Update Changelog and VERSION for 0.11.0-rc1 release
[qemu-kvm/fedora.git] / vl.c
blob0d03fd6f7a2c492875eff0e63d8df1d66881a265
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
34 /* Needed early to override system queue definitions on BSD */
35 #include "sys-queue.h"
37 #ifndef _WIN32
38 #include <libgen.h>
39 #include <pwd.h>
40 #include <sys/times.h>
41 #include <sys/wait.h>
42 #include <termios.h>
43 #include <sys/mman.h>
44 #include <sys/ioctl.h>
45 #include <sys/resource.h>
46 #include <sys/socket.h>
47 #include <netinet/in.h>
48 #include <net/if.h>
49 #if defined(__NetBSD__)
50 #include <net/if_tap.h>
51 #endif
52 #ifdef __linux__
53 #include <linux/if_tun.h>
54 #endif
55 #include <arpa/inet.h>
56 #include <dirent.h>
57 #include <netdb.h>
58 #include <sys/select.h>
59 #ifdef HOST_BSD
60 #include <sys/stat.h>
61 #if defined(__FreeBSD__) || defined(__DragonFly__)
62 #include <libutil.h>
63 #else
64 #include <util.h>
65 #endif
66 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
67 #include <freebsd/stdlib.h>
68 #else
69 #ifdef __linux__
70 #include <pty.h>
71 #include <malloc.h>
72 #include <linux/rtc.h>
73 #include <sys/prctl.h>
75 /* For the benefit of older linux systems which don't supply it,
76 we use a local copy of hpet.h. */
77 /* #include <linux/hpet.h> */
78 #include "hpet.h"
80 #include <linux/ppdev.h>
81 #include <linux/parport.h>
82 #endif
83 #ifdef __sun__
84 #include <sys/stat.h>
85 #include <sys/ethernet.h>
86 #include <sys/sockio.h>
87 #include <netinet/arp.h>
88 #include <netinet/in.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/ip.h>
91 #include <netinet/ip_icmp.h> // must come after ip.h
92 #include <netinet/udp.h>
93 #include <netinet/tcp.h>
94 #include <net/if.h>
95 #include <syslog.h>
96 #include <stropts.h>
97 #endif
98 #endif
99 #endif
101 #if defined(__OpenBSD__)
102 #include <util.h>
103 #endif
105 #if defined(CONFIG_VDE)
106 #include <libvdeplug.h>
107 #endif
109 #ifdef _WIN32
110 #include <windows.h>
111 #include <malloc.h>
112 #include <sys/timeb.h>
113 #include <mmsystem.h>
114 #define getopt_long_only getopt_long
115 #define memalign(align, size) malloc(size)
116 #endif
118 #ifdef CONFIG_SDL
119 #if defined(__APPLE__) || defined(main)
120 #include <SDL.h>
121 int qemu_main(int argc, char **argv, char **envp);
122 int main(int argc, char **argv)
124 return qemu_main(argc, argv, NULL);
126 #undef main
127 #define main qemu_main
128 #endif
129 #endif /* CONFIG_SDL */
131 #ifdef CONFIG_COCOA
132 #undef main
133 #define main qemu_main
134 #endif /* CONFIG_COCOA */
136 #include "hw/hw.h"
137 #include "hw/boards.h"
138 #include "hw/usb.h"
139 #include "hw/pcmcia.h"
140 #include "hw/pc.h"
141 #include "hw/audiodev.h"
142 #include "hw/isa.h"
143 #include "hw/baum.h"
144 #include "hw/bt.h"
145 #include "hw/watchdog.h"
146 #include "hw/smbios.h"
147 #include "hw/xen.h"
148 #include "bt-host.h"
149 #include "net.h"
150 #include "monitor.h"
151 #include "console.h"
152 #include "sysemu.h"
153 #include "gdbstub.h"
154 #include "qemu-timer.h"
155 #include "qemu-char.h"
156 #include "cache-utils.h"
157 #include "block.h"
158 #include "dma.h"
159 #include "audio/audio.h"
160 #include "migration.h"
161 #include "kvm.h"
162 #include "balloon.h"
163 #include "qemu-option.h"
165 #include "disas.h"
167 #include "exec-all.h"
169 #include "qemu_socket.h"
171 #include "slirp/libslirp.h"
173 //#define DEBUG_NET
174 //#define DEBUG_SLIRP
176 #define DEFAULT_RAM_SIZE 128
178 /* Max number of USB devices that can be specified on the commandline. */
179 #define MAX_USB_CMDLINE 8
181 /* Max number of bluetooth switches on the commandline. */
182 #define MAX_BT_CMDLINE 10
184 static const char *data_dir;
185 const char *bios_name = NULL;
186 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
187 to store the VM snapshots */
188 DriveInfo drives_table[MAX_DRIVES+1];
189 int nb_drives;
190 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
191 static DisplayState *display_state;
192 DisplayType display_type = DT_DEFAULT;
193 const char* keyboard_layout = NULL;
194 int64_t ticks_per_sec;
195 ram_addr_t ram_size;
196 int nb_nics;
197 NICInfo nd_table[MAX_NICS];
198 int vm_running;
199 static int autostart;
200 static int rtc_utc = 1;
201 static int rtc_date_offset = -1; /* -1 means no change */
202 int cirrus_vga_enabled = 1;
203 int std_vga_enabled = 0;
204 int vmsvga_enabled = 0;
205 int xenfb_enabled = 0;
206 #ifdef TARGET_SPARC
207 int graphic_width = 1024;
208 int graphic_height = 768;
209 int graphic_depth = 8;
210 #else
211 int graphic_width = 800;
212 int graphic_height = 600;
213 int graphic_depth = 15;
214 #endif
215 static int full_screen = 0;
216 #ifdef CONFIG_SDL
217 static int no_frame = 0;
218 #endif
219 int no_quit = 0;
220 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
221 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
222 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
223 #ifdef TARGET_I386
224 int win2k_install_hack = 0;
225 int rtc_td_hack = 0;
226 #endif
227 int usb_enabled = 0;
228 int singlestep = 0;
229 int smp_cpus = 1;
230 const char *vnc_display;
231 int acpi_enabled = 1;
232 int no_hpet = 0;
233 int virtio_balloon = 1;
234 const char *virtio_balloon_devaddr;
235 int fd_bootchk = 1;
236 int no_reboot = 0;
237 int no_shutdown = 0;
238 int cursor_hide = 1;
239 int graphic_rotate = 0;
240 #ifndef _WIN32
241 int daemonize = 0;
242 #endif
243 WatchdogTimerModel *watchdog = NULL;
244 int watchdog_action = WDT_RESET;
245 const char *option_rom[MAX_OPTION_ROMS];
246 int nb_option_roms;
247 int semihosting_enabled = 0;
248 #ifdef TARGET_ARM
249 int old_param = 0;
250 #endif
251 const char *qemu_name;
252 int alt_grab = 0;
253 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
254 unsigned int nb_prom_envs = 0;
255 const char *prom_envs[MAX_PROM_ENVS];
256 #endif
257 int nb_drives_opt;
258 struct drive_opt drives_opt[MAX_DRIVES];
259 int boot_menu;
261 int nb_numa_nodes;
262 uint64_t node_mem[MAX_NODES];
263 uint64_t node_cpumask[MAX_NODES];
265 static CPUState *cur_cpu;
266 static CPUState *next_cpu;
267 static int timer_alarm_pending = 1;
268 /* Conversion factor from emulated instructions to virtual clock ticks. */
269 static int icount_time_shift;
270 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
271 #define MAX_ICOUNT_SHIFT 10
272 /* Compensate for varying guest execution speed. */
273 static int64_t qemu_icount_bias;
274 static QEMUTimer *icount_rt_timer;
275 static QEMUTimer *icount_vm_timer;
276 static QEMUTimer *nographic_timer;
278 uint8_t qemu_uuid[16];
280 static QEMUBootSetHandler *boot_set_handler;
281 static void *boot_set_opaque;
283 /***********************************************************/
284 /* x86 ISA bus support */
286 target_phys_addr_t isa_mem_base = 0;
287 PicState2 *isa_pic;
289 /***********************************************************/
290 void hw_error(const char *fmt, ...)
292 va_list ap;
293 CPUState *env;
295 va_start(ap, fmt);
296 fprintf(stderr, "qemu: hardware error: ");
297 vfprintf(stderr, fmt, ap);
298 fprintf(stderr, "\n");
299 for(env = first_cpu; env != NULL; env = env->next_cpu) {
300 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
301 #ifdef TARGET_I386
302 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
303 #else
304 cpu_dump_state(env, stderr, fprintf, 0);
305 #endif
307 va_end(ap);
308 abort();
311 static void set_proc_name(const char *s)
313 #ifdef __linux__
314 char name[16];
315 if (!s)
316 return;
317 name[sizeof(name) - 1] = 0;
318 strncpy(name, s, sizeof(name));
319 /* Could rewrite argv[0] too, but that's a bit more complicated.
320 This simple way is enough for `top'. */
321 prctl(PR_SET_NAME, name);
322 #endif
325 /***************/
326 /* ballooning */
328 static QEMUBalloonEvent *qemu_balloon_event;
329 void *qemu_balloon_event_opaque;
331 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
333 qemu_balloon_event = func;
334 qemu_balloon_event_opaque = opaque;
337 void qemu_balloon(ram_addr_t target)
339 if (qemu_balloon_event)
340 qemu_balloon_event(qemu_balloon_event_opaque, target);
343 ram_addr_t qemu_balloon_status(void)
345 if (qemu_balloon_event)
346 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
347 return 0;
350 /***********************************************************/
351 /* keyboard/mouse */
353 static QEMUPutKBDEvent *qemu_put_kbd_event;
354 static void *qemu_put_kbd_event_opaque;
355 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
356 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
358 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
360 qemu_put_kbd_event_opaque = opaque;
361 qemu_put_kbd_event = func;
364 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
365 void *opaque, int absolute,
366 const char *name)
368 QEMUPutMouseEntry *s, *cursor;
370 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
372 s->qemu_put_mouse_event = func;
373 s->qemu_put_mouse_event_opaque = opaque;
374 s->qemu_put_mouse_event_absolute = absolute;
375 s->qemu_put_mouse_event_name = qemu_strdup(name);
376 s->next = NULL;
378 if (!qemu_put_mouse_event_head) {
379 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
380 return s;
383 cursor = qemu_put_mouse_event_head;
384 while (cursor->next != NULL)
385 cursor = cursor->next;
387 cursor->next = s;
388 qemu_put_mouse_event_current = s;
390 return s;
393 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
395 QEMUPutMouseEntry *prev = NULL, *cursor;
397 if (!qemu_put_mouse_event_head || entry == NULL)
398 return;
400 cursor = qemu_put_mouse_event_head;
401 while (cursor != NULL && cursor != entry) {
402 prev = cursor;
403 cursor = cursor->next;
406 if (cursor == NULL) // does not exist or list empty
407 return;
408 else if (prev == NULL) { // entry is head
409 qemu_put_mouse_event_head = cursor->next;
410 if (qemu_put_mouse_event_current == entry)
411 qemu_put_mouse_event_current = cursor->next;
412 qemu_free(entry->qemu_put_mouse_event_name);
413 qemu_free(entry);
414 return;
417 prev->next = entry->next;
419 if (qemu_put_mouse_event_current == entry)
420 qemu_put_mouse_event_current = prev;
422 qemu_free(entry->qemu_put_mouse_event_name);
423 qemu_free(entry);
426 void kbd_put_keycode(int keycode)
428 if (qemu_put_kbd_event) {
429 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
433 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
435 QEMUPutMouseEvent *mouse_event;
436 void *mouse_event_opaque;
437 int width;
439 if (!qemu_put_mouse_event_current) {
440 return;
443 mouse_event =
444 qemu_put_mouse_event_current->qemu_put_mouse_event;
445 mouse_event_opaque =
446 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
448 if (mouse_event) {
449 if (graphic_rotate) {
450 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
451 width = 0x7fff;
452 else
453 width = graphic_width - 1;
454 mouse_event(mouse_event_opaque,
455 width - dy, dx, dz, buttons_state);
456 } else
457 mouse_event(mouse_event_opaque,
458 dx, dy, dz, buttons_state);
462 int kbd_mouse_is_absolute(void)
464 if (!qemu_put_mouse_event_current)
465 return 0;
467 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
470 void do_info_mice(Monitor *mon)
472 QEMUPutMouseEntry *cursor;
473 int index = 0;
475 if (!qemu_put_mouse_event_head) {
476 monitor_printf(mon, "No mouse devices connected\n");
477 return;
480 monitor_printf(mon, "Mouse devices available:\n");
481 cursor = qemu_put_mouse_event_head;
482 while (cursor != NULL) {
483 monitor_printf(mon, "%c Mouse #%d: %s\n",
484 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
485 index, cursor->qemu_put_mouse_event_name);
486 index++;
487 cursor = cursor->next;
491 void do_mouse_set(Monitor *mon, int index)
493 QEMUPutMouseEntry *cursor;
494 int i = 0;
496 if (!qemu_put_mouse_event_head) {
497 monitor_printf(mon, "No mouse devices connected\n");
498 return;
501 cursor = qemu_put_mouse_event_head;
502 while (cursor != NULL && index != i) {
503 i++;
504 cursor = cursor->next;
507 if (cursor != NULL)
508 qemu_put_mouse_event_current = cursor;
509 else
510 monitor_printf(mon, "Mouse at given index not found\n");
513 /* compute with 96 bit intermediate result: (a*b)/c */
514 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
516 union {
517 uint64_t ll;
518 struct {
519 #ifdef WORDS_BIGENDIAN
520 uint32_t high, low;
521 #else
522 uint32_t low, high;
523 #endif
524 } l;
525 } u, res;
526 uint64_t rl, rh;
528 u.ll = a;
529 rl = (uint64_t)u.l.low * (uint64_t)b;
530 rh = (uint64_t)u.l.high * (uint64_t)b;
531 rh += (rl >> 32);
532 res.l.high = rh / c;
533 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
534 return res.ll;
537 /***********************************************************/
538 /* real time host monotonic timer */
540 #define QEMU_TIMER_BASE 1000000000LL
542 #ifdef WIN32
544 static int64_t clock_freq;
546 static void init_get_clock(void)
548 LARGE_INTEGER freq;
549 int ret;
550 ret = QueryPerformanceFrequency(&freq);
551 if (ret == 0) {
552 fprintf(stderr, "Could not calibrate ticks\n");
553 exit(1);
555 clock_freq = freq.QuadPart;
558 static int64_t get_clock(void)
560 LARGE_INTEGER ti;
561 QueryPerformanceCounter(&ti);
562 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
565 #else
567 static int use_rt_clock;
569 static void init_get_clock(void)
571 use_rt_clock = 0;
572 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
573 || defined(__DragonFly__)
575 struct timespec ts;
576 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
577 use_rt_clock = 1;
580 #endif
583 static int64_t get_clock(void)
585 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
586 || defined(__DragonFly__)
587 if (use_rt_clock) {
588 struct timespec ts;
589 clock_gettime(CLOCK_MONOTONIC, &ts);
590 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
591 } else
592 #endif
594 /* XXX: using gettimeofday leads to problems if the date
595 changes, so it should be avoided. */
596 struct timeval tv;
597 gettimeofday(&tv, NULL);
598 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
601 #endif
603 /* Return the virtual CPU time, based on the instruction counter. */
604 static int64_t cpu_get_icount(void)
606 int64_t icount;
607 CPUState *env = cpu_single_env;;
608 icount = qemu_icount;
609 if (env) {
610 if (!can_do_io(env))
611 fprintf(stderr, "Bad clock read\n");
612 icount -= (env->icount_decr.u16.low + env->icount_extra);
614 return qemu_icount_bias + (icount << icount_time_shift);
617 /***********************************************************/
618 /* guest cycle counter */
620 static int64_t cpu_ticks_prev;
621 static int64_t cpu_ticks_offset;
622 static int64_t cpu_clock_offset;
623 static int cpu_ticks_enabled;
625 /* return the host CPU cycle counter and handle stop/restart */
626 int64_t cpu_get_ticks(void)
628 if (use_icount) {
629 return cpu_get_icount();
631 if (!cpu_ticks_enabled) {
632 return cpu_ticks_offset;
633 } else {
634 int64_t ticks;
635 ticks = cpu_get_real_ticks();
636 if (cpu_ticks_prev > ticks) {
637 /* Note: non increasing ticks may happen if the host uses
638 software suspend */
639 cpu_ticks_offset += cpu_ticks_prev - ticks;
641 cpu_ticks_prev = ticks;
642 return ticks + cpu_ticks_offset;
646 /* return the host CPU monotonic timer and handle stop/restart */
647 static int64_t cpu_get_clock(void)
649 int64_t ti;
650 if (!cpu_ticks_enabled) {
651 return cpu_clock_offset;
652 } else {
653 ti = get_clock();
654 return ti + cpu_clock_offset;
658 /* enable cpu_get_ticks() */
659 void cpu_enable_ticks(void)
661 if (!cpu_ticks_enabled) {
662 cpu_ticks_offset -= cpu_get_real_ticks();
663 cpu_clock_offset -= get_clock();
664 cpu_ticks_enabled = 1;
668 /* disable cpu_get_ticks() : the clock is stopped. You must not call
669 cpu_get_ticks() after that. */
670 void cpu_disable_ticks(void)
672 if (cpu_ticks_enabled) {
673 cpu_ticks_offset = cpu_get_ticks();
674 cpu_clock_offset = cpu_get_clock();
675 cpu_ticks_enabled = 0;
679 /***********************************************************/
680 /* timers */
682 #define QEMU_TIMER_REALTIME 0
683 #define QEMU_TIMER_VIRTUAL 1
685 struct QEMUClock {
686 int type;
687 /* XXX: add frequency */
690 struct QEMUTimer {
691 QEMUClock *clock;
692 int64_t expire_time;
693 QEMUTimerCB *cb;
694 void *opaque;
695 struct QEMUTimer *next;
698 struct qemu_alarm_timer {
699 char const *name;
700 unsigned int flags;
702 int (*start)(struct qemu_alarm_timer *t);
703 void (*stop)(struct qemu_alarm_timer *t);
704 void (*rearm)(struct qemu_alarm_timer *t);
705 void *priv;
708 #define ALARM_FLAG_DYNTICKS 0x1
709 #define ALARM_FLAG_EXPIRED 0x2
711 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
713 return t && (t->flags & ALARM_FLAG_DYNTICKS);
716 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
718 if (!alarm_has_dynticks(t))
719 return;
721 t->rearm(t);
724 /* TODO: MIN_TIMER_REARM_US should be optimized */
725 #define MIN_TIMER_REARM_US 250
727 static struct qemu_alarm_timer *alarm_timer;
729 #ifdef _WIN32
731 struct qemu_alarm_win32 {
732 MMRESULT timerId;
733 unsigned int period;
734 } alarm_win32_data = {0, -1};
736 static int win32_start_timer(struct qemu_alarm_timer *t);
737 static void win32_stop_timer(struct qemu_alarm_timer *t);
738 static void win32_rearm_timer(struct qemu_alarm_timer *t);
740 #else
742 static int unix_start_timer(struct qemu_alarm_timer *t);
743 static void unix_stop_timer(struct qemu_alarm_timer *t);
745 #ifdef __linux__
747 static int dynticks_start_timer(struct qemu_alarm_timer *t);
748 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
749 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
751 static int hpet_start_timer(struct qemu_alarm_timer *t);
752 static void hpet_stop_timer(struct qemu_alarm_timer *t);
754 static int rtc_start_timer(struct qemu_alarm_timer *t);
755 static void rtc_stop_timer(struct qemu_alarm_timer *t);
757 #endif /* __linux__ */
759 #endif /* _WIN32 */
761 /* Correlation between real and virtual time is always going to be
762 fairly approximate, so ignore small variation.
