Fix ia64 breakage due to sipi changes
[qemu-kvm/fedora.git] / qemu-doc.texi
blob3ec135e6f386ffbd2f77e9c5c72f39edc0c1a078
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
19 @ifnottex
20 @node Top
21 @top
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
34 @contents
36 @node Introduction
37 @chapter Introduction
39 @menu
40 * intro_features:: Features
41 @end menu
43 @node intro_features
44 @section Features
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
49 QEMU has two operating modes:
51 @itemize @minus
53 @item
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
59 @item
60 User mode emulation. In this mode, QEMU can launch
61 processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
65 @end itemize
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance.
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 BW PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78 @item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit and 64-bit MIPS processors)
80 @item MIPS Magnum (64-bit MIPS processor)
81 @item ARM Integrator/CP (ARM)
82 @item ARM Versatile baseboard (ARM)
83 @item ARM RealView Emulation baseboard (ARM)
84 @item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
85 @item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86 @item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87 @item Freescale MCF5208EVB (ColdFire V2).
88 @item Arnewsh MCF5206 evaluation board (ColdFire V2).
89 @item Palm Tungsten|E PDA (OMAP310 processor)
90 @item N800 and N810 tablets (OMAP2420 processor)
91 @item MusicPal (MV88W8618 ARM processor)
92 @end itemize
94 For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
96 @node Installation
97 @chapter Installation
99 If you want to compile QEMU yourself, see @ref{compilation}.
101 @menu
102 * install_linux::   Linux
103 * install_windows:: Windows
104 * install_mac::     Macintosh
105 @end menu
107 @node install_linux
108 @section Linux
110 If a precompiled package is available for your distribution - you just
111 have to install it. Otherwise, see @ref{compilation}.
113 @node install_windows
114 @section Windows
116 Download the experimental binary installer at
117 @url{http://www.free.oszoo.org/@/download.html}.
119 @node install_mac
120 @section Mac OS X
122 Download the experimental binary installer at
123 @url{http://www.free.oszoo.org/@/download.html}.
125 @node QEMU PC System emulator
126 @chapter QEMU PC System emulator
128 @menu
129 * pcsys_introduction:: Introduction
130 * pcsys_quickstart::   Quick Start
131 * sec_invocation::     Invocation
132 * pcsys_keys::         Keys
133 * pcsys_monitor::      QEMU Monitor
134 * disk_images::        Disk Images
135 * pcsys_network::      Network emulation
136 * direct_linux_boot::  Direct Linux Boot
137 * pcsys_usb::          USB emulation
138 * vnc_security::       VNC security
139 * gdb_usage::          GDB usage
140 * pcsys_os_specific::  Target OS specific information
141 @end menu
143 @node pcsys_introduction
144 @section Introduction
146 @c man begin DESCRIPTION
148 The QEMU PC System emulator simulates the
149 following peripherals:
151 @itemize @minus
152 @item
153 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
154 @item
155 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
156 extensions (hardware level, including all non standard modes).
157 @item
158 PS/2 mouse and keyboard
159 @item
160 2 PCI IDE interfaces with hard disk and CD-ROM support
161 @item
162 Floppy disk
163 @item
164 PCI/ISA PCI network adapters
165 @item
166 Serial ports
167 @item
168 Creative SoundBlaster 16 sound card
169 @item
170 ENSONIQ AudioPCI ES1370 sound card
171 @item
172 Intel 82801AA AC97 Audio compatible sound card
173 @item
174 Adlib(OPL2) - Yamaha YM3812 compatible chip
175 @item
176 Gravis Ultrasound GF1 sound card
177 @item
178 CS4231A compatible sound card
179 @item
180 PCI UHCI USB controller and a virtual USB hub.
181 @end itemize
183 SMP is supported with up to 255 CPUs.
185 Note that adlib, ac97, gus and cs4231a are only available when QEMU
186 was configured with --audio-card-list option containing the name(s) of
187 required card(s).
189 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
190 VGA BIOS.
192 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
194 QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
195 by Tibor "TS" Schütz.
197 CS4231A is the chip used in Windows Sound System and GUSMAX products
199 @c man end
201 @node pcsys_quickstart
202 @section Quick Start
204 Download and uncompress the linux image (@file{linux.img}) and type:
206 @example
207 qemu linux.img
208 @end example
210 Linux should boot and give you a prompt.
212 @node sec_invocation
213 @section Invocation
215 @example
216 @c man begin SYNOPSIS
217 usage: qemu [options] [@var{disk_image}]
218 @c man end
219 @end example
221 @c man begin OPTIONS
222 @var{disk_image} is a raw hard disk image for IDE hard disk 0.
224 General options:
225 @table @option
226 @item -M @var{machine}
227 Select the emulated @var{machine} (@code{-M ?} for list)
229 @item -fda @var{file}
230 @item -fdb @var{file}
231 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
232 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
234 @item -hda @var{file}
235 @item -hdb @var{file}
236 @item -hdc @var{file}
237 @item -hdd @var{file}
238 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
240 @item -cdrom @var{file}
241 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
242 @option{-cdrom} at the same time). You can use the host CD-ROM by
243 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
245 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
247 Define a new drive. Valid options are:
249 @table @code
250 @item file=@var{file}
251 This option defines which disk image (@pxref{disk_images}) to use with
252 this drive. If the filename contains comma, you must double it
253 (for instance, "file=my,,file" to use file "my,file").
254 @item if=@var{interface}
255 This option defines on which type on interface the drive is connected.
256 Available types are: ide, scsi, sd, mtd, floppy, pflash.
257 @item bus=@var{bus},unit=@var{unit}
258 These options define where is connected the drive by defining the bus number and
259 the unit id.
260 @item index=@var{index}
261 This option defines where is connected the drive by using an index in the list
262 of available connectors of a given interface type.
263 @item media=@var{media}
264 This option defines the type of the media: disk or cdrom.
265 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
266 These options have the same definition as they have in @option{-hdachs}.
267 @item snapshot=@var{snapshot}
268 @var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
269 @item cache=@var{cache}
270 @var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
271 @item format=@var{format}
272 Specify which disk @var{format} will be used rather than detecting
273 the format.  Can be used to specifiy format=raw to avoid interpreting
274 an untrusted format header.
275 @item boot=@var{boot}
276 @var{boot} if "on" enables extboot for a given drive so it can be used as a boot drive.
277 @end table
279 By default, writethrough caching is used for all block device.  This means that
280 the host page cache will be used to read and write data but write notification
281 will be sent to the guest only when the data has been reported as written by
282 the storage subsystem.
284 Writeback caching will report data writes as completed as soon as the data is
285 present in the host page cache.  This is safe as long as you trust your host.
286 If your host crashes or loses power, then the guest may experience data
287 corruption.  When using the @option{-snapshot} option, writeback caching is
288 used by default.
290 The host page can be avoided entirely with @option{cache=none}.  This will
291 attempt to do disk IO directly to the guests memory.  QEMU may still perform
292 an internal copy of the data.
294 Instead of @option{-cdrom} you can use:
295 @example
296 qemu -drive file=file,index=2,media=cdrom
297 @end example
299 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
300 use:
301 @example
302 qemu -drive file=file,index=0,media=disk
303 qemu -drive file=file,index=1,media=disk
304 qemu -drive file=file,index=2,media=disk
305 qemu -drive file=file,index=3,media=disk
306 @end example
308 You can connect a CDROM to the slave of ide0:
309 @example
310 qemu -drive file=file,if=ide,index=1,media=cdrom
311 @end example
313 If you don't specify the "file=" argument, you define an empty drive:
314 @example
315 qemu -drive if=ide,index=1,media=cdrom
316 @end example
318 You can connect a SCSI disk with unit ID 6 on the bus #0:
319 @example
320 qemu -drive file=file,if=scsi,bus=0,unit=6
321 @end example
323 To boot from a SCSI disk, one would use:
325 @example
326 qemu -drive file=file,if=scsi,boot=on
327 @end example
329 Instead of @option{-fda}, @option{-fdb}, you can use:
330 @example
331 qemu -drive file=file,index=0,if=floppy
332 qemu -drive file=file,index=1,if=floppy
333 @end example
335 By default, @var{interface} is "ide" and @var{index} is automatically
336 incremented:
337 @example
338 qemu -drive file=a -drive file=b"
339 @end example
340 is interpreted like:
341 @example
342 qemu -hda a -hdb b
343 @end example
345 @item -boot [a|c|d|n]
346 Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
347 is the default.
349 @item -snapshot
350 Write to temporary files instead of disk image files. In this case,
351 the raw disk image you use is not written back. You can however force
352 the write back by pressing @key{C-a s} (@pxref{disk_images}).
354 @item -no-fd-bootchk
355 Disable boot signature checking for floppy disks in Bochs BIOS. It may
356 be needed to boot from old floppy disks.
358 @item -m @var{megs}
359 Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
360 a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
361 gigabytes respectively.
363 @item -cpu @var{model}
364 Select CPU model (-cpu ? for list and additional feature selection)
366 @item -smp @var{n}
367 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
368 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
369 to 4.
371 @item -audio-help
373 Will show the audio subsystem help: list of drivers, tunable
374 parameters.
376 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
378 Enable audio and selected sound hardware. Use ? to print all
379 available sound hardware.
381 @example
382 qemu -soundhw sb16,adlib hda
383 qemu -soundhw es1370 hda
384 qemu -soundhw ac97 hda
385 qemu -soundhw all hda
386 qemu -soundhw ?
387 @end example
389 Note that Linux's i810_audio OSS kernel (for AC97) module might
390 require manually specifying clocking.
392 @example
393 modprobe i810_audio clocking=48000
394 @end example
396 @item -localtime
397 Set the real time clock to local time (the default is to UTC
398 time). This option is needed to have correct date in MS-DOS or
399 Windows.
401 @item -startdate @var{date}
402 Set the initial date of the real time clock. Valid format for
403 @var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
404 @code{2006-06-17}. The default value is @code{now}.
406 @item -pidfile @var{file}
407 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
408 from a script.
410 @item -daemonize
411 Daemonize the QEMU process after initialization.  QEMU will not detach from
412 standard IO until it is ready to receive connections on any of its devices.
413 This option is a useful way for external programs to launch QEMU without having
414 to cope with initialization race conditions.
416 @item -win2k-hack
417 Use it when installing Windows 2000 to avoid a disk full bug. After
418 Windows 2000 is installed, you no longer need this option (this option
419 slows down the IDE transfers).
421 @item -option-rom @var{file}
422 Load the contents of @var{file} as an option ROM.
423 This option is useful to load things like EtherBoot.
425 @item -name @var{name}
426 Sets the @var{name} of the guest.
427 This name will be display in the SDL window caption.
428 The @var{name} will also be used for the VNC server.
430 @end table
432 Display options:
433 @table @option
435 @item -nographic
437 Normally, QEMU uses SDL to display the VGA output. With this option,
438 you can totally disable graphical output so that QEMU is a simple
439 command line application. The emulated serial port is redirected on
440 the console. Therefore, you can still use QEMU to debug a Linux kernel
441 with a serial console.
443 @item -curses
445 Normally, QEMU uses SDL to display the VGA output.  With this option,
446 QEMU can display the VGA output when in text mode using a 
447 curses/ncurses interface.  Nothing is displayed in graphical mode.
