kvm: bios: read UUID from firmware interface
[qemu-kvm/fedora.git] / qemu-kvm-x86.c
blobbf62e18a5ecf36356e4ab663a9e7f3fa8423a075
1 /*
2 * qemu/kvm integration, x86 specific code
4 * Copyright (C) 2006-2008 Qumranet Technologies
6 * Licensed under the terms of the GNU GPL version 2 or higher.
7 */
9 #include "config.h"
10 #include "config-host.h"
12 #include <string.h>
13 #include "hw/hw.h"
15 #include "qemu-kvm.h"
16 #include <libkvm.h>
17 #include <pthread.h>
18 #include <sys/utsname.h>
19 #include <linux/kvm_para.h>
21 #define MSR_IA32_TSC 0x10
23 static struct kvm_msr_list *kvm_msr_list;
24 extern unsigned int kvm_shadow_memory;
25 extern kvm_context_t kvm_context;
26 static int kvm_has_msr_star;
28 static int lm_capable_kernel;
30 int kvm_qemu_create_memory_alias(uint64_t phys_start,
31 uint64_t len,
32 uint64_t target_phys)
34 return kvm_create_memory_alias(kvm_context, phys_start, len, target_phys);
37 int kvm_qemu_destroy_memory_alias(uint64_t phys_start)
39 return kvm_destroy_memory_alias(kvm_context, phys_start);
42 int kvm_arch_qemu_create_context(void)
44 int i;
45 struct utsname utsname;
47 uname(&utsname);
48 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
50 if (kvm_shadow_memory)
51 kvm_set_shadow_pages(kvm_context, kvm_shadow_memory);
53 kvm_msr_list = kvm_get_msr_list(kvm_context);
54 if (!kvm_msr_list)
55 return -1;
56 for (i = 0; i < kvm_msr_list->nmsrs; ++i)
57 if (kvm_msr_list->indices[i] == MSR_STAR)
58 kvm_has_msr_star = 1;
59 return 0;
62 static void set_msr_entry(struct kvm_msr_entry *entry, uint32_t index,
63 uint64_t data)
65 entry->index = index;
66 entry->data = data;
69 /* returns 0 on success, non-0 on failure */
70 static int get_msr_entry(struct kvm_msr_entry *entry, CPUState *env)
72 switch (entry->index) {
73 case MSR_IA32_SYSENTER_CS:
74 env->sysenter_cs = entry->data;
75 break;
76 case MSR_IA32_SYSENTER_ESP:
77 env->sysenter_esp = entry->data;
78 break;
79 case MSR_IA32_SYSENTER_EIP:
80 env->sysenter_eip = entry->data;
81 break;
82 case MSR_STAR:
83 env->star = entry->data;
84 break;
85 #ifdef TARGET_X86_64
86 case MSR_CSTAR:
87 env->cstar = entry->data;
88 break;
89 case MSR_KERNELGSBASE:
90 env->kernelgsbase = entry->data;
91 break;
92 case MSR_FMASK:
93 env->fmask = entry->data;
94 break;
95 case MSR_LSTAR:
96 env->lstar = entry->data;
97 break;
98 #endif
99 case MSR_IA32_TSC:
100 env->tsc = entry->data;
101 break;
102 default:
103 printf("Warning unknown msr index 0x%x\n", entry->index);
104 return 1;
106 return 0;
109 #ifdef TARGET_X86_64
110 #define MSR_COUNT 9
111 #else
112 #define MSR_COUNT 5
113 #endif
115 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
117 lhs->selector = rhs->selector;
118 lhs->base = rhs->base;
119 lhs->limit = rhs->limit;
120 lhs->type = 3;
121 lhs->present = 1;
122 lhs->dpl = 3;
123 lhs->db = 0;
124 lhs->s = 1;
125 lhs->l = 0;
126 lhs->g = 0;
127 lhs->avl = 0;
128 lhs->unusable = 0;
131 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
133 unsigned flags = rhs->flags;
134 lhs->selector = rhs->selector;
135 lhs->base = rhs->base;
136 lhs->limit = rhs->limit;
137 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
138 lhs->present = (flags & DESC_P_MASK) != 0;
