kvm: bios: read UUID from firmware interface
[qemu-kvm/fedora.git] / qemu-kvm.c
blobaca3358b2086d444b9c06e34dd9fa974a2538d2c
1 /*
2 * qemu/kvm integration
4 * Copyright (C) 2006-2008 Qumranet Technologies
6 * Licensed under the terms of the GNU GPL version 2 or higher.
7 */
8 #include "config.h"
9 #include "config-host.h"
11 int kvm_allowed = 1;
12 int kvm_irqchip = 1;
13 int kvm_pit = 1;
15 #include <assert.h>
16 #include <string.h>
17 #include "hw/hw.h"
18 #include "sysemu.h"
19 #include "qemu-common.h"
20 #include "console.h"
21 #include "block.h"
22 #include "compatfd.h"
24 #include "qemu-kvm.h"
25 #include <libkvm.h>
26 #include <pthread.h>
27 #include <sys/utsname.h>
28 #include <sys/syscall.h>
29 #include <sys/mman.h>
31 #define bool _Bool
32 #define false 0
33 #define true 1
35 extern void perror(const char *s);
37 kvm_context_t kvm_context;
39 extern int smp_cpus;
41 pthread_mutex_t qemu_mutex = PTHREAD_MUTEX_INITIALIZER;
42 pthread_cond_t qemu_vcpu_cond = PTHREAD_COND_INITIALIZER;
43 pthread_cond_t qemu_system_cond = PTHREAD_COND_INITIALIZER;
44 pthread_cond_t qemu_pause_cond = PTHREAD_COND_INITIALIZER;
45 pthread_cond_t qemu_work_cond = PTHREAD_COND_INITIALIZER;
46 __thread struct vcpu_info *vcpu;
48 static int qemu_system_ready;
50 #define SIG_IPI (SIGRTMIN+4)
52 struct qemu_kvm_work_item {
53 struct qemu_kvm_work_item *next;
54 void (*func)(void *data);
55 void *data;
56 bool done;
59 struct vcpu_info {
60 CPUState *env;
61 int sipi_needed;
62 int init;
63 pthread_t thread;
64 int signalled;
65 int stop;
66 int stopped;
67 int created;
68 struct qemu_kvm_work_item *queued_work_first, *queued_work_last;
69 } vcpu_info[256];
71 pthread_t io_thread;
72 static int io_thread_fd = -1;
73 static int io_thread_sigfd = -1;
75 static int kvm_debug_stop_requested;
77 static inline unsigned long kvm_get_thread_id(void)
79 return syscall(SYS_gettid);
82 static void qemu_cond_wait(pthread_cond_t *cond)
84 CPUState *env = cpu_single_env;
85 static const struct timespec ts = {
86 .tv_sec = 0,
87 .tv_nsec = 100000,
90 pthread_cond_timedwait(cond, &qemu_mutex, &ts);
91 cpu_single_env = env;
94 CPUState *qemu_kvm_cpu_env(int index)
96 return vcpu_info[index].env;
99 static void sig_ipi_handler(int n)
103 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
105 struct vcpu_info *vi = &vcpu_info[env->cpu_index];
106 struct qemu_kvm_work_item wi;
108 if (vi == vcpu) {
109 func(data);
110 return;
113 wi.func = func;
114 wi.data = data;
115 if (!vi->queued_work_first)
116 vi->queued_work_first = &wi;
117 else
118 vi->queued_work_last->next = &wi;
119 vi->queued_work_last = &wi;
120 wi.next = NULL;
121 wi.done = false;
123 pthread_kill(vi->thread, SIG_IPI);
124 while (!wi.done)
125 qemu_cond_wait(&qemu_work_cond);
128 static void inject_interrupt(void *data)
130 cpu_interrupt(vcpu->env, (int)data);
133 void kvm_inject_interrupt(CPUState *env, int mask)
135 on_vcpu(env, inject_interrupt, (void *)mask);
138 void kvm_update_interrupt_request(CPUState *env)
140 int signal = 0;
142 if (env) {
143 if (!vcpu)
144 signal = 1;
145 if (vcpu && env != vcpu->env && !vcpu_info[env->cpu_index].signalled)
146 signal = 1;
148 if (signal) {
149 vcpu_info[env->cpu_index].signalled = 1;