449 @item -no-frame
451 Do not use decorations for SDL windows and start them using the whole
452 available screen space. This makes the using QEMU in a dedicated desktop
453 workspace more convenient.
455 @item -no-quit
457 Disable SDL window close capability.
459 @item -full-screen
460 Start in full screen.
462 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
464 Normally, QEMU uses SDL to display the VGA output.  With this option,
465 you can have QEMU listen on VNC display @var{display} and redirect the VGA
466 display over the VNC session.  It is very useful to enable the usb
467 tablet device when using this option (option @option{-usbdevice
468 tablet}). When using the VNC display, you must use the @option{-k}
469 parameter to set the keyboard layout if you are not using en-us. Valid
470 syntax for the @var{display} is
472 @table @code
474 @item @var{host}:@var{d}
476 TCP connections will only be allowed from @var{host} on display @var{d}.
477 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
478 be omitted in which case the server will accept connections from any host.
480 @item @code{unix}:@var{path}
482 Connections will be allowed over UNIX domain sockets where @var{path} is the
483 location of a unix socket to listen for connections on.
485 @item none
487 VNC is initialized but not started. The monitor @code{change} command
488 can be used to later start the VNC server.
490 @end table
492 Following the @var{display} value there may be one or more @var{option} flags
493 separated by commas. Valid options are
495 @table @code
497 @item reverse
499 Connect to a listening VNC client via a ``reverse'' connection. The
500 client is specified by the @var{display}. For reverse network
501 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
502 is a TCP port number, not a display number.
504 @item password
506 Require that password based authentication is used for client connections.
507 The password must be set separately using the @code{change} command in the
508 @ref{pcsys_monitor}
510 @item tls
512 Require that client use TLS when communicating with the VNC server. This
513 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
514 attack. It is recommended that this option be combined with either the
515 @var{x509} or @var{x509verify} options.
517 @item x509=@var{/path/to/certificate/dir}
519 Valid if @option{tls} is specified. Require that x509 credentials are used
520 for negotiating the TLS session. The server will send its x509 certificate
521 to the client. It is recommended that a password be set on the VNC server
522 to provide authentication of the client when this is used. The path following
523 this option specifies where the x509 certificates are to be loaded from.
524 See the @ref{vnc_security} section for details on generating certificates.
526 @item x509verify=@var{/path/to/certificate/dir}
528 Valid if @option{tls} is specified. Require that x509 credentials are used
529 for negotiating the TLS session. The server will send its x509 certificate
530 to the client, and request that the client send its own x509 certificate.
531 The server will validate the client's certificate against the CA certificate,
532 and reject clients when validation fails. If the certificate authority is
533 trusted, this is a sufficient authentication mechanism. You may still wish
534 to set a password on the VNC server as a second authentication layer. The
535 path following this option specifies where the x509 certificates are to
536 be loaded from. See the @ref{vnc_security} section for details on generating
537 certificates.
539 @end table
541 @item -k @var{language}
543 Use keyboard layout @var{language} (for example @code{fr} for
544 French). This option is only needed where it is not easy to get raw PC
545 keycodes (e.g. on Macs, with some X11 servers or with a VNC
546 display). You don't normally need to use it on PC/Linux or PC/Windows
547 hosts.
549 The available layouts are:
550 @example
551 ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
552 da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
553 de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
554 @end example
556 The default is @code{en-us}.
558 @end table
560 USB options:
561 @table @option
563 @item -usb
564 Enable the USB driver (will be the default soon)
566 @item -usbdevice @var{devname}
567 Add the USB device @var{devname}. @xref{usb_devices}.
569 @table @code
571 @item mouse
572 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
574 @item tablet
575 Pointer device that uses absolute coordinates (like a touchscreen). This
576 means qemu is able to report the mouse position without having to grab the
577 mouse. Also overrides the PS/2 mouse emulation when activated.
579 @item disk:[format=@var{format}]:file
580 Mass storage device based on file. The optional @var{format} argument
581 will be used rather than detecting the format. Can be used to specifiy
582 format=raw to avoid interpreting an untrusted format header.
584 @item host:bus.addr
585 Pass through the host device identified by bus.addr (Linux only).
587 @item host:vendor_id:product_id
588 Pass through the host device identified by vendor_id:product_id (Linux only).
590 @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
591 Serial converter to host character device @var{dev}, see @code{-serial} for the
592 available devices.
594 @item braille
595 Braille device.  This will use BrlAPI to display the braille output on a real
596 or fake device.
598 @item net:options
599 Network adapter that supports CDC ethernet and RNDIS protocols.
601 @end table
603 @end table
605 Network options:
607 @table @option
609 @item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
610 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
611 = 0 is the default). The NIC is an rtl8139 by default on the PC
612 target. Optionally, the MAC address can be changed. If no
613 @option{-net} option is specified, a single NIC is created.
614 Qemu can emulate several different models of network card.
615 Valid values for @var{type} are
616 @code{i82551}, @code{i82557b}, @code{i82559er},
617 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
618 @code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
619 Not all devices are supported on all targets.  Use -net nic,model=?
620 for a list of available devices for your target.
622 @item -net user[,vlan=@var{n}][,hostname=@var{name}]
623 Use the user mode network stack which requires no administrator
624 privilege to run.  @option{hostname=name} can be used to specify the client
625 hostname reported by the builtin DHCP server.
627 @item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
628 Connect the host TAP network interface @var{name} to VLAN @var{n} and
629 use the network script @var{file} to configure it. The default
630 network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
631 disable script execution. If @var{name} is not
632 provided, the OS automatically provides one. @option{fd}=@var{h} can be
633 used to specify the handle of an already opened host TAP interface. Example:
635 @example
636 qemu linux.img -net nic -net tap
637 @end example
639 More complicated example (two NICs, each one connected to a TAP device)
640 @example
641 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
642                -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
643 @end example
646 @item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
648 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
649 machine using a TCP socket connection. If @option{listen} is
650 specified, QEMU waits for incoming connections on @var{port}
651 (@var{host} is optional). @option{connect} is used to connect to
652 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
653 specifies an already opened TCP socket.
655 Example:
656 @example
657 # launch a first QEMU instance
658 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
659                -net socket,listen=:1234
660 # connect the VLAN 0 of this instance to the VLAN 0
661 # of the first instance
662 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
663                -net socket,connect=127.0.0.1:1234
664 @end example
666 @item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
668 Create a VLAN @var{n} shared with another QEMU virtual
669 machines using a UDP multicast socket, effectively making a bus for
670 every QEMU with same multicast address @var{maddr} and @var{port}.
671 NOTES:
672 @enumerate
673 @item
674 Several QEMU can be running on different hosts and share same bus (assuming
675 correct multicast setup for these hosts).
676 @item
677 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
678 @url{http://user-mode-linux.sf.net}.
679 @item
680 Use @option{fd=h} to specify an already opened UDP multicast socket.
681 @end enumerate
683 Example:
684 @example
685 # launch one QEMU instance
686 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
687                -net socket,mcast=230.0.0.1:1234
688 # launch another QEMU instance on same "bus"
689 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
690                -net socket,mcast=230.0.0.1:1234
691 # launch yet another QEMU instance on same "bus"
692 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
693                -net socket,mcast=230.0.0.1:1234
694 @end example
696 Example (User Mode Linux compat.):
697 @example
698 # launch QEMU instance (note mcast address selected
699 # is UML's default)
700 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
701                -net socket,mcast=239.192.168.1:1102
702 # launch UML
703 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
704 @end example
706 @item -net vde[,vlan=@var{n}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
707 Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
708 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
709 and MODE @var{octalmode} to change default ownership and permissions for
710 communication port. This option is available only if QEMU has been compiled
711 with vde support enabled.
713 Example:
714 @example
715 # launch vde switch
716 vde_switch -F -sock /tmp/myswitch
717 # launch QEMU instance
718 qemu linux.img -net nic -net vde,sock=/tmp/myswitch
719 @end example
721 @item -net none
722 Indicate that no network devices should be configured. It is used to
723 override the default configuration (@option{-net nic -net user}) which
724 is activated if no @option{-net} options are provided.
726 @item -tftp @var{dir}
727 When using the user mode network stack, activate a built-in TFTP
728 server. The files in @var{dir} will be exposed as the root of a TFTP server.
729 The TFTP client on the guest must be configured in binary mode (use the command
730 @code{bin} of the Unix TFTP client). The host IP address on the guest is as
731 usual 10.0.2.2.
733 @item -bootp @var{file}
734 When using the user mode network stack, broadcast @var{file} as the BOOTP
735 filename.  In conjunction with @option{-tftp}, this can be used to network boot
736 a guest from a local directory.
738 Example (using pxelinux):
739 @example
740 qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
741 @end example
743 @item -smb @var{dir}
744 When using the user mode network stack, activate a built-in SMB
745 server so that Windows OSes can access to the host files in @file{@var{dir}}
746 transparently.
748 In the guest Windows OS, the line:
749 @example
750 10.0.2.4 smbserver
751 @end example
752 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
753 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
755 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
757 Note that a SAMBA server must be installed on the host OS in
758 @file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
759 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
761 @item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
763 When using the user mode network stack, redirect incoming TCP or UDP
764 connections to the host port @var{host-port} to the guest
765 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
766 is not specified, its value is 10.0.2.15 (default address given by the
767 built-in DHCP server).
769 For example, to redirect host X11 connection from screen 1 to guest
770 screen 0, use the following:
772 @example
773 # on the host
774 qemu -redir tcp:6001::6000 [...]
775 # this host xterm should open in the guest X11 server
776 xterm -display :1
777 @end example
779 To redirect telnet connections from host port 5555 to telnet port on
780 the guest, use the following:
782 @example
783 # on the host
784 qemu -redir tcp:5555::23 [...]
785 telnet localhost 5555
786 @end example
788 Then when you use on the host @code{telnet localhost 5555}, you
789 connect to the guest telnet server.
791 @end table
793 Linux boot specific: When using these options, you can use a given
794 Linux kernel without installing it in the disk image. It can be useful
795 for easier testing of various kernels.
797 @table @option
799 @item -kernel @var{bzImage}
800 Use @var{bzImage} as kernel image.
802 @item -append @var{cmdline}
803 Use @var{cmdline} as kernel command line
805 @item -initrd @var{file}
806 Use @var{file} as initial ram disk.
808 @end table
810 Debug/Expert options:
811 @table @option
813 @item -serial @var{dev}
814 Redirect the virtual serial port to host character device
815 @var{dev}. The default device is @code{vc} in graphical mode and
816 @code{stdio} in non graphical mode.
818 This option can be used several times to simulate up to 4 serials
819 ports.
821 Use @code{-serial none} to disable all serial ports.
823 Available character devices are:
824 @table @code
825 @item vc[:WxH]
826 Virtual console. Optionally, a width and height can be given in pixel with
827 @example
828 vc:800x600
829 @end example
830 It is also possible to specify width or height in characters:
831 @example
832 vc:80Cx24C
833 @end example
834 @item pty
835 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
836 @item none
837 No device is allocated.
838 @item null
839 void device
840 @item /dev/XXX
841 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
842 parameters are set according to the emulated ones.