139 lhs->dpl = rhs->selector & 3;
140 lhs->db = (flags >> DESC_B_SHIFT) & 1;
141 lhs->s = (flags & DESC_S_MASK) != 0;
142 lhs->l = (flags >> DESC_L_SHIFT) & 1;
143 lhs->g = (flags & DESC_G_MASK) != 0;
144 lhs->avl = (flags & DESC_AVL_MASK) != 0;
145 lhs->unusable = 0;
148 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
150 lhs->selector = rhs->selector;
151 lhs->base = rhs->base;
152 lhs->limit = rhs->limit;
153 lhs->flags =
154 (rhs->type << DESC_TYPE_SHIFT)
155 | (rhs->present * DESC_P_MASK)
156 | (rhs->dpl << DESC_DPL_SHIFT)
157 | (rhs->db << DESC_B_SHIFT)
158 | (rhs->s * DESC_S_MASK)
159 | (rhs->l << DESC_L_SHIFT)
160 | (rhs->g * DESC_G_MASK)
161 | (rhs->avl * DESC_AVL_MASK);
164 void kvm_arch_load_regs(CPUState *env)
166 struct kvm_regs regs;
167 struct kvm_fpu fpu;
168 struct kvm_sregs sregs;
169 struct kvm_msr_entry msrs[MSR_COUNT];
170 int rc, n, i;
172 regs.rax = env->regs[R_EAX];
173 regs.rbx = env->regs[R_EBX];
174 regs.rcx = env->regs[R_ECX];
175 regs.rdx = env->regs[R_EDX];
176 regs.rsi = env->regs[R_ESI];
177 regs.rdi = env->regs[R_EDI];
178 regs.rsp = env->regs[R_ESP];
179 regs.rbp = env->regs[R_EBP];
180 #ifdef TARGET_X86_64
181 regs.r8 = env->regs[8];
182 regs.r9 = env->regs[9];
183 regs.r10 = env->regs[10];
184 regs.r11 = env->regs[11];
185 regs.r12 = env->regs[12];
186 regs.r13 = env->regs[13];
187 regs.r14 = env->regs[14];
188 regs.r15 = env->regs[15];
189 #endif
191 regs.rflags = env->eflags;
192 regs.rip = env->eip;
194 kvm_set_regs(kvm_context, env->cpu_index, &regs);
196 memset(&fpu, 0, sizeof fpu);
197 fpu.fsw = env->fpus & ~(7 << 11);
198 fpu.fsw |= (env->fpstt & 7) << 11;
199 fpu.fcw = env->fpuc;
200 for (i = 0; i < 8; ++i)
201 fpu.ftwx |= (!env->fptags[i]) << i;
202 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
203 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
204 fpu.mxcsr = env->mxcsr;
205 kvm_set_fpu(kvm_context, env->cpu_index, &fpu);
207 memcpy(sregs.interrupt_bitmap, env->kvm_interrupt_bitmap, sizeof(sregs.interrupt_bitmap));
209 if ((env->eflags & VM_MASK)) {
210 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
211 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
212 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
213 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
214 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
215 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
216 } else {
217 set_seg(&sregs.cs, &env->segs[R_CS]);
218 set_seg(&sregs.ds, &env->segs[R_DS]);
219 set_seg(&sregs.es, &env->segs[R_ES]);
220 set_seg(&sregs.fs, &env->segs[R_FS]);
221 set_seg(&sregs.gs, &env->segs[R_GS]);
222 set_seg(&sregs.ss, &env->segs[R_SS]);
224 if (env->cr[0] & CR0_PE_MASK) {
225 /* force ss cpl to cs cpl */
226 sregs.ss.selector = (sregs.ss.selector & ~3) |
227 (sregs.cs.selector & 3);
228 sregs.ss.dpl = sregs.ss.selector & 3;
232 set_seg(&sregs.tr, &env->tr);
233 set_seg(&sregs.ldt, &env->ldt);
235 sregs.idt.limit = env->idt.limit;
236 sregs.idt.base = env->idt.base;
237 sregs.gdt.limit = env->gdt.limit;
238 sregs.gdt.base = env->gdt.base;
240 sregs.cr0 = env->cr[0];
241 sregs.cr2 = env->cr[2];
242 sregs.cr3 = env->cr[3];
243 sregs.cr4 = env->cr[4];