763 When the guest is idle real and virtual time will be aligned in
764 the IO wait loop. */
765 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
767 static void icount_adjust(void)
769 int64_t cur_time;
770 int64_t cur_icount;
771 int64_t delta;
772 static int64_t last_delta;
773 /* If the VM is not running, then do nothing. */
774 if (!vm_running)
775 return;
777 cur_time = cpu_get_clock();
778 cur_icount = qemu_get_clock(vm_clock);
779 delta = cur_icount - cur_time;
780 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
781 if (delta > 0
782 && last_delta + ICOUNT_WOBBLE < delta * 2
783 && icount_time_shift > 0) {
784 /* The guest is getting too far ahead. Slow time down. */
785 icount_time_shift--;
787 if (delta < 0
788 && last_delta - ICOUNT_WOBBLE > delta * 2
789 && icount_time_shift < MAX_ICOUNT_SHIFT) {
790 /* The guest is getting too far behind. Speed time up. */
791 icount_time_shift++;
793 last_delta = delta;
794 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
797 static void icount_adjust_rt(void * opaque)
799 qemu_mod_timer(icount_rt_timer,
800 qemu_get_clock(rt_clock) + 1000);
801 icount_adjust();
804 static void icount_adjust_vm(void * opaque)
806 qemu_mod_timer(icount_vm_timer,
807 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
808 icount_adjust();
811 static void init_icount_adjust(void)
813 /* Have both realtime and virtual time triggers for speed adjustment.
814 The realtime trigger catches emulated time passing too slowly,
815 the virtual time trigger catches emulated time passing too fast.
816 Realtime triggers occur even when idle, so use them less frequently
817 than VM triggers. */
818 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
819 qemu_mod_timer(icount_rt_timer,
820 qemu_get_clock(rt_clock) + 1000);
821 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
822 qemu_mod_timer(icount_vm_timer,
823 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
826 static struct qemu_alarm_timer alarm_timers[] = {
827 #ifndef _WIN32
828 #ifdef __linux__
829 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
830 dynticks_stop_timer, dynticks_rearm_timer, NULL},
831 /* HPET - if available - is preferred */
832 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
833 /* ...otherwise try RTC */
834 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
835 #endif
836 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
837 #else
838 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
839 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
840 {"win32", 0, win32_start_timer,
841 win32_stop_timer, NULL, &alarm_win32_data},
842 #endif
843 {NULL, }
846 static void show_available_alarms(void)
848 int i;
850 printf("Available alarm timers, in order of precedence:\n");
851 for (i = 0; alarm_timers[i].name; i++)
852 printf("%s\n", alarm_timers[i].name);
855 static void configure_alarms(char const *opt)
857 int i;
858 int cur = 0;
859 int count = ARRAY_SIZE(alarm_timers) - 1;
860 char *arg;
861 char *name;
862 struct qemu_alarm_timer tmp;
864 if (!strcmp(opt, "?")) {
865 show_available_alarms();
866 exit(0);
869 arg = strdup(opt);
871 /* Reorder the array */
872 name = strtok(arg, ",");
873 while (name) {
874 for (i = 0; i < count && alarm_timers[i].name; i++) {
875 if (!strcmp(alarm_timers[i].name, name))
876 break;
879 if (i == count) {
880 fprintf(stderr, "Unknown clock %s\n", name);
881 goto next;
884 if (i < cur)
885 /* Ignore */
886 goto next;
888 /* Swap */
889 tmp = alarm_timers[i];
890 alarm_timers[i] = alarm_timers[cur];
891 alarm_timers[cur] = tmp;
893 cur++;
894 next:
895 name = strtok(NULL, ",");
898 free(arg);
900 if (cur) {
901 /* Disable remaining timers */
902 for (i = cur; i < count; i++)
903 alarm_timers[i].name = NULL;
904 } else {
905 show_available_alarms();
906 exit(1);
910 QEMUClock *rt_clock;
911 QEMUClock *vm_clock;
913 static QEMUTimer *active_timers[2];
915 static QEMUClock *qemu_new_clock(int type)
917 QEMUClock *clock;
918 clock = qemu_mallocz(sizeof(QEMUClock));
919 clock->type = type;
920 return clock;
923 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
925 QEMUTimer *ts;
927 ts = qemu_mallocz(sizeof(QEMUTimer));
928 ts->clock = clock;
929 ts->cb = cb;
930 ts->opaque = opaque;
931 return ts;
934 void qemu_free_timer(QEMUTimer *ts)
936 qemu_free(ts);
939 /* stop a timer, but do not dealloc it */
940 void qemu_del_timer(QEMUTimer *ts)
942 QEMUTimer **pt, *t;
944 /* NOTE: this code must be signal safe because
945 qemu_timer_expired() can be called from a signal. */
946 pt = &active_timers[ts->clock->type];
947 for(;;) {
948 t = *pt;
949 if (!t)
950 break;
951 if (t == ts) {
952 *pt = t->next;
953 break;
955 pt = &t->next;
959 /* modify the current timer so that it will be fired when current_time
960 >= expire_time. The corresponding callback will be called. */
961 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
963 QEMUTimer **pt, *t;
965 qemu_del_timer(ts);
967 /* add the timer in the sorted list */
968 /* NOTE: this code must be signal safe because
969 qemu_timer_expired() can be called from a signal. */
970 pt = &active_timers[ts->clock->type];
971 for(;;) {
972 t = *pt;
973 if (!t)
974 break;
975 if (t->expire_time > expire_time)
976 break;
977 pt = &t->next;
979 ts->expire_time = expire_time;
980 ts->next = *pt;
981 *pt = ts;
983 /* Rearm if necessary */
984 if (pt == &active_timers[ts->clock->type]) {
985 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
986 qemu_rearm_alarm_timer(alarm_timer);
988 /* Interrupt execution to force deadline recalculation. */
989 if (use_icount)
990 qemu_notify_event();
994 int qemu_timer_pending(QEMUTimer *ts)
996 QEMUTimer *t;
997 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
998 if (t == ts)
999 return 1;
1001 return 0;
1004 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1006 if (!timer_head)
1007 return 0;
1008 return (timer_head->expire_time <= current_time);
1011 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1013 QEMUTimer *ts;
1015 for(;;) {
1016 ts = *ptimer_head;
1017 if (!ts || ts->expire_time > current_time)
1018 break;
1019 /* remove timer from the list before calling the callback */
1020 *ptimer_head = ts->next;
1021 ts->next = NULL;
1023 /* run the callback (the timer list can be modified) */
1024 ts->cb(ts->opaque);
1028 int64_t qemu_get_clock(QEMUClock *clock)
1030 switch(clock->type) {
1031 case QEMU_TIMER_REALTIME:
1032 return get_clock() / 1000000;
1033 default:
1034 case QEMU_TIMER_VIRTUAL:
1035 if (use_icount) {
1036 return cpu_get_icount();
1037 } else {
1038 return cpu_get_clock();
1043 static void init_timers(void)
1045 init_get_clock();
1046 ticks_per_sec = QEMU_TIMER_BASE;
1047 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1048 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1051 /* save a timer */
1052 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1054 uint64_t expire_time;
1056 if (qemu_timer_pending(ts)) {
1057 expire_time = ts->expire_time;
1058 } else {
1059 expire_time = -1;
1061 qemu_put_be64(f, expire_time);
1064 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1066 uint64_t expire_time;
1068 expire_time = qemu_get_be64(f);
1069 if (expire_time != -1) {
1070 qemu_mod_timer(ts, expire_time);
1071 } else {
1072 qemu_del_timer(ts);
1076 static void timer_save(QEMUFile *f, void *opaque)
1078 if (cpu_ticks_enabled) {
1079 hw_error("cannot save state if virtual timers are running");
1081 qemu_put_be64(f, cpu_ticks_offset);
1082 qemu_put_be64(f, ticks_per_sec);
1083 qemu_put_be64(f, cpu_clock_offset);
1086 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1088 if (version_id != 1 && version_id != 2)
1089 return -EINVAL;
1090 if (cpu_ticks_enabled) {
1091 return -EINVAL;
1093 cpu_ticks_offset=qemu_get_be64(f);
1094 ticks_per_sec=qemu_get_be64(f);
1095 if (version_id == 2) {
1096 cpu_clock_offset=qemu_get_be64(f);
1098 return 0;
1101 static void qemu_event_increment(void);
1103 #ifdef _WIN32
1104 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1105 DWORD_PTR dwUser, DWORD_PTR dw1,
1106 DWORD_PTR dw2)
1107 #else
1108 static void host_alarm_handler(int host_signum)
1109 #endif
1111 #if 0
1112 #define DISP_FREQ 1000
1114 static int64_t delta_min = INT64_MAX;
1115 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1116 static int count;
1117 ti = qemu_get_clock(vm_clock);
1118 if (last_clock != 0) {
1119 delta = ti - last_clock;
1120 if (delta < delta_min)
1121 delta_min = delta;
1122 if (delta > delta_max)
1123 delta_max = delta;
1124 delta_cum += delta;
1125 if (++count == DISP_FREQ) {
1126 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1127 muldiv64(delta_min, 1000000, ticks_per_sec),
1128 muldiv64(delta_max, 1000000, ticks_per_sec),
1129 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1130 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1131 count = 0;
1132 delta_min = INT64_MAX;
1133 delta_max = 0;
1134 delta_cum = 0;
1137 last_clock = ti;
1139 #endif
1140 if (alarm_has_dynticks(alarm_timer) ||
1141 (!use_icount &&
1142 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1143 qemu_get_clock(vm_clock))) ||
1144 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1145 qemu_get_clock(rt_clock))) {
1146 qemu_event_increment();
1147 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1149 #ifndef CONFIG_IOTHREAD
1150 if (next_cpu) {
1151 /* stop the currently executing cpu because a timer occured */
1152 cpu_exit(next_cpu);
1153 #ifdef CONFIG_KQEMU
1154 if (next_cpu->kqemu_enabled) {
1155 kqemu_cpu_interrupt(next_cpu);
1157 #endif
1159 #endif
1160 timer_alarm_pending = 1;
1161 qemu_notify_event();
1165 static int64_t qemu_next_deadline(void)
1167 int64_t delta;
1169 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1170 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1171 qemu_get_clock(vm_clock);
1172 } else {
1173 /* To avoid problems with overflow limit this to 2^32. */
1174 delta = INT32_MAX;
1177 if (delta < 0)
1178 delta = 0;
1180 return delta;
1183 #if defined(__linux__) || defined(_WIN32)
1184 static uint64_t qemu_next_deadline_dyntick(void)
1186 int64_t delta;
1187 int64_t rtdelta;
1189 if (use_icount)
1190 delta = INT32_MAX;
1191 else
1192 delta = (qemu_next_deadline() + 999) / 1000;
1194 if (active_timers[QEMU_TIMER_REALTIME]) {
1195 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1196 qemu_get_clock(rt_clock))*1000;
1197 if (rtdelta < delta)
1198 delta = rtdelta;
1201 if (delta < MIN_TIMER_REARM_US)
1202 delta = MIN_TIMER_REARM_US;
1204 return delta;
1206 #endif
1208 #ifndef _WIN32
1210 /* Sets a specific flag */
1211 static int fcntl_setfl(int fd, int flag)
1213 int flags;
1215 flags = fcntl(fd, F_GETFL);
1216 if (flags == -1)
1217 return -errno;
1219 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1220 return -errno;
1222 return 0;
1225 #if defined(__linux__)
1227 #define RTC_FREQ 1024
1229 static void enable_sigio_timer(int fd)
1231 struct sigaction act;
1233 /* timer signal */
1234 sigfillset(&act.sa_mask);
1235 act.sa_flags = 0;
1236 act.sa_handler = host_alarm_handler;
1238 sigaction(SIGIO, &act, NULL);
1239 fcntl_setfl(fd, O_ASYNC);
1240 fcntl(fd, F_SETOWN, getpid());
1243 static int hpet_start_timer(struct qemu_alarm_timer *t)
1245 struct hpet_info info;
1246 int r, fd;
1248 fd = open("/dev/hpet", O_RDONLY);
1249 if (fd < 0)
1250 return -1;
1252 /* Set frequency */
1253 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1254 if (r < 0) {
1255 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1256 "error, but for better emulation accuracy type:\n"
1257 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1258 goto fail;
1261 /* Check capabilities */
1262 r = ioctl(fd, HPET_INFO, &info);
1263 if (r < 0)
1264 goto fail;
1266 /* Enable periodic mode */
1267 r = ioctl(fd, HPET_EPI, 0);
1268 if (info.hi_flags && (r < 0))
1269 goto fail;
1271 /* Enable interrupt */
1272 r = ioctl(fd, HPET_IE_ON, 0);
1273 if (r < 0)
1274 goto fail;
1276 enable_sigio_timer(fd);
1277 t->priv = (void *)(long)fd;
1279 return 0;
1280 fail:
1281 close(fd);
1282 return -1;
1285 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1287 int fd = (long)t->priv;
1289 close(fd);
1292 static int rtc_start_timer(struct qemu_alarm_timer *t)
1294 int rtc_fd;
1295 unsigned long current_rtc_freq = 0;
1297 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1298 if (rtc_fd < 0)
1299 return -1;
1300 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1301 if (current_rtc_freq != RTC_FREQ &&
1302 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1303 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1304 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1305 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1306 goto fail;
1308 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1309 fail:
1310 close(rtc_fd);
1311 return -1;
1314 enable_sigio_timer(rtc_fd);
1316 t->priv = (void *)(long)rtc_fd;
1318 return 0;
1321 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1323 int rtc_fd = (long)t->priv;
1325 close(rtc_fd);
1328 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1330 struct sigevent ev;
1331 timer_t host_timer;
1332 struct sigaction act;
1334 sigfillset(&act.sa_mask);
1335 act.sa_flags = 0;
1336 act.sa_handler = host_alarm_handler;
1338 sigaction(SIGALRM, &act, NULL);
1341 * Initialize ev struct to 0 to avoid valgrind complaining
1342 * about uninitialized data in timer_create call
1344 memset(&ev, 0, sizeof(ev));
1345 ev.sigev_value.sival_int = 0;
1346 ev.sigev_notify = SIGEV_SIGNAL;
1347 ev.sigev_signo = SIGALRM;
1349 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1350 perror("timer_create");
1352 /* disable dynticks */
1353 fprintf(stderr, "Dynamic Ticks disabled\n");
1355 return -1;
1358 t->priv = (void *)(long)host_timer;
1360 return 0;
1363 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1365 timer_t host_timer = (timer_t)(long)t->priv;
1367 timer_delete(host_timer);
1370 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1372 timer_t host_timer = (timer_t)(long)t->priv;
1373 struct itimerspec timeout;
1374 int64_t nearest_delta_us = INT64_MAX;
1375 int64_t current_us;
1377 if (!active_timers[QEMU_TIMER_REALTIME] &&
1378 !active_timers[QEMU_TIMER_VIRTUAL])
1379 return;
1381 nearest_delta_us = qemu_next_deadline_dyntick();
1383 /* check whether a timer is already running */
1384 if (timer_gettime(host_timer, &timeout)) {
1385 perror("gettime");
1386 fprintf(stderr, "Internal timer error: aborting\n");
1387 exit(1);
1389 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1390 if (current_us && current_us <= nearest_delta_us)
1391 return;
1393 timeout.it_interval.tv_sec = 0;
1394 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1395 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1396 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1397 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1398 perror("settime");
1399 fprintf(stderr, "Internal timer error: aborting\n");
1400 exit(1);
1404 #endif /* defined(__linux__) */
1406 static int unix_start_timer(struct qemu_alarm_timer *t)
1408 struct sigaction act;
1409 struct itimerval itv;
1410 int err;
1412 /* timer signal */
1413 sigfillset(&act.sa_mask);
1414 act.sa_flags = 0;
1415 act.sa_handler = host_alarm_handler;
1417 sigaction(SIGALRM, &act, NULL);
1419 itv.it_interval.tv_sec = 0;
1420 /* for i386 kernel 2.6 to get 1 ms */
1421 itv.it_interval.tv_usec = 999;
1422 itv.it_value.tv_sec = 0;
1423 itv.it_value.tv_usec = 10 * 1000;
1425 err = setitimer(ITIMER_REAL, &itv, NULL);
1426 if (err)
1427 return -1;
1429 return 0;
1432 static void unix_stop_timer(struct qemu_alarm_timer *t)
1434 struct itimerval itv;
1436 memset(&itv, 0, sizeof(itv));
1437 setitimer(ITIMER_REAL, &itv, NULL);
1440 #endif /* !defined(_WIN32) */
1443 #ifdef _WIN32
1445 static int win32_start_timer(struct qemu_alarm_timer *t)
1447 TIMECAPS tc;
1448 struct qemu_alarm_win32 *data = t->priv;
1449 UINT flags;
1451 memset(&tc, 0, sizeof(tc));
1452 timeGetDevCaps(&tc, sizeof(tc));
1454 if (data->period < tc.wPeriodMin)
1455 data->period = tc.wPeriodMin;
1457 timeBeginPeriod(data->period);
1459 flags = TIME_CALLBACK_FUNCTION;
1460 if (alarm_has_dynticks(t))
1461 flags |= TIME_ONESHOT;
1462 else
1463 flags |= TIME_PERIODIC;
1465 data->timerId = timeSetEvent(1, // interval (ms)
1466 data->period, // resolution
1467 host_alarm_handler, // function
1468 (DWORD)t, // parameter
1469 flags);
1471 if (!data->timerId) {
1472 perror("Failed to initialize win32 alarm timer");
1473 timeEndPeriod(data->period);
1474 return -1;
1477 return 0;
1480 static void win32_stop_timer(struct qemu_alarm_timer *t)
1482 struct qemu_alarm_win32 *data = t->priv;
1484 timeKillEvent(data->timerId);
1485 timeEndPeriod(data->period);
1488 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1490 struct qemu_alarm_win32 *data = t->priv;
1491 uint64_t nearest_delta_us;
1493 if (!active_timers[QEMU_TIMER_REALTIME] &&
1494 !active_timers[QEMU_TIMER_VIRTUAL])
1495 return;
1497 nearest_delta_us = qemu_next_deadline_dyntick();
1498 nearest_delta_us /= 1000;
1500 timeKillEvent(data->timerId);
1502 data->timerId = timeSetEvent(1,
1503 data->period,
1504 host_alarm_handler,
1505 (DWORD)t,
1506 TIME_ONESHOT | TIME_PERIODIC);
1508 if (!data->timerId) {
1509 perror("Failed to re-arm win32 alarm timer");
1511 timeEndPeriod(data->period);
1512 exit(1);
1516 #endif /* _WIN32 */
1518 static int init_timer_alarm(void)
1520 struct qemu_alarm_timer *t = NULL;
1521 int i, err = -1;
1523 for (i = 0; alarm_timers[i].name; i++) {
1524 t = &alarm_timers[i];
1526 err = t->start(t);
1527 if (!err)
1528 break;
1531 if (err) {
1532 err = -ENOENT;
1533 goto fail;
1536 alarm_timer = t;
1538 return 0;
1540 fail:
1541 return err;
1544 static void quit_timers(void)
1546 alarm_timer->stop(alarm_timer);
1547 alarm_timer = NULL;
1550 /***********************************************************/
1551 /* host time/date access */
1552 void qemu_get_timedate(struct tm *tm, int offset)
1554 time_t ti;
1555 struct tm *ret;
1557 time(&ti);
1558 ti += offset;
1559 if (rtc_date_offset == -1) {
1560 if (rtc_utc)
1561 ret = gmtime(&ti);
1562 else
1563 ret = localtime(&ti);
1564 } else {
1565 ti -= rtc_date_offset;
1566 ret = gmtime(&ti);
1569 memcpy(tm, ret, sizeof(struct tm));
1572 int qemu_timedate_diff(struct tm *tm)
1574 time_t seconds;
1576 if (rtc_date_offset == -1)
1577 if (rtc_utc)
1578 seconds = mktimegm(tm);
1579 else
1580 seconds = mktime(tm);
1581 else
1582 seconds = mktimegm(tm) + rtc_date_offset;
1584 return seconds - time(NULL);
1587 #ifdef _WIN32
1588 static void socket_cleanup(void)
1590 WSACleanup();
1593 static int socket_init(void)
1595 WSADATA Data;
1596 int ret, err;