150 if (vcpu_info[env->cpu_index].thread)
151 pthread_kill(vcpu_info[env->cpu_index].thread, SIG_IPI);
156 void kvm_update_after_sipi(CPUState *env)
158 vcpu_info[env->cpu_index].sipi_needed = 1;
159 kvm_update_interrupt_request(env);
162 void kvm_apic_init(CPUState *env)
164 if (env->cpu_index != 0)
165 vcpu_info[env->cpu_index].init = 1;
166 kvm_update_interrupt_request(env);
169 #include <signal.h>
171 static int try_push_interrupts(void *opaque)
173 return kvm_arch_try_push_interrupts(opaque);
176 static int try_push_nmi(void *opaque)
178 return kvm_arch_try_push_nmi(opaque);
181 static void post_kvm_run(void *opaque, int vcpu)
184 pthread_mutex_lock(&qemu_mutex);
185 kvm_arch_post_kvm_run(opaque, vcpu);
188 static int pre_kvm_run(void *opaque, int vcpu)
190 CPUState *env = qemu_kvm_cpu_env(vcpu);
192 kvm_arch_pre_kvm_run(opaque, vcpu);
194 if (env->interrupt_request & CPU_INTERRUPT_EXIT)
195 return 1;
196 pthread_mutex_unlock(&qemu_mutex);
197 return 0;
200 static void kvm_do_load_registers(void *_env)
202 CPUState *env = _env;
204 kvm_arch_load_regs(env);
207 void kvm_load_registers(CPUState *env)
209 if (kvm_enabled() && qemu_system_ready)
210 on_vcpu(env, kvm_do_load_registers, env);
213 static void kvm_do_save_registers(void *_env)
215 CPUState *env = _env;
217 kvm_arch_save_regs(env);
220 void kvm_save_registers(CPUState *env)
222 if (kvm_enabled())
223 on_vcpu(env, kvm_do_save_registers, env);
226 int kvm_cpu_exec(CPUState *env)
228 int r;
230 r = kvm_run(kvm_context, env->cpu_index);
231 if (r < 0) {
232 printf("kvm_run returned %d\n", r);
233 exit(1);
236 return 0;
239 extern int vm_running;
241 static int has_work(CPUState *env)
243 if (!vm_running || (env && vcpu_info[env->cpu_index].stopped))
244 return 0;
245 if (!env->halted)
246 return 1;
247 return kvm_arch_has_work(env);
250 static void flush_queued_work(CPUState *env)
252 struct vcpu_info *vi = &vcpu_info[env->cpu_index];
253 struct qemu_kvm_work_item *wi;
255 if (!vi->queued_work_first)
256 return;
258 while ((wi = vi->queued_work_first)) {
259 vi->queued_work_first = wi->next;
260 wi->func(wi->data);
261 wi->done = true;
263 vi->queued_work_last = NULL;
264 pthread_cond_broadcast(&qemu_work_cond);
267 static void kvm_main_loop_wait(CPUState *env, int timeout)
269 struct timespec ts;
270 int r, e;
271 siginfo_t siginfo;
272 sigset_t waitset;
274 pthread_mutex_unlock(&qemu_mutex);
276 ts.tv_sec = timeout / 1000;
277 ts.tv_nsec = (timeout % 1000) * 1000000;
278 sigemptyset(&waitset);
279 sigaddset(&waitset, SIG_IPI);
281 r = sigtimedwait(&waitset, &siginfo, &ts);
282 e = errno;
284 pthread_mutex_lock(&qemu_mutex);
286 if (r == -1 && !(e == EAGAIN || e == EINTR)) {
287 printf("sigtimedwait: %s\n", strerror(e));
288 exit(1);
291 cpu_single_env = env;
292 flush_queued_work(env);
294 if (vcpu_info[env->cpu_index].stop) {
295 vcpu_info[env->cpu_index].stop = 0;
296 vcpu_info[env->cpu_index].stopped = 1;
297 pthread_cond_signal(&qemu_pause_cond);
300 vcpu_info[env->cpu_index].signalled = 0;
303 static int all_threads_paused(void)
305 int i;
307 for (i = 0; i < smp_cpus; ++i)
308 if (vcpu_info[i].stop)
309 return 0;
310 return 1;
313 static void pause_all_threads(void)
315 int i;