245 sregs.cr8 = cpu_get_apic_tpr(env);
246 sregs.apic_base = cpu_get_apic_base(env);
248 sregs.efer = env->efer;
250 kvm_set_sregs(kvm_context, env->cpu_index, &sregs);
252 /* msrs */
253 n = 0;
254 set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
255 set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
256 set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
257 if (kvm_has_msr_star)
258 set_msr_entry(&msrs[n++], MSR_STAR, env->star);
259 set_msr_entry(&msrs[n++], MSR_IA32_TSC, env->tsc);
260 #ifdef TARGET_X86_64
261 if (lm_capable_kernel) {
262 set_msr_entry(&msrs[n++], MSR_CSTAR, env->cstar);
263 set_msr_entry(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
264 set_msr_entry(&msrs[n++], MSR_FMASK, env->fmask);
265 set_msr_entry(&msrs[n++], MSR_LSTAR , env->lstar);
267 #endif
269 rc = kvm_set_msrs(kvm_context, env->cpu_index, msrs, n);
270 if (rc == -1)
271 perror("kvm_set_msrs FAILED");
274 void kvm_save_mpstate(CPUState *env)
276 #ifdef KVM_CAP_MP_STATE
277 int r;
278 struct kvm_mp_state mp_state;
280 r = kvm_get_mpstate(kvm_context, env->cpu_index, &mp_state);
281 if (r < 0)
282 env->mp_state = -1;
283 else
284 env->mp_state = mp_state.mp_state;
285 #endif
288 void kvm_load_mpstate(CPUState *env)
290 #ifdef KVM_CAP_MP_STATE
291 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
294 * -1 indicates that the host did not support GET_MP_STATE ioctl,
295 * so don't touch it.
297 if (env->mp_state != -1)
298 kvm_set_mpstate(kvm_context, env->cpu_index, &mp_state);
299 #endif
302 void kvm_arch_save_regs(CPUState *env)
304 struct kvm_regs regs;
305 struct kvm_fpu fpu;
306 struct kvm_sregs sregs;
307 struct kvm_msr_entry msrs[MSR_COUNT];
308 uint32_t hflags;
309 uint32_t i, n, rc;
311 kvm_get_regs(kvm_context, env->cpu_index, &regs);
313 env->regs[R_EAX] = regs.rax;
314 env->regs[R_EBX] = regs.rbx;
315 env->regs[R_ECX] = regs.rcx;
316 env->regs[R_EDX] = regs.rdx;
317 env->regs[R_ESI] = regs.rsi;
318 env->regs[R_EDI] = regs.rdi;
319 env->regs[R_ESP] = regs.rsp;
320 env->regs[R_EBP] = regs.rbp;
321 #ifdef TARGET_X86_64
322 env->regs[8] = regs.r8;
323 env->regs[9] = regs.r9;
324 env->regs[10] = regs.r10;
325 env->regs[11] = regs.r11;
326 env->regs[12] = regs.r12;
327 env->regs[13] = regs.r13;
328 env->regs[14] = regs.r14;
329 env->regs[15] = regs.r15;
330 #endif
332 env->eflags = regs.rflags;
333 env->eip = regs.rip;
335 kvm_get_fpu(kvm_context, env->cpu_index, &fpu);
336 env->fpstt = (fpu.fsw >> 11) & 7;
337 env->fpus = fpu.fsw;
338 env->fpuc = fpu.fcw;
339 for (i = 0; i < 8; ++i)
340 env->fptags[i] = !((fpu.ftwx >> i) & 1);
341 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
342 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
343 env->mxcsr = fpu.mxcsr;
345 kvm_get_sregs(kvm_context, env->cpu_index, &sregs);
347 memcpy(env->kvm_interrupt_bitmap, sregs.interrupt_bitmap, sizeof(env->kvm_interrupt_bitmap));
349 get_seg(&env->segs[R_CS], &sregs.cs);
350 get_seg(&env->segs[R_DS], &sregs.ds);
351 get_seg(&env->segs[R_ES], &sregs.es);
352 get_seg(&env->segs[R_FS], &sregs.fs);
353 get_seg(&env->segs[R_GS], &sregs.gs);
354 get_seg(&env->segs[R_SS], &sregs.ss);
356 get_seg(&env->tr, &sregs.tr);
357 get_seg(&env->ldt, &sregs.ldt);