1598 ret = WSAStartup(MAKEWORD(2,2), &Data);
1599 if (ret != 0) {
1600 err = WSAGetLastError();
1601 fprintf(stderr, "WSAStartup: %d\n", err);
1602 return -1;
1604 atexit(socket_cleanup);
1605 return 0;
1607 #endif
1609 int get_next_param_value(char *buf, int buf_size,
1610 const char *tag, const char **pstr)
1612 const char *p;
1613 char option[128];
1615 p = *pstr;
1616 for(;;) {
1617 p = get_opt_name(option, sizeof(option), p, '=');
1618 if (*p != '=')
1619 break;
1620 p++;
1621 if (!strcmp(tag, option)) {
1622 *pstr = get_opt_value(buf, buf_size, p);
1623 if (**pstr == ',') {
1624 (*pstr)++;
1626 return strlen(buf);
1627 } else {
1628 p = get_opt_value(NULL, 0, p);
1630 if (*p != ',')
1631 break;
1632 p++;
1634 return 0;
1637 int get_param_value(char *buf, int buf_size,
1638 const char *tag, const char *str)
1640 return get_next_param_value(buf, buf_size, tag, &str);
1643 int check_params(char *buf, int buf_size,
1644 const char * const *params, const char *str)
1646 const char *p;
1647 int i;
1649 p = str;
1650 while (*p != '\0') {
1651 p = get_opt_name(buf, buf_size, p, '=');
1652 if (*p != '=') {
1653 return -1;
1655 p++;
1656 for (i = 0; params[i] != NULL; i++) {
1657 if (!strcmp(params[i], buf)) {
1658 break;
1661 if (params[i] == NULL) {
1662 return -1;
1664 p = get_opt_value(NULL, 0, p);
1665 if (*p != ',') {
1666 break;
1668 p++;
1670 return 0;
1673 /***********************************************************/
1674 /* Bluetooth support */
1675 static int nb_hcis;
1676 static int cur_hci;
1677 static struct HCIInfo *hci_table[MAX_NICS];
1679 static struct bt_vlan_s {
1680 struct bt_scatternet_s net;
1681 int id;
1682 struct bt_vlan_s *next;
1683 } *first_bt_vlan;
1685 /* find or alloc a new bluetooth "VLAN" */
1686 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1688 struct bt_vlan_s **pvlan, *vlan;
1689 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1690 if (vlan->id == id)
1691 return &vlan->net;
1693 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1694 vlan->id = id;
1695 pvlan = &first_bt_vlan;
1696 while (*pvlan != NULL)
1697 pvlan = &(*pvlan)->next;
1698 *pvlan = vlan;
1699 return &vlan->net;
1702 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1706 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1708 return -ENOTSUP;
1711 static struct HCIInfo null_hci = {
1712 .cmd_send = null_hci_send,
1713 .sco_send = null_hci_send,
1714 .acl_send = null_hci_send,
1715 .bdaddr_set = null_hci_addr_set,
1718 struct HCIInfo *qemu_next_hci(void)
1720 if (cur_hci == nb_hcis)
1721 return &null_hci;
1723 return hci_table[cur_hci++];
1726 static struct HCIInfo *hci_init(const char *str)
1728 char *endp;
1729 struct bt_scatternet_s *vlan = 0;
1731 if (!strcmp(str, "null"))
1732 /* null */
1733 return &null_hci;
1734 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1735 /* host[:hciN] */
1736 return bt_host_hci(str[4] ? str + 5 : "hci0");
1737 else if (!strncmp(str, "hci", 3)) {
1738 /* hci[,vlan=n] */
1739 if (str[3]) {
1740 if (!strncmp(str + 3, ",vlan=", 6)) {
1741 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1742 if (*endp)
1743 vlan = 0;
1745 } else
1746 vlan = qemu_find_bt_vlan(0);
1747 if (vlan)
1748 return bt_new_hci(vlan);
1751 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1753 return 0;
1756 static int bt_hci_parse(const char *str)
1758 struct HCIInfo *hci;
1759 bdaddr_t bdaddr;
1761 if (nb_hcis >= MAX_NICS) {
1762 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1763 return -1;
1766 hci = hci_init(str);
1767 if (!hci)
1768 return -1;
1770 bdaddr.b[0] = 0x52;
1771 bdaddr.b[1] = 0x54;
1772 bdaddr.b[2] = 0x00;
1773 bdaddr.b[3] = 0x12;
1774 bdaddr.b[4] = 0x34;
1775 bdaddr.b[5] = 0x56 + nb_hcis;
1776 hci->bdaddr_set(hci, bdaddr.b);
1778 hci_table[nb_hcis++] = hci;
1780 return 0;
1783 static void bt_vhci_add(int vlan_id)
1785 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1787 if (!vlan->slave)
1788 fprintf(stderr, "qemu: warning: adding a VHCI to "
1789 "an empty scatternet %i\n", vlan_id);
1791 bt_vhci_init(bt_new_hci(vlan));
1794 static struct bt_device_s *bt_device_add(const char *opt)
1796 struct bt_scatternet_s *vlan;
1797 int vlan_id = 0;
1798 char *endp = strstr(opt, ",vlan=");
1799 int len = (endp ? endp - opt : strlen(opt)) + 1;
1800 char devname[10];
1802 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1804 if (endp) {
1805 vlan_id = strtol(endp + 6, &endp, 0);
1806 if (*endp) {
1807 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1808 return 0;
1812 vlan = qemu_find_bt_vlan(vlan_id);
1814 if (!vlan->slave)
1815 fprintf(stderr, "qemu: warning: adding a slave device to "
1816 "an empty scatternet %i\n", vlan_id);
1818 if (!strcmp(devname, "keyboard"))
1819 return bt_keyboard_init(vlan);
1821 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1822 return 0;
1825 static int bt_parse(const char *opt)
1827 const char *endp, *p;
1828 int vlan;
1830 if (strstart(opt, "hci", &endp)) {
1831 if (!*endp || *endp == ',') {
1832 if (*endp)
1833 if (!strstart(endp, ",vlan=", 0))
1834 opt = endp + 1;
1836 return bt_hci_parse(opt);
1838 } else if (strstart(opt, "vhci", &endp)) {
1839 if (!*endp || *endp == ',') {
1840 if (*endp) {
1841 if (strstart(endp, ",vlan=", &p)) {
1842 vlan = strtol(p, (char **) &endp, 0);
1843 if (*endp) {
1844 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1845 return 1;
1847 } else {
1848 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1849 return 1;
1851 } else
1852 vlan = 0;
1854 bt_vhci_add(vlan);
1855 return 0;
1857 } else if (strstart(opt, "device:", &endp))
1858 return !bt_device_add(endp);
1860 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1861 return 1;
1864 /***********************************************************/
1865 /* QEMU Block devices */
1867 #define HD_ALIAS "index=%d,media=disk"
1868 #define CDROM_ALIAS "index=2,media=cdrom"
1869 #define FD_ALIAS "index=%d,if=floppy"
1870 #define PFLASH_ALIAS "if=pflash"
1871 #define MTD_ALIAS "if=mtd"
1872 #define SD_ALIAS "index=0,if=sd"
1874 static int drive_opt_get_free_idx(void)
1876 int index;
1878 for (index = 0; index < MAX_DRIVES; index++)
1879 if (!drives_opt[index].used) {
1880 drives_opt[index].used = 1;
1881 return index;
1884 return -1;
1887 static int drive_get_free_idx(void)
1889 int index;
1891 for (index = 0; index < MAX_DRIVES; index++)
1892 if (!drives_table[index].used) {
1893 drives_table[index].used = 1;
1894 return index;
1897 return -1;
1900 int drive_add(const char *file, const char *fmt, ...)
1902 va_list ap;
1903 int index = drive_opt_get_free_idx();
1905 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
1906 fprintf(stderr, "qemu: too many drives\n");
1907 return -1;
1910 drives_opt[index].file = file;
1911 va_start(ap, fmt);
1912 vsnprintf(drives_opt[index].opt,
1913 sizeof(drives_opt[0].opt), fmt, ap);
1914 va_end(ap);
1916 nb_drives_opt++;
1917 return index;
1920 void drive_remove(int index)
1922 drives_opt[index].used = 0;
1923 nb_drives_opt--;
1926 int drive_get_index(BlockInterfaceType type, int bus, int unit)
1928 int index;
1930 /* seek interface, bus and unit */
1932 for (index = 0; index < MAX_DRIVES; index++)
1933 if (drives_table[index].type == type &&
1934 drives_table[index].bus == bus &&
1935 drives_table[index].unit == unit &&
1936 drives_table[index].used)
1937 return index;
1939 return -1;
1942 int drive_get_max_bus(BlockInterfaceType type)
1944 int max_bus;
1945 int index;
1947 max_bus = -1;
1948 for (index = 0; index < nb_drives; index++) {
1949 if(drives_table[index].type == type &&
1950 drives_table[index].bus > max_bus)
1951 max_bus = drives_table[index].bus;
1953 return max_bus;
1956 const char *drive_get_serial(BlockDriverState *bdrv)
1958 int index;
1960 for (index = 0; index < nb_drives; index++)
1961 if (drives_table[index].bdrv == bdrv)
1962 return drives_table[index].serial;
1964 return "\0";
1967 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
1969 int index;
1971 for (index = 0; index < nb_drives; index++)
1972 if (drives_table[index].bdrv == bdrv)
1973 return drives_table[index].onerror;
1975 return BLOCK_ERR_STOP_ENOSPC;
1978 static void bdrv_format_print(void *opaque, const char *name)
1980 fprintf(stderr, " %s", name);
1983 void drive_uninit(BlockDriverState *bdrv)
1985 int i;
1987 for (i = 0; i < MAX_DRIVES; i++)
1988 if (drives_table[i].bdrv == bdrv) {
1989 drives_table[i].bdrv = NULL;
1990 drives_table[i].used = 0;
1991 drive_remove(drives_table[i].drive_opt_idx);
1992 nb_drives--;
1993 break;
1997 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
1999 char buf[128];
2000 char file[1024];
2001 char devname[128];
2002 char serial[21];
2003 const char *mediastr = "";
2004 BlockInterfaceType type;
2005 enum { MEDIA_DISK, MEDIA_CDROM } media;
2006 int bus_id, unit_id;
2007 int cyls, heads, secs, translation;
2008 BlockDriverState *bdrv;
2009 BlockDriver *drv = NULL;
2010 QEMUMachine *machine = opaque;
2011 int max_devs;
2012 int index;
2013 int cache;
2014 int bdrv_flags, onerror;
2015 const char *devaddr;
2016 int drives_table_idx;
2017 char *str = arg->opt;
2018 static const char * const params[] = { "bus", "unit", "if", "index",
2019 "cyls", "heads", "secs", "trans",
2020 "media", "snapshot", "file",
2021 "cache", "format", "serial",
2022 "werror", "addr",
2023 NULL };
2025 if (check_params(buf, sizeof(buf), params, str) < 0) {
2026 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2027 buf, str);
2028 return -1;
2031 file[0] = 0;
2032 cyls = heads = secs = 0;
2033 bus_id = 0;
2034 unit_id = -1;
2035 translation = BIOS_ATA_TRANSLATION_AUTO;
2036 index = -1;
2037 cache = 1;
2039 if (machine->use_scsi) {
2040 type = IF_SCSI;
2041 max_devs = MAX_SCSI_DEVS;
2042 pstrcpy(devname, sizeof(devname), "scsi");
2043 } else {
2044 type = IF_IDE;
2045 max_devs = MAX_IDE_DEVS;
2046 pstrcpy(devname, sizeof(devname), "ide");
2048 media = MEDIA_DISK;
2050 /* extract parameters */
2052 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2053 bus_id = strtol(buf, NULL, 0);
2054 if (bus_id < 0) {
2055 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2056 return -1;
2060 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2061 unit_id = strtol(buf, NULL, 0);
2062 if (unit_id < 0) {
2063 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2064 return -1;
2068 if (get_param_value(buf, sizeof(buf), "if", str)) {
2069 pstrcpy(devname, sizeof(devname), buf);
2070 if (!strcmp(buf, "ide")) {
2071 type = IF_IDE;
2072 max_devs = MAX_IDE_DEVS;
2073 } else if (!strcmp(buf, "scsi")) {
2074 type = IF_SCSI;
2075 max_devs = MAX_SCSI_DEVS;
2076 } else if (!strcmp(buf, "floppy")) {
2077 type = IF_FLOPPY;
2078 max_devs = 0;
2079 } else if (!strcmp(buf, "pflash")) {
2080 type = IF_PFLASH;
2081 max_devs = 0;
2082 } else if (!strcmp(buf, "mtd")) {
2083 type = IF_MTD;
2084 max_devs = 0;
2085 } else if (!strcmp(buf, "sd")) {
2086 type = IF_SD;
2087 max_devs = 0;
2088 } else if (!strcmp(buf, "virtio")) {
2089 type = IF_VIRTIO;
2090 max_devs = 0;
2091 } else if (!strcmp(buf, "xen")) {
2092 type = IF_XEN;
2093 max_devs = 0;
2094 } else {
2095 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2096 return -1;
2100 if (get_param_value(buf, sizeof(buf), "index", str)) {
2101 index = strtol(buf, NULL, 0);
2102 if (index < 0) {
2103 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2104 return -1;
2108 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2109 cyls = strtol(buf, NULL, 0);
2112 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2113 heads = strtol(buf, NULL, 0);
2116 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2117 secs = strtol(buf, NULL, 0);
2120 if (cyls || heads || secs) {
2121 if (cyls < 1 || cyls > 16383) {
2122 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2123 return -1;
2125 if (heads < 1 || heads > 16) {
2126 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2127 return -1;
2129 if (secs < 1 || secs > 63) {
2130 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2131 return -1;
2135 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2136 if (!cyls) {
2137 fprintf(stderr,
2138 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2139 str);
2140 return -1;
2142 if (!strcmp(buf, "none"))
2143 translation = BIOS_ATA_TRANSLATION_NONE;
2144 else if (!strcmp(buf, "lba"))
2145 translation = BIOS_ATA_TRANSLATION_LBA;
2146 else if (!strcmp(buf, "auto"))
2147 translation = BIOS_ATA_TRANSLATION_AUTO;
2148 else {
2149 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2150 return -1;
2154 if (get_param_value(buf, sizeof(buf), "media", str)) {
2155 if (!strcmp(buf, "disk")) {
2156 media = MEDIA_DISK;
2157 } else if (!strcmp(buf, "cdrom")) {
2158 if (cyls || secs || heads) {
2159 fprintf(stderr,
2160 "qemu: '%s' invalid physical CHS format\n", str);
2161 return -1;
2163 media = MEDIA_CDROM;
2164 } else {
2165 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2166 return -1;
2170 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2171 if (!strcmp(buf, "on"))
2172 snapshot = 1;
2173 else if (!strcmp(buf, "off"))
2174 snapshot = 0;
2175 else {
2176 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2177 return -1;
2181 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2182 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2183 cache = 0;
2184 else if (!strcmp(buf, "writethrough"))
2185 cache = 1;
2186 else if (!strcmp(buf, "writeback"))
2187 cache = 2;
2188 else {
2189 fprintf(stderr, "qemu: invalid cache option\n");
2190 return -1;
2194 if (get_param_value(buf, sizeof(buf), "format", str)) {
2195 if (strcmp(buf, "?") == 0) {
2196 fprintf(stderr, "qemu: Supported formats:");
2197 bdrv_iterate_format(bdrv_format_print, NULL);
2198 fprintf(stderr, "\n");
2199 return -1;
2201 drv = bdrv_find_format(buf);
2202 if (!drv) {
2203 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2204 return -1;
2208 if (arg->file == NULL)
2209 get_param_value(file, sizeof(file), "file", str);
2210 else
2211 pstrcpy(file, sizeof(file), arg->file);
2213 if (!get_param_value(serial, sizeof(serial), "serial", str))
2214 memset(serial, 0, sizeof(serial));
2216 onerror = BLOCK_ERR_STOP_ENOSPC;
2217 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2218 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2219 fprintf(stderr, "werror is no supported by this format\n");
2220 return -1;
2222 if (!strcmp(buf, "ignore"))
2223 onerror = BLOCK_ERR_IGNORE;
2224 else if (!strcmp(buf, "enospc"))
2225 onerror = BLOCK_ERR_STOP_ENOSPC;
2226 else if (!strcmp(buf, "stop"))
2227 onerror = BLOCK_ERR_STOP_ANY;
2228 else if (!strcmp(buf, "report"))
2229 onerror = BLOCK_ERR_REPORT;
2230 else {
2231 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2232 return -1;
2236 devaddr = NULL;
2237 if (get_param_value(buf, sizeof(buf), "addr", str)) {
2238 if (type != IF_VIRTIO) {
2239 fprintf(stderr, "addr is not supported by in '%s'\n", str);
2240 return -1;
2242 devaddr = strdup(buf);
2245 /* compute bus and unit according index */
2247 if (index != -1) {
2248 if (bus_id != 0 || unit_id != -1) {
2249 fprintf(stderr,
2250 "qemu: '%s' index cannot be used with bus and unit\n", str);
2251 return -1;
2253 if (max_devs == 0)
2255 unit_id = index;
2256 bus_id = 0;
2257 } else {
2258 unit_id = index % max_devs;
2259 bus_id = index / max_devs;
2263 /* if user doesn't specify a unit_id,
2264 * try to find the first free
2267 if (unit_id == -1) {
2268 unit_id = 0;
2269 while (drive_get_index(type, bus_id, unit_id) != -1) {
2270 unit_id++;
2271 if (max_devs && unit_id >= max_devs) {
2272 unit_id -= max_devs;
2273 bus_id++;
2278 /* check unit id */
2280 if (max_devs && unit_id >= max_devs) {
2281 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2282 str, unit_id, max_devs - 1);
2283 return -1;
2287 * ignore multiple definitions
2290 if (drive_get_index(type, bus_id, unit_id) != -1)
2291 return -2;
2293 /* init */
2295 if (type == IF_IDE || type == IF_SCSI)
2296 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2297 if (max_devs)
2298 snprintf(buf, sizeof(buf), "%s%i%s%i",
2299 devname, bus_id, mediastr, unit_id);
2300 else
2301 snprintf(buf, sizeof(buf), "%s%s%i",
2302 devname, mediastr, unit_id);
2303 bdrv = bdrv_new(buf);
2304 drives_table_idx = drive_get_free_idx();
2305 drives_table[drives_table_idx].bdrv = bdrv;
2306 drives_table[drives_table_idx].devaddr = devaddr;
2307 drives_table[drives_table_idx].type = type;
2308 drives_table[drives_table_idx].bus = bus_id;
2309 drives_table[drives_table_idx].unit = unit_id;
2310 drives_table[drives_table_idx].onerror = onerror;
2311 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2312 strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
2313 nb_drives++;
2315 switch(type) {
2316 case IF_IDE:
2317 case IF_SCSI:
2318 case IF_XEN:
2319 switch(media) {
2320 case MEDIA_DISK:
2321 if (cyls != 0) {
2322 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2323 bdrv_set_translation_hint(bdrv, translation);
2325 break;
2326 case MEDIA_CDROM:
2327 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2328 break;
2330 break;
2331 case IF_SD:
2332 /* FIXME: This isn't really a floppy, but it's a reasonable
2333 approximation. */
2334 case IF_FLOPPY:
2335 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2336 break;
2337 case IF_PFLASH:
2338 case IF_MTD:
2339 case IF_VIRTIO:
2340 break;
2341 case IF_COUNT:
2342 abort();
2344 if (!file[0])
2345 return -2;
2346 bdrv_flags = 0;
2347 if (snapshot) {
2348 bdrv_flags |= BDRV_O_SNAPSHOT;
2349 cache = 2; /* always use write-back with snapshot */
2351 if (cache == 0) /* no caching */
2352 bdrv_flags |= BDRV_O_NOCACHE;
2353 else if (cache == 2) /* write-back */
2354 bdrv_flags |= BDRV_O_CACHE_WB;
2355 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2356 fprintf(stderr, "qemu: could not open disk image %s\n",
2357 file);
2358 return -1;
2360 if (bdrv_key_required(bdrv))
2361 autostart = 0;
2362 return drives_table_idx;
2365 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2367 boot_set_handler = func;
2368 boot_set_opaque = opaque;
2371 int qemu_boot_set(const char *boot_devices)
2373 if (!boot_set_handler) {
2374 return -EINVAL;
2376 return boot_set_handler(boot_set_opaque, boot_devices);
2379 static int parse_bootdevices(char *devices)
2381 /* We just do some generic consistency checks */
2382 const char *p;
2383 int bitmap = 0;
2385 for (p = devices; *p != '\0'; p++) {
2386 /* Allowed boot devices are:
2387 * a-b: floppy disk drives
2388 * c-f: IDE disk drives
2389 * g-m: machine implementation dependant drives
2390 * n-p: network devices
2391 * It's up to each machine implementation to check if the given boot
2392 * devices match the actual hardware implementation and firmware
2393 * features.