317 assert(!cpu_single_env);
319 for (i = 0; i < smp_cpus; ++i) {
320 vcpu_info[i].stop = 1;
321 pthread_kill(vcpu_info[i].thread, SIG_IPI);
323 while (!all_threads_paused())
324 qemu_cond_wait(&qemu_pause_cond);
327 static void resume_all_threads(void)
329 int i;
331 assert(!cpu_single_env);
333 for (i = 0; i < smp_cpus; ++i) {
334 vcpu_info[i].stop = 0;
335 vcpu_info[i].stopped = 0;
336 pthread_kill(vcpu_info[i].thread, SIG_IPI);
340 static void kvm_vm_state_change_handler(void *context, int running)
342 if (running)
343 resume_all_threads();
344 else
345 pause_all_threads();
348 static void update_regs_for_sipi(CPUState *env)
350 kvm_arch_update_regs_for_sipi(env);
351 vcpu_info[env->cpu_index].sipi_needed = 0;
352 vcpu_info[env->cpu_index].init = 0;
355 static void update_regs_for_init(CPUState *env)
357 cpu_reset(env);
358 kvm_arch_load_regs(env);
361 static void setup_kernel_sigmask(CPUState *env)
363 sigset_t set;
365 sigemptyset(&set);
366 sigaddset(&set, SIGUSR2);
367 sigaddset(&set, SIGIO);
368 sigaddset(&set, SIGALRM);
369 sigprocmask(SIG_BLOCK, &set, NULL);
371 sigprocmask(SIG_BLOCK, NULL, &set);
372 sigdelset(&set, SIG_IPI);
374 kvm_set_signal_mask(kvm_context, env->cpu_index, &set);
377 void qemu_kvm_system_reset(void)
379 int i;
381 pause_all_threads();
383 qemu_system_reset();
385 for (i = 0; i < smp_cpus; ++i)
386 kvm_arch_cpu_reset(vcpu_info[i].env);
388 resume_all_threads();
391 static int kvm_main_loop_cpu(CPUState *env)
393 struct vcpu_info *info = &vcpu_info[env->cpu_index];
395 setup_kernel_sigmask(env);
397 pthread_mutex_lock(&qemu_mutex);
398 if (kvm_irqchip_in_kernel(kvm_context))
399 env->halted = 0;
401 kvm_qemu_init_env(env);
402 #ifdef TARGET_I386
403 kvm_tpr_vcpu_start(env);
404 #endif
406 cpu_single_env = env;
407 kvm_load_registers(env);
409 while (1) {
410 while (!has_work(env))
411 kvm_main_loop_wait(env, 1000);
412 if (env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_NMI))
413 env->halted = 0;
414 if (!kvm_irqchip_in_kernel(kvm_context) && info->sipi_needed)
415 update_regs_for_sipi(env);
416 if (!kvm_irqchip_in_kernel(kvm_context) && info->init)
417 update_regs_for_init(env);
418 if (!env->halted && !info->init)
419 kvm_cpu_exec(env);
420 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
421 kvm_main_loop_wait(env, 0);
423 pthread_mutex_unlock(&qemu_mutex);
424 return 0;
427 static void *ap_main_loop(void *_env)
429 CPUState *env = _env;
430 sigset_t signals;
432 vcpu = &vcpu_info[env->cpu_index];
433 vcpu->env = env;
434 vcpu->env->thread_id = kvm_get_thread_id();
435 sigfillset(&signals);
436 sigprocmask(SIG_BLOCK, &signals, NULL);
437 kvm_create_vcpu(kvm_context, env->cpu_index);
438 kvm_qemu_init_env(env);
440 /* signal VCPU creation */
441 pthread_mutex_lock(&qemu_mutex);
442 vcpu->created = 1;
443 pthread_cond_signal(&qemu_vcpu_cond);
445 /* and wait for machine initialization */
446 while (!qemu_system_ready)
447 qemu_cond_wait(&qemu_system_cond);
448 pthread_mutex_unlock(&qemu_mutex);
450 kvm_main_loop_cpu(env);
451 return NULL;
454 void kvm_init_new_ap(int cpu, CPUState *env)
456 pthread_create(&vcpu_info[cpu].thread, NULL, ap_main_loop, env);
458 while (vcpu_info[cpu].created == 0)
459 qemu_cond_wait(&qemu_vcpu_cond);
