Merge branch 'stable-0.10' of git://git.sv.gnu.org/qemu into stable-0.10
[qemu-kvm/fedora.git] / target-i386 / kvm.c
blob304d143976e6084b273fe0cbd6c6cfcbdacd8c94
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
26 //#define DEBUG_KVM
28 #ifdef DEBUG_KVM
29 #define dprintf(fmt, ...) \
30 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
31 #else
32 #define dprintf(fmt, ...) \
33 do { } while (0)
34 #endif
36 #ifdef KVM_CAP_EXT_CPUID
38 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
40 struct kvm_cpuid2 *cpuid;
41 int r, size;
43 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
44 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
45 cpuid->nent = max;
46 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
47 if (r == 0 && cpuid->nent >= max) {
48 r = -E2BIG;
50 if (r < 0) {
51 if (r == -E2BIG) {
52 qemu_free(cpuid);
53 return NULL;
54 } else {
55 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
56 strerror(-r));
57 exit(1);
60 return cpuid;
63 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
65 struct kvm_cpuid2 *cpuid;
66 int i, max;
67 uint32_t ret = 0;
68 uint32_t cpuid_1_edx;
70 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
71 return -1U;
74 max = 1;
75 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
76 max *= 2;
79 for (i = 0; i < cpuid->nent; ++i) {
80 if (cpuid->entries[i].function == function) {
81 switch (reg) {
82 case R_EAX:
83 ret = cpuid->entries[i].eax;
84 break;
85 case R_EBX:
86 ret = cpuid->entries[i].ebx;
87 break;
88 case R_ECX:
89 ret = cpuid->entries[i].ecx;
90 break;
91 case R_EDX:
92 ret = cpuid->entries[i].edx;
93 if (function == 0x80000001) {
94 /* On Intel, kvm returns cpuid according to the Intel spec,
95 * so add missing bits according to the AMD spec:
97 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
98 ret |= cpuid_1_edx & 0xdfeff7ff;
100 break;
105 qemu_free(cpuid);
107 return ret;
110 #else
112 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
114 return -1U;
117 #endif
119 int kvm_arch_init_vcpu(CPUState *env)
121 struct {
122 struct kvm_cpuid2 cpuid;
123 struct kvm_cpuid_entry2 entries[100];
124 } __attribute__((packed)) cpuid_data;
125 uint32_t limit, i, j, cpuid_i;
126 uint32_t unused;
128 cpuid_i = 0;
130 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
132 for (i = 0; i <= limit; i++) {
133 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
135 switch (i) {
136 case 2: {
137 /* Keep reading function 2 till all the input is received */
138 int times;
140 c->function = i;
141 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
142 KVM_CPUID_FLAG_STATE_READ_NEXT;
143 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
144 times = c->eax & 0xff;
146 for (j = 1; j < times; ++j) {
147 c = &cpuid_data.entries[cpuid_i++];
148 c->function = i;
149 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
150 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
152 break;
154 case 4:
155 case 0xb:
156 case 0xd:
157 for (j = 0; ; j++) {
158 c->function = i;
159 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
160 c->index = j;
161 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
163 if (i == 4 && c->eax == 0)
164 break;
165 if (i == 0xb && !(c->ecx & 0xff00))
166 break;
167 if (i == 0xd && c->eax == 0)
168 break;
170 c = &cpuid_data.entries[cpuid_i++];
172 break;
173 default:
174 c->function = i;
175 c->flags = 0;
176 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
177 break;
180 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
182 for (i = 0x80000000; i <= limit; i++) {
183 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
185 c->function = i;
186 c->flags = 0;
187 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
190 cpuid_data.cpuid.nent = cpuid_i;
192 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
195 static int kvm_has_msr_star(CPUState *env)
197 static int has_msr_star;
198 int ret;
200 /* first time */
201 if (has_msr_star == 0) {
202 struct kvm_msr_list msr_list, *kvm_msr_list;
204 has_msr_star = -1;
206 /* Obtain MSR list from KVM. These are the MSRs that we must
207 * save/restore */
208 msr_list.nmsrs = 0;
209 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
210 if (ret < 0)
211 return 0;
213 kvm_msr_list = qemu_mallocz(sizeof(msr_list) +
214 msr_list.nmsrs * sizeof(msr_list.indices[0]));
216 kvm_msr_list->nmsrs = msr_list.nmsrs;
217 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
218 if (ret >= 0) {
219 int i;
221 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
222 if (kvm_msr_list->indices[i] == MSR_STAR) {
223 has_msr_star = 1;
224 break;
229 free(kvm_msr_list);
232 if (has_msr_star == 1)
233 return 1;
234 return 0;
237 int kvm_arch_init(KVMState *s, int smp_cpus)
239 int ret;
241 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
242 * directly. In order to use vm86 mode, a TSS is needed. Since this
243 * must be part of guest physical memory, we need to allocate it. Older
244 * versions of KVM just assumed that it would be at the end of physical
245 * memory but that doesn't work with more than 4GB of memory. We simply
246 * refuse to work with those older versions of KVM. */
247 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
248 if (ret <= 0) {
249 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
250 return ret;
253 /* this address is 3 pages before the bios, and the bios should present
254 * as unavaible memory. FIXME, need to ensure the e820 map deals with
255 * this?