2395 if (*p < 'a' || *p > 'p') {
2396 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2397 exit(1);
2399 if (bitmap & (1 << (*p - 'a'))) {
2400 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2401 exit(1);
2403 bitmap |= 1 << (*p - 'a');
2405 return bitmap;
2408 static void restore_boot_devices(void *opaque)
2410 char *standard_boot_devices = opaque;
2412 qemu_boot_set(standard_boot_devices);
2414 qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2415 qemu_free(standard_boot_devices);
2418 static void numa_add(const char *optarg)
2420 char option[128];
2421 char *endptr;
2422 unsigned long long value, endvalue;
2423 int nodenr;
2425 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2426 if (!strcmp(option, "node")) {
2427 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2428 nodenr = nb_numa_nodes;
2429 } else {
2430 nodenr = strtoull(option, NULL, 10);
2433 if (get_param_value(option, 128, "mem", optarg) == 0) {
2434 node_mem[nodenr] = 0;
2435 } else {
2436 value = strtoull(option, &endptr, 0);
2437 switch (*endptr) {
2438 case 0: case 'M': case 'm':
2439 value <<= 20;
2440 break;
2441 case 'G': case 'g':
2442 value <<= 30;
2443 break;
2445 node_mem[nodenr] = value;
2447 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2448 node_cpumask[nodenr] = 0;
2449 } else {
2450 value = strtoull(option, &endptr, 10);
2451 if (value >= 64) {
2452 value = 63;
2453 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2454 } else {
2455 if (*endptr == '-') {
2456 endvalue = strtoull(endptr+1, &endptr, 10);
2457 if (endvalue >= 63) {
2458 endvalue = 62;
2459 fprintf(stderr,
2460 "only 63 CPUs in NUMA mode supported.\n");
2462 value = (1 << (endvalue + 1)) - (1 << value);
2463 } else {
2464 value = 1 << value;
2467 node_cpumask[nodenr] = value;
2469 nb_numa_nodes++;
2471 return;
2474 /***********************************************************/
2475 /* USB devices */
2477 static USBPort *used_usb_ports;
2478 static USBPort *free_usb_ports;
2480 /* ??? Maybe change this to register a hub to keep track of the topology. */
2481 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2482 usb_attachfn attach)
2484 port->opaque = opaque;
2485 port->index = index;
2486 port->attach = attach;
2487 port->next = free_usb_ports;
2488 free_usb_ports = port;
2491 int usb_device_add_dev(USBDevice *dev)
2493 USBPort *port;
2495 /* Find a USB port to add the device to. */
2496 port = free_usb_ports;
2497 if (!port->next) {
2498 USBDevice *hub;
2500 /* Create a new hub and chain it on. */
2501 free_usb_ports = NULL;
2502 port->next = used_usb_ports;
2503 used_usb_ports = port;
2505 hub = usb_hub_init(VM_USB_HUB_SIZE);
2506 usb_attach(port, hub);
2507 port = free_usb_ports;
2510 free_usb_ports = port->next;
2511 port->next = used_usb_ports;
2512 used_usb_ports = port;
2513 usb_attach(port, dev);
2514 return 0;
2517 static void usb_msd_password_cb(void *opaque, int err)
2519 USBDevice *dev = opaque;
2521 if (!err)
2522 usb_device_add_dev(dev);
2523 else
2524 dev->handle_destroy(dev);
2527 static int usb_device_add(const char *devname, int is_hotplug)
2529 const char *p;
2530 USBDevice *dev;
2532 if (!free_usb_ports)
2533 return -1;
2535 if (strstart(devname, "host:", &p)) {
2536 dev = usb_host_device_open(p);
2537 } else if (!strcmp(devname, "mouse")) {
2538 dev = usb_mouse_init();
2539 } else if (!strcmp(devname, "tablet")) {
2540 dev = usb_tablet_init();
2541 } else if (!strcmp(devname, "keyboard")) {
2542 dev = usb_keyboard_init();
2543 } else if (strstart(devname, "disk:", &p)) {
2544 BlockDriverState *bs;
2546 dev = usb_msd_init(p);
2547 if (!dev)
2548 return -1;
2549 bs = usb_msd_get_bdrv(dev);
2550 if (bdrv_key_required(bs)) {
2551 autostart = 0;
2552 if (is_hotplug) {
2553 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2554 dev);
2555 return 0;
2558 } else if (!strcmp(devname, "wacom-tablet")) {
2559 dev = usb_wacom_init();
2560 } else if (strstart(devname, "serial:", &p)) {
2561 dev = usb_serial_init(p);
2562 #ifdef CONFIG_BRLAPI
2563 } else if (!strcmp(devname, "braille")) {
2564 dev = usb_baum_init();
2565 #endif
2566 } else if (strstart(devname, "net:", &p)) {
2567 int nic = nb_nics;
2569 if (net_client_init(NULL, "nic", p) < 0)
2570 return -1;
2571 nd_table[nic].model = "usb";
2572 dev = usb_net_init(&nd_table[nic]);
2573 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2574 dev = usb_bt_init(devname[2] ? hci_init(p) :
2575 bt_new_hci(qemu_find_bt_vlan(0)));
2576 } else {
2577 return -1;
2579 if (!dev)
2580 return -1;
2582 return usb_device_add_dev(dev);
2585 int usb_device_del_addr(int bus_num, int addr)
2587 USBPort *port;
2588 USBPort **lastp;
2589 USBDevice *dev;
2591 if (!used_usb_ports)
2592 return -1;
2594 if (bus_num != 0)
2595 return -1;
2597 lastp = &used_usb_ports;
2598 port = used_usb_ports;
2599 while (port && port->dev->addr != addr) {
2600 lastp = &port->next;
2601 port = port->next;
2604 if (!port)
2605 return -1;
2607 dev = port->dev;
2608 *lastp = port->next;
2609 usb_attach(port, NULL);
2610 dev->handle_destroy(dev);
2611 port->next = free_usb_ports;
2612 free_usb_ports = port;
2613 return 0;
2616 static int usb_device_del(const char *devname)
2618 int bus_num, addr;
2619 const char *p;
2621 if (strstart(devname, "host:", &p))
2622 return usb_host_device_close(p);
2624 if (!used_usb_ports)
2625 return -1;
2627 p = strchr(devname, '.');
2628 if (!p)
2629 return -1;
2630 bus_num = strtoul(devname, NULL, 0);
2631 addr = strtoul(p + 1, NULL, 0);
2633 return usb_device_del_addr(bus_num, addr);
2636 void do_usb_add(Monitor *mon, const char *devname)
2638 usb_device_add(devname, 1);
2641 void do_usb_del(Monitor *mon, const char *devname)
2643 usb_device_del(devname);
2646 void usb_info(Monitor *mon)
2648 USBDevice *dev;
2649 USBPort *port;
2650 const char *speed_str;
2652 if (!usb_enabled) {
2653 monitor_printf(mon, "USB support not enabled\n");
2654 return;
2657 for (port = used_usb_ports; port; port = port->next) {
2658 dev = port->dev;
2659 if (!dev)
2660 continue;
2661 switch(dev->speed) {
2662 case USB_SPEED_LOW:
2663 speed_str = "1.5";
2664 break;
2665 case USB_SPEED_FULL:
2666 speed_str = "12";
2667 break;
2668 case USB_SPEED_HIGH:
2669 speed_str = "480";
2670 break;
2671 default:
2672 speed_str = "?";
2673 break;
2675 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2676 0, dev->addr, speed_str, dev->devname);
2680 /***********************************************************/
2681 /* PCMCIA/Cardbus */
2683 static struct pcmcia_socket_entry_s {
2684 PCMCIASocket *socket;
2685 struct pcmcia_socket_entry_s *next;
2686 } *pcmcia_sockets = 0;
2688 void pcmcia_socket_register(PCMCIASocket *socket)
2690 struct pcmcia_socket_entry_s *entry;
2692 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2693 entry->socket = socket;
2694 entry->next = pcmcia_sockets;
2695 pcmcia_sockets = entry;
2698 void pcmcia_socket_unregister(PCMCIASocket *socket)
2700 struct pcmcia_socket_entry_s *entry, **ptr;
2702 ptr = &pcmcia_sockets;
2703 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2704 if (entry->socket == socket) {
2705 *ptr = entry->next;
2706 qemu_free(entry);
2710 void pcmcia_info(Monitor *mon)
2712 struct pcmcia_socket_entry_s *iter;
2714 if (!pcmcia_sockets)
2715 monitor_printf(mon, "No PCMCIA sockets\n");
2717 for (iter = pcmcia_sockets; iter; iter = iter->next)
2718 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2719 iter->socket->attached ? iter->socket->card_string :
2720 "Empty");
2723 /***********************************************************/
2724 /* register display */
2726 struct DisplayAllocator default_allocator = {
2727 defaultallocator_create_displaysurface,
2728 defaultallocator_resize_displaysurface,
2729 defaultallocator_free_displaysurface
2732 void register_displaystate(DisplayState *ds)
2734 DisplayState **s;
2735 s = &display_state;
2736 while (*s != NULL)
2737 s = &(*s)->next;
2738 ds->next = NULL;
2739 *s = ds;
2742 DisplayState *get_displaystate(void)
2744 return display_state;
2747 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2749 if(ds->allocator == &default_allocator) ds->allocator = da;
2750 return ds->allocator;
2753 /* dumb display */
2755 static void dumb_display_init(void)
2757 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2758 ds->allocator = &default_allocator;
2759 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2760 register_displaystate(ds);
2763 /***********************************************************/
2764 /* I/O handling */
2766 typedef struct IOHandlerRecord {
2767 int fd;
2768 IOCanRWHandler *fd_read_poll;
2769 IOHandler *fd_read;
2770 IOHandler *fd_write;
2771 int deleted;
2772 void *opaque;
2773 /* temporary data */
2774 struct pollfd *ufd;
2775 struct IOHandlerRecord *next;
2776 } IOHandlerRecord;
2778 static IOHandlerRecord *first_io_handler;
2780 /* XXX: fd_read_poll should be suppressed, but an API change is
2781 necessary in the character devices to suppress fd_can_read(). */
2782 int qemu_set_fd_handler2(int fd,
2783 IOCanRWHandler *fd_read_poll,
2784 IOHandler *fd_read,
2785 IOHandler *fd_write,
2786 void *opaque)
2788 IOHandlerRecord **pioh, *ioh;
2790 if (!fd_read && !fd_write) {
2791 pioh = &first_io_handler;
2792 for(;;) {
2793 ioh = *pioh;
2794 if (ioh == NULL)
2795 break;
2796 if (ioh->fd == fd) {
2797 ioh->deleted = 1;
2798 break;
2800 pioh = &ioh->next;
2802 } else {
2803 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2804 if (ioh->fd == fd)
2805 goto found;
2807 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2808 ioh->next = first_io_handler;
2809 first_io_handler = ioh;
2810 found:
2811 ioh->fd = fd;
2812 ioh->fd_read_poll = fd_read_poll;
2813 ioh->fd_read = fd_read;
2814 ioh->fd_write = fd_write;
2815 ioh->opaque = opaque;
2816 ioh->deleted = 0;
2818 return 0;
2821 int qemu_set_fd_handler(int fd,
2822 IOHandler *fd_read,
2823 IOHandler *fd_write,
2824 void *opaque)
2826 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2829 #ifdef _WIN32
2830 /***********************************************************/
2831 /* Polling handling */
2833 typedef struct PollingEntry {
2834 PollingFunc *func;
2835 void *opaque;
2836 struct PollingEntry *next;
2837 } PollingEntry;
2839 static PollingEntry *first_polling_entry;
2841 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2843 PollingEntry **ppe, *pe;
2844 pe = qemu_mallocz(sizeof(PollingEntry));
2845 pe->func = func;
2846 pe->opaque = opaque;
2847 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2848 *ppe = pe;
2849 return 0;
2852 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2854 PollingEntry **ppe, *pe;
2855 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2856 pe = *ppe;
2857 if (pe->func == func && pe->opaque == opaque) {
2858 *ppe = pe->next;
2859 qemu_free(pe);
2860 break;
2865 /***********************************************************/
2866 /* Wait objects support */
2867 typedef struct WaitObjects {
2868 int num;
2869 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2870 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2871 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2872 } WaitObjects;
2874 static WaitObjects wait_objects = {0};
2876 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2878 WaitObjects *w = &wait_objects;
2880 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2881 return -1;
2882 w->events[w->num] = handle;
2883 w->func[w->num] = func;
2884 w->opaque[w->num] = opaque;
2885 w->num++;
2886 return 0;
2889 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2891 int i, found;
2892 WaitObjects *w = &wait_objects;
2894 found = 0;
2895 for (i = 0; i < w->num; i++) {
2896 if (w->events[i] == handle)
2897 found = 1;
2898 if (found) {
2899 w->events[i] = w->events[i + 1];
2900 w->func[i] = w->func[i + 1];
2901 w->opaque[i] = w->opaque[i + 1];
2904 if (found)
2905 w->num--;
2907 #endif
2909 /***********************************************************/
2910 /* ram save/restore */
2912 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
2914 int v;
2916 v = qemu_get_byte(f);
2917 switch(v) {
2918 case 0:
2919 if (qemu_get_buffer(f, buf, len) != len)
2920 return -EIO;
2921 break;
2922 case 1:
2923 v = qemu_get_byte(f);
2924 memset(buf, v, len);
2925 break;
2926 default:
2927 return -EINVAL;
2930 if (qemu_file_has_error(f))
2931 return -EIO;
2933 return 0;
2936 static int ram_load_v1(QEMUFile *f, void *opaque)
2938 int ret;
2939 ram_addr_t i;
2941 if (qemu_get_be32(f) != last_ram_offset)
2942 return -EINVAL;
2943 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
2944 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
2945 if (ret)
2946 return ret;
2948 return 0;
2951 #define BDRV_HASH_BLOCK_SIZE 1024
2952 #define IOBUF_SIZE 4096
2953 #define RAM_CBLOCK_MAGIC 0xfabe
2955 typedef struct RamDecompressState {
2956 z_stream zstream;
2957 QEMUFile *f;
2958 uint8_t buf[IOBUF_SIZE];
2959 } RamDecompressState;
2961 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
2963 int ret;
2964 memset(s, 0, sizeof(*s));
2965 s->f = f;
2966 ret = inflateInit(&s->zstream);
2967 if (ret != Z_OK)
2968 return -1;
2969 return 0;
2972 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
2974 int ret, clen;
2976 s->zstream.avail_out = len;
2977 s->zstream.next_out = buf;
2978 while (s->zstream.avail_out > 0) {
2979 if (s->zstream.avail_in == 0) {
2980 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
2981 return -1;
2982 clen = qemu_get_be16(s->f);
2983 if (clen > IOBUF_SIZE)
2984 return -1;
2985 qemu_get_buffer(s->f, s->buf, clen);
2986 s->zstream.avail_in = clen;
2987 s->zstream.next_in = s->buf;
2989 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
2990 if (ret != Z_OK && ret != Z_STREAM_END) {
2991 return -1;
2994 return 0;
2997 static void ram_decompress_close(RamDecompressState *s)
2999 inflateEnd(&s->zstream);
3002 #define RAM_SAVE_FLAG_FULL 0x01
3003 #define RAM_SAVE_FLAG_COMPRESS 0x02
3004 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3005 #define RAM_SAVE_FLAG_PAGE 0x08
3006 #define RAM_SAVE_FLAG_EOS 0x10
3008 static int is_dup_page(uint8_t *page, uint8_t ch)
3010 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3011 uint32_t *array = (uint32_t *)page;
3012 int i;
3014 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3015 if (array[i] != val)
3016 return 0;
3019 return 1;
3022 static int ram_save_block(QEMUFile *f)
3024 static ram_addr_t current_addr = 0;
3025 ram_addr_t saved_addr = current_addr;
3026 ram_addr_t addr = 0;
3027 int found = 0;
3029 while (addr < last_ram_offset) {
3030 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3031 uint8_t *p;
3033 cpu_physical_memory_reset_dirty(current_addr,
3034 current_addr + TARGET_PAGE_SIZE,
3035 MIGRATION_DIRTY_FLAG);
3037 p = qemu_get_ram_ptr(current_addr);
3039 if (is_dup_page(p, *p)) {
3040 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3041 qemu_put_byte(f, *p);
3042 } else {
3043 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3044 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3047 found = 1;
3048 break;
3050 addr += TARGET_PAGE_SIZE;
3051 current_addr = (saved_addr + addr) % last_ram_offset;
3054 return found;
3057 static uint64_t bytes_transferred = 0;
3059 static ram_addr_t ram_save_remaining(void)
3061 ram_addr_t addr;
3062 ram_addr_t count = 0;
3064 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3065 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3066 count++;
3069 return count;
3072 uint64_t ram_bytes_remaining(void)
3074 return ram_save_remaining() * TARGET_PAGE_SIZE;
3077 uint64_t ram_bytes_transferred(void)
3079 return bytes_transferred;
3082 uint64_t ram_bytes_total(void)
3084 return last_ram_offset;
3087 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3089 ram_addr_t addr;
3090 uint64_t bytes_transferred_last;
3091 double bwidth = 0;
3092 uint64_t expected_time = 0;
3094 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
3095 qemu_file_set_error(f);
3096 return 0;
3099 if (stage == 1) {
3100 /* Make sure all dirty bits are set */
3101 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3102 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3103 cpu_physical_memory_set_dirty(addr);
3106 /* Enable dirty memory tracking */
3107 cpu_physical_memory_set_dirty_tracking(1);
3109 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3112 bytes_transferred_last = bytes_transferred;
3113 bwidth = get_clock();
3115 while (!qemu_file_rate_limit(f)) {
3116 int ret;
3118 ret = ram_save_block(f);
3119 bytes_transferred += ret * TARGET_PAGE_SIZE;
3120 if (ret == 0) /* no more blocks */
3121 break;
3124 bwidth = get_clock() - bwidth;
3125 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
3127 /* if we haven't transferred anything this round, force expected_time to a
3128 * a very high value, but without crashing */
3129 if (bwidth == 0)
3130 bwidth = 0.000001;
3132 /* try transferring iterative blocks of memory */
3134 if (stage == 3) {
3136 /* flush all remaining blocks regardless of rate limiting */
3137 while (ram_save_block(f) != 0) {
3138 bytes_transferred += TARGET_PAGE_SIZE;
3140 cpu_physical_memory_set_dirty_tracking(0);
3143 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3145 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
3147 return (stage == 2) && (expected_time <= migrate_max_downtime());
3150 static int ram_load_dead(QEMUFile *f, void *opaque)
3152 RamDecompressState s1, *s = &s1;
3153 uint8_t buf[10];
3154 ram_addr_t i;
3156 if (ram_decompress_open(s, f) < 0)
3157 return -EINVAL;
3158 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3159 if (ram_decompress_buf(s, buf, 1) < 0) {