462 int kvm_init_ap(void)
464 #ifdef TARGET_I386
465 kvm_tpr_opt_setup();
466 #endif
467 qemu_add_vm_change_state_handler(kvm_vm_state_change_handler, NULL);
469 signal(SIG_IPI, sig_ipi_handler);
470 return 0;
473 void qemu_kvm_notify_work(void)
475 uint64_t value = 1;
476 char buffer[8];
477 size_t offset = 0;
479 if (io_thread_fd == -1)
480 return;
482 memcpy(buffer, &value, sizeof(value));
484 while (offset < 8) {
485 ssize_t len;
487 len = write(io_thread_fd, buffer + offset, 8 - offset);
488 if (len == -1 && errno == EINTR)
489 continue;
491 if (len <= 0)
492 break;
494 offset += len;
497 if (offset != 8)
498 fprintf(stderr, "failed to notify io thread\n");
501 /* If we have signalfd, we mask out the signals we want to handle and then
502 * use signalfd to listen for them. We rely on whatever the current signal
503 * handler is to dispatch the signals when we receive them.
506 static void sigfd_handler(void *opaque)
508 int fd = (unsigned long)opaque;
509 struct qemu_signalfd_siginfo info;
510 struct sigaction action;
511 ssize_t len;
513 while (1) {
514 do {
515 len = read(fd, &info, sizeof(info));
516 } while (len == -1 && errno == EINTR);
518 if (len == -1 && errno == EAGAIN)
519 break;
521 if (len != sizeof(info)) {
522 printf("read from sigfd returned %ld: %m\n", len);
523 return;
526 sigaction(info.ssi_signo, NULL, &action);
527 if (action.sa_handler)
528 action.sa_handler(info.ssi_signo);
533 /* Used to break IO thread out of select */
534 static void io_thread_wakeup(void *opaque)
536 int fd = (unsigned long)opaque;
537 char buffer[8];
538 size_t offset = 0;
540 while (offset < 8) {
541 ssize_t len;
543 len = read(fd, buffer + offset, 8 - offset);
544 if (len == -1 && errno == EINTR)
545 continue;
547 if (len <= 0)
548 break;
550 offset += len;
554 int kvm_main_loop(void)
556 int fds[2];
557 sigset_t mask;
558 int sigfd;
560 io_thread = pthread_self();
561 qemu_system_ready = 1;
563 if (qemu_eventfd(fds) == -1) {
564 fprintf(stderr, "failed to create eventfd\n");
565 return -errno;
568 qemu_set_fd_handler2(fds[0], NULL, io_thread_wakeup, NULL,
569 (void *)(unsigned long)fds[0]);
571 io_thread_fd = fds[1];
573 sigemptyset(&mask);
574 sigaddset(&mask, SIGIO);
575 sigaddset(&mask, SIGALRM);
576 sigprocmask(SIG_BLOCK, &mask, NULL);
578 sigfd = qemu_signalfd(&mask);
579 if (sigfd == -1) {
580 fprintf(stderr, "failed to create signalfd\n");
581 return -errno;
584 fcntl(sigfd, F_SETFL, O_NONBLOCK);
586 qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL,
587 (void *)(unsigned long)sigfd);
589 pthread_cond_broadcast(&qemu_system_cond);
591 io_thread_sigfd = sigfd;
592 cpu_single_env = NULL;
594 while (1) {
595 main_loop_wait(1000);
596 if (qemu_shutdown_requested())
597 break;
598 else if (qemu_powerdown_requested())
599 qemu_system_powerdown();
600 else if (qemu_reset_requested())
601 qemu_kvm_system_reset();
602 else if (kvm_debug_stop_requested) {
603 vm_stop(EXCP_DEBUG);
604 kvm_debug_stop_requested = 0;
608 pause_all_threads();
609 pthread_mutex_unlock(&qemu_mutex);
611 return 0;
614 static int kvm_debug(void *opaque, int vcpu)
616 kvm_debug_stop_requested = 1;
617 vcpu_info[vcpu].stopped = 1;
618 return 1;