257 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
260 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
262 lhs->selector = rhs->selector;
263 lhs->base = rhs->base;
264 lhs->limit = rhs->limit;
265 lhs->type = 3;
266 lhs->present = 1;
267 lhs->dpl = 3;
268 lhs->db = 0;
269 lhs->s = 1;
270 lhs->l = 0;
271 lhs->g = 0;
272 lhs->avl = 0;
273 lhs->unusable = 0;
276 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
278 unsigned flags = rhs->flags;
279 lhs->selector = rhs->selector;
280 lhs->base = rhs->base;
281 lhs->limit = rhs->limit;
282 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
283 lhs->present = (flags & DESC_P_MASK) != 0;
284 lhs->dpl = rhs->selector & 3;
285 lhs->db = (flags >> DESC_B_SHIFT) & 1;
286 lhs->s = (flags & DESC_S_MASK) != 0;
287 lhs->l = (flags >> DESC_L_SHIFT) & 1;
288 lhs->g = (flags & DESC_G_MASK) != 0;
289 lhs->avl = (flags & DESC_AVL_MASK) != 0;
290 lhs->unusable = 0;
293 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
295 lhs->selector = rhs->selector;
296 lhs->base = rhs->base;
297 lhs->limit = rhs->limit;
298 lhs->flags =
299 (rhs->type << DESC_TYPE_SHIFT)
300 | (rhs->present * DESC_P_MASK)
301 | (rhs->dpl << DESC_DPL_SHIFT)
302 | (rhs->db << DESC_B_SHIFT)
303 | (rhs->s * DESC_S_MASK)
304 | (rhs->l << DESC_L_SHIFT)
305 | (rhs->g * DESC_G_MASK)
306 | (rhs->avl * DESC_AVL_MASK);
309 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
311 if (set)
312 *kvm_reg = *qemu_reg;
313 else
314 *qemu_reg = *kvm_reg;
317 static int kvm_getput_regs(CPUState *env, int set)
319 struct kvm_regs regs;
320 int ret = 0;
322 if (!set) {
323 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
324 if (ret < 0)
325 return ret;
328 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
329 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
330 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
331 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
332 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
333 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
334 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
335 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
336 #ifdef TARGET_X86_64
337 kvm_getput_reg(&regs.r8, &env->regs[8], set);
338 kvm_getput_reg(&regs.r9, &env->regs[9], set);
339 kvm_getput_reg(&regs.r10, &env->regs[10], set);
340 kvm_getput_reg(&regs.r11, &env->regs[11], set);
341 kvm_getput_reg(&regs.r12, &env->regs[12], set);
342 kvm_getput_reg(&regs.r13, &env->regs[13], set);
343 kvm_getput_reg(&regs.r14, &env->regs[14], set);
344 kvm_getput_reg(&regs.r15, &env->regs[15], set);
345 #endif
347 kvm_getput_reg(&regs.rflags, &env->eflags, set);
348 kvm_getput_reg(&regs.rip, &env->eip, set);
350 if (set)
351 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
353 return ret;
356 static int kvm_put_fpu(CPUState *env)
358 struct kvm_fpu fpu;
359 int i;
361 memset(&fpu, 0, sizeof fpu);
362 fpu.fsw = env->fpus & ~(7 << 11);
363 fpu.fsw |= (env->fpstt & 7) << 11;
364 fpu.fcw = env->fpuc;
365 for (i = 0; i < 8; ++i)
366 fpu.ftwx |= (!env->fptags[i]) << i;
367 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
368 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
369 fpu.mxcsr = env->mxcsr;
371 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
374 static int kvm_put_sregs(CPUState *env)
376 struct kvm_sregs sregs;
378 memcpy(sregs.interrupt_bitmap,
379 env->interrupt_bitmap,
380 sizeof(sregs.interrupt_bitmap));
382 if ((env->eflags & VM_MASK)) {
383 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
384 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
385 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
386 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
387 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
388 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
389 } else {
390 set_seg(&sregs.cs, &env->segs[R_CS]);
391 set_seg(&sregs.ds, &env->segs[R_DS]);
392 set_seg(&sregs.es, &env->segs[R_ES]);
393 set_seg(&sregs.fs, &env->segs[R_FS]);
394 set_seg(&sregs.gs, &env->segs[R_GS]);
395 set_seg(&sregs.ss, &env->segs[R_SS]);
397 if (env->cr[0] & CR0_PE_MASK) {
398 /* force ss cpl to cs cpl */
399 sregs.ss.selector = (sregs.ss.selector & ~3) |
400 (sregs.cs.selector & 3);
401 sregs.ss.dpl = sregs.ss.selector & 3;