3160 fprintf(stderr, "Error while reading ram block header\n");
3161 goto error;
3163 if (buf[0] == 0) {
3164 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3165 BDRV_HASH_BLOCK_SIZE) < 0) {
3166 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3167 goto error;
3169 } else {
3170 error:
3171 printf("Error block header\n");
3172 return -EINVAL;
3175 ram_decompress_close(s);
3177 return 0;
3180 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3182 ram_addr_t addr;
3183 int flags;
3185 if (version_id == 1)
3186 return ram_load_v1(f, opaque);
3188 if (version_id == 2) {
3189 if (qemu_get_be32(f) != last_ram_offset)
3190 return -EINVAL;
3191 return ram_load_dead(f, opaque);
3194 if (version_id != 3)
3195 return -EINVAL;
3197 do {
3198 addr = qemu_get_be64(f);
3200 flags = addr & ~TARGET_PAGE_MASK;
3201 addr &= TARGET_PAGE_MASK;
3203 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3204 if (addr != last_ram_offset)
3205 return -EINVAL;
3208 if (flags & RAM_SAVE_FLAG_FULL) {
3209 if (ram_load_dead(f, opaque) < 0)
3210 return -EINVAL;
3213 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3214 uint8_t ch = qemu_get_byte(f);
3215 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3216 #ifndef _WIN32
3217 if (ch == 0 &&
3218 (!kvm_enabled() || kvm_has_sync_mmu())) {
3219 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
3221 #endif
3222 } else if (flags & RAM_SAVE_FLAG_PAGE)
3223 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3224 } while (!(flags & RAM_SAVE_FLAG_EOS));
3226 return 0;
3229 void qemu_service_io(void)
3231 qemu_notify_event();
3234 /***********************************************************/
3235 /* bottom halves (can be seen as timers which expire ASAP) */
3237 struct QEMUBH {
3238 QEMUBHFunc *cb;
3239 void *opaque;
3240 int scheduled;
3241 int idle;
3242 int deleted;
3243 QEMUBH *next;
3246 static QEMUBH *first_bh = NULL;
3248 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3250 QEMUBH *bh;
3251 bh = qemu_mallocz(sizeof(QEMUBH));
3252 bh->cb = cb;
3253 bh->opaque = opaque;
3254 bh->next = first_bh;
3255 first_bh = bh;
3256 return bh;
3259 int qemu_bh_poll(void)
3261 QEMUBH *bh, **bhp;
3262 int ret;
3264 ret = 0;
3265 for (bh = first_bh; bh; bh = bh->next) {
3266 if (!bh->deleted && bh->scheduled) {
3267 bh->scheduled = 0;
3268 if (!bh->idle)
3269 ret = 1;
3270 bh->idle = 0;
3271 bh->cb(bh->opaque);
3275 /* remove deleted bhs */
3276 bhp = &first_bh;
3277 while (*bhp) {
3278 bh = *bhp;
3279 if (bh->deleted) {
3280 *bhp = bh->next;
3281 qemu_free(bh);
3282 } else
3283 bhp = &bh->next;
3286 return ret;
3289 void qemu_bh_schedule_idle(QEMUBH *bh)
3291 if (bh->scheduled)
3292 return;
3293 bh->scheduled = 1;
3294 bh->idle = 1;
3297 void qemu_bh_schedule(QEMUBH *bh)
3299 if (bh->scheduled)
3300 return;
3301 bh->scheduled = 1;
3302 bh->idle = 0;
3303 /* stop the currently executing CPU to execute the BH ASAP */
3304 qemu_notify_event();
3307 void qemu_bh_cancel(QEMUBH *bh)
3309 bh->scheduled = 0;
3312 void qemu_bh_delete(QEMUBH *bh)
3314 bh->scheduled = 0;
3315 bh->deleted = 1;
3318 static void qemu_bh_update_timeout(int *timeout)
3320 QEMUBH *bh;
3322 for (bh = first_bh; bh; bh = bh->next) {
3323 if (!bh->deleted && bh->scheduled) {
3324 if (bh->idle) {
3325 /* idle bottom halves will be polled at least
3326 * every 10ms */
3327 *timeout = MIN(10, *timeout);
3328 } else {
3329 /* non-idle bottom halves will be executed
3330 * immediately */
3331 *timeout = 0;
3332 break;
3338 /***********************************************************/
3339 /* machine registration */
3341 static QEMUMachine *first_machine = NULL;
3342 QEMUMachine *current_machine = NULL;
3344 int qemu_register_machine(QEMUMachine *m)
3346 QEMUMachine **pm;
3347 pm = &first_machine;
3348 while (*pm != NULL)
3349 pm = &(*pm)->next;
3350 m->next = NULL;
3351 *pm = m;
3352 return 0;
3355 static QEMUMachine *find_machine(const char *name)
3357 QEMUMachine *m;
3359 for(m = first_machine; m != NULL; m = m->next) {
3360 if (!strcmp(m->name, name))
3361 return m;
3362 if (m->alias && !strcmp(m->alias, name))
3363 return m;
3365 return NULL;
3368 static QEMUMachine *find_default_machine(void)
3370 QEMUMachine *m;
3372 for(m = first_machine; m != NULL; m = m->next) {
3373 if (m->is_default) {
3374 return m;
3377 return NULL;
3380 /***********************************************************/
3381 /* main execution loop */
3383 static void gui_update(void *opaque)
3385 uint64_t interval = GUI_REFRESH_INTERVAL;
3386 DisplayState *ds = opaque;
3387 DisplayChangeListener *dcl = ds->listeners;
3389 dpy_refresh(ds);
3391 while (dcl != NULL) {
3392 if (dcl->gui_timer_interval &&
3393 dcl->gui_timer_interval < interval)
3394 interval = dcl->gui_timer_interval;
3395 dcl = dcl->next;
3397 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3400 static void nographic_update(void *opaque)
3402 uint64_t interval = GUI_REFRESH_INTERVAL;
3404 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3407 struct vm_change_state_entry {
3408 VMChangeStateHandler *cb;
3409 void *opaque;
3410 LIST_ENTRY (vm_change_state_entry) entries;
3413 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3415 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3416 void *opaque)
3418 VMChangeStateEntry *e;
3420 e = qemu_mallocz(sizeof (*e));
3422 e->cb = cb;
3423 e->opaque = opaque;
3424 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3425 return e;
3428 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3430 LIST_REMOVE (e, entries);
3431 qemu_free (e);
3434 static void vm_state_notify(int running, int reason)
3436 VMChangeStateEntry *e;
3438 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3439 e->cb(e->opaque, running, reason);
3443 static void resume_all_vcpus(void);
3444 static void pause_all_vcpus(void);
3446 void vm_start(void)
3448 if (!vm_running) {
3449 cpu_enable_ticks();
3450 vm_running = 1;
3451 vm_state_notify(1, 0);
3452 qemu_rearm_alarm_timer(alarm_timer);
3453 resume_all_vcpus();
3457 /* reset/shutdown handler */
3459 typedef struct QEMUResetEntry {
3460 TAILQ_ENTRY(QEMUResetEntry) entry;
3461 QEMUResetHandler *func;
3462 void *opaque;
3463 } QEMUResetEntry;
3465 static TAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3466 TAILQ_HEAD_INITIALIZER(reset_handlers);
3467 static int reset_requested;
3468 static int shutdown_requested;
3469 static int powerdown_requested;
3470 static int debug_requested;
3471 static int vmstop_requested;
3473 int qemu_shutdown_requested(void)
3475 int r = shutdown_requested;
3476 shutdown_requested = 0;
3477 return r;
3480 int qemu_reset_requested(void)
3482 int r = reset_requested;
3483 reset_requested = 0;
3484 return r;
3487 int qemu_powerdown_requested(void)
3489 int r = powerdown_requested;
3490 powerdown_requested = 0;
3491 return r;
3494 static int qemu_debug_requested(void)
3496 int r = debug_requested;
3497 debug_requested = 0;
3498 return r;
3501 static int qemu_vmstop_requested(void)
3503 int r = vmstop_requested;
3504 vmstop_requested = 0;
3505 return r;
3508 static void do_vm_stop(int reason)
3510 if (vm_running) {
3511 cpu_disable_ticks();
3512 vm_running = 0;
3513 pause_all_vcpus();
3514 vm_state_notify(0, reason);
3518 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3520 QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3522 re->func = func;
3523 re->opaque = opaque;
3524 TAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3527 void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3529 QEMUResetEntry *re;
3531 TAILQ_FOREACH(re, &reset_handlers, entry) {
3532 if (re->func == func && re->opaque == opaque) {
3533 TAILQ_REMOVE(&reset_handlers, re, entry);
3534 qemu_free(re);
3535 return;
3540 void qemu_system_reset(void)
3542 QEMUResetEntry *re, *nre;
3544 /* reset all devices */
3545 TAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3546 re->func(re->opaque);
3550 void qemu_system_reset_request(void)
3552 if (no_reboot) {
3553 shutdown_requested = 1;
3554 } else {
3555 reset_requested = 1;
3557 qemu_notify_event();
3560 void qemu_system_shutdown_request(void)
3562 shutdown_requested = 1;
3563 qemu_notify_event();
3566 void qemu_system_powerdown_request(void)
3568 powerdown_requested = 1;
3569 qemu_notify_event();
3572 #ifdef CONFIG_IOTHREAD
3573 static void qemu_system_vmstop_request(int reason)
3575 vmstop_requested = reason;
3576 qemu_notify_event();
3578 #endif
3580 #ifndef _WIN32
3581 static int io_thread_fd = -1;
3583 static void qemu_event_increment(void)
3585 static const char byte = 0;
3587 if (io_thread_fd == -1)
3588 return;
3590 write(io_thread_fd, &byte, sizeof(byte));
3593 static void qemu_event_read(void *opaque)
3595 int fd = (unsigned long)opaque;
3596 ssize_t len;
3598 /* Drain the notify pipe */
3599 do {
3600 char buffer[512];
3601 len = read(fd, buffer, sizeof(buffer));
3602 } while ((len == -1 && errno == EINTR) || len > 0);
3605 static int qemu_event_init(void)
3607 int err;
3608 int fds[2];
3610 err = pipe(fds);
3611 if (err == -1)
3612 return -errno;
3614 err = fcntl_setfl(fds[0], O_NONBLOCK);
3615 if (err < 0)
3616 goto fail;
3618 err = fcntl_setfl(fds[1], O_NONBLOCK);
3619 if (err < 0)
3620 goto fail;
3622 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3623 (void *)(unsigned long)fds[0]);
3625 io_thread_fd = fds[1];
3626 return 0;
3628 fail:
3629 close(fds[0]);
3630 close(fds[1]);
3631 return err;
3633 #else
3634 HANDLE qemu_event_handle;
3636 static void dummy_event_handler(void *opaque)
3640 static int qemu_event_init(void)
3642 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3643 if (!qemu_event_handle) {
3644 perror("Failed CreateEvent");
3645 return -1;
3647 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3648 return 0;
3651 static void qemu_event_increment(void)
3653 SetEvent(qemu_event_handle);
3655 #endif
3657 static int cpu_can_run(CPUState *env)
3659 if (env->stop)
3660 return 0;
3661 if (env->stopped)
3662 return 0;
3663 return 1;
3666 #ifndef CONFIG_IOTHREAD
3667 static int qemu_init_main_loop(void)
3669 return qemu_event_init();
3672 void qemu_init_vcpu(void *_env)
3674 CPUState *env = _env;
3676 if (kvm_enabled())
3677 kvm_init_vcpu(env);
3678 return;
3681 int qemu_cpu_self(void *env)
3683 return 1;
3686 static void resume_all_vcpus(void)
3690 static void pause_all_vcpus(void)
3694 void qemu_cpu_kick(void *env)
3696 return;
3699 void qemu_notify_event(void)
3701 CPUState *env = cpu_single_env;
3703 if (env) {
3704 cpu_exit(env);
3705 #ifdef USE_KQEMU
3706 if (env->kqemu_enabled)
3707 kqemu_cpu_interrupt(env);
3708 #endif
3712 #define qemu_mutex_lock_iothread() do { } while (0)
3713 #define qemu_mutex_unlock_iothread() do { } while (0)
3715 void vm_stop(int reason)
3717 do_vm_stop(reason);
3720 #else /* CONFIG_IOTHREAD */
3722 #include "qemu-thread.h"
3724 QemuMutex qemu_global_mutex;
3725 static QemuMutex qemu_fair_mutex;
3727 static QemuThread io_thread;
3729 static QemuThread *tcg_cpu_thread;
3730 static QemuCond *tcg_halt_cond;
3732 static int qemu_system_ready;
3733 /* cpu creation */
3734 static QemuCond qemu_cpu_cond;
3735 /* system init */
3736 static QemuCond qemu_system_cond;
3737 static QemuCond qemu_pause_cond;
3739 static void block_io_signals(void);
3740 static void unblock_io_signals(void);
3741 static int tcg_has_work(void);
3743 static int qemu_init_main_loop(void)
3745 int ret;
3747 ret = qemu_event_init();
3748 if (ret)
3749 return ret;
3751 qemu_cond_init(&qemu_pause_cond);
3752 qemu_mutex_init(&qemu_fair_mutex);
3753 qemu_mutex_init(&qemu_global_mutex);
3754 qemu_mutex_lock(&qemu_global_mutex);
3756 unblock_io_signals();
3757 qemu_thread_self(&io_thread);
3759 return 0;
3762 static void qemu_wait_io_event(CPUState *env)
3764 while (!tcg_has_work())
3765 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3767 qemu_mutex_unlock(&qemu_global_mutex);
3770 * Users of qemu_global_mutex can be starved, having no chance
3771 * to acquire it since this path will get to it first.
3772 * So use another lock to provide fairness.
3774 qemu_mutex_lock(&qemu_fair_mutex);
3775 qemu_mutex_unlock(&qemu_fair_mutex);
3777 qemu_mutex_lock(&qemu_global_mutex);
3778 if (env->stop) {
3779 env->stop = 0;
3780 env->stopped = 1;
3781 qemu_cond_signal(&qemu_pause_cond);
3785 static int qemu_cpu_exec(CPUState *env);
3787 static void *kvm_cpu_thread_fn(void *arg)
3789 CPUState *env = arg;
3791 block_io_signals();
3792 qemu_thread_self(env->thread);
3794 /* signal CPU creation */
3795 qemu_mutex_lock(&qemu_global_mutex);
3796 env->created = 1;
3797 qemu_cond_signal(&qemu_cpu_cond);
3799 /* and wait for machine initialization */
3800 while (!qemu_system_ready)
3801 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3803 while (1) {
3804 if (cpu_can_run(env))
3805 qemu_cpu_exec(env);
3806 qemu_wait_io_event(env);
3809 return NULL;
3812 static void tcg_cpu_exec(void);
3814 static void *tcg_cpu_thread_fn(void *arg)
3816 CPUState *env = arg;
3818 block_io_signals();
3819 qemu_thread_self(env->thread);
3821 /* signal CPU creation */
3822 qemu_mutex_lock(&qemu_global_mutex);
3823 for (env = first_cpu; env != NULL; env = env->next_cpu)
3824 env->created = 1;
3825 qemu_cond_signal(&qemu_cpu_cond);
3827 /* and wait for machine initialization */
3828 while (!qemu_system_ready)
3829 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3831 while (1) {
3832 tcg_cpu_exec();
3833 qemu_wait_io_event(cur_cpu);
3836 return NULL;
3839 void qemu_cpu_kick(void *_env)
3841 CPUState *env = _env;
3842 qemu_cond_broadcast(env->halt_cond);
3843 if (kvm_enabled())
3844 qemu_thread_signal(env->thread, SIGUSR1);
3847 int qemu_cpu_self(void *env)
3849 return (cpu_single_env != NULL);
3852 static void cpu_signal(int sig)
3854 if (cpu_single_env)
3855 cpu_exit(cpu_single_env);
3858 static void block_io_signals(void)
3860 sigset_t set;
3861 struct sigaction sigact;
3863 sigemptyset(&set);
3864 sigaddset(&set, SIGUSR2);
3865 sigaddset(&set, SIGIO);
3866 sigaddset(&set, SIGALRM);
3867 pthread_sigmask(SIG_BLOCK, &set, NULL);
3869 sigemptyset(&set);
3870 sigaddset(&set, SIGUSR1);
3871 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3873 memset(&sigact, 0, sizeof(sigact));
3874 sigact.sa_handler = cpu_signal;
3875 sigaction(SIGUSR1, &sigact, NULL);
3878 static void unblock_io_signals(void)
3880 sigset_t set;
3882 sigemptyset(&set);
3883 sigaddset(&set, SIGUSR2);
3884 sigaddset(&set, SIGIO);
3885 sigaddset(&set, SIGALRM);
3886 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3888 sigemptyset(&set);
3889 sigaddset(&set, SIGUSR1);
3890 pthread_sigmask(SIG_BLOCK, &set, NULL);
3893 static void qemu_signal_lock(unsigned int msecs)
3895 qemu_mutex_lock(&qemu_fair_mutex);
3897 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3898 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3899 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3900 break;
3902 qemu_mutex_unlock(&qemu_fair_mutex);
3905 static void qemu_mutex_lock_iothread(void)
3907 if (kvm_enabled()) {
3908 qemu_mutex_lock(&qemu_fair_mutex);
3909 qemu_mutex_lock(&qemu_global_mutex);
3910 qemu_mutex_unlock(&qemu_fair_mutex);
3911 } else
3912 qemu_signal_lock(100);
3915 static void qemu_mutex_unlock_iothread(void)
3917 qemu_mutex_unlock(&qemu_global_mutex);
3920 static int all_vcpus_paused(void)
3922 CPUState *penv = first_cpu;
3924 while (penv) {
3925 if (!penv->stopped)
3926 return 0;
3927 penv = (CPUState *)penv->next_cpu;
3930 return 1;
3933 static void pause_all_vcpus(void)
3935 CPUState *penv = first_cpu;
3937 while (penv) {
3938 penv->stop = 1;
3939 qemu_thread_signal(penv->thread, SIGUSR1);
3940 qemu_cpu_kick(penv);
3941 penv = (CPUState *)penv->next_cpu;
3944 while (!all_vcpus_paused()) {
3945 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3946 penv = first_cpu;
3947 while (penv) {
3948 qemu_thread_signal(penv->thread, SIGUSR1);
3949 penv = (CPUState *)penv->next_cpu;
3954 static void resume_all_vcpus(void)
3956 CPUState *penv = first_cpu;
3958 while (penv) {
3959 penv->stop = 0;
3960 penv->stopped = 0;
3961 qemu_thread_signal(penv->thread, SIGUSR1);
3962 qemu_cpu_kick(penv);
3963 penv = (CPUState *)penv->next_cpu;
3967 static void tcg_init_vcpu(void *_env)
3969 CPUState *env = _env;
3970 /* share a single thread for all cpus with TCG */
3971 if (!tcg_cpu_thread) {
3972 env->thread = qemu_mallocz(sizeof(QemuThread));
3973 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3974 qemu_cond_init(env->halt_cond);
3975 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3976 while (env->created == 0)
3977 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3978 tcg_cpu_thread = env->thread;
3979 tcg_halt_cond = env->halt_cond;
3980 } else {
3981 env->thread = tcg_cpu_thread;
3982 env->halt_cond = tcg_halt_cond;
3986 static void kvm_start_vcpu(CPUState *env)
3988 kvm_init_vcpu(env);
3989 env->thread = qemu_mallocz(sizeof(QemuThread));
3990 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3991 qemu_cond_init(env->halt_cond);
3992 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3993 while (env->created == 0)
3994 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3997 void qemu_init_vcpu(void *_env)
3999 CPUState *env = _env;
4001 if (kvm_enabled())
4002 kvm_start_vcpu(env);
4003 else
4004 tcg_init_vcpu(env);
4007 void qemu_notify_event(void)
4009 qemu_event_increment();
4012 void vm_stop(int reason)
4014 QemuThread me;
4015 qemu_thread_self(&me);
4017 if (!qemu_thread_equal(&me, &io_thread)) {
4018 qemu_system_vmstop_request(reason);
4020 * FIXME: should not return to device code in case
4021 * vm_stop() has been requested.