359 env->idt.limit = sregs.idt.limit;
360 env->idt.base = sregs.idt.base;
361 env->gdt.limit = sregs.gdt.limit;
362 env->gdt.base = sregs.gdt.base;
364 env->cr[0] = sregs.cr0;
365 env->cr[2] = sregs.cr2;
366 env->cr[3] = sregs.cr3;
367 env->cr[4] = sregs.cr4;
369 cpu_set_apic_base(env, sregs.apic_base);
371 env->efer = sregs.efer;
372 //cpu_set_apic_tpr(env, sregs.cr8);
374 #define HFLAG_COPY_MASK ~( \
375 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
376 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
377 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
378 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
382 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
383 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
384 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
385 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
386 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
387 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
388 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
390 if (env->efer & MSR_EFER_LMA) {
391 hflags |= HF_LMA_MASK;
394 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
395 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
396 } else {
397 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
398 (DESC_B_SHIFT - HF_CS32_SHIFT);
399 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
400 (DESC_B_SHIFT - HF_SS32_SHIFT);
401 if (!(env->cr[0] & CR0_PE_MASK) ||
402 (env->eflags & VM_MASK) ||
403 !(hflags & HF_CS32_MASK)) {
404 hflags |= HF_ADDSEG_MASK;
405 } else {
406 hflags |= ((env->segs[R_DS].base |
407 env->segs[R_ES].base |
408 env->segs[R_SS].base) != 0) <<
409 HF_ADDSEG_SHIFT;
412 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
413 env->cc_src = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
414 env->df = 1 - (2 * ((env->eflags >> 10) & 1));
415 env->cc_op = CC_OP_EFLAGS;
416 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
418 /* msrs */
419 n = 0;
420 msrs[n++].index = MSR_IA32_SYSENTER_CS;
421 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
422 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
423 if (kvm_has_msr_star)
424 msrs[n++].index = MSR_STAR;
425 msrs[n++].index = MSR_IA32_TSC;
426 #ifdef TARGET_X86_64
427 if (lm_capable_kernel) {
428 msrs[n++].index = MSR_CSTAR;
429 msrs[n++].index = MSR_KERNELGSBASE;
430 msrs[n++].index = MSR_FMASK;
431 msrs[n++].index = MSR_LSTAR;
433 #endif
434 rc = kvm_get_msrs(kvm_context, env->cpu_index, msrs, n);
435 if (rc == -1) {
436 perror("kvm_get_msrs FAILED");
438 else {
439 n = rc; /* actual number of MSRs */
440 for (i=0 ; i<n; i++) {
441 if (get_msr_entry(&msrs[i], env))
442 return;
447 static void host_cpuid(uint32_t function, uint32_t *eax, uint32_t *ebx,
448 uint32_t *ecx, uint32_t *edx)
450 uint32_t vec[4];
452 #ifdef __x86_64__
453 asm volatile("cpuid"
454 : "=a"(vec[0]), "=b"(vec[1]),
455 "=c"(vec[2]), "=d"(vec[3])
456 : "0"(function) : "cc");
457 #else
458 asm volatile("pusha \n\t"
459 "cpuid \n\t"
460 "mov %%eax, 0(%1) \n\t"
461 "mov %%ebx, 4(%1) \n\t"
462 "mov %%ecx, 8(%1) \n\t"
463 "mov %%edx, 12(%1) \n\t"
464 "popa"
465 : : "a"(function), "S"(vec)
466 : "memory", "cc");