621 static int kvm_inb(void *opaque, uint16_t addr, uint8_t *data)
623 *data = cpu_inb(0, addr);
624 return 0;
627 static int kvm_inw(void *opaque, uint16_t addr, uint16_t *data)
629 *data = cpu_inw(0, addr);
630 return 0;
633 static int kvm_inl(void *opaque, uint16_t addr, uint32_t *data)
635 *data = cpu_inl(0, addr);
636 return 0;
639 #define PM_IO_BASE 0xb000
641 static int kvm_outb(void *opaque, uint16_t addr, uint8_t data)
643 if (addr == 0xb2) {
644 switch (data) {
645 case 0: {
646 cpu_outb(0, 0xb3, 0);
647 break;
649 case 0xf0: {
650 unsigned x;
652 /* enable acpi */
653 x = cpu_inw(0, PM_IO_BASE + 4);
654 x &= ~1;
655 cpu_outw(0, PM_IO_BASE + 4, x);
656 break;
658 case 0xf1: {
659 unsigned x;
661 /* enable acpi */
662 x = cpu_inw(0, PM_IO_BASE + 4);
663 x |= 1;
664 cpu_outw(0, PM_IO_BASE + 4, x);
665 break;
667 default:
668 break;
670 return 0;
672 cpu_outb(0, addr, data);
673 return 0;
676 static int kvm_outw(void *opaque, uint16_t addr, uint16_t data)
678 cpu_outw(0, addr, data);
679 return 0;
682 static int kvm_outl(void *opaque, uint16_t addr, uint32_t data)
684 cpu_outl(0, addr, data);
685 return 0;
688 static int kvm_mmio_read(void *opaque, uint64_t addr, uint8_t *data, int len)
690 cpu_physical_memory_rw(addr, data, len, 0);
691 return 0;
694 static int kvm_mmio_write(void *opaque, uint64_t addr, uint8_t *data, int len)
696 cpu_physical_memory_rw(addr, data, len, 1);
697 return 0;
700 static int kvm_io_window(void *opaque)
702 return 1;
706 static int kvm_halt(void *opaque, int vcpu)
708 return kvm_arch_halt(opaque, vcpu);
711 static int kvm_shutdown(void *opaque, int vcpu)
713 /* stop the current vcpu from going back to guest mode */
714 vcpu_info[cpu_single_env->cpu_index].stopped = 1;
716 qemu_system_reset_request();
717 return 1;
720 static struct kvm_callbacks qemu_kvm_ops = {
721 .debug = kvm_debug,
722 .inb = kvm_inb,
723 .inw = kvm_inw,
724 .inl = kvm_inl,
725 .outb = kvm_outb,
726 .outw = kvm_outw,
727 .outl = kvm_outl,
728 .mmio_read = kvm_mmio_read,
729 .mmio_write = kvm_mmio_write,
730 .halt = kvm_halt,
731 .shutdown = kvm_shutdown,
732 .io_window = kvm_io_window,
733 .try_push_interrupts = try_push_interrupts,
734 .try_push_nmi = try_push_nmi,
735 .post_kvm_run = post_kvm_run,
736 .pre_kvm_run = pre_kvm_run,
737 #ifdef TARGET_I386
738 .tpr_access = handle_tpr_access,
739 #endif
740 #ifdef TARGET_PPC
741 .powerpc_dcr_read = handle_powerpc_dcr_read,
742 .powerpc_dcr_write = handle_powerpc_dcr_write,
743 #endif
746 int kvm_qemu_init()
748 /* Try to initialize kvm */
749 kvm_context = kvm_init(&qemu_kvm_ops, cpu_single_env);
750 if (!kvm_context) {
751 return -1;
753 pthread_mutex_lock(&qemu_mutex);
755 return 0;
758 int kvm_qemu_create_context(void)
760 int r;
761 if (!kvm_irqchip) {
762 kvm_disable_irqchip_creation(kvm_context);
764 if (!kvm_pit) {
765 kvm_disable_pit_creation(kvm_context);
767 if (kvm_create(kvm_context, phys_ram_size, (void**)&phys_ram_base) < 0) {
768 kvm_qemu_destroy();
769 return -1;
771 r = kvm_arch_qemu_create_context();
772 if(r <0)
773 kvm_qemu_destroy();
774 return 0;
777 void kvm_qemu_destroy(void)
779 kvm_finalize(kvm_context);
782 void kvm_cpu_register_physical_memory(target_phys_addr_t start_addr,
783 unsigned long size,