4023 if (cpu_single_env) {
4024 cpu_exit(cpu_single_env);
4025 cpu_single_env->stop = 1;
4027 return;
4029 do_vm_stop(reason);
4032 #endif
4035 #ifdef _WIN32
4036 static void host_main_loop_wait(int *timeout)
4038 int ret, ret2, i;
4039 PollingEntry *pe;
4042 /* XXX: need to suppress polling by better using win32 events */
4043 ret = 0;
4044 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4045 ret |= pe->func(pe->opaque);
4047 if (ret == 0) {
4048 int err;
4049 WaitObjects *w = &wait_objects;
4051 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4052 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4053 if (w->func[ret - WAIT_OBJECT_0])
4054 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4056 /* Check for additional signaled events */
4057 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4059 /* Check if event is signaled */
4060 ret2 = WaitForSingleObject(w->events[i], 0);
4061 if(ret2 == WAIT_OBJECT_0) {
4062 if (w->func[i])
4063 w->func[i](w->opaque[i]);
4064 } else if (ret2 == WAIT_TIMEOUT) {
4065 } else {
4066 err = GetLastError();
4067 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4070 } else if (ret == WAIT_TIMEOUT) {
4071 } else {
4072 err = GetLastError();
4073 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4077 *timeout = 0;
4079 #else
4080 static void host_main_loop_wait(int *timeout)
4083 #endif
4085 void main_loop_wait(int timeout)
4087 IOHandlerRecord *ioh;
4088 fd_set rfds, wfds, xfds;
4089 int ret, nfds;
4090 struct timeval tv;
4092 qemu_bh_update_timeout(&timeout);
4094 host_main_loop_wait(&timeout);
4096 /* poll any events */
4097 /* XXX: separate device handlers from system ones */
4098 nfds = -1;
4099 FD_ZERO(&rfds);
4100 FD_ZERO(&wfds);
4101 FD_ZERO(&xfds);
4102 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4103 if (ioh->deleted)
4104 continue;
4105 if (ioh->fd_read &&
4106 (!ioh->fd_read_poll ||
4107 ioh->fd_read_poll(ioh->opaque) != 0)) {
4108 FD_SET(ioh->fd, &rfds);
4109 if (ioh->fd > nfds)
4110 nfds = ioh->fd;
4112 if (ioh->fd_write) {
4113 FD_SET(ioh->fd, &wfds);
4114 if (ioh->fd > nfds)
4115 nfds = ioh->fd;
4119 tv.tv_sec = timeout / 1000;
4120 tv.tv_usec = (timeout % 1000) * 1000;
4122 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4124 qemu_mutex_unlock_iothread();
4125 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4126 qemu_mutex_lock_iothread();
4127 if (ret > 0) {
4128 IOHandlerRecord **pioh;
4130 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4131 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4132 ioh->fd_read(ioh->opaque);
4134 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4135 ioh->fd_write(ioh->opaque);
4139 /* remove deleted IO handlers */
4140 pioh = &first_io_handler;
4141 while (*pioh) {
4142 ioh = *pioh;
4143 if (ioh->deleted) {
4144 *pioh = ioh->next;
4145 qemu_free(ioh);
4146 } else
4147 pioh = &ioh->next;
4151 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
4153 /* rearm timer, if not periodic */
4154 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4155 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4156 qemu_rearm_alarm_timer(alarm_timer);
4159 /* vm time timers */
4160 if (vm_running) {
4161 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4162 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4163 qemu_get_clock(vm_clock));
4166 /* real time timers */
4167 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4168 qemu_get_clock(rt_clock));
4170 /* Check bottom-halves last in case any of the earlier events triggered
4171 them. */
4172 qemu_bh_poll();
4176 static int qemu_cpu_exec(CPUState *env)
4178 int ret;
4179 #ifdef CONFIG_PROFILER
4180 int64_t ti;
4181 #endif
4183 #ifdef CONFIG_PROFILER
4184 ti = profile_getclock();
4185 #endif
4186 if (use_icount) {
4187 int64_t count;
4188 int decr;
4189 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4190 env->icount_decr.u16.low = 0;
4191 env->icount_extra = 0;
4192 count = qemu_next_deadline();
4193 count = (count + (1 << icount_time_shift) - 1)
4194 >> icount_time_shift;
4195 qemu_icount += count;
4196 decr = (count > 0xffff) ? 0xffff : count;
4197 count -= decr;
4198 env->icount_decr.u16.low = decr;
4199 env->icount_extra = count;
4201 ret = cpu_exec(env);
4202 #ifdef CONFIG_PROFILER
4203 qemu_time += profile_getclock() - ti;
4204 #endif
4205 if (use_icount) {
4206 /* Fold pending instructions back into the
4207 instruction counter, and clear the interrupt flag. */
4208 qemu_icount -= (env->icount_decr.u16.low
4209 + env->icount_extra);
4210 env->icount_decr.u32 = 0;
4211 env->icount_extra = 0;
4213 return ret;
4216 static void tcg_cpu_exec(void)
4218 int ret = 0;
4220 if (next_cpu == NULL)
4221 next_cpu = first_cpu;
4222 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4223 CPUState *env = cur_cpu = next_cpu;
4225 if (!vm_running)
4226 break;
4227 if (timer_alarm_pending) {
4228 timer_alarm_pending = 0;
4229 break;
4231 if (cpu_can_run(env))
4232 ret = qemu_cpu_exec(env);
4233 if (ret == EXCP_DEBUG) {
4234 gdb_set_stop_cpu(env);
4235 debug_requested = 1;
4236 break;
4241 static int cpu_has_work(CPUState *env)
4243 if (env->stop)
4244 return 1;
4245 if (env->stopped)
4246 return 0;
4247 if (!env->halted)
4248 return 1;
4249 if (qemu_cpu_has_work(env))
4250 return 1;
4251 return 0;
4254 static int tcg_has_work(void)
4256 CPUState *env;
4258 for (env = first_cpu; env != NULL; env = env->next_cpu)
4259 if (cpu_has_work(env))
4260 return 1;
4261 return 0;
4264 static int qemu_calculate_timeout(void)
4266 #ifndef CONFIG_IOTHREAD
4267 int timeout;
4269 if (!vm_running)
4270 timeout = 5000;
4271 else if (tcg_has_work())
4272 timeout = 0;
4273 else if (!use_icount)
4274 timeout = 5000;
4275 else {
4276 /* XXX: use timeout computed from timers */
4277 int64_t add;
4278 int64_t delta;
4279 /* Advance virtual time to the next event. */
4280 if (use_icount == 1) {
4281 /* When not using an adaptive execution frequency
4282 we tend to get badly out of sync with real time,
4283 so just delay for a reasonable amount of time. */
4284 delta = 0;
4285 } else {
4286 delta = cpu_get_icount() - cpu_get_clock();
4288 if (delta > 0) {
4289 /* If virtual time is ahead of real time then just
4290 wait for IO. */
4291 timeout = (delta / 1000000) + 1;
4292 } else {
4293 /* Wait for either IO to occur or the next
4294 timer event. */
4295 add = qemu_next_deadline();
4296 /* We advance the timer before checking for IO.
4297 Limit the amount we advance so that early IO
4298 activity won't get the guest too far ahead. */
4299 if (add > 10000000)
4300 add = 10000000;
4301 delta += add;
4302 add = (add + (1 << icount_time_shift) - 1)
4303 >> icount_time_shift;
4304 qemu_icount += add;
4305 timeout = delta / 1000000;
4306 if (timeout < 0)
4307 timeout = 0;
4311 return timeout;
4312 #else /* CONFIG_IOTHREAD */
4313 return 1000;
4314 #endif
4317 static int vm_can_run(void)
4319 if (powerdown_requested)
4320 return 0;
4321 if (reset_requested)
4322 return 0;
4323 if (shutdown_requested)
4324 return 0;
4325 if (debug_requested)
4326 return 0;
4327 return 1;
4330 static void main_loop(void)
4332 int r;
4334 #ifdef CONFIG_IOTHREAD
4335 qemu_system_ready = 1;
4336 qemu_cond_broadcast(&qemu_system_cond);
4337 #endif
4339 for (;;) {
4340 do {
4341 #ifdef CONFIG_PROFILER
4342 int64_t ti;
4343 #endif
4344 #ifndef CONFIG_IOTHREAD
4345 tcg_cpu_exec();
4346 #endif
4347 #ifdef CONFIG_PROFILER
4348 ti = profile_getclock();
4349 #endif
4350 main_loop_wait(qemu_calculate_timeout());
4351 #ifdef CONFIG_PROFILER
4352 dev_time += profile_getclock() - ti;
4353 #endif
4354 } while (vm_can_run());
4356 if (qemu_debug_requested())
4357 vm_stop(EXCP_DEBUG);
4358 if (qemu_shutdown_requested()) {
4359 if (no_shutdown) {
4360 vm_stop(0);
4361 no_shutdown = 0;
4362 } else
4363 break;
4365 if (qemu_reset_requested()) {
4366 pause_all_vcpus();
4367 qemu_system_reset();
4368 resume_all_vcpus();
4370 if (qemu_powerdown_requested())
4371 qemu_system_powerdown();
4372 if ((r = qemu_vmstop_requested()))
4373 vm_stop(r);
4375 pause_all_vcpus();
4378 static void version(void)
4380 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4383 static void help(int exitcode)
4385 version();
4386 printf("usage: %s [options] [disk_image]\n"
4387 "\n"
4388 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4389 "\n"
4390 #define DEF(option, opt_arg, opt_enum, opt_help) \
4391 opt_help
4392 #define DEFHEADING(text) stringify(text) "\n"
4393 #include "qemu-options.h"
4394 #undef DEF
4395 #undef DEFHEADING
4396 #undef GEN_DOCS
4397 "\n"
4398 "During emulation, the following keys are useful:\n"
4399 "ctrl-alt-f toggle full screen\n"
4400 "ctrl-alt-n switch to virtual console 'n'\n"
4401 "ctrl-alt toggle mouse and keyboard grab\n"
4402 "\n"
4403 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4405 "qemu",
4406 DEFAULT_RAM_SIZE,
4407 #ifndef _WIN32
4408 DEFAULT_NETWORK_SCRIPT,
4409 DEFAULT_NETWORK_DOWN_SCRIPT,
4410 #endif
4411 DEFAULT_GDBSTUB_PORT,
4412 "/tmp/qemu.log");
4413 exit(exitcode);
4416 #define HAS_ARG 0x0001
4418 enum {
4419 #define DEF(option, opt_arg, opt_enum, opt_help) \
4420 opt_enum,
4421 #define DEFHEADING(text)
4422 #include "qemu-options.h"
4423 #undef DEF
4424 #undef DEFHEADING
4425 #undef GEN_DOCS
4428 typedef struct QEMUOption {
4429 const char *name;
4430 int flags;
4431 int index;
4432 } QEMUOption;
4434 static const QEMUOption qemu_options[] = {
4435 { "h", 0, QEMU_OPTION_h },
4436 #define DEF(option, opt_arg, opt_enum, opt_help) \
4437 { option, opt_arg, opt_enum },
4438 #define DEFHEADING(text)
4439 #include "qemu-options.h"
4440 #undef DEF
4441 #undef DEFHEADING
4442 #undef GEN_DOCS
4443 { NULL },
4446 #ifdef HAS_AUDIO
4447 struct soundhw soundhw[] = {
4448 #ifdef HAS_AUDIO_CHOICE
4449 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4451 "pcspk",
4452 "PC speaker",
4455 { .init_isa = pcspk_audio_init }
4457 #endif
4459 #ifdef CONFIG_SB16
4461 "sb16",
4462 "Creative Sound Blaster 16",
4465 { .init_isa = SB16_init }
4467 #endif
4469 #ifdef CONFIG_CS4231A
4471 "cs4231a",
4472 "CS4231A",
4475 { .init_isa = cs4231a_init }
4477 #endif
4479 #ifdef CONFIG_ADLIB
4481 "adlib",
4482 #ifdef HAS_YMF262
4483 "Yamaha YMF262 (OPL3)",
4484 #else
4485 "Yamaha YM3812 (OPL2)",
4486 #endif
4489 { .init_isa = Adlib_init }
4491 #endif
4493 #ifdef CONFIG_GUS
4495 "gus",
4496 "Gravis Ultrasound GF1",
4499 { .init_isa = GUS_init }
4501 #endif
4503 #ifdef CONFIG_AC97
4505 "ac97",
4506 "Intel 82801AA AC97 Audio",
4509 { .init_pci = ac97_init }
4511 #endif
4513 #ifdef CONFIG_ES1370
4515 "es1370",
4516 "ENSONIQ AudioPCI ES1370",
4519 { .init_pci = es1370_init }
4521 #endif
4523 #endif /* HAS_AUDIO_CHOICE */
4525 { NULL, NULL, 0, 0, { NULL } }
4528 static void select_soundhw (const char *optarg)
4530 struct soundhw *c;
4532 if (*optarg == '?') {
4533 show_valid_cards:
4535 printf ("Valid sound card names (comma separated):\n");
4536 for (c = soundhw; c->name; ++c) {
4537 printf ("%-11s %s\n", c->name, c->descr);
4539 printf ("\n-soundhw all will enable all of the above\n");
4540 exit (*optarg != '?');
4542 else {
4543 size_t l;
4544 const char *p;
4545 char *e;
4546 int bad_card = 0;
4548 if (!strcmp (optarg, "all")) {
4549 for (c = soundhw; c->name; ++c) {
4550 c->enabled = 1;
4552 return;
4555 p = optarg;
4556 while (*p) {
4557 e = strchr (p, ',');
4558 l = !e ? strlen (p) : (size_t) (e - p);
4560 for (c = soundhw; c->name; ++c) {
4561 if (!strncmp (c->name, p, l)) {
4562 c->enabled = 1;
4563 break;
4567 if (!c->name) {
4568 if (l > 80) {
4569 fprintf (stderr,
4570 "Unknown sound card name (too big to show)\n");
4572 else {
4573 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4574 (int) l, p);
4576 bad_card = 1;
4578 p += l + (e != NULL);
4581 if (bad_card)
4582 goto show_valid_cards;
4585 #endif
4587 static void select_vgahw (const char *p)
4589 const char *opts;
4591 cirrus_vga_enabled = 0;
4592 std_vga_enabled = 0;
4593 vmsvga_enabled = 0;
4594 xenfb_enabled = 0;
4595 if (strstart(p, "std", &opts)) {
4596 std_vga_enabled = 1;
4597 } else if (strstart(p, "cirrus", &opts)) {
4598 cirrus_vga_enabled = 1;
4599 } else if (strstart(p, "vmware", &opts)) {
4600 vmsvga_enabled = 1;
4601 } else if (strstart(p, "xenfb", &opts)) {
4602 xenfb_enabled = 1;
4603 } else if (!strstart(p, "none", &opts)) {
4604 invalid_vga:
4605 fprintf(stderr, "Unknown vga type: %s\n", p);
4606 exit(1);
4608 while (*opts) {
4609 const char *nextopt;
4611 if (strstart(opts, ",retrace=", &nextopt)) {
4612 opts = nextopt;
4613 if (strstart(opts, "dumb", &nextopt))
4614 vga_retrace_method = VGA_RETRACE_DUMB;
4615 else if (strstart(opts, "precise", &nextopt))
4616 vga_retrace_method = VGA_RETRACE_PRECISE;
4617 else goto invalid_vga;
4618 } else goto invalid_vga;
4619 opts = nextopt;
4623 #ifdef TARGET_I386
4624 static int balloon_parse(const char *arg)
4626 char buf[128];
4627 const char *p;
4629 if (!strcmp(arg, "none")) {
4630 virtio_balloon = 0;
4631 } else if (!strncmp(arg, "virtio", 6)) {
4632 virtio_balloon = 1;
4633 if (arg[6] == ',') {
4634 p = arg + 7;
4635 if (get_param_value(buf, sizeof(buf), "addr", p)) {
4636 virtio_balloon_devaddr = strdup(buf);
4639 } else {
4640 return -1;
4642 return 0;
4644 #endif
4646 #ifdef _WIN32
4647 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4649 exit(STATUS_CONTROL_C_EXIT);
4650 return TRUE;
4652 #endif
4654 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4656 int ret;
4658 if(strlen(str) != 36)
4659 return -1;
4661 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4662 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4663 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4665 if(ret != 16)
4666 return -1;
4668 #ifdef TARGET_I386
4669 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4670 #endif
4672 return 0;
4675 #define MAX_NET_CLIENTS 32
4677 #ifndef _WIN32
4679 static void termsig_handler(int signal)
4681 qemu_system_shutdown_request();
4684 static void sigchld_handler(int signal)
4686 waitpid(-1, NULL, WNOHANG);
4689 static void sighandler_setup(void)
4691 struct sigaction act;
4693 memset(&act, 0, sizeof(act));
4694 act.sa_handler = termsig_handler;
4695 sigaction(SIGINT, &act, NULL);
4696 sigaction(SIGHUP, &act, NULL);
4697 sigaction(SIGTERM, &act, NULL);
4699 act.sa_handler = sigchld_handler;
4700 act.sa_flags = SA_NOCLDSTOP;
4701 sigaction(SIGCHLD, &act, NULL);
4704 #endif
4706 #ifdef _WIN32
4707 /* Look for support files in the same directory as the executable. */
4708 static char *find_datadir(const char *argv0)
4710 char *p;
4711 char buf[MAX_PATH];
4712 DWORD len;
4714 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4715 if (len == 0) {
4716 return NULL;
4719 buf[len] = 0;
4720 p = buf + len - 1;
4721 while (p != buf && *p != '\\')
4722 p--;
4723 *p = 0;
4724 if (access(buf, R_OK) == 0) {
4725 return qemu_strdup(buf);
4727 return NULL;
4729 #else /* !_WIN32 */
4731 /* Find a likely location for support files using the location of the binary.
