)
2068 GDBState *s;
2070 s = gdbserver_state;
2072 if (gdbserver_fd < 0 || s->fd < 0)
2073 return 0;
2074 else
2075 return 1;
2079 gdb_handlesig (CPUState *env, int sig)
2081 GDBState *s;
2082 char buf[256];
2083 int n;
2085 s = gdbserver_state;
2086 if (gdbserver_fd < 0 || s->fd < 0)
2087 return sig;
2089 /* disable single step if it was enabled */
2090 cpu_single_step(env, 0);
2091 tb_flush(env);
2093 if (sig != 0)
2095 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2096 put_packet(s, buf);
2098 /* put_packet() might have detected that the peer terminated the
2099 connection. */
2100 if (s->fd < 0)
2101 return sig;
2103 sig = 0;
2104 s->state = RS_IDLE;
2105 s->running_state = 0;
2106 while (s->running_state == 0) {
2107 n = read (s->fd, buf, 256);
2108 if (n > 0)
2110 int i;
2112 for (i = 0; i < n; i++)
2113 gdb_read_byte (s, buf[i]);
2115 else if (n == 0 || errno != EAGAIN)
2117 /* XXX: Connection closed. Should probably wait for annother
2118 connection before continuing. */
2119 return sig;
2122 sig = s->signal;
2123 s->signal = 0;
2124 return sig;
2127 /* Tell the remote gdb that the process has exited. */
2128 void gdb_exit(CPUState *env, int code)
2130 GDBState *s;
2131 char buf[4];
2133 s = gdbserver_state;
2134 if (gdbserver_fd < 0 || s->fd < 0)
2135 return;
2137 snprintf(buf, sizeof(buf), "W%02x", code);
2138 put_packet(s, buf);
2141 /* Tell the remote gdb that the process has exited due to SIG. */
2142 void gdb_signalled(CPUState *env, int sig)
2144 GDBState *s;
2145 char buf[4];
2147 s = gdbserver_state;
2148 if (gdbserver_fd < 0 || s->fd < 0)
2149 return;
2151 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2152 put_packet(s, buf);
2155 static void gdb_accept(void)
2157 GDBState *s;
2158 struct sockaddr_in sockaddr;
2159 socklen_t len;
2160 int val, fd;
2162 for(;;) {
2163 len = sizeof(sockaddr);
2164 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2165 if (fd < 0 && errno != EINTR) {
2166 perror("accept");
2167 return;
2168 } else if (fd >= 0) {
2169 break;
2173 /* set short latency */
2174 val = 1;
2175 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2177 s = qemu_mallocz(sizeof(GDBState));
2178 if (!s) {
2179 errno = ENOMEM;
2180 perror("accept");
2181 return;
2184 memset (s, 0, sizeof (GDBState));
2185 s->c_cpu = first_cpu;
2186 s->g_cpu = first_cpu;
2187 s->fd = fd;
2188 gdb_has_xml = 0;
2190 gdbserver_state = s;
2192 fcntl(fd, F_SETFL, O_NONBLOCK);
2195 static int gdbserver_open(int port)
2197 struct sockaddr_in sockaddr;
2198 int fd, val, ret;
2200 fd = socket(PF_INET, SOCK_STREAM, 0);
2201 if (fd < 0) {
2202 perror("socket");
2203 return -1;
2206 /* allow fast reuse */
2207 val = 1;
2208 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2210 sockaddr.sin_family = AF_INET;
2211 sockaddr.sin_port = htons(port);
2212 sockaddr.sin_addr.s_addr = 0;
2213 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2214 if (ret < 0) {
2215 perror("bind");
2216 return -1;
2218 ret = listen(fd, 0);
2219 if (ret < 0) {
2220 perror("listen");
2221 return -1;
2223 return fd;
2226 int gdbserver_start(int port)
2228 gdbserver_fd = gdbserver_open(port);
2229 if (gdbserver_fd < 0)
2230 return -1;
2231 /* accept connections */
2232 gdb_accept();
2233 return 0;
2236 /* Disable gdb stub for child processes. */
2237 void gdbserver_fork(CPUState *env)
2239 GDBState *s = gdbserver_state;
2240 if (s->fd < 0)
2241 return;
2242 close(s->fd);
2243 s->fd = -1;
2244 cpu_breakpoint_remove_all(env, BP_GDB);
2245 cpu_watchpoint_remove_all(env, BP_GDB);
2247 #else
2248 static int gdb_chr_can_receive(void *opaque)
2250 /* We can handle an arbitrarily large amount of data.
2251 Pick the maximum packet size, which is as good as anything. */
2252 return MAX_PACKET_LENGTH;
2255 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2257 int i;
2259 for (i = 0; i < size; i++) {
2260 gdb_read_byte(gdbserver_state, buf[i]);
2264 static void gdb_chr_event(void *opaque, int event)
2266 switch (event) {
2267 case CHR_EVENT_RESET:
2268 vm_stop(EXCP_INTERRUPT);
2269 gdb_has_xml = 0;
2270 break;
2271 default:
2272 break;
2276 int gdbserver_start(const char *port)
2278 GDBState *s;
2279 char gdbstub_port_name[128];
2280 int port_num;
2281 char *p;
2282 CharDriverState *chr;
2284 if (!port || !*port)
2285 return -1;
2287 port_num = strtol(port, &p, 10);
2288 if (*p == 0) {
2289 /* A numeric value is interpreted as a port number. */
2290 snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
2291 "tcp::%d,nowait,nodelay,server", port_num);
2292 port = gdbstub_port_name;
2295 chr = qemu_chr_open("gdb", port);
2296 if (!chr)
2297 return -1;
2299 s = qemu_mallocz(sizeof(GDBState));
2300 if (!s) {
2301 return -1;
2303 s->c_cpu = first_cpu;
2304 s->g_cpu = first_cpu;
2305 s->chr = chr;
2306 gdbserver_state = s;
2307 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2308 gdb_chr_event, NULL);
2309 qemu_add_vm_stop_handler(gdb_vm_stopped, NULL);
2310 return 0;
2312 #endif