843 @item /dev/parport@var{N}
844 [Linux only, parallel port only] Use host parallel port
845 @var{N}. Currently SPP and EPP parallel port features can be used.
846 @item file:@var{filename}
847 Write output to @var{filename}. No character can be read.
848 @item stdio
849 [Unix only] standard input/output
850 @item pipe:@var{filename}
851 name pipe @var{filename}
852 @item COM@var{n}
853 [Windows only] Use host serial port @var{n}
854 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
855 This implements UDP Net Console.
856 When @var{remote_host} or @var{src_ip} are not specified
857 they default to @code{0.0.0.0}.
858 When not using a specified @var{src_port} a random port is automatically chosen.
860 If you just want a simple readonly console you can use @code{netcat} or
861 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
862 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
863 will appear in the netconsole session.
865 If you plan to send characters back via netconsole or you want to stop
866 and start qemu a lot of times, you should have qemu use the same
867 source port each time by using something like @code{-serial
868 udp::4555@@:4556} to qemu. Another approach is to use a patched
869 version of netcat which can listen to a TCP port and send and receive
870 characters via udp.  If you have a patched version of netcat which
871 activates telnet remote echo and single char transfer, then you can
872 use the following options to step up a netcat redirector to allow
873 telnet on port 5555 to access the qemu port.
874 @table @code
875 @item Qemu Options:
876 -serial udp::4555@@:4556
877 @item netcat options:
878 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
879 @item telnet options:
880 localhost 5555
881 @end table
884 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
885 The TCP Net Console has two modes of operation.  It can send the serial
886 I/O to a location or wait for a connection from a location.  By default
887 the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
888 the @var{server} option QEMU will wait for a client socket application
889 to connect to the port before continuing, unless the @code{nowait}
890 option was specified.  The @code{nodelay} option disables the Nagle buffering
891 algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
892 one TCP connection at a time is accepted. You can use @code{telnet} to
893 connect to the corresponding character device.
894 @table @code
895 @item Example to send tcp console to 192.168.0.2 port 4444
896 -serial tcp:192.168.0.2:4444
897 @item Example to listen and wait on port 4444 for connection
898 -serial tcp::4444,server
899 @item Example to not wait and listen on ip 192.168.0.100 port 4444
900 -serial tcp:192.168.0.100:4444,server,nowait
901 @end table
903 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
904 The telnet protocol is used instead of raw tcp sockets.  The options
905 work the same as if you had specified @code{-serial tcp}.  The
906 difference is that the port acts like a telnet server or client using
907 telnet option negotiation.  This will also allow you to send the
908 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
909 sequence.  Typically in unix telnet you do it with Control-] and then
910 type "send break" followed by pressing the enter key.
912 @item unix:@var{path}[,server][,nowait]
913 A unix domain socket is used instead of a tcp socket.  The option works the
914 same as if you had specified @code{-serial tcp} except the unix domain socket
915 @var{path} is used for connections.
917 @item mon:@var{dev_string}
918 This is a special option to allow the monitor to be multiplexed onto
919 another serial port.  The monitor is accessed with key sequence of
920 @key{Control-a} and then pressing @key{c}. See monitor access
921 @ref{pcsys_keys} in the -nographic section for more keys.
922 @var{dev_string} should be any one of the serial devices specified
923 above.  An example to multiplex the monitor onto a telnet server
924 listening on port 4444 would be:
925 @table @code
926 @item -serial mon:telnet::4444,server,nowait
927 @end table
929 @item braille
930 Braille device.  This will use BrlAPI to display the braille output on a real
931 or fake device.
933 @end table
935 @item -parallel @var{dev}
936 Redirect the virtual parallel port to host device @var{dev} (same
937 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
938 be used to use hardware devices connected on the corresponding host
939 parallel port.
941 This option can be used several times to simulate up to 3 parallel
942 ports.
944 Use @code{-parallel none} to disable all parallel ports.
946 @item -monitor @var{dev}
947 Redirect the monitor to host device @var{dev} (same devices as the
948 serial port).
949 The default device is @code{vc} in graphical mode and @code{stdio} in
950 non graphical mode.
952 @item -echr numeric_ascii_value
953 Change the escape character used for switching to the monitor when using
954 monitor and serial sharing.  The default is @code{0x01} when using the
955 @code{-nographic} option.  @code{0x01} is equal to pressing
956 @code{Control-a}.  You can select a different character from the ascii
957 control keys where 1 through 26 map to Control-a through Control-z.  For
958 instance you could use the either of the following to change the escape
959 character to Control-t.
960 @table @code
961 @item -echr 0x14
962 @item -echr 20
963 @end table
965 @item -s
966 Wait gdb connection to port 1234 (@pxref{gdb_usage}).
967 @item -p @var{port}
968 Change gdb connection port.  @var{port} can be either a decimal number
969 to specify a TCP port, or a host device (same devices as the serial port).
970 @item -S
971 Do not start CPU at startup (you must type 'c' in the monitor).
972 @item -d
973 Output log in /tmp/qemu.log
974 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
975 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
976 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
977 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
978 all those parameters. This option is useful for old MS-DOS disk
979 images.
981 @item -L path
982 Set the directory for the BIOS, VGA BIOS and keymaps.
984 @item -vga @var{type}
985 Select type of VGA card to emulate. Valid values for @var{type} are
986 @table @code
987 @item cirrus
988 Cirrus Logic GD5446 Video card. All Windows versions starting from
989 Windows 95 should recognize and use this graphic card. For optimal
990 performances, use 16 bit color depth in the guest and the host OS.
991 (This one is the default)
992 @item std
993 Standard VGA card with Bochs VBE extensions.  If your guest OS
994 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
995 to use high resolution modes (>= 1280x1024x16) then you should use
996 this option.
997 @item vmware
998 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
999 recent XFree86/XOrg server or Windows guest with a driver for this
1000 card.
1001 @end table
1003 @item -no-acpi
1004 Disable ACPI (Advanced Configuration and Power Interface) support. Use
1005 it if your guest OS complains about ACPI problems (PC target machine
1006 only).
1008 @item -no-reboot
1009 Exit instead of rebooting.
1011 @item -no-shutdown
1012 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
1013 This allows for instance switching to monitor to commit changes to the
1014 disk image.
1016 @item -loadvm file
1017 Start right away with a saved state (@code{loadvm} in monitor)
1019 @item -semihosting
1020 Enable semihosting syscall emulation (ARM and M68K target machines only).
1022 On ARM this implements the "Angel" interface.
1023 On M68K this implements the "ColdFire GDB" interface used by libgloss.
1025 Note that this allows guest direct access to the host filesystem,
1026 so should only be used with trusted guest OS.
1028 @item -icount [N|auto]
1029 Enable virtual instruction counter.  The virtual cpu will execute one
1030 instruction every 2^N ns of virtual time.  If @code{auto} is specified
1031 then the virtual cpu speed will be automatically adjusted to keep virtual
1032 time within a few seconds of real time.
1034 Note that while this option can give deterministic behavior, it does not
1035 provide cycle accurate emulation.  Modern CPUs contain superscalar out of
1036 order cores with complex cache hierarchies.  The number of instructions
1037 executed often has little or no correlation with actual performance.
1038 @end table
1040 @c man end
1042 @node pcsys_keys
1043 @section Keys
1045 @c man begin OPTIONS
1047 During the graphical emulation, you can use the following keys:
1048 @table @key
1049 @item Ctrl-Alt-f
1050 Toggle full screen
1052 @item Ctrl-Alt-n
1053 Switch to virtual console 'n'. Standard console mappings are:
1054 @table @emph
1055 @item 1
1056 Target system display
1057 @item 2
1058 Monitor
1059 @item 3
1060 Serial port
1061 @end table
1063 @item Ctrl-Alt
1064 Toggle mouse and keyboard grab.
1065 @end table
1067 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1068 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1070 During emulation, if you are using the @option{-nographic} option, use
1071 @key{Ctrl-a h} to get terminal commands:
1073 @table @key
1074 @item Ctrl-a h
1075 Print this help
1076 @item Ctrl-a x
1077 Exit emulator
1078 @item Ctrl-a s
1079 Save disk data back to file (if -snapshot)
1080 @item Ctrl-a t
1081 toggle console timestamps
1082 @item Ctrl-a b
1083 Send break (magic sysrq in Linux)
1084 @item Ctrl-a c
1085 Switch between console and monitor
1086 @item Ctrl-a Ctrl-a
1087 Send Ctrl-a
1088 @end table
1089 @c man end
1091 @ignore
1093 @c man begin SEEALSO
1094 The HTML documentation of QEMU for more precise information and Linux
1095 user mode emulator invocation.
1096 @c man end
1098 @c man begin AUTHOR
1099 Fabrice Bellard
1100 @c man end
1102 @end ignore
1104 @node pcsys_monitor
1105 @section QEMU Monitor
1107 The QEMU monitor is used to give complex commands to the QEMU
1108 emulator. You can use it to:
1110 @itemize @minus
1112 @item
1113 Remove or insert removable media images
1114 (such as CD-ROM or floppies).
1116 @item
1117 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1118 from a disk file.
1120 @item Inspect the VM state without an external debugger.
1122 @end itemize
1124 @subsection Commands
1126 The following commands are available:
1128 @table @option
1130 @item help or ? [@var{cmd}]
1131 Show the help for all commands or just for command @var{cmd}.
1133 @item commit
1134 Commit changes to the disk images (if -snapshot is used).
1136 @item info @var{subcommand}
1137 Show various information about the system state.
1139 @table @option
1140 @item info network
1141 show the various VLANs and the associated devices
1142 @item info block
1143 show the block devices
1144 @item info registers
1145 show the cpu registers
1146 @item info history
1147 show the command line history
1148 @item info pci
1149 show emulated PCI device
1150 @item info usb
1151 show USB devices plugged on the virtual USB hub
1152 @item info usbhost
1153 show all USB host devices
1154 @item info capture
1155 show information about active capturing
1156 @item info snapshots
1157 show list of VM snapshots
1158 @item info mice
1159 show which guest mouse is receiving events
1160 @end table
1162 @item q or quit
1163 Quit the emulator.
1165 @item eject [-f] @var{device}
1166 Eject a removable medium (use -f to force it).
1168 @item change @var{device} @var{setting}
1170 Change the configuration of a device.
1172 @table @option
1173 @item change @var{diskdevice} @var{filename}
1174 Change the medium for a removable disk device to point to @var{filename}. eg
1176 @example
1177 (qemu) change ide1-cd0 /path/to/some.iso
1178 @end example
1180 @item change vnc @var{display},@var{options}
1181 Change the configuration of the VNC server. The valid syntax for @var{display}
1182 and @var{options} are described at @ref{sec_invocation}. eg
1184 @example
1185 (qemu) change vnc localhost:1
1186 @end example
1188 @item change vnc password
1190 Change the password associated with the VNC server. The monitor will prompt for
1191 the new password to be entered. VNC passwords are only significant upto 8 letters.
1194 @example
1195 (qemu) change vnc password
1196 Password: ********
1197 @end example
1199 @end table
1201 @item screendump @var{filename}
1202 Save screen into PPM image @var{filename}.
1204 @item mouse_move @var{dx} @var{dy} [@var{dz}]
1205 Move the active mouse to the specified coordinates @var{dx} @var{dy}
1206 with optional scroll axis @var{dz}.