4732 For installed binaries this will be "$bindir/../share/qemu". When
4733 running from the build tree this will be "$bindir/../pc-bios". */
4734 #define SHARE_SUFFIX "/share/qemu"
4735 #define BUILD_SUFFIX "/pc-bios"
4736 static char *find_datadir(const char *argv0)
4738 char *dir;
4739 char *p = NULL;
4740 char *res;
4741 #ifdef PATH_MAX
4742 char buf[PATH_MAX];
4743 #endif
4744 size_t max_len;
4746 #if defined(__linux__)
4748 int len;
4749 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4750 if (len > 0) {
4751 buf[len] = 0;
4752 p = buf;
4755 #elif defined(__FreeBSD__)
4757 int len;
4758 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4759 if (len > 0) {
4760 buf[len] = 0;
4761 p = buf;
4764 #endif
4765 /* If we don't have any way of figuring out the actual executable
4766 location then try argv[0]. */
4767 if (!p) {
4768 #ifdef PATH_MAX
4769 p = buf;
4770 #endif
4771 p = realpath(argv0, p);
4772 if (!p) {
4773 return NULL;
4776 dir = dirname(p);
4777 dir = dirname(dir);
4779 max_len = strlen(dir) +
4780 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4781 res = qemu_mallocz(max_len);
4782 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4783 if (access(res, R_OK)) {
4784 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4785 if (access(res, R_OK)) {
4786 qemu_free(res);
4787 res = NULL;
4790 #ifndef PATH_MAX
4791 free(p);
4792 #endif
4793 return res;
4795 #undef SHARE_SUFFIX
4796 #undef BUILD_SUFFIX
4797 #endif
4799 char *qemu_find_file(int type, const char *name)
4801 int len;
4802 const char *subdir;
4803 char *buf;
4805 /* If name contains path separators then try it as a straight path. */
4806 if ((strchr(name, '/') || strchr(name, '\\'))
4807 && access(name, R_OK) == 0) {
4808 return strdup(name);
4810 switch (type) {
4811 case QEMU_FILE_TYPE_BIOS:
4812 subdir = "";
4813 break;
4814 case QEMU_FILE_TYPE_KEYMAP:
4815 subdir = "keymaps/";
4816 break;
4817 default:
4818 abort();
4820 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4821 buf = qemu_mallocz(len);
4822 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4823 if (access(buf, R_OK)) {
4824 qemu_free(buf);
4825 return NULL;
4827 return buf;
4830 int main(int argc, char **argv, char **envp)
4832 const char *gdbstub_dev = NULL;
4833 uint32_t boot_devices_bitmap = 0;
4834 int i;
4835 int snapshot, linux_boot, net_boot;
4836 const char *initrd_filename;
4837 const char *kernel_filename, *kernel_cmdline;
4838 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4839 DisplayState *ds;
4840 DisplayChangeListener *dcl;
4841 int cyls, heads, secs, translation;
4842 const char *net_clients[MAX_NET_CLIENTS];
4843 int nb_net_clients;
4844 const char *bt_opts[MAX_BT_CMDLINE];
4845 int nb_bt_opts;
4846 int hda_index;
4847 int optind;
4848 const char *r, *optarg;
4849 CharDriverState *monitor_hd = NULL;
4850 const char *monitor_device;
4851 const char *serial_devices[MAX_SERIAL_PORTS];
4852 int serial_device_index;
4853 const char *parallel_devices[MAX_PARALLEL_PORTS];
4854 int parallel_device_index;
4855 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4856 int virtio_console_index;
4857 const char *loadvm = NULL;
4858 QEMUMachine *machine;
4859 const char *cpu_model;
4860 const char *usb_devices[MAX_USB_CMDLINE];
4861 int usb_devices_index;
4862 #ifndef _WIN32
4863 int fds[2];
4864 #endif
4865 int tb_size;
4866 const char *pid_file = NULL;
4867 const char *incoming = NULL;
4868 #ifndef _WIN32
4869 int fd = 0;
4870 struct passwd *pwd = NULL;
4871 const char *chroot_dir = NULL;
4872 const char *run_as = NULL;
4873 #endif
4874 CPUState *env;
4875 int show_vnc_port = 0;
4877 qemu_cache_utils_init(envp);
4879 LIST_INIT (&vm_change_state_head);
4880 #ifndef _WIN32
4882 struct sigaction act;
4883 sigfillset(&act.sa_mask);
4884 act.sa_flags = 0;
4885 act.sa_handler = SIG_IGN;
4886 sigaction(SIGPIPE, &act, NULL);
4888 #else
4889 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4890 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4891 QEMU to run on a single CPU */
4893 HANDLE h;
4894 DWORD mask, smask;
4895 int i;
4896 h = GetCurrentProcess();
4897 if (GetProcessAffinityMask(h, &mask, &smask)) {
4898 for(i = 0; i < 32; i++) {
4899 if (mask & (1 << i))
4900 break;
4902 if (i != 32) {
4903 mask = 1 << i;
4904 SetProcessAffinityMask(h, mask);
4908 #endif
4910 module_call_init(MODULE_INIT_MACHINE);
4911 machine = find_default_machine();
4912 cpu_model = NULL;
4913 initrd_filename = NULL;
4914 ram_size = 0;
4915 snapshot = 0;
4916 kernel_filename = NULL;
4917 kernel_cmdline = "";
4918 cyls = heads = secs = 0;
4919 translation = BIOS_ATA_TRANSLATION_AUTO;
4920 monitor_device = "vc:80Cx24C";
4922 serial_devices[0] = "vc:80Cx24C";
4923 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4924 serial_devices[i] = NULL;
4925 serial_device_index = 0;
4927 parallel_devices[0] = "vc:80Cx24C";
4928 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4929 parallel_devices[i] = NULL;
4930 parallel_device_index = 0;
4932 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4933 virtio_consoles[i] = NULL;
4934 virtio_console_index = 0;
4936 for (i = 0; i < MAX_NODES; i++) {
4937 node_mem[i] = 0;
4938 node_cpumask[i] = 0;
4941 usb_devices_index = 0;
4943 nb_net_clients = 0;
4944 nb_bt_opts = 0;
4945 nb_drives = 0;
4946 nb_drives_opt = 0;
4947 nb_numa_nodes = 0;
4948 hda_index = -1;
4950 nb_nics = 0;
4952 tb_size = 0;
4953 autostart= 1;
4955 register_watchdogs();
4957 optind = 1;
4958 for(;;) {
4959 if (optind >= argc)
4960 break;
4961 r = argv[optind];
4962 if (r[0] != '-') {
4963 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4964 } else {
4965 const QEMUOption *popt;
4967 optind++;
4968 /* Treat --foo the same as -foo. */
4969 if (r[1] == '-')
4970 r++;
4971 popt = qemu_options;
4972 for(;;) {
4973 if (!popt->name) {
4974 fprintf(stderr, "%s: invalid option -- '%s'\n",
4975 argv[0], r);
4976 exit(1);
4978 if (!strcmp(popt->name, r + 1))
4979 break;
4980 popt++;
4982 if (popt->flags & HAS_ARG) {
4983 if (optind >= argc) {
4984 fprintf(stderr, "%s: option '%s' requires an argument\n",
4985 argv[0], r);
4986 exit(1);
4988 optarg = argv[optind++];
4989 } else {
4990 optarg = NULL;
4993 switch(popt->index) {
4994 case QEMU_OPTION_M:
4995 machine = find_machine(optarg);
4996 if (!machine) {
4997 QEMUMachine *m;
4998 printf("Supported machines are:\n");
4999 for(m = first_machine; m != NULL; m = m->next) {
5000 if (m->alias)
5001 printf("%-10s %s (alias of %s)\n",
5002 m->alias, m->desc, m->name);
5003 printf("%-10s %s%s\n",
5004 m->name, m->desc,
5005 m->is_default ? " (default)" : "");
5007 exit(*optarg != '?');
5009 break;
5010 case QEMU_OPTION_cpu:
5011 /* hw initialization will check this */
5012 if (*optarg == '?') {
5013 /* XXX: implement xxx_cpu_list for targets that still miss it */
5014 #if defined(cpu_list)
5015 cpu_list(stdout, &fprintf);
5016 #endif
5017 exit(0);
5018 } else {
5019 cpu_model = optarg;
5021 break;
5022 case QEMU_OPTION_initrd:
5023 initrd_filename = optarg;
5024 break;
5025 case QEMU_OPTION_hda:
5026 if (cyls == 0)
5027 hda_index = drive_add(optarg, HD_ALIAS, 0);
5028 else
5029 hda_index = drive_add(optarg, HD_ALIAS
5030 ",cyls=%d,heads=%d,secs=%d%s",
5031 0, cyls, heads, secs,
5032 translation == BIOS_ATA_TRANSLATION_LBA ?
5033 ",trans=lba" :
5034 translation == BIOS_ATA_TRANSLATION_NONE ?
5035 ",trans=none" : "");
5036 break;
5037 case QEMU_OPTION_hdb:
5038 case QEMU_OPTION_hdc:
5039 case QEMU_OPTION_hdd:
5040 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5041 break;
5042 case QEMU_OPTION_drive:
5043 drive_add(NULL, "%s", optarg);
5044 break;
5045 case QEMU_OPTION_mtdblock:
5046 drive_add(optarg, MTD_ALIAS);
5047 break;
5048 case QEMU_OPTION_sd:
5049 drive_add(optarg, SD_ALIAS);
5050 break;
5051 case QEMU_OPTION_pflash:
5052 drive_add(optarg, PFLASH_ALIAS);
5053 break;
5054 case QEMU_OPTION_snapshot:
5055 snapshot = 1;
5056 break;
5057 case QEMU_OPTION_hdachs:
5059 const char *p;
5060 p = optarg;
5061 cyls = strtol(p, (char **)&p, 0);
5062 if (cyls < 1 || cyls > 16383)
5063 goto chs_fail;
5064 if (*p != ',')
5065 goto chs_fail;
5066 p++;
5067 heads = strtol(p, (char **)&p, 0);
5068 if (heads < 1 || heads > 16)
5069 goto chs_fail;
5070 if (*p != ',')
5071 goto chs_fail;
5072 p++;
5073 secs = strtol(p, (char **)&p, 0);
5074 if (secs < 1 || secs > 63)
5075 goto chs_fail;
5076 if (*p == ',') {
5077 p++;
5078 if (!strcmp(p, "none"))
5079 translation = BIOS_ATA_TRANSLATION_NONE;
5080 else if (!strcmp(p, "lba"))
5081 translation = BIOS_ATA_TRANSLATION_LBA;
5082 else if (!strcmp(p, "auto"))
5083 translation = BIOS_ATA_TRANSLATION_AUTO;
5084 else
5085 goto chs_fail;
5086 } else if (*p != '\0') {
5087 chs_fail:
5088 fprintf(stderr, "qemu: invalid physical CHS format\n");
5089 exit(1);
5091 if (hda_index != -1)
5092 snprintf(drives_opt[hda_index].opt,
5093 sizeof(drives_opt[hda_index].opt),
5094 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5095 0, cyls, heads, secs,
5096 translation == BIOS_ATA_TRANSLATION_LBA ?
5097 ",trans=lba" :
5098 translation == BIOS_ATA_TRANSLATION_NONE ?
5099 ",trans=none" : "");
5101 break;
5102 case QEMU_OPTION_numa:
5103 if (nb_numa_nodes >= MAX_NODES) {
5104 fprintf(stderr, "qemu: too many NUMA nodes\n");
5105 exit(1);
5107 numa_add(optarg);
5108 break;
5109 case QEMU_OPTION_nographic:
5110 display_type = DT_NOGRAPHIC;
5111 break;
5112 #ifdef CONFIG_CURSES
5113 case QEMU_OPTION_curses:
5114 display_type = DT_CURSES;
5115 break;
5116 #endif
5117 case QEMU_OPTION_portrait:
5118 graphic_rotate = 1;
5119 break;
5120 case QEMU_OPTION_kernel:
5121 kernel_filename = optarg;
5122 break;
5123 case QEMU_OPTION_append:
5124 kernel_cmdline = optarg;
5125 break;
5126 case QEMU_OPTION_cdrom:
5127 drive_add(optarg, CDROM_ALIAS);
5128 break;
5129 case QEMU_OPTION_boot:
5131 static const char * const params[] = {
5132 "order", "once", "menu", NULL
5134 char buf[sizeof(boot_devices)];
5135 char *standard_boot_devices;
5136 int legacy = 0;
5138 if (!strchr(optarg, '=')) {
5139 legacy = 1;
5140 pstrcpy(buf, sizeof(buf), optarg);
5141 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
5142 fprintf(stderr,
5143 "qemu: unknown boot parameter '%s' in '%s'\n",
5144 buf, optarg);
5145 exit(1);
5148 if (legacy ||
5149 get_param_value(buf, sizeof(buf), "order", optarg)) {
5150 boot_devices_bitmap = parse_bootdevices(buf);
5151 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5153 if (!legacy) {
5154 if (get_param_value(buf, sizeof(buf),
5155 "once", optarg)) {
5156 boot_devices_bitmap |= parse_bootdevices(buf);
5157 standard_boot_devices = qemu_strdup(boot_devices);
5158 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5159 qemu_register_reset(restore_boot_devices,
5160 standard_boot_devices);
5162 if (get_param_value(buf, sizeof(buf),
5163 "menu", optarg)) {
5164 if (!strcmp(buf, "on")) {
5165 boot_menu = 1;
5166 } else if (!strcmp(buf, "off")) {
5167 boot_menu = 0;
5168 } else {
5169 fprintf(stderr,
5170 "qemu: invalid option value '%s'\n",
5171 buf);
5172 exit(1);
5177 break;
5178 case QEMU_OPTION_fda:
5179 case QEMU_OPTION_fdb:
5180 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5181 break;
5182 #ifdef TARGET_I386
5183 case QEMU_OPTION_no_fd_bootchk:
5184 fd_bootchk = 0;
5185 break;
5186 #endif
5187 case QEMU_OPTION_net:
5188 if (nb_net_clients >= MAX_NET_CLIENTS) {
5189 fprintf(stderr, "qemu: too many network clients\n");
5190 exit(1);
5192 net_clients[nb_net_clients] = optarg;
5193 nb_net_clients++;
5194 break;
5195 #ifdef CONFIG_SLIRP
5196 case QEMU_OPTION_tftp:
5197 legacy_tftp_prefix = optarg;
5198 break;
5199 case QEMU_OPTION_bootp:
5200 legacy_bootp_filename = optarg;
5201 break;
5202 #ifndef _WIN32
5203 case QEMU_OPTION_smb:
5204 net_slirp_smb(optarg);
5205 break;
5206 #endif
5207 case QEMU_OPTION_redir:
5208 net_slirp_redir(optarg);
5209 break;
5210 #endif
5211 case QEMU_OPTION_bt:
5212 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5213 fprintf(stderr, "qemu: too many bluetooth options\n");
5214 exit(1);
5216 bt_opts[nb_bt_opts++] = optarg;
5217 break;
5218 #ifdef HAS_AUDIO
5219 case QEMU_OPTION_audio_help:
5220 AUD_help ();
5221 exit (0);
5222 break;
5223 case QEMU_OPTION_soundhw:
5224 select_soundhw (optarg);
5225 break;
5226 #endif
5227 case QEMU_OPTION_h:
5228 help(0);
5229 break;
5230 case QEMU_OPTION_version:
5231 version();
5232 exit(0);
5233 break;
5234 case QEMU_OPTION_m: {
5235 uint64_t value;
5236 char *ptr;
5238 value = strtoul(optarg, &ptr, 10);
5239 switch (*ptr) {
5240 case 0: case 'M': case 'm':
5241 value <<= 20;
5242 break;
5243 case 'G': case 'g':
5244 value <<= 30;
5245 break;
5246 default:
5247 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5248 exit(1);
5251 /* On 32-bit hosts, QEMU is limited by virtual address space */
5252 if (value > (2047 << 20)
5253 #ifndef CONFIG_KQEMU
5254 && HOST_LONG_BITS == 32
5255 #endif
5257 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5258 exit(1);
5260 if (value != (uint64_t)(ram_addr_t)value) {
5261 fprintf(stderr, "qemu: ram size too large\n");
5262 exit(1);
5264 ram_size = value;
5265 break;
5267 case QEMU_OPTION_d:
5269 int mask;
5270 const CPULogItem *item;
5272 mask = cpu_str_to_log_mask(optarg);
5273 if (!mask) {
5274 printf("Log items (comma separated):\n");
5275 for(item = cpu_log_items; item->mask != 0; item++) {
5276 printf("%-10s %s\n", item->name, item->help);
5278 exit(1);
5280 cpu_set_log(mask);
5282 break;
5283 case QEMU_OPTION_s:
5284 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5285 break;
5286 case QEMU_OPTION_gdb:
5287 gdbstub_dev = optarg;
5288 break;
5289 case QEMU_OPTION_L:
5290 data_dir = optarg;
5291 break;
5292 case QEMU_OPTION_bios:
5293 bios_name = optarg;
5294 break;
5295 case QEMU_OPTION_singlestep:
5296 singlestep = 1;
5297 break;
5298 case QEMU_OPTION_S:
5299 autostart = 0;
5300 break;
5301 #ifndef _WIN32
5302 case QEMU_OPTION_k:
5303 keyboard_layout = optarg;
5304 break;
5305 #endif
5306 case QEMU_OPTION_localtime:
5307 rtc_utc = 0;
5308 break;
5309 case QEMU_OPTION_vga:
5310 select_vgahw (optarg);
5311 break;
5312 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5313 case QEMU_OPTION_g:
5315 const char *p;
5316 int w, h, depth;
5317 p = optarg;
5318 w = strtol(p, (char **)&p, 10);
5319 if (w <= 0) {
5320 graphic_error:
5321 fprintf(stderr, "qemu: invalid resolution or depth\n");
5322 exit(1);
5324 if (*p != 'x')
5325 goto graphic_error;
5326 p++;
5327 h = strtol(p, (char **)&p, 10);
5328 if (h <= 0)
5329 goto graphic_error;
5330 if (*p == 'x') {
5331 p++;
5332 depth = strtol(p, (char **)&p, 10);
5333 if (depth != 8 && depth != 15 && depth != 16 &&
5334 depth != 24 && depth != 32)
5335 goto graphic_error;
5336 } else if (*p == '\0') {
5337 depth = graphic_depth;
5338 } else {
5339 goto graphic_error;
5342 graphic_width = w;
5343 graphic_height = h;
5344 graphic_depth = depth;
5346 break;
5347 #endif
5348 case QEMU_OPTION_echr:
5350 char *r;
5351 term_escape_char = strtol(optarg, &r, 0);
5352 if (r == optarg)
5353 printf("Bad argument to echr\n");
5354 break;
5356 case QEMU_OPTION_monitor:
5357 monitor_device = optarg;
5358 break;
5359 case QEMU_OPTION_serial:
5360 if (serial_device_index >= MAX_SERIAL_PORTS) {
5361 fprintf(stderr, "qemu: too many serial ports\n");
5362 exit(1);
5364 serial_devices[serial_device_index] = optarg;
5365 serial_device_index++;
5366 break;
5367 case QEMU_OPTION_watchdog:
5368 i = select_watchdog(optarg);
5369 if (i > 0)
5370 exit (i == 1 ? 1 : 0);
5371 break;
5372 case QEMU_OPTION_watchdog_action:
5373 if (select_watchdog_action(optarg) == -1) {
5374 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5375 exit(1);
5377 break;
5378 case QEMU_OPTION_virtiocon:
5379 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5380 fprintf(stderr, "qemu: too many virtio consoles\n");
5381 exit(1);
5383 virtio_consoles[virtio_console_index] = optarg;
5384 virtio_console_index++;
5385 break;
5386 case QEMU_OPTION_parallel:
5387 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5388 fprintf(stderr, "qemu: too many parallel ports\n");
5389 exit(1);
5391 parallel_devices[parallel_device_index] = optarg;
5392 parallel_device_index++;
5393 break;
5394 case QEMU_OPTION_loadvm:
5395 loadvm = optarg;
5396 break;
5397 case QEMU_OPTION_full_screen:
5398 full_screen = 1;
5399 break;
5400 #ifdef CONFIG_SDL
5401 case QEMU_OPTION_no_frame:
5402 no_frame = 1;
5403 break;
5404 case QEMU_OPTION_alt_grab:
5405 alt_grab = 1;
5406 break;
5407 case QEMU_OPTION_no_quit:
5408 no_quit = 1;
5409 break;
5410 case QEMU_OPTION_sdl:
5411 display_type = DT_SDL;
5412 break;
5413 #endif
5414 case QEMU_OPTION_pidfile:
5415 pid_file = optarg;
5416 break;
5417 #ifdef TARGET_I386
5418 case QEMU_OPTION_win2k_hack:
5419 win2k_install_hack = 1;
5420 break;
5421 case QEMU_OPTION_rtc_td_hack:
5422 rtc_td_hack = 1;
5423 break;
5424 case QEMU_OPTION_acpitable:
5425 if(acpi_table_add(optarg) < 0) {
5426 fprintf(stderr, "Wrong acpi table provided\n");
5427 exit(1);
5429 break;
5430 case QEMU_OPTION_smbios:
5431 if(smbios_entry_add(optarg) < 0) {
5432 fprintf(stderr, "Wrong smbios provided\n");
5433 exit(1);
5435 break;
5436 #endif
5437 #ifdef CONFIG_KQEMU
5438 case QEMU_OPTION_enable_kqemu:
5439 kqemu_allowed = 1;
5440 break;
5441 case QEMU_OPTION_kernel_kqemu:
5442 kqemu_allowed = 2;
5443 break;
5444 #endif
5445 #ifdef CONFIG_KVM
5446 case QEMU_OPTION_enable_kvm:
5447 kvm_allowed = 1;
5448 #ifdef CONFIG_KQEMU
5449 kqemu_allowed = 0;
5450 #endif
5451 break;
5452 #endif
5453 case QEMU_OPTION_usb:
5454 usb_enabled = 1;
5455 break;
5456 case QEMU_OPTION_usbdevice:
5457 usb_enabled = 1;
5458 if (usb_devices_index >= MAX_USB_CMDLINE) {
5459 fprintf(stderr, "Too many USB devices\n");
5460 exit(1);
5462 usb_devices[usb_devices_index] = optarg;
5463 usb_devices_index++;
5464 break;
5465 case QEMU_OPTION_smp:
5466 smp_cpus = atoi(optarg);
5467 if (smp_cpus < 1) {
5468 fprintf(stderr, "Invalid number of CPUs\n");
5469 exit(1);
5471 break;
5472 case QEMU_OPTION_vnc:
5473 display_type = DT_VNC;
5474 vnc_display = optarg;
5475 break;
5476 #ifdef TARGET_I386
5477 case QEMU_OPTION_no_acpi:
5478 acpi_enabled = 0;
5479 break;
5480 case QEMU_OPTION_no_hpet:
5481 no_hpet = 1;
5482 break;
5483 case QEMU_OPTION_balloon:
5484 if (balloon_parse(optarg) < 0) {
5485 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5486 exit(1);
5488 break;
5489 #endif
5490 case QEMU_OPTION_no_reboot:
5491 no_reboot = 1;
5492 break;
5493 case QEMU_OPTION_no_shutdown:
5494 no_shutdown = 1;
5495 break;
5496 case QEMU_OPTION_show_cursor:
5497 cursor_hide = 0;
5498 break;
5499 case QEMU_OPTION_uuid:
5500 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5501 fprintf(stderr, "Fail to parse UUID string."
