kvm userspace: ksm support
[qemu-kvm/fedora.git] / linux-user / qemu.h
blob83ad443c235311fdbb1c5aa45d84ba4b73073aae
1 #ifndef QEMU_H
2 #define QEMU_H
4 #include <signal.h>
5 #include <string.h>
7 #include "cpu.h"
9 #undef DEBUG_REMAP
10 #ifdef DEBUG_REMAP
11 #include <stdlib.h>
12 #endif /* DEBUG_REMAP */
14 #include "qemu-types.h"
16 #include "thunk.h"
17 #include "syscall_defs.h"
18 #include "syscall.h"
19 #include "target_signal.h"
20 #include "gdbstub.h"
21 #include "sys-queue.h"
23 #if defined(USE_NPTL)
24 #define THREAD __thread
25 #else
26 #define THREAD
27 #endif
29 /* This struct is used to hold certain information about the image.
30 * Basically, it replicates in user space what would be certain
31 * task_struct fields in the kernel
33 struct image_info {
34 abi_ulong load_addr;
35 abi_ulong start_code;
36 abi_ulong end_code;
37 abi_ulong start_data;
38 abi_ulong end_data;
39 abi_ulong start_brk;
40 abi_ulong brk;
41 abi_ulong start_mmap;
42 abi_ulong mmap;
43 abi_ulong rss;
44 abi_ulong start_stack;
45 abi_ulong entry;
46 abi_ulong code_offset;
47 abi_ulong data_offset;
48 abi_ulong saved_auxv;
49 abi_ulong arg_start;
50 abi_ulong arg_end;
51 char **host_argv;
52 int personality;
55 #ifdef TARGET_I386
56 /* Information about the current linux thread */
57 struct vm86_saved_state {
58 uint32_t eax; /* return code */
59 uint32_t ebx;
60 uint32_t ecx;
61 uint32_t edx;
62 uint32_t esi;
63 uint32_t edi;
64 uint32_t ebp;
65 uint32_t esp;
66 uint32_t eflags;
67 uint32_t eip;
68 uint16_t cs, ss, ds, es, fs, gs;
70 #endif
72 #ifdef TARGET_ARM
73 /* FPU emulator */
74 #include "nwfpe/fpa11.h"
75 #endif
77 #define MAX_SIGQUEUE_SIZE 1024
79 struct sigqueue {
80 struct sigqueue *next;
81 target_siginfo_t info;
84 struct emulated_sigtable {
85 int pending; /* true if signal is pending */
86 struct sigqueue *first;
87 struct sigqueue info; /* in order to always have memory for the
88 first signal, we put it here */
91 /* NOTE: we force a big alignment so that the stack stored after is
92 aligned too */
93 typedef struct TaskState {
94 pid_t ts_tid; /* tid (or pid) of this task */
95 #ifdef TARGET_ARM
96 /* FPA state */
97 FPA11 fpa;
98 int swi_errno;
99 #endif
100 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
101 abi_ulong target_v86;
102 struct vm86_saved_state vm86_saved_regs;
103 struct target_vm86plus_struct vm86plus;
104 uint32_t v86flags;
105 uint32_t v86mask;
106 #endif
107 #ifdef USE_NPTL
108 abi_ulong child_tidptr;
109 #endif
110 #ifdef TARGET_M68K
111 int sim_syscalls;
112 #endif
113 #if defined(TARGET_ARM) || defined(TARGET_M68K)
114 /* Extra fields for semihosted binaries. */
115 uint32_t stack_base;
116 uint32_t heap_base;
117 uint32_t heap_limit;
118 #endif
119 int used; /* non zero if used */
120 struct image_info *info;
121 struct linux_binprm *bprm;
123 struct emulated_sigtable sigtab[TARGET_NSIG];
124 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
125 struct sigqueue *first_free; /* first free siginfo queue entry */
126 int signal_pending; /* non zero if a signal may be pending */
128 uint8_t stack[0];
129 } __attribute__((aligned(16))) TaskState;
131 extern char *exec_path;
132 void init_task_state(TaskState *ts);
133 void task_settid(TaskState *);
134 void stop_all_tasks(void);
135 extern const char *qemu_uname_release;
137 /* ??? See if we can avoid exposing so much of the loader internals. */
139 * MAX_ARG_PAGES defines the number of pages allocated for arguments
140 * and envelope for the new program. 32 should suffice, this gives
141 * a maximum env+arg of 128kB w/4KB pages!