784 unsigned long phys_offset)
786 int r = 0;
787 unsigned long area_flags = phys_offset & ~TARGET_PAGE_MASK;
789 phys_offset &= ~IO_MEM_ROM;
791 if (area_flags == IO_MEM_UNASSIGNED) {
792 kvm_unregister_memory_area(kvm_context, start_addr, size);
793 return;
796 r = kvm_is_containing_region(kvm_context, start_addr, size);
797 if (r)
798 return;
800 if (area_flags >= TLB_MMIO)
801 return;
803 r = kvm_register_phys_mem(kvm_context, start_addr,
804 phys_ram_base + phys_offset,
805 size, 0);
806 if (r < 0) {
807 printf("kvm_cpu_register_physical_memory: failed\n");
808 exit(1);
810 return;
813 void kvm_cpu_unregister_physical_memory(target_phys_addr_t start_addr,
814 target_phys_addr_t size,
815 unsigned long phys_offset)
817 kvm_unregister_memory_area(kvm_context, start_addr, size);
820 int kvm_setup_guest_memory(void *area, unsigned long size)
822 int ret = 0;
824 #ifdef MADV_DONTFORK
825 if (kvm_enabled() && !kvm_has_sync_mmu(kvm_context))
826 ret = madvise(area, size, MADV_DONTFORK);
827 #endif
829 if (ret)
830 perror ("madvise");
832 return ret;
835 int kvm_qemu_check_extension(int ext)
837 return kvm_check_extension(kvm_context, ext);
840 int kvm_qemu_init_env(CPUState *cenv)
842 return kvm_arch_qemu_init_env(cenv);
845 struct kvm_guest_debug_data {
846 struct kvm_debug_guest dbg;
847 int err;
850 void kvm_invoke_guest_debug(void *data)
852 struct kvm_guest_debug_data *dbg_data = data;
854 dbg_data->err = kvm_guest_debug(kvm_context, cpu_single_env->cpu_index,
855 &dbg_data->dbg);
858 int kvm_update_debugger(CPUState *env)
860 struct kvm_guest_debug_data data;
861 int i;
863 memset(data.dbg.breakpoints, 0, sizeof(data.dbg.breakpoints));
865 data.dbg.enabled = 0;
866 if (env->nb_breakpoints || env->singlestep_enabled) {
867 data.dbg.enabled = 1;
868 for (i = 0; i < 4 && i < env->nb_breakpoints; ++i) {
869 data.dbg.breakpoints[i].enabled = 1;
870 data.dbg.breakpoints[i].address = env->breakpoints[i];
872 data.dbg.singlestep = env->singlestep_enabled;
874 on_vcpu(env, kvm_invoke_guest_debug, &data);
875 return data.err;
880 * dirty pages logging
882 /* FIXME: use unsigned long pointer instead of unsigned char */
883 unsigned char *kvm_dirty_bitmap = NULL;
884 int kvm_physical_memory_set_dirty_tracking(int enable)
886 int r = 0;
888 if (!kvm_enabled())
889 return 0;
891 if (enable) {
892 if (!kvm_dirty_bitmap) {
893 unsigned bitmap_size = BITMAP_SIZE(phys_ram_size);
894 kvm_dirty_bitmap = qemu_malloc(bitmap_size);
895 if (kvm_dirty_bitmap == NULL) {
896 perror("Failed to allocate dirty pages bitmap");
897 r=-1;
899 else {
900 r = kvm_dirty_pages_log_enable_all(kvm_context);
904 else {
905 if (kvm_dirty_bitmap) {
906 r = kvm_dirty_pages_log_reset(kvm_context);
907 qemu_free(kvm_dirty_bitmap);
908 kvm_dirty_bitmap = NULL;
911 return r;
914 /* get kvm's dirty pages bitmap and update qemu's */
915 int kvm_get_dirty_pages_log_range(unsigned long start_addr,
916 unsigned char *bitmap,
917 unsigned int offset,
918 unsigned long mem_size)
920 unsigned int i, j, n=0;
921 unsigned char c;
922 unsigned page_number, addr, addr1;
923 unsigned int len = ((mem_size/TARGET_PAGE_SIZE) + 7) / 8;
926 * bitmap-traveling is faster than memory-traveling (for addr...)
