Fix ia64 breakage due to sipi changes
[qemu-kvm/fedora.git] / qemu-kvm.c
blobc5f3f29f91bf78ee093d3fa147d7ffc2f077acc4
1 /*
2 * qemu/kvm integration
4 * Copyright (C) 2006-2008 Qumranet Technologies
6 * Licensed under the terms of the GNU GPL version 2 or higher.
7 */
8 #include "config.h"
9 #include "config-host.h"
11 int kvm_allowed = 1;
12 int kvm_irqchip = 1;
13 int kvm_pit = 1;
15 #include <assert.h>
16 #include <string.h>
17 #include "hw/hw.h"
18 #include "sysemu.h"
19 #include "qemu-common.h"
20 #include "console.h"
21 #include "block.h"
22 #include "compatfd.h"
24 #include "qemu-kvm.h"
25 #include <libkvm.h>
26 #include <pthread.h>
27 #include <sys/utsname.h>
28 #include <sys/syscall.h>
29 #include <sys/mman.h>
31 #define bool _Bool
32 #define false 0
33 #define true 1
35 extern void perror(const char *s);
37 kvm_context_t kvm_context;
39 extern int smp_cpus;
41 pthread_mutex_t qemu_mutex = PTHREAD_MUTEX_INITIALIZER;
42 pthread_cond_t qemu_vcpu_cond = PTHREAD_COND_INITIALIZER;
43 pthread_cond_t qemu_system_cond = PTHREAD_COND_INITIALIZER;
44 pthread_cond_t qemu_pause_cond = PTHREAD_COND_INITIALIZER;
45 pthread_cond_t qemu_work_cond = PTHREAD_COND_INITIALIZER;
46 __thread struct vcpu_info *vcpu;
48 static int qemu_system_ready;
50 #define SIG_IPI (SIGRTMIN+4)
52 struct qemu_kvm_work_item {
53 struct qemu_kvm_work_item *next;
54 void (*func)(void *data);
55 void *data;
56 bool done;
59 struct vcpu_info {
60 CPUState *env;
61 int sipi_needed;
62 int init;
63 pthread_t thread;
64 int signalled;
65 int stop;
66 int stopped;
67 int created;
68 struct qemu_kvm_work_item *queued_work_first, *queued_work_last;
69 } vcpu_info[256];
71 pthread_t io_thread;
72 static int io_thread_fd = -1;
73 static int io_thread_sigfd = -1;
75 static int kvm_debug_stop_requested;
77 static inline unsigned long kvm_get_thread_id(void)
79 return syscall(SYS_gettid);
82 static void qemu_cond_wait(pthread_cond_t *cond)
84 CPUState *env = cpu_single_env;
85 static const struct timespec ts = {
86 .tv_sec = 0,
87 .tv_nsec = 100000,
90 pthread_cond_timedwait(cond, &qemu_mutex, &ts);
91 cpu_single_env = env;
94 CPUState *qemu_kvm_cpu_env(int index)
96 return vcpu_info[index].env;
99 static void sig_ipi_handler(int n)
103 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
105 struct vcpu_info *vi = &vcpu_info[env->cpu_index];
106 struct qemu_kvm_work_item wi;
108 if (vi == vcpu) {
109 func(data);
110 return;
113 wi.func = func;
114 wi.data = data;
115 if (!vi->queued_work_first)
116 vi->queued_work_first = &wi;
117 else
118 vi->queued_work_last->next = &wi;
119 vi->queued_work_last = &wi;
120 wi.next = NULL;
121 wi.done = false;
123 pthread_kill(vi->thread, SIG_IPI);
124 while (!wi.done)
125 qemu_cond_wait(&qemu_work_cond);
128 static void inject_interrupt(void *data)
130 cpu_interrupt(vcpu->env, (int)data);
133 void kvm_inject_interrupt(CPUState *env, int mask)
135 on_vcpu(env, inject_interrupt, (void *)mask);
138 void kvm_update_interrupt_request(CPUState *env)
140 int signal = 0;
142 if (env) {
143 if (!vcpu)
144 signal = 1;
145 if (vcpu && env != vcpu->env && !vcpu_info[env->cpu_index].signalled)
146 signal = 1;
148 if (signal) {
149 vcpu_info[env->cpu_index].signalled = 1;
150 if (vcpu_info[env->cpu_index].thread)