405 set_seg(&sregs.tr, &env->tr);
406 set_seg(&sregs.ldt, &env->ldt);
408 sregs.idt.limit = env->idt.limit;
409 sregs.idt.base = env->idt.base;
410 sregs.gdt.limit = env->gdt.limit;
411 sregs.gdt.base = env->gdt.base;
413 sregs.cr0 = env->cr[0];
414 sregs.cr2 = env->cr[2];
415 sregs.cr3 = env->cr[3];
416 sregs.cr4 = env->cr[4];
418 sregs.cr8 = cpu_get_apic_tpr(env);
419 sregs.apic_base = cpu_get_apic_base(env);
421 sregs.efer = env->efer;
423 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
426 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
427 uint32_t index, uint64_t value)
429 entry->index = index;
430 entry->data = value;
433 static int kvm_put_msrs(CPUState *env)
435 struct {
436 struct kvm_msrs info;
437 struct kvm_msr_entry entries[100];
438 } msr_data;
439 struct kvm_msr_entry *msrs = msr_data.entries;
440 int n = 0;
442 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
443 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
444 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
445 if (kvm_has_msr_star(env))
446 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
447 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
448 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
449 #ifdef TARGET_X86_64
450 /* FIXME if lm capable */
451 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
452 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
453 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
454 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
455 #endif
456 msr_data.info.nmsrs = n;
458 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
463 static int kvm_get_fpu(CPUState *env)
465 struct kvm_fpu fpu;
466 int i, ret;
468 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
469 if (ret < 0)
470 return ret;
472 env->fpstt = (fpu.fsw >> 11) & 7;
473 env->fpus = fpu.fsw;
474 env->fpuc = fpu.fcw;
475 for (i = 0; i < 8; ++i)
476 env->fptags[i] = !((fpu.ftwx >> i) & 1);
477 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
478 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
479 env->mxcsr = fpu.mxcsr;
481 return 0;
484 static int kvm_get_sregs(CPUState *env)
486 struct kvm_sregs sregs;
487 uint32_t hflags;
488 int ret;
490 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
491 if (ret < 0)
492 return ret;
494 memcpy(env->interrupt_bitmap,
495 sregs.interrupt_bitmap,
496 sizeof(sregs.interrupt_bitmap));
498 get_seg(&env->segs[R_CS], &sregs.cs);
499 get_seg(&env->segs[R_DS], &sregs.ds);
500 get_seg(&env->segs[R_ES], &sregs.es);
501 get_seg(&env->segs[R_FS], &sregs.fs);
502 get_seg(&env->segs[R_GS], &sregs.gs);
503 get_seg(&env->segs[R_SS], &sregs.ss);
505 get_seg(&env->tr, &sregs.tr);
506 get_seg(&env->ldt, &sregs.ldt);
508 env->idt.limit = sregs.idt.limit;
509 env->idt.base = sregs.idt.base;
510 env->gdt.limit = sregs.gdt.limit;
511 env->gdt.base = sregs.gdt.base;
513 env->cr[0] = sregs.cr0;
514 env->cr[2] = sregs.cr2;
515 env->cr[3] = sregs.cr3;
516 env->cr[4] = sregs.cr4;
518 cpu_set_apic_base(env, sregs.apic_base);
520 env->efer = sregs.efer;
521 //cpu_set_apic_tpr(env, sregs.cr8);
523 #define HFLAG_COPY_MASK ~( \
524 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
525 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
526 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
527 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
531 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
532 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
533 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
534 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
535 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
536 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
537 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
539 if (env->efer & MSR_EFER_LMA) {
540 hflags |= HF_LMA_MASK;
543 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
544 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
545 } else {
546 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
547 (DESC_B_SHIFT - HF_CS32_SHIFT);
548 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
549 (DESC_B_SHIFT - HF_SS32_SHIFT);
550 if (!(env->cr[0] & CR0_PE_MASK) ||
551 (env->eflags & VM_MASK) ||
552 !(hflags & HF_CS32_MASK)) {
553 hflags |= HF_ADDSEG_MASK;