1208 @item mouse_button @var{val}
1209 Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1211 @item mouse_set @var{index}
1212 Set which mouse device receives events at given @var{index}, index
1213 can be obtained with
1214 @example
1215 info mice
1216 @end example
1218 @item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1219 Capture audio into @var{filename}. Using sample rate @var{frequency}
1220 bits per sample @var{bits} and number of channels @var{channels}.
1222 Defaults:
1223 @itemize @minus
1224 @item Sample rate = 44100 Hz - CD quality
1225 @item Bits = 16
1226 @item Number of channels = 2 - Stereo
1227 @end itemize
1229 @item stopcapture @var{index}
1230 Stop capture with a given @var{index}, index can be obtained with
1231 @example
1232 info capture
1233 @end example
1235 @item log @var{item1}[,...]
1236 Activate logging of the specified items to @file{/tmp/qemu.log}.
1238 @item savevm [@var{tag}|@var{id}]
1239 Create a snapshot of the whole virtual machine. If @var{tag} is
1240 provided, it is used as human readable identifier. If there is already
1241 a snapshot with the same tag or ID, it is replaced. More info at
1242 @ref{vm_snapshots}.
1244 @item loadvm @var{tag}|@var{id}
1245 Set the whole virtual machine to the snapshot identified by the tag
1246 @var{tag} or the unique snapshot ID @var{id}.
1248 @item delvm @var{tag}|@var{id}
1249 Delete the snapshot identified by @var{tag} or @var{id}.
1251 @item stop
1252 Stop emulation.
1254 @item c or cont
1255 Resume emulation.
1257 @item gdbserver [@var{port}]
1258 Start gdbserver session (default @var{port}=1234)
1260 @item x/fmt @var{addr}
1261 Virtual memory dump starting at @var{addr}.
1263 @item xp /@var{fmt} @var{addr}
1264 Physical memory dump starting at @var{addr}.
1266 @var{fmt} is a format which tells the command how to format the
1267 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1269 @table @var
1270 @item count
1271 is the number of items to be dumped.
1273 @item format
1274 can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1275 c (char) or i (asm instruction).
1277 @item size
1278 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1279 @code{h} or @code{w} can be specified with the @code{i} format to
1280 respectively select 16 or 32 bit code instruction size.
1282 @end table
1284 Examples:
1285 @itemize
1286 @item
1287 Dump 10 instructions at the current instruction pointer:
1288 @example
1289 (qemu) x/10i $eip
1290 0x90107063:  ret
1291 0x90107064:  sti
1292 0x90107065:  lea    0x0(%esi,1),%esi
1293 0x90107069:  lea    0x0(%edi,1),%edi
1294 0x90107070:  ret
1295 0x90107071:  jmp    0x90107080
1296 0x90107073:  nop
1297 0x90107074:  nop
1298 0x90107075:  nop
1299 0x90107076:  nop
1300 @end example
1302 @item
1303 Dump 80 16 bit values at the start of the video memory.
1304 @smallexample
1305 (qemu) xp/80hx 0xb8000
1306 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1307 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1308 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1309 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1310 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1311 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1312 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1313 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1314 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1315 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1316 @end smallexample
1317 @end itemize
1319 @item p or print/@var{fmt} @var{expr}
1321 Print expression value. Only the @var{format} part of @var{fmt} is
1322 used.
1324 @item sendkey @var{keys}
1326 Send @var{keys} to the emulator. @var{keys} could be the name of the
1327 key or @code{#} followed by the raw value in either decimal or hexadecimal
1328 format. Use @code{-} to press several keys simultaneously. Example:
1329 @example
1330 sendkey ctrl-alt-f1
1331 @end example
1333 This command is useful to send keys that your graphical user interface
1334 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1336 @item system_reset
1338 Reset the system.
1340 @item boot_set @var{bootdevicelist}
1342 Define new values for the boot device list. Those values will override
1343 the values specified on the command line through the @code{-boot} option.
1345 The values that can be specified here depend on the machine type, but are
1346 the same that can be specified in the @code{-boot} command line option.
1348 @item usb_add @var{devname}
1350 Add the USB device @var{devname}.  For details of available devices see
1351 @ref{usb_devices}
1353 @item usb_del @var{devname}
1355 Remove the USB device @var{devname} from the QEMU virtual USB
1356 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1357 command @code{info usb} to see the devices you can remove.
1359 @end table
1361 @subsection Integer expressions
1363 The monitor understands integers expressions for every integer
1364 argument. You can use register names to get the value of specifics
1365 CPU registers by prefixing them with @emph{$}.
1367 @node disk_images
1368 @section Disk Images
1370 Since version 0.6.1, QEMU supports many disk image formats, including
1371 growable disk images (their size increase as non empty sectors are
1372 written), compressed and encrypted disk images. Version 0.8.3 added
1373 the new qcow2 disk image format which is essential to support VM
1374 snapshots.
1376 @menu
1377 * disk_images_quickstart::    Quick start for disk image creation
1378 * disk_images_snapshot_mode:: Snapshot mode
1379 * vm_snapshots::              VM snapshots
1380 * qemu_img_invocation::       qemu-img Invocation
1381 * qemu_nbd_invocation::       qemu-nbd Invocation
1382 * host_drives::               Using host drives
1383 * disk_images_fat_images::    Virtual FAT disk images
1384 * disk_images_nbd::           NBD access
1385 @end menu
1387 @node disk_images_quickstart
1388 @subsection Quick start for disk image creation
1390 You can create a disk image with the command:
1391 @example
1392 qemu-img create myimage.img mysize
1393 @end example
1394 where @var{myimage.img} is the disk image filename and @var{mysize} is its
1395 size in kilobytes. You can add an @code{M} suffix to give the size in
1396 megabytes and a @code{G} suffix for gigabytes.
1398 See @ref{qemu_img_invocation} for more information.
1400 @node disk_images_snapshot_mode
1401 @subsection Snapshot mode
1403 If you use the option @option{-snapshot}, all disk images are
1404 considered as read only. When sectors in written, they are written in
1405 a temporary file created in @file{/tmp}. You can however force the
1406 write back to the raw disk images by using the @code{commit} monitor
1407 command (or @key{C-a s} in the serial console).
1409 @node vm_snapshots
1410 @subsection VM snapshots
1412 VM snapshots are snapshots of the complete virtual machine including
1413 CPU state, RAM, device state and the content of all the writable
1414 disks. In order to use VM snapshots, you must have at least one non
1415 removable and writable block device using the @code{qcow2} disk image
1416 format. Normally this device is the first virtual hard drive.
1418 Use the monitor command @code{savevm} to create a new VM snapshot or
1419 replace an existing one. A human readable name can be assigned to each
1420 snapshot in addition to its numerical ID.
1422 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1423 a VM snapshot. @code{info snapshots} lists the available snapshots
1424 with their associated information:
1426 @example
1427 (qemu) info snapshots
1428 Snapshot devices: hda
1429 Snapshot list (from hda):
1430 ID        TAG                 VM SIZE                DATE       VM CLOCK
1431 1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1432 2                                 40M 2006-08-06 12:43:29   00:00:18.633
1433 3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1434 @end example
1436 A VM snapshot is made of a VM state info (its size is shown in
1437 @code{info snapshots}) and a snapshot of every writable disk image.
1438 The VM state info is stored in the first @code{qcow2} non removable
1439 and writable block device. The disk image snapshots are stored in
1440 every disk image. The size of a snapshot in a disk image is difficult
1441 to evaluate and is not shown by @code{info snapshots} because the
1442 associated disk sectors are shared among all the snapshots to save
1443 disk space (otherwise each snapshot would need a full copy of all the
1444 disk images).
1446 When using the (unrelated) @code{-snapshot} option
1447 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1448 but they are deleted as soon as you exit QEMU.
1450 VM snapshots currently have the following known limitations:
1451 @itemize
1452 @item
1453 They cannot cope with removable devices if they are removed or
1454 inserted after a snapshot is done.
1455 @item
1456 A few device drivers still have incomplete snapshot support so their
1457 state is not saved or restored properly (in particular USB).
1458 @end itemize
1460 @node qemu_img_invocation
1461 @subsection @code{qemu-img} Invocation
1463 @include qemu-img.texi
1465 @node qemu_nbd_invocation
1466 @subsection @code{qemu-nbd} Invocation
1468 @include qemu-nbd.texi
1470 @node host_drives
1471 @subsection Using host drives
1473 In addition to disk image files, QEMU can directly access host
1474 devices. We describe here the usage for QEMU version >= 0.8.3.
1476 @subsubsection Linux
1478 On Linux, you can directly use the host device filename instead of a
1479 disk image filename provided you have enough privileges to access
1480 it. For example, use @file{/dev/cdrom} to access to the CDROM or
1481 @file{/dev/fd0} for the floppy.
1483 @table @code
1484 @item CD
1485 You can specify a CDROM device even if no CDROM is loaded. QEMU has
1486 specific code to detect CDROM insertion or removal. CDROM ejection by
1487 the guest OS is supported. Currently only data CDs are supported.
1488 @item Floppy
1489 You can specify a floppy device even if no floppy is loaded. Floppy
1490 removal is currently not detected accurately (if you change floppy
1491 without doing floppy access while the floppy is not loaded, the guest
1492 OS will think that the same floppy is loaded).
1493 @item Hard disks
1494 Hard disks can be used. Normally you must specify the whole disk
1495 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1496 see it as a partitioned disk. WARNING: unless you know what you do, it
1497 is better to only make READ-ONLY accesses to the hard disk otherwise
1498 you may corrupt your host data (use the @option{-snapshot} command
1499 line option or modify the device permissions accordingly).
1500 @end table
1502 @subsubsection Windows
1504 @table @code
1505 @item CD
1506 The preferred syntax is the drive letter (e.g. @file{d:}). The
1507 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1508 supported as an alias to the first CDROM drive.
1510 Currently there is no specific code to handle removable media, so it
1511 is better to use the @code{change} or @code{eject} monitor commands to
1512 change or eject media.
1513 @item Hard disks
1514 Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1515 where @var{N} is the drive number (0 is the first hard disk).
1517 WARNING: unless you know what you do, it is better to only make
1518 READ-ONLY accesses to the hard disk otherwise you may corrupt your
1519 host data (use the @option{-snapshot} command line so that the
1520 modifications are written in a temporary file).
1521 @end table
1524 @subsubsection Mac OS X
1526 @file{/dev/cdrom} is an alias to the first CDROM.
1528 Currently there is no specific code to handle removable media, so it
1529 is better to use the @code{change} or @code{eject} monitor commands to
1530 change or eject media.
1532 @node disk_images_fat_images
1533 @subsection Virtual FAT disk images
1535 QEMU can automatically create a virtual FAT disk image from a
1536 directory tree. In order to use it, just type:
1538 @example
1539 qemu linux.img -hdb fat:/my_directory
1540 @end example
1542 Then you access access to all the files in the @file{/my_directory}
1543 directory without having to copy them in a disk image or to export
1544 them via SAMBA or NFS. The default access is @emph{read-only}.