151 pthread_kill(vcpu_info[env->cpu_index].thread, SIG_IPI);
156 void kvm_update_after_sipi(CPUState *env)
158 vcpu_info[env->cpu_index].sipi_needed = 1;
159 kvm_update_interrupt_request(env);
162 void kvm_apic_init(CPUState *env)
164 if (env->cpu_index != 0)
165 vcpu_info[env->cpu_index].init = 1;
166 kvm_update_interrupt_request(env);
169 #include <signal.h>
171 static int try_push_interrupts(void *opaque)
173 return kvm_arch_try_push_interrupts(opaque);
176 static int try_push_nmi(void *opaque)
178 return kvm_arch_try_push_nmi(opaque);
181 static void post_kvm_run(void *opaque, int vcpu)
184 pthread_mutex_lock(&qemu_mutex);
185 kvm_arch_post_kvm_run(opaque, vcpu);
188 static int pre_kvm_run(void *opaque, int vcpu)
190 CPUState *env = qemu_kvm_cpu_env(vcpu);
192 kvm_arch_pre_kvm_run(opaque, vcpu);
194 if (env->interrupt_request & CPU_INTERRUPT_EXIT)
195 return 1;
196 pthread_mutex_unlock(&qemu_mutex);
197 return 0;
200 static void kvm_do_load_registers(void *_env)
202 CPUState *env = _env;
204 kvm_arch_load_regs(env);
207 void kvm_load_registers(CPUState *env)
209 if (kvm_enabled() && qemu_system_ready)
210 on_vcpu(env, kvm_do_load_registers, env);
213 static void kvm_do_save_registers(void *_env)
215 CPUState *env = _env;
217 kvm_arch_save_regs(env);
220 void kvm_save_registers(CPUState *env)
222 if (kvm_enabled())
223 on_vcpu(env, kvm_do_save_registers, env);
226 int kvm_cpu_exec(CPUState *env)
228 int r;
230 r = kvm_run(kvm_context, env->cpu_index);
231 if (r < 0) {
232 printf("kvm_run returned %d\n", r);
233 exit(1);
236 return 0;
239 extern int vm_running;
241 static int has_work(CPUState *env)
243 if (!vm_running || (env && vcpu_info[env->cpu_index].stopped))
244 return 0;
245 if (!env->halted)
246 return 1;
247 return kvm_arch_has_work(env);
250 static void flush_queued_work(CPUState *env)
252 struct vcpu_info *vi = &vcpu_info[env->cpu_index];
253 struct qemu_kvm_work_item *wi;
255 if (!vi->queued_work_first)
256 return;
258 while ((wi = vi->queued_work_first)) {
259 vi->queued_work_first = wi->next;
260 wi->func(wi->data);
261 wi->done = true;
263 vi->queued_work_last = NULL;
264 pthread_cond_broadcast(&qemu_work_cond);
267 static void kvm_main_loop_wait(CPUState *env, int timeout)
269 struct timespec ts;
270 int r, e;
271 siginfo_t siginfo;
272 sigset_t waitset;
274 pthread_mutex_unlock(&qemu_mutex);
276 ts.tv_sec = timeout / 1000;
277 ts.tv_nsec = (timeout % 1000) * 1000000;
278 sigemptyset(&waitset);
279 sigaddset(&waitset, SIG_IPI);
281 r = sigtimedwait(&waitset, &siginfo, &ts);
282 e = errno;
284 pthread_mutex_lock(&qemu_mutex);
286 if (r == -1 && !(e == EAGAIN || e == EINTR)) {
287 printf("sigtimedwait: %s\n", strerror(e));
288 exit(1);
291 cpu_single_env = env;
292 flush_queued_work(env);
294 if (vcpu_info[env->cpu_index].stop) {
295 vcpu_info[env->cpu_index].stop = 0;
296 vcpu_info[env->cpu_index].stopped = 1;
297 pthread_cond_signal(&qemu_pause_cond);
300 vcpu_info[env->cpu_index].signalled = 0;
303 static int all_threads_paused(void)
305 int i;
307 for (i = 0; i < smp_cpus; ++i)
308 if (vcpu_info[i].stop)
309 return 0;
310 return 1;
313 static void pause_all_threads(void)
315 int i;
317 assert(!cpu_single_env);
319 for (i = 0; i < smp_cpus; ++i) {