467 #endif
469 if (eax)
470 *eax = vec[0];
471 if (ebx)
472 *ebx = vec[1];
473 if (ecx)
474 *ecx = vec[2];
475 if (edx)
476 *edx = vec[3];
480 static void do_cpuid_ent(struct kvm_cpuid_entry *e, uint32_t function,
481 CPUState *env)
483 env->regs[R_EAX] = function;
484 qemu_kvm_cpuid_on_env(env);
485 e->function = function;
486 e->eax = env->regs[R_EAX];
487 e->ebx = env->regs[R_EBX];
488 e->ecx = env->regs[R_ECX];
489 e->edx = env->regs[R_EDX];
490 if (function == 0x80000001) {
491 uint32_t h_eax, h_edx;
493 host_cpuid(function, &h_eax, NULL, NULL, &h_edx);
495 // long mode
496 if ((h_edx & 0x20000000) == 0 || !lm_capable_kernel)
497 e->edx &= ~0x20000000u;
498 // syscall
499 if ((h_edx & 0x00000800) == 0)
500 e->edx &= ~0x00000800u;
501 // nx
502 if ((h_edx & 0x00100000) == 0)
503 e->edx &= ~0x00100000u;
504 // svm
505 if (e->ecx & 4)
506 e->ecx &= ~4u;
508 // sysenter isn't supported on compatibility mode on AMD. and syscall
509 // isn't supported in compatibility mode on Intel. so advertise the
510 // actuall cpu, and say goodbye to migration between different vendors
511 // is you use compatibility mode.
512 if (function == 0) {
513 uint32_t bcd[3];
515 host_cpuid(0, NULL, &bcd[0], &bcd[1], &bcd[2]);
516 e->ebx = bcd[0];
517 e->ecx = bcd[1];
518 e->edx = bcd[2];
520 // "Hypervisor present" bit for Microsoft guests
521 if (function == 1)
522 e->ecx |= (1u << 31);
524 // 3dnow isn't properly emulated yet
525 if (function == 0x80000001)
526 e->edx &= ~0xc0000000;
529 struct kvm_para_features {
530 int cap;
531 int feature;
532 } para_features[] = {
533 #ifdef KVM_CAP_CLOCKSOURCE
534 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
535 #endif
536 #ifdef KVM_CAP_NOP_IO_DELAY
537 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
538 #endif
539 #ifdef KVM_CAP_PV_MMU
540 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
541 #endif
542 #ifdef KVM_CAP_CR3_CACHE
543 { KVM_CAP_CR3_CACHE, KVM_FEATURE_CR3_CACHE },
544 #endif
545 { -1, -1 }
548 static int get_para_features(kvm_context_t kvm_context)
550 int i, features = 0;
552 for (i = 0; i < ARRAY_SIZE(para_features)-1; i++) {
553 if (kvm_check_extension(kvm_context, para_features[i].cap))
554 features |= (1 << para_features[i].feature);
557 return features;
560 int kvm_arch_qemu_init_env(CPUState *cenv)
562 struct kvm_cpuid_entry cpuid_ent[100];
563 #ifdef KVM_CPUID_SIGNATURE
564 struct kvm_cpuid_entry *pv_ent;
565 uint32_t signature[3];
566 #endif
567 int cpuid_nent = 0;
568 CPUState copy;
569 uint32_t i, limit;
571 copy = *cenv;
573 #ifdef KVM_CPUID_SIGNATURE
574 /* Paravirtualization CPUIDs */
575 memcpy(signature, "KVMKVMKVM", 12);
576 pv_ent = &cpuid_ent[cpuid_nent++];
577 memset(pv_ent, 0, sizeof(*pv_ent));
578 pv_ent->function = KVM_CPUID_SIGNATURE;
579 pv_ent->eax = 0;
580 pv_ent->ebx = signature[0];
581 pv_ent->ecx = signature[1];
582 pv_ent->edx = signature[2];
584 pv_ent = &cpuid_ent[cpuid_nent++];
585 memset(pv_ent, 0, sizeof(*pv_ent));
586 pv_ent->function = KVM_CPUID_FEATURES;
587 pv_ent->eax = get_para_features(kvm_context);
588 #endif
590 copy.regs[R_EAX] = 0;
591 qemu_kvm_cpuid_on_env(&copy);
592 limit = copy.regs[R_EAX];
594 for (i = 0; i <= limit; ++i)