927 * especially when most of the memory is not dirty.
929 for (i=0; i<len; i++) {
930 c = bitmap[i];
931 while (c>0) {
932 j = ffsl(c) - 1;
933 c &= ~(1u<<j);
934 page_number = i * 8 + j;
935 addr1 = page_number * TARGET_PAGE_SIZE;
936 addr = offset + addr1;
937 cpu_physical_memory_set_dirty(addr);
938 n++;
941 return 0;
943 int kvm_get_dirty_bitmap_cb(unsigned long start, unsigned long len,
944 void *bitmap, void *opaque)
946 return kvm_get_dirty_pages_log_range(start, bitmap, start, len);
950 * get kvm's dirty pages bitmap and update qemu's
951 * we only care about physical ram, which resides in slots 0 and 3
953 int kvm_update_dirty_pages_log(void)
955 int r = 0;
958 r = kvm_get_dirty_pages_range(kvm_context, 0, phys_ram_size,
959 kvm_dirty_bitmap, NULL,
960 kvm_get_dirty_bitmap_cb);
961 return r;
964 void kvm_qemu_log_memory(target_phys_addr_t start, target_phys_addr_t size,
965 int log)
967 if (log)
968 kvm_dirty_pages_log_enable_slot(kvm_context, start, size);
969 else
970 kvm_dirty_pages_log_disable_slot(kvm_context, start, size);
973 int kvm_get_phys_ram_page_bitmap(unsigned char *bitmap)
975 unsigned int bsize = BITMAP_SIZE(phys_ram_size);
976 unsigned int brsize = BITMAP_SIZE(ram_size);
977 unsigned int extra_pages = (phys_ram_size - ram_size) / TARGET_PAGE_SIZE;
978 unsigned int extra_bytes = (extra_pages +7)/8;
979 unsigned int hole_start = BITMAP_SIZE(0xa0000);
980 unsigned int hole_end = BITMAP_SIZE(0xc0000);
982 memset(bitmap, 0xFF, brsize + extra_bytes);
983 memset(bitmap + hole_start, 0, hole_end - hole_start);
984 memset(bitmap + brsize + extra_bytes, 0, bsize - brsize - extra_bytes);
986 return 0;
989 #ifdef KVM_CAP_IRQCHIP
991 int kvm_set_irq(int irq, int level)
993 return kvm_set_irq_level(kvm_context, irq, level);
996 #endif
998 int qemu_kvm_get_dirty_pages(unsigned long phys_addr, void *buf)
1000 return kvm_get_dirty_pages(kvm_context, phys_addr, buf);
1003 void *kvm_cpu_create_phys_mem(target_phys_addr_t start_addr,
1004 unsigned long size, int log, int writable)
1006 return kvm_create_phys_mem(kvm_context, start_addr, size, log, writable);
1009 void kvm_cpu_destroy_phys_mem(target_phys_addr_t start_addr,
1010 unsigned long size)
1012 kvm_destroy_phys_mem(kvm_context, start_addr, size);
1015 void kvm_mutex_unlock(void)
1017 assert(!cpu_single_env);
1018 pthread_mutex_unlock(&qemu_mutex);
1021 void kvm_mutex_lock(void)
1023 pthread_mutex_lock(&qemu_mutex);
1024 cpu_single_env = NULL;
1027 int qemu_kvm_register_coalesced_mmio(target_phys_addr_t addr, unsigned int size)
1029 return kvm_register_coalesced_mmio(kvm_context, addr, size);
1032 int qemu_kvm_unregister_coalesced_mmio(target_phys_addr_t addr,
1033 unsigned int size)
1035 return kvm_unregister_coalesced_mmio(kvm_context, addr, size);