320 vcpu_info[i].stop = 1;
321 pthread_kill(vcpu_info[i].thread, SIG_IPI);
323 while (!all_threads_paused())
324 qemu_cond_wait(&qemu_pause_cond);
327 static void resume_all_threads(void)
329 int i;
331 assert(!cpu_single_env);
333 for (i = 0; i < smp_cpus; ++i) {
334 vcpu_info[i].stop = 0;
335 vcpu_info[i].stopped = 0;
336 pthread_kill(vcpu_info[i].thread, SIG_IPI);
340 static void kvm_vm_state_change_handler(void *context, int running)
342 if (running)
343 resume_all_threads();
344 else
345 pause_all_threads();
348 static void update_regs_for_sipi(CPUState *env)
350 kvm_arch_update_regs_for_sipi(env);
351 vcpu_info[env->cpu_index].sipi_needed = 0;
354 static void update_regs_for_init(CPUState *env)
356 #ifdef TARGET_I386
357 SegmentCache cs = env->segs[R_CS];
358 #endif
360 cpu_reset(env);
362 #ifdef TARGET_I386
363 /* restore SIPI vector */
364 if(vcpu_info[env->cpu_index].sipi_needed)
365 env->segs[R_CS] = cs;
367 vcpu_info[env->cpu_index].init = 0;
368 #endif
369 kvm_arch_load_regs(env);
372 static void setup_kernel_sigmask(CPUState *env)
374 sigset_t set;
376 sigemptyset(&set);
377 sigaddset(&set, SIGUSR2);
378 sigaddset(&set, SIGIO);
379 sigaddset(&set, SIGALRM);
380 sigprocmask(SIG_BLOCK, &set, NULL);
382 sigprocmask(SIG_BLOCK, NULL, &set);
383 sigdelset(&set, SIG_IPI);
385 kvm_set_signal_mask(kvm_context, env->cpu_index, &set);
388 void qemu_kvm_system_reset(void)
390 int i;
392 pause_all_threads();
394 qemu_system_reset();
396 for (i = 0; i < smp_cpus; ++i)
397 kvm_arch_cpu_reset(vcpu_info[i].env);
399 resume_all_threads();
402 static int kvm_main_loop_cpu(CPUState *env)
404 struct vcpu_info *info = &vcpu_info[env->cpu_index];
406 setup_kernel_sigmask(env);
408 pthread_mutex_lock(&qemu_mutex);
409 if (kvm_irqchip_in_kernel(kvm_context))
410 env->halted = 0;
412 kvm_qemu_init_env(env);
413 #ifdef TARGET_I386
414 kvm_tpr_vcpu_start(env);
415 #endif
417 cpu_single_env = env;
418 kvm_load_registers(env);
420 while (1) {
421 while (!has_work(env))
422 kvm_main_loop_wait(env, 1000);
423 if (env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_NMI))
424 env->halted = 0;
425 if (!kvm_irqchip_in_kernel(kvm_context)) {
426 if (info->init)
427 update_regs_for_init(env);
428 if (info->sipi_needed)
429 update_regs_for_sipi(env);
431 if (!env->halted && !info->init)
432 kvm_cpu_exec(env);
433 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
434 kvm_main_loop_wait(env, 0);
436 pthread_mutex_unlock(&qemu_mutex);
437 return 0;
440 static void *ap_main_loop(void *_env)
442 CPUState *env = _env;
443 sigset_t signals;
445 vcpu = &vcpu_info[env->cpu_index];
446 vcpu->env = env;
447 vcpu->env->thread_id = kvm_get_thread_id();
448 sigfillset(&signals);
449 sigprocmask(SIG_BLOCK, &signals, NULL);
450 kvm_create_vcpu(kvm_context, env->cpu_index);
451 kvm_qemu_init_env(env);
453 /* signal VCPU creation */
454 pthread_mutex_lock(&qemu_mutex);
455 vcpu->created = 1;
456 pthread_cond_signal(&qemu_vcpu_cond);
458 /* and wait for machine initialization */
459 while (!qemu_system_ready)
460 qemu_cond_wait(&qemu_system_cond);
461 pthread_mutex_unlock(&qemu_mutex);
463 kvm_main_loop_cpu(env);
464 return NULL;
467 void kvm_init_new_ap(int cpu, CPUState *env)
469 pthread_create(&vcpu_info[cpu].thread, NULL, ap_main_loop, env);