595 do_cpuid_ent(&cpuid_ent[cpuid_nent++], i, &copy);
597 copy.regs[R_EAX] = 0x80000000;
598 qemu_kvm_cpuid_on_env(&copy);
599 limit = copy.regs[R_EAX];
601 for (i = 0x80000000; i <= limit; ++i)
602 do_cpuid_ent(&cpuid_ent[cpuid_nent++], i, &copy);
604 kvm_setup_cpuid(kvm_context, cenv->cpu_index, cpuid_nent, cpuid_ent);
605 return 0;
608 int kvm_arch_halt(void *opaque, int vcpu)
610 CPUState *env = cpu_single_env;
612 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
613 (env->eflags & IF_MASK)) &&
614 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
615 env->halted = 1;
616 env->exception_index = EXCP_HLT;
618 return 1;
621 void kvm_arch_pre_kvm_run(void *opaque, int vcpu)
623 CPUState *env = cpu_single_env;
625 if (!kvm_irqchip_in_kernel(kvm_context))
626 kvm_set_cr8(kvm_context, vcpu, cpu_get_apic_tpr(env));
629 void kvm_arch_post_kvm_run(void *opaque, int vcpu)
631 CPUState *env = qemu_kvm_cpu_env(vcpu);
632 cpu_single_env = env;
634 env->eflags = kvm_get_interrupt_flag(kvm_context, vcpu)
635 ? env->eflags | IF_MASK : env->eflags & ~IF_MASK;
637 cpu_set_apic_tpr(env, kvm_get_cr8(kvm_context, vcpu));
638 cpu_set_apic_base(env, kvm_get_apic_base(kvm_context, vcpu));
641 int kvm_arch_has_work(CPUState *env)
643 if (((env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT)) &&
644 (env->eflags & IF_MASK)) ||
645 (env->interrupt_request & CPU_INTERRUPT_NMI))
646 return 1;
647 return 0;
650 int kvm_arch_try_push_interrupts(void *opaque)
652 CPUState *env = cpu_single_env;
653 int r, irq;
655 if (kvm_is_ready_for_interrupt_injection(kvm_context, env->cpu_index) &&
656 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
657 (env->eflags & IF_MASK)) {
658 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
659 irq = cpu_get_pic_interrupt(env);
660 if (irq >= 0) {
661 r = kvm_inject_irq(kvm_context, env->cpu_index, irq);
662 if (r < 0)
663 printf("cpu %d fail inject %x\n", env->cpu_index, irq);
667 return (env->interrupt_request & CPU_INTERRUPT_HARD) != 0;
670 int kvm_arch_try_push_nmi(void *opaque)
672 CPUState *env = cpu_single_env;
673 int r;
675 if (likely(!(env->interrupt_request & CPU_INTERRUPT_NMI)))
676 return 0;
678 if (kvm_is_ready_for_nmi_injection(kvm_context, env->cpu_index)) {
679 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
680 r = kvm_inject_nmi(kvm_context, env->cpu_index);
681 if (r < 0)
682 printf("cpu %d fail inject NMI\n", env->cpu_index);
685 return (env->interrupt_request & CPU_INTERRUPT_NMI) != 0;
688 void kvm_arch_update_regs_for_sipi(CPUState *env)
690 SegmentCache cs = env->segs[R_CS];
692 kvm_arch_save_regs(env);
693 env->segs[R_CS] = cs;
694 env->eip = 0;
695 kvm_arch_load_regs(env);
698 int handle_tpr_access(void *opaque, int vcpu,
699 uint64_t rip, int is_write)
701 kvm_tpr_access_report(cpu_single_env, rip, is_write);
702 return 0;
705 void kvm_arch_cpu_reset(CPUState *env)
707 kvm_arch_load_regs(env);
708 if (env->cpu_index != 0) {
709 if (kvm_irqchip_in_kernel(kvm_context)) {
710 #ifdef KVM_CAP_MP_STATE
711 kvm_reset_mpstate(kvm_context, env->cpu_index);
712 #endif
713 } else {
714 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
715 env->halted = 1;
716 env->exception_index = EXCP_HLT;