1546 Floppies can be emulated with the @code{:floppy:} option:
1548 @example
1549 qemu linux.img -fda fat:floppy:/my_directory
1550 @end example
1552 A read/write support is available for testing (beta stage) with the
1553 @code{:rw:} option:
1555 @example
1556 qemu linux.img -fda fat:floppy:rw:/my_directory
1557 @end example
1559 What you should @emph{never} do:
1560 @itemize
1561 @item use non-ASCII filenames ;
1562 @item use "-snapshot" together with ":rw:" ;
1563 @item expect it to work when loadvm'ing ;
1564 @item write to the FAT directory on the host system while accessing it with the guest system.
1565 @end itemize
1567 @node disk_images_nbd
1568 @subsection NBD access
1570 QEMU can access directly to block device exported using the Network Block Device
1571 protocol.
1573 @example
1574 qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1575 @end example
1577 If the NBD server is located on the same host, you can use an unix socket instead
1578 of an inet socket:
1580 @example
1581 qemu linux.img -hdb nbd:unix:/tmp/my_socket
1582 @end example
1584 In this case, the block device must be exported using qemu-nbd:
1586 @example
1587 qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1588 @end example
1590 The use of qemu-nbd allows to share a disk between several guests:
1591 @example
1592 qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1593 @end example
1595 and then you can use it with two guests:
1596 @example
1597 qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1598 qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1599 @end example
1601 @node pcsys_network
1602 @section Network emulation
1604 QEMU can simulate several network cards (PCI or ISA cards on the PC
1605 target) and can connect them to an arbitrary number of Virtual Local
1606 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1607 VLAN. VLAN can be connected between separate instances of QEMU to
1608 simulate large networks. For simpler usage, a non privileged user mode
1609 network stack can replace the TAP device to have a basic network
1610 connection.
1612 @subsection VLANs
1614 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1615 connection between several network devices. These devices can be for
1616 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1617 (TAP devices).
1619 @subsection Using TAP network interfaces
1621 This is the standard way to connect QEMU to a real network. QEMU adds
1622 a virtual network device on your host (called @code{tapN}), and you
1623 can then configure it as if it was a real ethernet card.
1625 @subsubsection Linux host
1627 As an example, you can download the @file{linux-test-xxx.tar.gz}
1628 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1629 configure properly @code{sudo} so that the command @code{ifconfig}
1630 contained in @file{qemu-ifup} can be executed as root. You must verify
1631 that your host kernel supports the TAP network interfaces: the
1632 device @file{/dev/net/tun} must be present.
1634 See @ref{sec_invocation} to have examples of command lines using the
1635 TAP network interfaces.
1637 @subsubsection Windows host
1639 There is a virtual ethernet driver for Windows 2000/XP systems, called
1640 TAP-Win32. But it is not included in standard QEMU for Windows,
1641 so you will need to get it separately. It is part of OpenVPN package,
1642 so download OpenVPN from : @url{http://openvpn.net/}.
1644 @subsection Using the user mode network stack
1646 By using the option @option{-net user} (default configuration if no
1647 @option{-net} option is specified), QEMU uses a completely user mode
1648 network stack (you don't need root privilege to use the virtual
1649 network). The virtual network configuration is the following:
1651 @example
1653          QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1654                            |          (10.0.2.2)
1655                            |
1656                            ---->  DNS server (10.0.2.3)
1657                            |
1658                            ---->  SMB server (10.0.2.4)
1659 @end example
1661 The QEMU VM behaves as if it was behind a firewall which blocks all
1662 incoming connections. You can use a DHCP client to automatically
1663 configure the network in the QEMU VM. The DHCP server assign addresses
1664 to the hosts starting from 10.0.2.15.
1666 In order to check that the user mode network is working, you can ping
1667 the address 10.0.2.2 and verify that you got an address in the range
1668 10.0.2.x from the QEMU virtual DHCP server.
1670 Note that @code{ping} is not supported reliably to the internet as it
1671 would require root privileges. It means you can only ping the local
1672 router (10.0.2.2).
1674 When using the built-in TFTP server, the router is also the TFTP
1675 server.
1677 When using the @option{-redir} option, TCP or UDP connections can be
1678 redirected from the host to the guest. It allows for example to
1679 redirect X11, telnet or SSH connections.
1681 @subsection Connecting VLANs between QEMU instances
1683 Using the @option{-net socket} option, it is possible to make VLANs
1684 that span several QEMU instances. See @ref{sec_invocation} to have a
1685 basic example.
1687 @node direct_linux_boot
1688 @section Direct Linux Boot
1690 This section explains how to launch a Linux kernel inside QEMU without
1691 having to make a full bootable image. It is very useful for fast Linux
1692 kernel testing.
1694 The syntax is:
1695 @example
1696 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1697 @end example
1699 Use @option{-kernel} to provide the Linux kernel image and
1700 @option{-append} to give the kernel command line arguments. The
1701 @option{-initrd} option can be used to provide an INITRD image.
1703 When using the direct Linux boot, a disk image for the first hard disk
1704 @file{hda} is required because its boot sector is used to launch the
1705 Linux kernel.
1707 If you do not need graphical output, you can disable it and redirect
1708 the virtual serial port and the QEMU monitor to the console with the
1709 @option{-nographic} option. The typical command line is:
1710 @example
1711 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1712      -append "root=/dev/hda console=ttyS0" -nographic
1713 @end example
1715 Use @key{Ctrl-a c} to switch between the serial console and the
1716 monitor (@pxref{pcsys_keys}).
1718 @node pcsys_usb
1719 @section USB emulation
1721 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1722 virtual USB devices or real host USB devices (experimental, works only
1723 on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1724 as necessary to connect multiple USB devices.
1726 @menu
1727 * usb_devices::
1728 * host_usb_devices::
1729 @end menu
1730 @node usb_devices
1731 @subsection Connecting USB devices
1733 USB devices can be connected with the @option{-usbdevice} commandline option
1734 or the @code{usb_add} monitor command.  Available devices are:
1736 @table @code
1737 @item mouse
1738 Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1739 @item tablet
1740 Pointer device that uses absolute coordinates (like a touchscreen).
1741 This means qemu is able to report the mouse position without having
1742 to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1743 @item disk:@var{file}
1744 Mass storage device based on @var{file} (@pxref{disk_images})
1745 @item host:@var{bus.addr}
1746 Pass through the host device identified by @var{bus.addr}
1747 (Linux only)
1748 @item host:@var{vendor_id:product_id}
1749 Pass through the host device identified by @var{vendor_id:product_id}
1750 (Linux only)
1751 @item wacom-tablet
1752 Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1753 above but it can be used with the tslib library because in addition to touch
1754 coordinates it reports touch pressure.
1755 @item keyboard
1756 Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1757 @item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1758 Serial converter. This emulates an FTDI FT232BM chip connected to host character
1759 device @var{dev}. The available character devices are the same as for the
1760 @code{-serial} option. The @code{vendorid} and @code{productid} options can be
1761 used to override the default 0403:6001. For instance, 
1762 @example
1763 usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1764 @end example
1765 will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1766 serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1767 @item braille
1768 Braille device.  This will use BrlAPI to display the braille output on a real
1769 or fake device.
1770 @item net:@var{options}
1771 Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1772 specifies NIC options as with @code{-net nic,}@var{options} (see description).
1773 For instance, user-mode networking can be used with
1774 @example
1775 qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1776 @end example
1777 Currently this cannot be used in machines that support PCI NICs.
1778 @end table
1780 @node host_usb_devices
1781 @subsection Using host USB devices on a Linux host
1783 WARNING: this is an experimental feature. QEMU will slow down when
1784 using it. USB devices requiring real time streaming (i.e. USB Video
1785 Cameras) are not supported yet.
1787 @enumerate
1788 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1789 is actually using the USB device. A simple way to do that is simply to
1790 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1791 to @file{mydriver.o.disabled}.
1793 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1794 @example
1795 ls /proc/bus/usb
1796 001  devices  drivers
1797 @end example
1799 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1800 @example
1801 chown -R myuid /proc/bus/usb
1802 @end example
1804 @item Launch QEMU and do in the monitor:
1805 @example
1806 info usbhost
1807   Device 1.2, speed 480 Mb/s
1808     Class 00: USB device 1234:5678, USB DISK
1809 @end example
1810 You should see the list of the devices you can use (Never try to use
1811 hubs, it won't work).
1813 @item Add the device in QEMU by using:
1814 @example
1815 usb_add host:1234:5678
1816 @end example
1818 Normally the guest OS should report that a new USB device is
1819 plugged. You can use the option @option{-usbdevice} to do the same.
1821 @item Now you can try to use the host USB device in QEMU.
1823 @end enumerate
1825 When relaunching QEMU, you may have to unplug and plug again the USB
1826 device to make it work again (this is a bug).
1828 @node vnc_security
1829 @section VNC security
1831 The VNC server capability provides access to the graphical console
1832 of the guest VM across the network. This has a number of security
1833 considerations depending on the deployment scenarios.
1835 @menu
1836 * vnc_sec_none::
1837 * vnc_sec_password::
1838 * vnc_sec_certificate::
1839 * vnc_sec_certificate_verify::
1840 * vnc_sec_certificate_pw::
1841 * vnc_generate_cert::
1842 @end menu
1843 @node vnc_sec_none
1844 @subsection Without passwords
1846 The simplest VNC server setup does not include any form of authentication.
1847 For this setup it is recommended to restrict it to listen on a UNIX domain
1848 socket only. For example
1850 @example
1851 qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1852 @end example
1854 This ensures that only users on local box with read/write access to that
1855 path can access the VNC server. To securely access the VNC server from a
1856 remote machine, a combination of netcat+ssh can be used to provide a secure
1857 tunnel.
1859 @node vnc_sec_password
1860 @subsection With passwords
1862 The VNC protocol has limited support for password based authentication. Since
1863 the protocol limits passwords to 8 characters it should not be considered
1864 to provide high security. The password can be fairly easily brute-forced by
1865 a client making repeat connections. For this reason, a VNC server using password
1866 authentication should be restricted to only listen on the loopback interface
1867 or UNIX domain sockets. Password authentication is requested with the @code{password}
1868 option, and then once QEMU is running the password is set with the monitor. Until
1869 the monitor is used to set the password all clients will be rejected.
1871 @example
1872 qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1873 (qemu) change vnc password
1874 Password: ********
1875 (qemu)
1876 @end example
1878 @node vnc_sec_certificate
1879 @subsection With x509 certificates
1881 The QEMU VNC server also implements the VeNCrypt extension allowing use of
1882 TLS for encryption of the session, and x509 certificates for authentication.
1883 The use of x509 certificates is strongly recommended, because TLS on its
1884 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1885 support provides a secure session, but no authentication. This allows any
1886 client to connect, and provides an encrypted session.
1888 @example
1889 qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1890 @end example
1892 In the above example @code{/etc/pki/qemu} should contain at least three files,
1893 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1894 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1895 NB the @code{server-key.pem} file should be protected with file mode 0600 to
1896 only be readable by the user owning it.
1898 @node vnc_sec_certificate_verify
1899 @subsection With x509 certificates and client verification
1901 Certificates can also provide a means to authenticate the client connecting.
1902 The server will request that the client provide a certificate, which it will
1903 then validate against the CA certificate. This is a good choice if deploying
1904 in an environment with a private internal certificate authority.