471 while (vcpu_info[cpu].created == 0)
472 qemu_cond_wait(&qemu_vcpu_cond);
475 int kvm_init_ap(void)
477 #ifdef TARGET_I386
478 kvm_tpr_opt_setup();
479 #endif
480 qemu_add_vm_change_state_handler(kvm_vm_state_change_handler, NULL);
482 signal(SIG_IPI, sig_ipi_handler);
483 return 0;
486 void qemu_kvm_notify_work(void)
488 uint64_t value = 1;
489 char buffer[8];
490 size_t offset = 0;
492 if (io_thread_fd == -1)
493 return;
495 memcpy(buffer, &value, sizeof(value));
497 while (offset < 8) {
498 ssize_t len;
500 len = write(io_thread_fd, buffer + offset, 8 - offset);
501 if (len == -1 && errno == EINTR)
502 continue;
504 if (len <= 0)
505 break;
507 offset += len;
510 if (offset != 8)
511 fprintf(stderr, "failed to notify io thread\n");
514 /* If we have signalfd, we mask out the signals we want to handle and then
515 * use signalfd to listen for them. We rely on whatever the current signal
516 * handler is to dispatch the signals when we receive them.
519 static void sigfd_handler(void *opaque)
521 int fd = (unsigned long)opaque;
522 struct qemu_signalfd_siginfo info;
523 struct sigaction action;
524 ssize_t len;
526 while (1) {
527 do {
528 len = read(fd, &info, sizeof(info));
529 } while (len == -1 && errno == EINTR);
531 if (len == -1 && errno == EAGAIN)
532 break;
534 if (len != sizeof(info)) {
535 printf("read from sigfd returned %ld: %m\n", len);
536 return;
539 sigaction(info.ssi_signo, NULL, &action);
540 if (action.sa_handler)
541 action.sa_handler(info.ssi_signo);
546 /* Used to break IO thread out of select */
547 static void io_thread_wakeup(void *opaque)
549 int fd = (unsigned long)opaque;
550 char buffer[8];
551 size_t offset = 0;
553 while (offset < 8) {
554 ssize_t len;
556 len = read(fd, buffer + offset, 8 - offset);
557 if (len == -1 && errno == EINTR)
558 continue;
560 if (len <= 0)
561 break;
563 offset += len;
567 int kvm_main_loop(void)
569 int fds[2];
570 sigset_t mask;
571 int sigfd;
573 io_thread = pthread_self();
574 qemu_system_ready = 1;
576 if (qemu_eventfd(fds) == -1) {
577 fprintf(stderr, "failed to create eventfd\n");
578 return -errno;
581 qemu_set_fd_handler2(fds[0], NULL, io_thread_wakeup, NULL,
582 (void *)(unsigned long)fds[0]);
584 io_thread_fd = fds[1];
586 sigemptyset(&mask);
587 sigaddset(&mask, SIGIO);
588 sigaddset(&mask, SIGALRM);
589 sigprocmask(SIG_BLOCK, &mask, NULL);
591 sigfd = qemu_signalfd(&mask);
592 if (sigfd == -1) {
593 fprintf(stderr, "failed to create signalfd\n");
594 return -errno;
597 fcntl(sigfd, F_SETFL, O_NONBLOCK);
599 qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL,
600 (void *)(unsigned long)sigfd);
602 pthread_cond_broadcast(&qemu_system_cond);
604 io_thread_sigfd = sigfd;
605 cpu_single_env = NULL;
607 while (1) {
608 main_loop_wait(1000);
609 if (qemu_shutdown_requested())
610 break;
611 else if (qemu_powerdown_requested())
612 qemu_system_powerdown();
613 else if (qemu_reset_requested())
614 qemu_kvm_system_reset();
615 else if (kvm_debug_stop_requested) {
616 vm_stop(EXCP_DEBUG);
617 kvm_debug_stop_requested = 0;
621 pause_all_threads();
622 pthread_mutex_unlock(&qemu_mutex);
624 return 0;
627 static int kvm_debug(void *opaque, int vcpu)
629 kvm_debug_stop_requested = 1;