143 #define MAX_ARG_PAGES 33
146 * This structure is used to hold the arguments that are
147 * used when loading binaries.
149 struct linux_binprm {
150 char buf[128];
151 void *page[MAX_ARG_PAGES];
152 abi_ulong p;
153 int fd;
154 int e_uid, e_gid;
155 int argc, envc;
156 char **argv;
157 char **envp;
158 char * filename; /* Name of binary */
159 int (*core_dump)(int, const CPUState *); /* coredump routine */
162 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
163 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
164 abi_ulong stringp, int push_ptr);
165 int loader_exec(const char * filename, char ** argv, char ** envp,
166 struct target_pt_regs * regs, struct image_info *infop,
167 struct linux_binprm *);
169 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
170 struct image_info * info);
171 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
172 struct image_info * info);
173 #ifdef TARGET_HAS_ELFLOAD32
174 int load_elf_binary_multi(struct linux_binprm *bprm,
175 struct target_pt_regs *regs,
176 struct image_info *info);
177 #endif
179 abi_long memcpy_to_target(abi_ulong dest, const void *src,
180 unsigned long len);
181 void target_set_brk(abi_ulong new_brk);
182 abi_long do_brk(abi_ulong new_brk);
183 void syscall_init(void);
184 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
185 abi_long arg2, abi_long arg3, abi_long arg4,
186 abi_long arg5, abi_long arg6);
187 void gemu_log(const char *fmt, ...) __attribute__((format(printf,1,2)));
188 extern THREAD CPUState *thread_env;
189 void cpu_loop(CPUState *env);
190 void init_paths(const char *prefix);
191 const char *path(const char *pathname);
192 char *target_strerror(int err);
193 int get_osversion(void);
194 void fork_start(void);
195 void fork_end(int child);
197 #include "qemu-log.h"
199 /* strace.c */
200 void print_syscall(int num,
201 abi_long arg1, abi_long arg2, abi_long arg3,
202 abi_long arg4, abi_long arg5, abi_long arg6);
203 void print_syscall_ret(int num, abi_long arg1);
204 extern int do_strace;
206 /* signal.c */
207 void process_pending_signals(CPUState *cpu_env);
208 void signal_init(void);
209 int queue_signal(CPUState *env, int sig, target_siginfo_t *info);
210 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
211 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
212 int target_to_host_signal(int sig);
213 int host_to_target_signal(int sig);
214 long do_sigreturn(CPUState *env);
215 long do_rt_sigreturn(CPUState *env);
216 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
218 #ifdef TARGET_I386
219 /* vm86.c */
220 void save_v86_state(CPUX86State *env);
221 void handle_vm86_trap(CPUX86State *env, int trapno);
222 void handle_vm86_fault(CPUX86State *env);
223 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
224 #elif defined(TARGET_SPARC64)
225 void sparc64_set_context(CPUSPARCState *env);
226 void sparc64_get_context(CPUSPARCState *env);
227 #endif
229 /* mmap.c */
230 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
231 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
232 int flags, int fd, abi_ulong offset);
233 int target_munmap(abi_ulong start, abi_ulong len);
234 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
235 abi_ulong new_size, unsigned long flags,
236 abi_ulong new_addr);
237 int target_msync(abi_ulong start, abi_ulong len, int flags);
238 extern unsigned long last_brk;
239 void mmap_lock(void);
240 void mmap_unlock(void);
241 abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
242 void cpu_list_lock(void);
243 void cpu_list_unlock(void);
244 #if defined(USE_NPTL)
245 void mmap_fork_start(void);
246 void mmap_fork_end(int child);
247 #endif
249 /* main.c */
250 extern unsigned long x86_stack_size;
252 /* user access */
254 #define VERIFY_READ 0
255 #define VERIFY_WRITE 1 /* implies read access */
257 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
259 return page_check_range((target_ulong)addr, size,
260 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
263 /* NOTE __get_user and __put_user use host pointers and don't check access. */
264 /* These are usually used to access struct data members once the
265 * struct has been locked - usually with lock_user_struct().