1906 @example
1907 qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1908 @end example
1911 @node vnc_sec_certificate_pw
1912 @subsection With x509 certificates, client verification and passwords
1914 Finally, the previous method can be combined with VNC password authentication
1915 to provide two layers of authentication for clients.
1917 @example
1918 qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1919 (qemu) change vnc password
1920 Password: ********
1921 (qemu)
1922 @end example
1924 @node vnc_generate_cert
1925 @subsection Generating certificates for VNC
1927 The GNU TLS packages provides a command called @code{certtool} which can
1928 be used to generate certificates and keys in PEM format. At a minimum it
1929 is neccessary to setup a certificate authority, and issue certificates to
1930 each server. If using certificates for authentication, then each client
1931 will also need to be issued a certificate. The recommendation is for the
1932 server to keep its certificates in either @code{/etc/pki/qemu} or for
1933 unprivileged users in @code{$HOME/.pki/qemu}.
1935 @menu
1936 * vnc_generate_ca::
1937 * vnc_generate_server::
1938 * vnc_generate_client::
1939 @end menu
1940 @node vnc_generate_ca
1941 @subsubsection Setup the Certificate Authority
1943 This step only needs to be performed once per organization / organizational
1944 unit. First the CA needs a private key. This key must be kept VERY secret
1945 and secure. If this key is compromised the entire trust chain of the certificates
1946 issued with it is lost.
1948 @example
1949 # certtool --generate-privkey > ca-key.pem
1950 @end example
1952 A CA needs to have a public certificate. For simplicity it can be a self-signed
1953 certificate, or one issue by a commercial certificate issuing authority. To
1954 generate a self-signed certificate requires one core piece of information, the
1955 name of the organization.
1957 @example
1958 # cat > ca.info <<EOF
1959 cn = Name of your organization
1961 cert_signing_key
1963 # certtool --generate-self-signed \
1964            --load-privkey ca-key.pem
1965            --template ca.info \
1966            --outfile ca-cert.pem
1967 @end example
1969 The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1970 TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1972 @node vnc_generate_server
1973 @subsubsection Issuing server certificates
1975 Each server (or host) needs to be issued with a key and certificate. When connecting
1976 the certificate is sent to the client which validates it against the CA certificate.
1977 The core piece of information for a server certificate is the hostname. This should
1978 be the fully qualified hostname that the client will connect with, since the client
1979 will typically also verify the hostname in the certificate. On the host holding the
1980 secure CA private key:
1982 @example
1983 # cat > server.info <<EOF
1984 organization = Name  of your organization
1985 cn = server.foo.example.com
1986 tls_www_server
1987 encryption_key
1988 signing_key
1990 # certtool --generate-privkey > server-key.pem
1991 # certtool --generate-certificate \
1992            --load-ca-certificate ca-cert.pem \
1993            --load-ca-privkey ca-key.pem \
1994            --load-privkey server server-key.pem \
1995            --template server.info \
1996            --outfile server-cert.pem
1997 @end example
1999 The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
2000 to the server for which they were generated. The @code{server-key.pem} is security
2001 sensitive and should be kept protected with file mode 0600 to prevent disclosure.
2003 @node vnc_generate_client
2004 @subsubsection Issuing client certificates
2006 If the QEMU VNC server is to use the @code{x509verify} option to validate client
2007 certificates as its authentication mechanism, each client also needs to be issued
2008 a certificate. The client certificate contains enough metadata to uniquely identify
2009 the client, typically organization, state, city, building, etc. On the host holding
2010 the secure CA private key:
2012 @example
2013 # cat > client.info <<EOF
2014 country = GB
2015 state = London
2016 locality = London
2017 organiazation = Name of your organization
2018 cn = client.foo.example.com
2019 tls_www_client
2020 encryption_key
2021 signing_key
2023 # certtool --generate-privkey > client-key.pem
2024 # certtool --generate-certificate \
2025            --load-ca-certificate ca-cert.pem \
2026            --load-ca-privkey ca-key.pem \
2027            --load-privkey client-key.pem \
2028            --template client.info \
2029            --outfile client-cert.pem
2030 @end example
2032 The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
2033 copied to the client for which they were generated.
2035 @node gdb_usage
2036 @section GDB usage
2038 QEMU has a primitive support to work with gdb, so that you can do
2039 'Ctrl-C' while the virtual machine is running and inspect its state.
2041 In order to use gdb, launch qemu with the '-s' option. It will wait for a
2042 gdb connection:
2043 @example
2044 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
2045        -append "root=/dev/hda"
2046 Connected to host network interface: tun0
2047 Waiting gdb connection on port 1234
2048 @end example
2050 Then launch gdb on the 'vmlinux' executable:
2051 @example
2052 > gdb vmlinux
2053 @end example
2055 In gdb, connect to QEMU:
2056 @example
2057 (gdb) target remote localhost:1234
2058 @end example
2060 Then you can use gdb normally. For example, type 'c' to launch the kernel:
2061 @example
2062 (gdb) c
2063 @end example
2065 Here are some useful tips in order to use gdb on system code:
2067 @enumerate
2068 @item
2069 Use @code{info reg} to display all the CPU registers.
2070 @item
2071 Use @code{x/10i $eip} to display the code at the PC position.
2072 @item
2073 Use @code{set architecture i8086} to dump 16 bit code. Then use
2074 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
2075 @end enumerate
2077 Advanced debugging options:
2079 The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
2080 @table @code
2081 @item maintenance packet qqemu.sstepbits
2083 This will display the MASK bits used to control the single stepping IE:
2084 @example
2085 (gdb) maintenance packet qqemu.sstepbits
2086 sending: "qqemu.sstepbits"
2087 received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2088 @end example
2089 @item maintenance packet qqemu.sstep
2091 This will display the current value of the mask used when single stepping IE:
2092 @example
2093 (gdb) maintenance packet qqemu.sstep
2094 sending: "qqemu.sstep"
2095 received: "0x7"
2096 @end example
2097 @item maintenance packet Qqemu.sstep=HEX_VALUE
2099 This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2100 @example
2101 (gdb) maintenance packet Qqemu.sstep=0x5
2102 sending: "qemu.sstep=0x5"
2103 received: "OK"
2104 @end example
2105 @end table
2107 @node pcsys_os_specific
2108 @section Target OS specific information
2110 @subsection Linux
2112 To have access to SVGA graphic modes under X11, use the @code{vesa} or
2113 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2114 color depth in the guest and the host OS.
2116 When using a 2.6 guest Linux kernel, you should add the option
2117 @code{clock=pit} on the kernel command line because the 2.6 Linux
2118 kernels make very strict real time clock checks by default that QEMU
2119 cannot simulate exactly.
2121 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2122 not activated because QEMU is slower with this patch. The QEMU
2123 Accelerator Module is also much slower in this case. Earlier Fedora
2124 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
2125 patch by default. Newer kernels don't have it.
2127 @subsection Windows
2129 If you have a slow host, using Windows 95 is better as it gives the
2130 best speed. Windows 2000 is also a good choice.
2132 @subsubsection SVGA graphic modes support
2134 QEMU emulates a Cirrus Logic GD5446 Video
2135 card. All Windows versions starting from Windows 95 should recognize
2136 and use this graphic card. For optimal performances, use 16 bit color
2137 depth in the guest and the host OS.
2139 If you are using Windows XP as guest OS and if you want to use high
2140 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
2141 1280x1024x16), then you should use the VESA VBE virtual graphic card
2142 (option @option{-std-vga}).
2144 @subsubsection CPU usage reduction
2146 Windows 9x does not correctly use the CPU HLT
2147 instruction. The result is that it takes host CPU cycles even when
2148 idle. You can install the utility from
2149 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2150 problem. Note that no such tool is needed for NT, 2000 or XP.
2152 @subsubsection Windows 2000 disk full problem
2154 Windows 2000 has a bug which gives a disk full problem during its
2155 installation. When installing it, use the @option{-win2k-hack} QEMU
2156 option to enable a specific workaround. After Windows 2000 is
2157 installed, you no longer need this option (this option slows down the
2158 IDE transfers).
2160 @subsubsection Windows 2000 shutdown
2162 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2163 can. It comes from the fact that Windows 2000 does not automatically
2164 use the APM driver provided by the BIOS.
2166 In order to correct that, do the following (thanks to Struan
2167 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2168 Add/Troubleshoot a device => Add a new device & Next => No, select the
2169 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2170 (again) a few times. Now the driver is installed and Windows 2000 now
2171 correctly instructs QEMU to shutdown at the appropriate moment.
2173 @subsubsection Share a directory between Unix and Windows
2175 See @ref{sec_invocation} about the help of the option @option{-smb}.
2177 @subsubsection Windows XP security problem
2179 Some releases of Windows XP install correctly but give a security
2180 error when booting:
2181 @example
2182 A problem is preventing Windows from accurately checking the
2183 license for this computer. Error code: 0x800703e6.
2184 @end example
2186 The workaround is to install a service pack for XP after a boot in safe
2187 mode. Then reboot, and the problem should go away. Since there is no
2188 network while in safe mode, its recommended to download the full
2189 installation of SP1 or SP2 and transfer that via an ISO or using the
2190 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2192 @subsection MS-DOS and FreeDOS
2194 @subsubsection CPU usage reduction
2196 DOS does not correctly use the CPU HLT instruction. The result is that
2197 it takes host CPU cycles even when idle. You can install the utility
2198 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2199 problem.
2201 @node QEMU System emulator for non PC targets
2202 @chapter QEMU System emulator for non PC targets
2204 QEMU is a generic emulator and it emulates many non PC
2205 machines. Most of the options are similar to the PC emulator. The
2206 differences are mentioned in the following sections.
2208 @menu
2209 * QEMU PowerPC System emulator::
2210 * Sparc32 System emulator::
2211 * Sparc64 System emulator::
2212 * MIPS System emulator::
2213 * ARM System emulator::
2214 * ColdFire System emulator::
2215 @end menu
2217 @node QEMU PowerPC System emulator
2218 @section QEMU PowerPC System emulator
2220 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2221 or PowerMac PowerPC system.