630 vcpu_info[vcpu].stopped = 1;
631 return 1;
634 static int kvm_inb(void *opaque, uint16_t addr, uint8_t *data)
636 *data = cpu_inb(0, addr);
637 return 0;
640 static int kvm_inw(void *opaque, uint16_t addr, uint16_t *data)
642 *data = cpu_inw(0, addr);
643 return 0;
646 static int kvm_inl(void *opaque, uint16_t addr, uint32_t *data)
648 *data = cpu_inl(0, addr);
649 return 0;
652 #define PM_IO_BASE 0xb000
654 static int kvm_outb(void *opaque, uint16_t addr, uint8_t data)
656 if (addr == 0xb2) {
657 switch (data) {
658 case 0: {
659 cpu_outb(0, 0xb3, 0);
660 break;
662 case 0xf0: {
663 unsigned x;
665 /* enable acpi */
666 x = cpu_inw(0, PM_IO_BASE + 4);
667 x &= ~1;
668 cpu_outw(0, PM_IO_BASE + 4, x);
669 break;
671 case 0xf1: {
672 unsigned x;
674 /* enable acpi */
675 x = cpu_inw(0, PM_IO_BASE + 4);
676 x |= 1;
677 cpu_outw(0, PM_IO_BASE + 4, x);
678 break;
680 default:
681 break;
683 return 0;
685 cpu_outb(0, addr, data);
686 return 0;
689 static int kvm_outw(void *opaque, uint16_t addr, uint16_t data)
691 cpu_outw(0, addr, data);
692 return 0;
695 static int kvm_outl(void *opaque, uint16_t addr, uint32_t data)
697 cpu_outl(0, addr, data);
698 return 0;
701 static int kvm_mmio_read(void *opaque, uint64_t addr, uint8_t *data, int len)
703 cpu_physical_memory_rw(addr, data, len, 0);
704 return 0;
707 static int kvm_mmio_write(void *opaque, uint64_t addr, uint8_t *data, int len)
709 cpu_physical_memory_rw(addr, data, len, 1);
710 return 0;
713 static int kvm_io_window(void *opaque)
715 return 1;
719 static int kvm_halt(void *opaque, int vcpu)
721 return kvm_arch_halt(opaque, vcpu);
724 static int kvm_shutdown(void *opaque, int vcpu)
726 /* stop the current vcpu from going back to guest mode */
727 vcpu_info[cpu_single_env->cpu_index].stopped = 1;
729 qemu_system_reset_request();
730 return 1;
733 static struct kvm_callbacks qemu_kvm_ops = {
734 .debug = kvm_debug,
735 .inb = kvm_inb,
736 .inw = kvm_inw,
737 .inl = kvm_inl,
738 .outb = kvm_outb,
739 .outw = kvm_outw,
740 .outl = kvm_outl,
741 .mmio_read = kvm_mmio_read,
742 .mmio_write = kvm_mmio_write,
743 .halt = kvm_halt,
744 .shutdown = kvm_shutdown,
745 .io_window = kvm_io_window,
746 .try_push_interrupts = try_push_interrupts,
747 .try_push_nmi = try_push_nmi,
748 .post_kvm_run = post_kvm_run,
749 .pre_kvm_run = pre_kvm_run,
750 #ifdef TARGET_I386
751 .tpr_access = handle_tpr_access,
752 #endif
753 #ifdef TARGET_PPC
754 .powerpc_dcr_read = handle_powerpc_dcr_read,
755 .powerpc_dcr_write = handle_powerpc_dcr_write,
756 #endif
759 int kvm_qemu_init()
761 /* Try to initialize kvm */
762 kvm_context = kvm_init(&qemu_kvm_ops, cpu_single_env);
763 if (!kvm_context) {
764 return -1;
766 pthread_mutex_lock(&qemu_mutex);
768 return 0;
771 int kvm_qemu_create_context(void)
773 int r;
774 if (!kvm_irqchip) {
775 kvm_disable_irqchip_creation(kvm_context);
777 if (!kvm_pit) {
778 kvm_disable_pit_creation(kvm_context);
780 if (kvm_create(kvm_context, phys_ram_size, (void**)&phys_ram_base) < 0) {
781 kvm_qemu_destroy();
782 return -1;
784 r = kvm_arch_qemu_create_context();
785 if(r <0)
786 kvm_qemu_destroy();
787 return 0;
790 void kvm_qemu_destroy(void)
792 kvm_finalize(kvm_context);
795 void kvm_cpu_register_physical_memory(target_phys_addr_t start_addr,