554 } else {
555 hflags |= ((env->segs[R_DS].base |
556 env->segs[R_ES].base |
557 env->segs[R_SS].base) != 0) <<
558 HF_ADDSEG_SHIFT;
561 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
563 return 0;
566 static int kvm_get_msrs(CPUState *env)
568 struct {
569 struct kvm_msrs info;
570 struct kvm_msr_entry entries[100];
571 } msr_data;
572 struct kvm_msr_entry *msrs = msr_data.entries;
573 int ret, i, n;
575 n = 0;
576 msrs[n++].index = MSR_IA32_SYSENTER_CS;
577 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
578 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
579 if (kvm_has_msr_star(env))
580 msrs[n++].index = MSR_STAR;
581 msrs[n++].index = MSR_IA32_TSC;
582 msrs[n++].index = MSR_VM_HSAVE_PA;
583 #ifdef TARGET_X86_64
584 /* FIXME lm_capable_kernel */
585 msrs[n++].index = MSR_CSTAR;
586 msrs[n++].index = MSR_KERNELGSBASE;
587 msrs[n++].index = MSR_FMASK;
588 msrs[n++].index = MSR_LSTAR;
589 #endif
590 msr_data.info.nmsrs = n;
591 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
592 if (ret < 0)
593 return ret;
595 for (i = 0; i < ret; i++) {
596 switch (msrs[i].index) {
597 case MSR_IA32_SYSENTER_CS:
598 env->sysenter_cs = msrs[i].data;
599 break;
600 case MSR_IA32_SYSENTER_ESP:
601 env->sysenter_esp = msrs[i].data;
602 break;
603 case MSR_IA32_SYSENTER_EIP:
604 env->sysenter_eip = msrs[i].data;
605 break;
606 case MSR_STAR:
607 env->star = msrs[i].data;
608 break;
609 #ifdef TARGET_X86_64
610 case MSR_CSTAR:
611 env->cstar = msrs[i].data;
612 break;
613 case MSR_KERNELGSBASE:
614 env->kernelgsbase = msrs[i].data;
615 break;
616 case MSR_FMASK:
617 env->fmask = msrs[i].data;
618 break;
619 case MSR_LSTAR:
620 env->lstar = msrs[i].data;
621 break;
622 #endif
623 case MSR_IA32_TSC:
624 env->tsc = msrs[i].data;
625 break;
626 case MSR_VM_HSAVE_PA:
627 env->vm_hsave = msrs[i].data;
628 break;
632 return 0;
635 int kvm_arch_put_registers(CPUState *env)
637 int ret;
639 ret = kvm_getput_regs(env, 1);
640 if (ret < 0)
641 return ret;
643 ret = kvm_put_fpu(env);
644 if (ret < 0)
645 return ret;
647 ret = kvm_put_sregs(env);
648 if (ret < 0)
649 return ret;
651 ret = kvm_put_msrs(env);
652 if (ret < 0)
653 return ret;
655 return 0;
658 int kvm_arch_get_registers(CPUState *env)
660 int ret;
662 ret = kvm_getput_regs(env, 0);
663 if (ret < 0)
664 return ret;
666 ret = kvm_get_fpu(env);
667 if (ret < 0)
668 return ret;
670 ret = kvm_get_sregs(env);
671 if (ret < 0)
672 return ret;
674 ret = kvm_get_msrs(env);
675 if (ret < 0)
676 return ret;
678 return 0;
681 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
683 /* Try to inject an interrupt if the guest can accept it */
684 if (run->ready_for_interrupt_injection &&
685 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
686 (env->eflags & IF_MASK)) {
687 int irq;
689 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
690 irq = cpu_get_pic_interrupt(env);
691 if (irq >= 0) {
692 struct kvm_interrupt intr;
693 intr.irq = irq;
694 /* FIXME: errors */
695 dprintf("injected interrupt %d\n", irq);
696 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
700 /* If we have an interrupt but the guest is not ready to receive an
701 * interrupt, request an interrupt window exit. This will
702 * cause a return to userspace as soon as the guest is ready to
703 * receive interrupts. */
704 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
705 run->request_interrupt_window = 1;
706 else
707 run->request_interrupt_window = 0;
709 dprintf("setting tpr\n");
710 run->cr8 = cpu_get_apic_tpr(env);
712 return 0;
715 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
717 if (run->if_flag)
718 env->eflags |= IF_MASK;
719 else
720 env->eflags &= ~IF_MASK;
722 cpu_set_apic_tpr(env, run->cr8);
723 cpu_set_apic_base(env, run->apic_base);
725 return 0;
728 static int kvm_handle_halt(CPUState *env)
730 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
731 (env->eflags & IF_MASK)) &&
732 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
733 env->halted = 1;
734 env->exception_index = EXCP_HLT;
735 return 0;
738 return 1;
741 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
743 int ret = 0;
745 switch (run->exit_reason) {
746 case KVM_EXIT_HLT:
747 dprintf("handle_hlt\n");
748 ret = kvm_handle_halt(env);
749 break;
752 return ret;