2223 QEMU emulates the following PowerMac peripherals:
2225 @itemize @minus
2226 @item
2227 UniNorth PCI Bridge
2228 @item
2229 PCI VGA compatible card with VESA Bochs Extensions
2230 @item
2231 2 PMAC IDE interfaces with hard disk and CD-ROM support
2232 @item
2233 NE2000 PCI adapters
2234 @item
2235 Non Volatile RAM
2236 @item
2237 VIA-CUDA with ADB keyboard and mouse.
2238 @end itemize
2240 QEMU emulates the following PREP peripherals:
2242 @itemize @minus
2243 @item
2244 PCI Bridge
2245 @item
2246 PCI VGA compatible card with VESA Bochs Extensions
2247 @item
2248 2 IDE interfaces with hard disk and CD-ROM support
2249 @item
2250 Floppy disk
2251 @item
2252 NE2000 network adapters
2253 @item
2254 Serial port
2255 @item
2256 PREP Non Volatile RAM
2257 @item
2258 PC compatible keyboard and mouse.
2259 @end itemize
2261 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2262 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2264 @c man begin OPTIONS
2266 The following options are specific to the PowerPC emulation:
2268 @table @option
2270 @item -g WxH[xDEPTH]
2272 Set the initial VGA graphic mode. The default is 800x600x15.
2274 @end table
2276 @c man end
2279 More information is available at
2280 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2282 @node Sparc32 System emulator
2283 @section Sparc32 System emulator
2285 Use the executable @file{qemu-system-sparc} to simulate the following
2286 Sun4m architecture machines:
2287 @itemize @minus
2288 @item
2289 SPARCstation 4
2290 @item
2291 SPARCstation 5
2292 @item
2293 SPARCstation 10
2294 @item
2295 SPARCstation 20
2296 @item
2297 SPARCserver 600MP
2298 @item
2299 SPARCstation LX
2300 @item
2301 SPARCstation Voyager
2302 @item
2303 SPARCclassic
2304 @item
2305 SPARCbook
2306 @end itemize
2308 The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2309 but Linux limits the number of usable CPUs to 4.
2311 It's also possible to simulate a SPARCstation 2 (sun4c architecture),
2312 SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
2313 emulators are not usable yet.
2315 QEMU emulates the following sun4m/sun4c/sun4d peripherals:
2317 @itemize @minus
2318 @item
2319 IOMMU or IO-UNITs
2320 @item
2321 TCX Frame buffer
2322 @item
2323 Lance (Am7990) Ethernet
2324 @item
2325 Non Volatile RAM M48T02/M48T08
2326 @item
2327 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2328 and power/reset logic
2329 @item
2330 ESP SCSI controller with hard disk and CD-ROM support
2331 @item
2332 Floppy drive (not on SS-600MP)
2333 @item
2334 CS4231 sound device (only on SS-5, not working yet)
2335 @end itemize
2337 The number of peripherals is fixed in the architecture.  Maximum
2338 memory size depends on the machine type, for SS-5 it is 256MB and for
2339 others 2047MB.
2341 Since version 0.8.2, QEMU uses OpenBIOS
2342 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2343 firmware implementation. The goal is to implement a 100% IEEE
2344 1275-1994 (referred to as Open Firmware) compliant firmware.
2346 A sample Linux 2.6 series kernel and ram disk image are available on
2347 the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2348 some kernel versions work. Please note that currently Solaris kernels
2349 don't work probably due to interface issues between OpenBIOS and
2350 Solaris.
2352 @c man begin OPTIONS
2354 The following options are specific to the Sparc32 emulation:
2356 @table @option
2358 @item -g WxHx[xDEPTH]
2360 Set the initial TCX graphic mode. The default is 1024x768x8, currently
2361 the only other possible mode is 1024x768x24.
2363 @item -prom-env string
2365 Set OpenBIOS variables in NVRAM, for example:
2367 @example
2368 qemu-system-sparc -prom-env 'auto-boot?=false' \
2369  -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2370 @end example
2372 @item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
2374 Set the emulated machine type. Default is SS-5.
2376 @end table
2378 @c man end
2380 @node Sparc64 System emulator
2381 @section Sparc64 System emulator
2383 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2384 (UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2385 Niagara (T1) machine. The emulator is not usable for anything yet, but
2386 it can launch some kernels.
2388 QEMU emulates the following peripherals:
2390 @itemize @minus
2391 @item
2392 UltraSparc IIi APB PCI Bridge
2393 @item
2394 PCI VGA compatible card with VESA Bochs Extensions
2395 @item
2396 PS/2 mouse and keyboard
2397 @item
2398 Non Volatile RAM M48T59
2399 @item
2400 PC-compatible serial ports
2401 @item
2402 2 PCI IDE interfaces with hard disk and CD-ROM support
2403 @item
2404 Floppy disk
2405 @end itemize
2407 @c man begin OPTIONS
2409 The following options are specific to the Sparc64 emulation:
2411 @table @option
2413 @item -prom-env string
2415 Set OpenBIOS variables in NVRAM, for example:
2417 @example
2418 qemu-system-sparc64 -prom-env 'auto-boot?=false'
2419 @end example
2421 @item -M [sun4u|sun4v|Niagara]
2423 Set the emulated machine type. The default is sun4u.
2425 @end table
2427 @c man end
2429 @node MIPS System emulator
2430 @section MIPS System emulator
2432 Four executables cover simulation of 32 and 64-bit MIPS systems in
2433 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2434 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2435 Five different machine types are emulated:
2437 @itemize @minus
2438 @item
2439 A generic ISA PC-like machine "mips"
2440 @item
2441 The MIPS Malta prototype board "malta"
2442 @item
2443 An ACER Pica "pica61". This machine needs the 64-bit emulator.
2444 @item
2445 MIPS emulator pseudo board "mipssim"
2446 @item
2447 A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2448 @end itemize
2450 The generic emulation is supported by Debian 'Etch' and is able to
2451 install Debian into a virtual disk image. The following devices are
2452 emulated:
2454 @itemize @minus
2455 @item
2456 A range of MIPS CPUs, default is the 24Kf
2457 @item
2458 PC style serial port
2459 @item
2460 PC style IDE disk
2461 @item
2462 NE2000 network card
2463 @end itemize
2465 The Malta emulation supports the following devices:
2467 @itemize @minus
2468 @item
2469 Core board with MIPS 24Kf CPU and Galileo system controller
2470 @item
2471 PIIX4 PCI/USB/SMbus controller
2472 @item
2473 The Multi-I/O chip's serial device
2474 @item
2475 PCnet32 PCI network card
2476 @item
2477 Malta FPGA serial device
2478 @item
2479 Cirrus VGA graphics card
2480 @end itemize
2482 The ACER Pica emulation supports:
2484 @itemize @minus
2485 @item
2486 MIPS R4000 CPU
2487 @item
2488 PC-style IRQ and DMA controllers
2489 @item
2490 PC Keyboard
2491 @item
2492 IDE controller
2493 @end itemize
2495 The mipssim pseudo board emulation provides an environment similiar
2496 to what the proprietary MIPS emulator uses for running Linux.
2497 It supports:
2499 @itemize @minus
2500 @item
2501 A range of MIPS CPUs, default is the 24Kf
2502 @item
2503 PC style serial port
2504 @item
2505 MIPSnet network emulation
2506 @end itemize
2508 The MIPS Magnum R4000 emulation supports:
2510 @itemize @minus
2511 @item
2512 MIPS R4000 CPU
2513 @item
2514 PC-style IRQ controller
2515 @item
2516 PC Keyboard
2517 @item
2518 SCSI controller
2519 @item
2520 G364 framebuffer
2521 @end itemize
2524 @node ARM System emulator
2525 @section ARM System emulator
2527 Use the executable @file{qemu-system-arm} to simulate a ARM
2528 machine. The ARM Integrator/CP board is emulated with the following
2529 devices:
2531 @itemize @minus
2532 @item
2533 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2534 @item
2535 Two PL011 UARTs
2536 @item
2537 SMC 91c111 Ethernet adapter
2538 @item
2539 PL110 LCD controller
2540 @item
2541 PL050 KMI with PS/2 keyboard and mouse.
2542 @item
2543 PL181 MultiMedia Card Interface with SD card.
2544 @end itemize
2546 The ARM Versatile baseboard is emulated with the following devices:
2548 @itemize @minus
2549 @item
2550 ARM926E, ARM1136 or Cortex-A8 CPU
2551 @item
2552 PL190 Vectored Interrupt Controller
2553 @item
2554 Four PL011 UARTs
2555 @item
2556 SMC 91c111 Ethernet adapter
2557 @item
2558 PL110 LCD controller
2559 @item
2560 PL050 KMI with PS/2 keyboard and mouse.
2561 @item
2562 PCI host bridge.  Note the emulated PCI bridge only provides access to
2563 PCI memory space.  It does not provide access to PCI IO space.
2564 This means some devices (eg. ne2k_pci NIC) are not usable, and others
2565 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2566 mapped control registers.
2567 @item
2568 PCI OHCI USB controller.
2569 @item
2570 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2571 @item
2572 PL181 MultiMedia Card Interface with SD card.
2573 @end itemize
2575 The ARM RealView Emulation baseboard is emulated with the following devices:
2577 @itemize @minus
2578 @item
2579 ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2580 @item
2581 ARM AMBA Generic/Distributed Interrupt Controller
2582 @item
2583 Four PL011 UARTs
2584 @item
2585 SMC 91c111 Ethernet adapter
2586 @item
2587 PL110 LCD controller
2588 @item
2589 PL050 KMI with PS/2 keyboard and mouse
2590 @item
2591 PCI host bridge
2592 @item
2593 PCI OHCI USB controller
2594 @item
2595 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2596 @item
2597 PL181 MultiMedia Card Interface with SD card.
2598 @end itemize
2600 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2601 and "Terrier") emulation includes the following peripherals:
2603 @itemize @minus
2604 @item
2605 Intel PXA270 System-on-chip (ARM V5TE core)
2606 @item
2607 NAND Flash memory
2608 @item
2609 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2610 @item
2611 On-chip OHCI USB controller
2612 @item
2613 On-chip LCD controller
2614 @item
2615 On-chip Real Time Clock
2616 @item
2617 TI ADS7846 touchscreen controller on SSP bus
2618 @item
2619 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2620 @item
2621 GPIO-connected keyboard controller and LEDs
2622 @item
2623 Secure Digital card connected to PXA MMC/SD host
2624 @item
2625 Three on-chip UARTs
2626 @item
2627 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2628 @end itemize
2630 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2631 following elements:
2633 @itemize @minus
2634 @item
2635 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2636 @item
2637 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2638 @item
2639 On-chip LCD controller
2640 @item
2641 On-chip Real Time Clock
2642 @item
2643 TI TSC2102i touchscreen controller / analog-digital converter / Audio
2644 CODEC, connected through MicroWire and I@math{^2}S busses
2645 @item
2646 GPIO-connected matrix keypad
2647 @item
2648 Secure Digital card connected to OMAP MMC/SD host
2649 @item
2650 Three on-chip UARTs
2651 @end itemize
2653 Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2654 emulation supports the following elements:
2656 @itemize @minus
2657 @item
2658 Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2659 @item
2660 RAM and non-volatile OneNAND Flash memories
2661 @item
2662 Display connected to EPSON remote framebuffer chip and OMAP on-chip
2663 display controller and a LS041y3 MIPI DBI-C controller
2664 @item
2665 TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2666 driven through SPI bus
2667 @item
2668 National Semiconductor LM8323-controlled qwerty keyboard driven
2669 through I@math{^2}C bus
2670 @item
2671 Secure Digital card connected to OMAP MMC/SD host
2672 @item
2673 Three OMAP on-chip UARTs and on-chip STI debugging console
2674 @item
2675 Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2676 TUSB6010 chip - only USB host mode is supported
2677 @item
2678 TI TMP105 temperature sensor driven through I@math{^2}C bus
2679 @item
2680 TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2681 @item
2682 Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2683 through CBUS
2684 @end itemize
2686 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2687 devices:
2689 @itemize @minus
2690 @item
2691 Cortex-M3 CPU core.
2692 @item
2693 64k Flash and 8k SRAM.