796 unsigned long size,
797 unsigned long phys_offset)
799 int r = 0;
800 unsigned long area_flags = phys_offset & ~TARGET_PAGE_MASK;
802 phys_offset &= ~IO_MEM_ROM;
804 if (area_flags == IO_MEM_UNASSIGNED) {
805 kvm_unregister_memory_area(kvm_context, start_addr, size);
806 return;
809 r = kvm_is_containing_region(kvm_context, start_addr, size);
810 if (r)
811 return;
813 if (area_flags >= TLB_MMIO)
814 return;
816 r = kvm_register_phys_mem(kvm_context, start_addr,
817 phys_ram_base + phys_offset,
818 size, 0);
819 if (r < 0) {
820 printf("kvm_cpu_register_physical_memory: failed\n");
821 exit(1);
823 return;
826 void kvm_cpu_unregister_physical_memory(target_phys_addr_t start_addr,
827 target_phys_addr_t size,
828 unsigned long phys_offset)
830 kvm_unregister_memory_area(kvm_context, start_addr, size);
833 int kvm_setup_guest_memory(void *area, unsigned long size)
835 int ret = 0;
837 #ifdef MADV_DONTFORK
838 if (kvm_enabled() && !kvm_has_sync_mmu(kvm_context))
839 ret = madvise(area, size, MADV_DONTFORK);
840 #endif
842 if (ret)
843 perror ("madvise");
845 return ret;
848 int kvm_qemu_check_extension(int ext)
850 return kvm_check_extension(kvm_context, ext);
853 int kvm_qemu_init_env(CPUState *cenv)
855 return kvm_arch_qemu_init_env(cenv);
858 struct kvm_guest_debug_data {
859 struct kvm_debug_guest dbg;
860 int err;
863 void kvm_invoke_guest_debug(void *data)
865 struct kvm_guest_debug_data *dbg_data = data;
867 dbg_data->err = kvm_guest_debug(kvm_context, cpu_single_env->cpu_index,
868 &dbg_data->dbg);
871 int kvm_update_debugger(CPUState *env)
873 struct kvm_guest_debug_data data;
874 int i;
876 memset(data.dbg.breakpoints, 0, sizeof(data.dbg.breakpoints));
878 data.dbg.enabled = 0;
879 if (env->nb_breakpoints || env->singlestep_enabled) {
880 data.dbg.enabled = 1;
881 for (i = 0; i < 4 && i < env->nb_breakpoints; ++i) {
882 data.dbg.breakpoints[i].enabled = 1;
883 data.dbg.breakpoints[i].address = env->breakpoints[i];
885 data.dbg.singlestep = env->singlestep_enabled;
887 on_vcpu(env, kvm_invoke_guest_debug, &data);
888 return data.err;
893 * dirty pages logging
895 /* FIXME: use unsigned long pointer instead of unsigned char */
896 unsigned char *kvm_dirty_bitmap = NULL;
897 int kvm_physical_memory_set_dirty_tracking(int enable)
899 int r = 0;
901 if (!kvm_enabled())
902 return 0;
904 if (enable) {
905 if (!kvm_dirty_bitmap) {
906 unsigned bitmap_size = BITMAP_SIZE(phys_ram_size);
907 kvm_dirty_bitmap = qemu_malloc(bitmap_size);
908 if (kvm_dirty_bitmap == NULL) {
909 perror("Failed to allocate dirty pages bitmap");
910 r=-1;
912 else {
913 r = kvm_dirty_pages_log_enable_all(kvm_context);
917 else {
918 if (kvm_dirty_bitmap) {
919 r = kvm_dirty_pages_log_reset(kvm_context);
920 qemu_free(kvm_dirty_bitmap);
921 kvm_dirty_bitmap = NULL;
924 return r;
927 /* get kvm's dirty pages bitmap and update qemu's */
928 int kvm_get_dirty_pages_log_range(unsigned long start_addr,
929 unsigned char *bitmap,
930 unsigned int offset,
931 unsigned long mem_size)
933 unsigned int i, j, n=0;
934 unsigned char c;
935 unsigned page_number, addr, addr1;
936 unsigned int len = ((mem_size/TARGET_PAGE_SIZE) + 7) / 8;
939 * bitmap-traveling is faster than memory-traveling (for addr...)