267 #define __put_user(x, hptr)\
269 int size = sizeof(*hptr);\
270 switch(size) {\
271 case 1:\
272 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\
273 break;\
274 case 2:\
275 *(uint16_t *)(hptr) = tswap16((uint16_t)(typeof(*hptr))(x));\
276 break;\
277 case 4:\
278 *(uint32_t *)(hptr) = tswap32((uint32_t)(typeof(*hptr))(x));\
279 break;\
280 case 8:\
281 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\
282 break;\
283 default:\
284 abort();\
289 #define __get_user(x, hptr) \
291 int size = sizeof(*hptr);\
292 switch(size) {\
293 case 1:\
294 x = (typeof(*hptr))*(uint8_t *)(hptr);\
295 break;\
296 case 2:\
297 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\
298 break;\
299 case 4:\
300 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\
301 break;\
302 case 8:\
303 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\
304 break;\
305 default:\
306 /* avoid warning */\
307 x = 0;\
308 abort();\
313 /* put_user()/get_user() take a guest address and check access */
314 /* These are usually used to access an atomic data type, such as an int,
315 * that has been passed by address. These internally perform locking
316 * and unlocking on the data type.
318 #define put_user(x, gaddr, target_type) \
319 ({ \
320 abi_ulong __gaddr = (gaddr); \
321 target_type *__hptr; \
322 abi_long __ret; \
323 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
324 __ret = __put_user((x), __hptr); \
325 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
326 } else \
327 __ret = -TARGET_EFAULT; \
328 __ret; \
331 #define get_user(x, gaddr, target_type) \
332 ({ \
333 abi_ulong __gaddr = (gaddr); \
334 target_type *__hptr; \
335 abi_long __ret; \
336 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
337 __ret = __get_user((x), __hptr); \
338 unlock_user(__hptr, __gaddr, 0); \
339 } else { \
340 /* avoid warning */ \
341 (x) = 0; \
342 __ret = -TARGET_EFAULT; \
344 __ret; \
347 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
348 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
349 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
350 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
351 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
352 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
353 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
354 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
355 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
356 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
358 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
359 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
360 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
361 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
362 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
363 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
364 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
365 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
366 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
367 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
369 /* copy_from_user() and copy_to_user() are usually used to copy data
370 * buffers between the target and host. These internally perform
371 * locking/unlocking of the memory.
373 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
374 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
376 /* Functions for accessing guest memory. The tget and tput functions
377 read/write single values, byteswapping as neccessary. The lock_user
378 gets a pointer to a contiguous area of guest memory, but does not perform
379 and byteswapping. lock_user may return either a pointer to the guest
380 memory, or a temporary buffer. */
382 /* Lock an area of guest memory into the host. If copy is true then the
383 host area will have the same contents as the guest. */
384 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
386 if (!access_ok(type, guest_addr, len))
387 return NULL;
388 #ifdef DEBUG_REMAP
390 void *addr;
391 addr = malloc(len);
392 if (copy)
393 memcpy(addr, g2h(guest_addr), len);
394 else
395 memset(addr, 0, len);
396 return addr;
398 #else
399 return g2h(guest_addr);
400 #endif
403 /* Unlock an area of guest memory. The first LEN bytes must be
404 flushed back to guest memory. host_ptr = NULL is explicitly
405 allowed and does nothing. */
406 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
407 long len)
410 #ifdef DEBUG_REMAP
411 if (!host_ptr)
412 return;
413 if (host_ptr == g2h(guest_addr))
414 return;
415 if (len > 0)
416 memcpy(g2h(guest_addr), host_ptr, len);
417 free(host_ptr);
418 #endif
421 /* Return the length of a string in target memory or -TARGET_EFAULT if
422 access error. */
423 abi_long target_strlen(abi_ulong gaddr);
425 /* Like lock_user but for null terminated strings. */
426 static inline void *lock_user_string(abi_ulong guest_addr)
428 abi_long len;
429 len = target_strlen(guest_addr);
430 if (len < 0)
431 return NULL;
432 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
435 /* Helper macros for locking/ulocking a target struct. */
436 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
437 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
438 #define unlock_user_struct(host_ptr, guest_addr, copy) \
439 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
441 #if defined(USE_NPTL)
442 #include <pthread.h>
443 #endif
445 #endif /* QEMU_H */