2694 @item
2695 Timers, UARTs, ADC and I@math{^2}C interface.
2696 @item
2697 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2698 @end itemize
2700 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2701 devices:
2703 @itemize @minus
2704 @item
2705 Cortex-M3 CPU core.
2706 @item
2707 256k Flash and 64k SRAM.
2708 @item
2709 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2710 @item
2711 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2712 @end itemize
2714 The Freecom MusicPal internet radio emulation includes the following
2715 elements:
2717 @itemize @minus
2718 @item
2719 Marvell MV88W8618 ARM core.
2720 @item
2721 32 MB RAM, 256 KB SRAM, 8 MB flash.
2722 @item
2723 Up to 2 16550 UARTs
2724 @item
2725 MV88W8xx8 Ethernet controller
2726 @item
2727 MV88W8618 audio controller, WM8750 CODEC and mixer
2728 @item
2729 128×64 display with brightness control
2730 @item
2731 2 buttons, 2 navigation wheels with button function
2732 @end itemize
2734 A Linux 2.6 test image is available on the QEMU web site. More
2735 information is available in the QEMU mailing-list archive.
2737 @node ColdFire System emulator
2738 @section ColdFire System emulator
2740 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2741 The emulator is able to boot a uClinux kernel.
2743 The M5208EVB emulation includes the following devices:
2745 @itemize @minus
2746 @item
2747 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2748 @item
2749 Three Two on-chip UARTs.
2750 @item
2751 Fast Ethernet Controller (FEC)
2752 @end itemize
2754 The AN5206 emulation includes the following devices:
2756 @itemize @minus
2757 @item
2758 MCF5206 ColdFire V2 Microprocessor.
2759 @item
2760 Two on-chip UARTs.
2761 @end itemize
2763 @node QEMU User space emulator
2764 @chapter QEMU User space emulator
2766 @menu
2767 * Supported Operating Systems ::
2768 * Linux User space emulator::
2769 * Mac OS X/Darwin User space emulator ::
2770 @end menu
2772 @node Supported Operating Systems
2773 @section Supported Operating Systems
2775 The following OS are supported in user space emulation:
2777 @itemize @minus
2778 @item
2779 Linux (referred as qemu-linux-user)
2780 @item
2781 Mac OS X/Darwin (referred as qemu-darwin-user)
2782 @end itemize
2784 @node Linux User space emulator
2785 @section Linux User space emulator
2787 @menu
2788 * Quick Start::
2789 * Wine launch::
2790 * Command line options::
2791 * Other binaries::
2792 @end menu
2794 @node Quick Start
2795 @subsection Quick Start
2797 In order to launch a Linux process, QEMU needs the process executable
2798 itself and all the target (x86) dynamic libraries used by it.
2800 @itemize
2802 @item On x86, you can just try to launch any process by using the native
2803 libraries:
2805 @example
2806 qemu-i386 -L / /bin/ls
2807 @end example
2809 @code{-L /} tells that the x86 dynamic linker must be searched with a
2810 @file{/} prefix.
2812 @item Since QEMU is also a linux process, you can launch qemu with
2813 qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2815 @example
2816 qemu-i386 -L / qemu-i386 -L / /bin/ls
2817 @end example
2819 @item On non x86 CPUs, you need first to download at least an x86 glibc
2820 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2821 @code{LD_LIBRARY_PATH} is not set:
2823 @example
2824 unset LD_LIBRARY_PATH
2825 @end example
2827 Then you can launch the precompiled @file{ls} x86 executable:
2829 @example
2830 qemu-i386 tests/i386/ls
2831 @end example
2832 You can look at @file{qemu-binfmt-conf.sh} so that
2833 QEMU is automatically launched by the Linux kernel when you try to
2834 launch x86 executables. It requires the @code{binfmt_misc} module in the
2835 Linux kernel.
2837 @item The x86 version of QEMU is also included. You can try weird things such as:
2838 @example
2839 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2840           /usr/local/qemu-i386/bin/ls-i386
2841 @end example
2843 @end itemize
2845 @node Wine launch
2846 @subsection Wine launch
2848 @itemize
2850 @item Ensure that you have a working QEMU with the x86 glibc
2851 distribution (see previous section). In order to verify it, you must be
2852 able to do:
2854 @example
2855 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2856 @end example
2858 @item Download the binary x86 Wine install
2859 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2861 @item Configure Wine on your account. Look at the provided script
2862 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2863 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2865 @item Then you can try the example @file{putty.exe}:
2867 @example
2868 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2869           /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2870 @end example
2872 @end itemize
2874 @node Command line options
2875 @subsection Command line options
2877 @example
2878 usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] program [arguments...]
2879 @end example
2881 @table @option
2882 @item -h
2883 Print the help
2884 @item -L path
2885 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2886 @item -s size
2887 Set the x86 stack size in bytes (default=524288)
2888 @item -cpu model
2889 Select CPU model (-cpu ? for list and additional feature selection)
2890 @end table
2892 Debug options:
2894 @table @option
2895 @item -d
2896 Activate log (logfile=/tmp/qemu.log)
2897 @item -p pagesize
2898 Act as if the host page size was 'pagesize' bytes
2899 @item -g port
2900 Wait gdb connection to port
2901 @end table
2903 Environment variables:
2905 @table @env
2906 @item QEMU_STRACE
2907 Print system calls and arguments similar to the 'strace' program
2908 (NOTE: the actual 'strace' program will not work because the user
2909 space emulator hasn't implemented ptrace).  At the moment this is
2910 incomplete.  All system calls that don't have a specific argument
2911 format are printed with information for six arguments.  Many
2912 flag-style arguments don't have decoders and will show up as numbers.
2913 @end table
2915 @node Other binaries
2916 @subsection Other binaries
2918 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2919 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2920 configurations), and arm-uclinux bFLT format binaries.
2922 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
2923 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2924 coldfire uClinux bFLT format binaries.
2926 The binary format is detected automatically.
2928 @command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2930 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2931 (Sparc64 CPU, 32 bit ABI).
2933 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2934 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2936 @node Mac OS X/Darwin User space emulator
2937 @section Mac OS X/Darwin User space emulator
2939 @menu
2940 * Mac OS X/Darwin Status::
2941 * Mac OS X/Darwin Quick Start::
2942 * Mac OS X/Darwin Command line options::
2943 @end menu
2945 @node Mac OS X/Darwin Status
2946 @subsection Mac OS X/Darwin Status
2948 @itemize @minus
2949 @item
2950 target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2951 @item
2952 target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2953 @item
2954 target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2955 @item
2956 target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2957 @end itemize
2959 [1] If you're host commpage can be executed by qemu.
2961 @node Mac OS X/Darwin Quick Start
2962 @subsection Quick Start
2964 In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2965 itself and all the target dynamic libraries used by it. If you don't have the FAT
2966 libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2967 CD or compile them by hand.
2969 @itemize
2971 @item On x86, you can just try to launch any process by using the native
2972 libraries:
2974 @example
2975 qemu-i386 /bin/ls
2976 @end example
2978 or to run the ppc version of the executable:
2980 @example
2981 qemu-ppc /bin/ls
2982 @end example
2984 @item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2985 are installed:
2987 @example
2988 qemu-i386 -L /opt/x86_root/ /bin/ls
2989 @end example
2991 @code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2992 @file{/opt/x86_root/usr/bin/dyld}.
2994 @end itemize
2996 @node Mac OS X/Darwin Command line options
2997 @subsection Command line options
2999 @example
3000 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
3001 @end example
3003 @table @option
3004 @item -h
3005 Print the help
3006 @item -L path
3007 Set the library root path (default=/)
3008 @item -s size
3009 Set the stack size in bytes (default=524288)
3010 @end table
3012 Debug options:
3014 @table @option
3015 @item -d
3016 Activate log (logfile=/tmp/qemu.log)
3017 @item -p pagesize
3018 Act as if the host page size was 'pagesize' bytes
3019 @end table
3021 @node compilation
3022 @chapter Compilation from the sources
3024 @menu
3025 * Linux/Unix::
3026 * Windows::
3027 * Cross compilation for Windows with Linux::
3028 * Mac OS X::
3029 @end menu
3031 @node Linux/Unix
3032 @section Linux/Unix
3034 @subsection Compilation
3036 First you must decompress the sources:
3037 @example
3038 cd /tmp
3039 tar zxvf qemu-x.y.z.tar.gz
3040 cd qemu-x.y.z
3041 @end example
3043 Then you configure QEMU and build it (usually no options are needed):
3044 @example
3045 ./configure
3046 make
3047 @end example
3049 Then type as root user:
3050 @example
3051 make install
3052 @end example
3053 to install QEMU in @file{/usr/local}.
3055 @subsection GCC version
3057 In order to compile QEMU successfully, it is very important that you
3058 have the right tools. The most important one is gcc. On most hosts and
3059 in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
3060 Linux distribution includes a gcc 4.x compiler, you can usually
3061 install an older version (it is invoked by @code{gcc32} or
3062 @code{gcc34}). The QEMU configure script automatically probes for
3063 these older versions so that usually you don't have to do anything.
3065 @node Windows
3066 @section Windows
3068 @itemize
3069 @item Install the current versions of MSYS and MinGW from
3070 @url{http://www.mingw.org/}. You can find detailed installation
3071 instructions in the download section and the FAQ.
3073 @item Download
3074 the MinGW development library of SDL 1.2.x
3075 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
3076 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
3077 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
3078 directory. Edit the @file{sdl-config} script so that it gives the
3079 correct SDL directory when invoked.
3081 @item Extract the current version of QEMU.
3083 @item Start the MSYS shell (file @file{msys.bat}).
3085 @item Change to the QEMU directory. Launch @file{./configure} and
3086 @file{make}.  If you have problems using SDL, verify that
3087 @file{sdl-config} can be launched from the MSYS command line.
3089 @item You can install QEMU in @file{Program Files/Qemu} by typing
3090 @file{make install}. Don't forget to copy @file{SDL.dll} in
3091 @file{Program Files/Qemu}.
3093 @end itemize
3095 @node Cross compilation for Windows with Linux
3096 @section Cross compilation for Windows with Linux
3098 @itemize
3099 @item
3100 Install the MinGW cross compilation tools available at
3101 @url{http://www.mingw.org/}.
3103 @item
3104 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
3105 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
3106 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
3107 the QEMU configuration script.
3109 @item
3110 Configure QEMU for Windows cross compilation:
3111 @example
3112 ./configure --enable-mingw32
3113 @end example
3114 If necessary, you can change the cross-prefix according to the prefix
3115 chosen for the MinGW tools with --cross-prefix. You can also use
3116 --prefix to set the Win32 install path.
3118 @item You can install QEMU in the installation directory by typing
3119 @file{make install}. Don't forget to copy @file{SDL.dll} in the
3120 installation directory.
3122 @end itemize
3124 Note: Currently, Wine does not seem able to launch
3125 QEMU for Win32.
3127 @node Mac OS X
3128 @section Mac OS X
3130 The Mac OS X patches are not fully merged in QEMU, so you should look
3131 at the QEMU mailing list archive to have all the necessary
3132 information.
3134 @node Index
3135 @chapter Index
3136 @printindex cp
3138 @bye