940 * especially when most of the memory is not dirty.
942 for (i=0; i<len; i++) {
943 c = bitmap[i];
944 while (c>0) {
945 j = ffsl(c) - 1;
946 c &= ~(1u<<j);
947 page_number = i * 8 + j;
948 addr1 = page_number * TARGET_PAGE_SIZE;
949 addr = offset + addr1;
950 cpu_physical_memory_set_dirty(addr);
951 n++;
954 return 0;
956 int kvm_get_dirty_bitmap_cb(unsigned long start, unsigned long len,
957 void *bitmap, void *opaque)
959 return kvm_get_dirty_pages_log_range(start, bitmap, start, len);
963 * get kvm's dirty pages bitmap and update qemu's
964 * we only care about physical ram, which resides in slots 0 and 3
966 int kvm_update_dirty_pages_log(void)
968 int r = 0;
971 r = kvm_get_dirty_pages_range(kvm_context, 0, phys_ram_size,
972 kvm_dirty_bitmap, NULL,
973 kvm_get_dirty_bitmap_cb);
974 return r;
977 void kvm_qemu_log_memory(target_phys_addr_t start, target_phys_addr_t size,
978 int log)
980 if (log)
981 kvm_dirty_pages_log_enable_slot(kvm_context, start, size);
982 else
983 kvm_dirty_pages_log_disable_slot(kvm_context, start, size);
986 int kvm_get_phys_ram_page_bitmap(unsigned char *bitmap)
988 unsigned int bsize = BITMAP_SIZE(phys_ram_size);
989 unsigned int brsize = BITMAP_SIZE(ram_size);
990 unsigned int extra_pages = (phys_ram_size - ram_size) / TARGET_PAGE_SIZE;
991 unsigned int extra_bytes = (extra_pages +7)/8;
992 unsigned int hole_start = BITMAP_SIZE(0xa0000);
993 unsigned int hole_end = BITMAP_SIZE(0xc0000);
995 memset(bitmap, 0xFF, brsize + extra_bytes);
996 memset(bitmap + hole_start, 0, hole_end - hole_start);
997 memset(bitmap + brsize + extra_bytes, 0, bsize - brsize - extra_bytes);
999 return 0;
1002 #ifdef KVM_CAP_IRQCHIP
1004 int kvm_set_irq(int irq, int level)
1006 return kvm_set_irq_level(kvm_context, irq, level);
1009 #endif
1011 int qemu_kvm_get_dirty_pages(unsigned long phys_addr, void *buf)
1013 return kvm_get_dirty_pages(kvm_context, phys_addr, buf);
1016 void *kvm_cpu_create_phys_mem(target_phys_addr_t start_addr,
1017 unsigned long size, int log, int writable)
1019 return kvm_create_phys_mem(kvm_context, start_addr, size, log, writable);
1022 void kvm_cpu_destroy_phys_mem(target_phys_addr_t start_addr,
1023 unsigned long size)
1025 kvm_destroy_phys_mem(kvm_context, start_addr, size);
1028 void kvm_mutex_unlock(void)
1030 assert(!cpu_single_env);
1031 pthread_mutex_unlock(&qemu_mutex);
1034 void kvm_mutex_lock(void)
1036 pthread_mutex_lock(&qemu_mutex);
1037 cpu_single_env = NULL;
1040 int qemu_kvm_register_coalesced_mmio(target_phys_addr_t addr, unsigned int size)
1042 return kvm_register_coalesced_mmio(kvm_context, addr, size);
1045 int qemu_kvm_unregister_coalesced_mmio(target_phys_addr_t addr,
1046 unsigned int size)
1048 return kvm_unregister_coalesced_mmio(kvm_context, addr, size);