5502 " Wrong format.\n");
5503 exit(1);
5505 break;
5506 #ifndef _WIN32
5507 case QEMU_OPTION_daemonize:
5508 daemonize = 1;
5509 break;
5510 #endif
5511 case QEMU_OPTION_option_rom:
5512 if (nb_option_roms >= MAX_OPTION_ROMS) {
5513 fprintf(stderr, "Too many option ROMs\n");
5514 exit(1);
5516 option_rom[nb_option_roms] = optarg;
5517 nb_option_roms++;
5518 break;
5519 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5520 case QEMU_OPTION_semihosting:
5521 semihosting_enabled = 1;
5522 break;
5523 #endif
5524 case QEMU_OPTION_name:
5525 qemu_name = qemu_strdup(optarg);
5527 char *p = strchr(qemu_name, ',');
5528 if (p != NULL) {
5529 *p++ = 0;
5530 if (strncmp(p, "process=", 8)) {
5531 fprintf(stderr, "Unknown subargument %s to -name", p);
5532 exit(1);
5534 p += 8;
5535 set_proc_name(p);
5538 break;
5539 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5540 case QEMU_OPTION_prom_env:
5541 if (nb_prom_envs >= MAX_PROM_ENVS) {
5542 fprintf(stderr, "Too many prom variables\n");
5543 exit(1);
5545 prom_envs[nb_prom_envs] = optarg;
5546 nb_prom_envs++;
5547 break;
5548 #endif
5549 #ifdef TARGET_ARM
5550 case QEMU_OPTION_old_param:
5551 old_param = 1;
5552 break;
5553 #endif
5554 case QEMU_OPTION_clock:
5555 configure_alarms(optarg);
5556 break;
5557 case QEMU_OPTION_startdate:
5559 struct tm tm;
5560 time_t rtc_start_date;
5561 if (!strcmp(optarg, "now")) {
5562 rtc_date_offset = -1;
5563 } else {
5564 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5565 &tm.tm_year,
5566 &tm.tm_mon,
5567 &tm.tm_mday,
5568 &tm.tm_hour,
5569 &tm.tm_min,
5570 &tm.tm_sec) == 6) {
5571 /* OK */
5572 } else if (sscanf(optarg, "%d-%d-%d",
5573 &tm.tm_year,
5574 &tm.tm_mon,
5575 &tm.tm_mday) == 3) {
5576 tm.tm_hour = 0;
5577 tm.tm_min = 0;
5578 tm.tm_sec = 0;
5579 } else {
5580 goto date_fail;
5582 tm.tm_year -= 1900;
5583 tm.tm_mon--;
5584 rtc_start_date = mktimegm(&tm);
5585 if (rtc_start_date == -1) {
5586 date_fail:
5587 fprintf(stderr, "Invalid date format. Valid format are:\n"
5588 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5589 exit(1);
5591 rtc_date_offset = time(NULL) - rtc_start_date;
5594 break;
5595 case QEMU_OPTION_tb_size:
5596 tb_size = strtol(optarg, NULL, 0);
5597 if (tb_size < 0)
5598 tb_size = 0;
5599 break;
5600 case QEMU_OPTION_icount:
5601 use_icount = 1;
5602 if (strcmp(optarg, "auto") == 0) {
5603 icount_time_shift = -1;
5604 } else {
5605 icount_time_shift = strtol(optarg, NULL, 0);
5607 break;
5608 case QEMU_OPTION_incoming:
5609 incoming = optarg;
5610 break;
5611 #ifndef _WIN32
5612 case QEMU_OPTION_chroot:
5613 chroot_dir = optarg;
5614 break;
5615 case QEMU_OPTION_runas:
5616 run_as = optarg;
5617 break;
5618 #endif
5619 #ifdef CONFIG_XEN
5620 case QEMU_OPTION_xen_domid:
5621 xen_domid = atoi(optarg);
5622 break;
5623 case QEMU_OPTION_xen_create:
5624 xen_mode = XEN_CREATE;
5625 break;
5626 case QEMU_OPTION_xen_attach:
5627 xen_mode = XEN_ATTACH;
5628 break;
5629 #endif
5634 /* If no data_dir is specified then try to find it relative to the
5635 executable path. */
5636 if (!data_dir) {
5637 data_dir = find_datadir(argv[0]);
5639 /* If all else fails use the install patch specified when building. */
5640 if (!data_dir) {
5641 data_dir = CONFIG_QEMU_SHAREDIR;
5644 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5645 if (kvm_allowed && kqemu_allowed) {
5646 fprintf(stderr,
5647 "You can not enable both KVM and kqemu at the same time\n");
5648 exit(1);
5650 #endif
5652 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5653 if (smp_cpus > machine->max_cpus) {
5654 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5655 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5656 machine->max_cpus);
5657 exit(1);
5660 if (display_type == DT_NOGRAPHIC) {
5661 if (serial_device_index == 0)
5662 serial_devices[0] = "stdio";
5663 if (parallel_device_index == 0)
5664 parallel_devices[0] = "null";
5665 if (strncmp(monitor_device, "vc", 2) == 0)
5666 monitor_device = "stdio";
5669 #ifndef _WIN32
5670 if (daemonize) {
5671 pid_t pid;
5673 if (pipe(fds) == -1)
5674 exit(1);
5676 pid = fork();
5677 if (pid > 0) {
5678 uint8_t status;
5679 ssize_t len;
5681 close(fds[1]);
5683 again:
5684 len = read(fds[0], &status, 1);
5685 if (len == -1 && (errno == EINTR))
5686 goto again;
5688 if (len != 1)
5689 exit(1);
5690 else if (status == 1) {
5691 fprintf(stderr, "Could not acquire pidfile\n");
5692 exit(1);
5693 } else
5694 exit(0);
5695 } else if (pid < 0)
5696 exit(1);
5698 setsid();
5700 pid = fork();
5701 if (pid > 0)
5702 exit(0);
5703 else if (pid < 0)
5704 exit(1);
5706 umask(027);
5708 signal(SIGTSTP, SIG_IGN);
5709 signal(SIGTTOU, SIG_IGN);
5710 signal(SIGTTIN, SIG_IGN);
5713 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5714 if (daemonize) {
5715 uint8_t status = 1;
5716 write(fds[1], &status, 1);
5717 } else
5718 fprintf(stderr, "Could not acquire pid file\n");
5719 exit(1);
5721 #endif
5723 #ifdef CONFIG_KQEMU
5724 if (smp_cpus > 1)
5725 kqemu_allowed = 0;
5726 #endif
5727 if (qemu_init_main_loop()) {
5728 fprintf(stderr, "qemu_init_main_loop failed\n");
5729 exit(1);
5731 linux_boot = (kernel_filename != NULL);
5733 if (!linux_boot && *kernel_cmdline != '\0') {
5734 fprintf(stderr, "-append only allowed with -kernel option\n");
5735 exit(1);
5738 if (!linux_boot && initrd_filename != NULL) {
5739 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5740 exit(1);
5743 setvbuf(stdout, NULL, _IOLBF, 0);
5745 init_timers();
5746 if (init_timer_alarm() < 0) {
5747 fprintf(stderr, "could not initialize alarm timer\n");
5748 exit(1);
5750 if (use_icount && icount_time_shift < 0) {
5751 use_icount = 2;
5752 /* 125MIPS seems a reasonable initial guess at the guest speed.
5753 It will be corrected fairly quickly anyway. */
5754 icount_time_shift = 3;
5755 init_icount_adjust();
5758 #ifdef _WIN32
5759 socket_init();
5760 #endif
5762 /* init network clients */
5763 if (nb_net_clients == 0) {
5764 /* if no clients, we use a default config */
5765 net_clients[nb_net_clients++] = "nic";
5766 #ifdef CONFIG_SLIRP
5767 net_clients[nb_net_clients++] = "user";
5768 #endif
5771 for(i = 0;i < nb_net_clients; i++) {
5772 if (net_client_parse(net_clients[i]) < 0)
5773 exit(1);
5776 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5777 net_set_boot_mask(net_boot);
5779 net_client_check();
5781 /* init the bluetooth world */
5782 for (i = 0; i < nb_bt_opts; i++)
5783 if (bt_parse(bt_opts[i]))
5784 exit(1);
5786 /* init the memory */
5787 if (ram_size == 0)
5788 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5790 #ifdef CONFIG_KQEMU
5791 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5792 guest ram allocation. It needs to go away. */
5793 if (kqemu_allowed) {
5794 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
5795 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5796 if (!kqemu_phys_ram_base) {
5797 fprintf(stderr, "Could not allocate physical memory\n");
5798 exit(1);
5801 #endif
5803 /* init the dynamic translator */
5804 cpu_exec_init_all(tb_size * 1024 * 1024);
5806 bdrv_init();
5808 /* we always create the cdrom drive, even if no disk is there */
5810 if (nb_drives_opt < MAX_DRIVES)
5811 drive_add(NULL, CDROM_ALIAS);
5813 /* we always create at least one floppy */
5815 if (nb_drives_opt < MAX_DRIVES)
5816 drive_add(NULL, FD_ALIAS, 0);
5818 /* we always create one sd slot, even if no card is in it */
5820 if (nb_drives_opt < MAX_DRIVES)
5821 drive_add(NULL, SD_ALIAS);
5823 /* open the virtual block devices */
5825 for(i = 0; i < nb_drives_opt; i++)
5826 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5827 exit(1);
5829 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5830 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5832 #ifndef _WIN32
5833 /* must be after terminal init, SDL library changes signal handlers */
5834 sighandler_setup();
5835 #endif
5837 /* Maintain compatibility with multiple stdio monitors */
5838 if (!strcmp(monitor_device,"stdio")) {
5839 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5840 const char *devname = serial_devices[i];
5841 if (devname && !strcmp(devname,"mon:stdio")) {
5842 monitor_device = NULL;
5843 break;
5844 } else if (devname && !strcmp(devname,"stdio")) {
5845 monitor_device = NULL;
5846 serial_devices[i] = "mon:stdio";
5847 break;
5852 if (nb_numa_nodes > 0) {
5853 int i;
5855 if (nb_numa_nodes > smp_cpus) {
5856 nb_numa_nodes = smp_cpus;
5859 /* If no memory size if given for any node, assume the default case
5860 * and distribute the available memory equally across all nodes
5862 for (i = 0; i < nb_numa_nodes; i++) {
5863 if (node_mem[i] != 0)
5864 break;
5866 if (i == nb_numa_nodes) {
5867 uint64_t usedmem = 0;
5869 /* On Linux, the each node's border has to be 8MB aligned,
5870 * the final node gets the rest.
5872 for (i = 0; i < nb_numa_nodes - 1; i++) {
5873 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5874 usedmem += node_mem[i];
5876 node_mem[i] = ram_size - usedmem;
5879 for (i = 0; i < nb_numa_nodes; i++) {
5880 if (node_cpumask[i] != 0)
5881 break;
5883 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5884 * must cope with this anyway, because there are BIOSes out there in
5885 * real machines which also use this scheme.
5887 if (i == nb_numa_nodes) {
5888 for (i = 0; i < smp_cpus; i++) {
5889 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5894 if (kvm_enabled()) {
5895 int ret;
5897 ret = kvm_init(smp_cpus);
5898 if (ret < 0) {
5899 fprintf(stderr, "failed to initialize KVM\n");
5900 exit(1);
5904 if (monitor_device) {
5905 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5906 if (!monitor_hd) {
5907 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5908 exit(1);
5912 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5913 const char *devname = serial_devices[i];
5914 if (devname && strcmp(devname, "none")) {
5915 char label[32];
5916 snprintf(label, sizeof(label), "serial%d", i);
5917 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5918 if (!serial_hds[i]) {
5919 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5920 devname);
5921 exit(1);
5926 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5927 const char *devname = parallel_devices[i];
5928 if (devname && strcmp(devname, "none")) {
5929 char label[32];
5930 snprintf(label, sizeof(label), "parallel%d", i);
5931 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5932 if (!parallel_hds[i]) {
5933 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5934 devname);
5935 exit(1);
5940 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5941 const char *devname = virtio_consoles[i];
5942 if (devname && strcmp(devname, "none")) {
5943 char label[32];
5944 snprintf(label, sizeof(label), "virtcon%d", i);
5945 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5946 if (!virtcon_hds[i]) {
5947 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5948 devname);
5949 exit(1);
5954 module_call_init(MODULE_INIT_DEVICE);
5956 if (machine->compat_props) {
5957 qdev_prop_register_compat(machine->compat_props);
5959 machine->init(ram_size, boot_devices,
5960 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5963 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5964 for (i = 0; i < nb_numa_nodes; i++) {
5965 if (node_cpumask[i] & (1 << env->cpu_index)) {
5966 env->numa_node = i;
5971 current_machine = machine;
5973 /* init USB devices */
5974 if (usb_enabled) {
5975 for(i = 0; i < usb_devices_index; i++) {
5976 if (usb_device_add(usb_devices[i], 0) < 0) {
5977 fprintf(stderr, "Warning: could not add USB device %s\n",
5978 usb_devices[i]);
5983 if (!display_state)
5984 dumb_display_init();
5985 /* just use the first displaystate for the moment */
5986 ds = display_state;
5988 if (display_type == DT_DEFAULT) {
5989 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5990 display_type = DT_SDL;
5991 #else
5992 display_type = DT_VNC;
5993 vnc_display = "localhost:0,to=99";
5994 show_vnc_port = 1;
5995 #endif
5999 switch (display_type) {
6000 case DT_NOGRAPHIC:
6001 break;
6002 #if defined(CONFIG_CURSES)
6003 case DT_CURSES:
6004 curses_display_init(ds, full_screen);
6005 break;
6006 #endif
6007 #if defined(CONFIG_SDL)
6008 case DT_SDL:
6009 sdl_display_init(ds, full_screen, no_frame);
6010 break;
6011 #elif defined(CONFIG_COCOA)
6012 case DT_SDL:
6013 cocoa_display_init(ds, full_screen);
6014 break;
6015 #endif
6016 case DT_VNC:
6017 vnc_display_init(ds);
6018 if (vnc_display_open(ds, vnc_display) < 0)
6019 exit(1);
6021 if (show_vnc_port) {
6022 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
6024 break;
6025 default:
6026 break;
6028 dpy_resize(ds);
6030 dcl = ds->listeners;
6031 while (dcl != NULL) {
6032 if (dcl->dpy_refresh != NULL) {
6033 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
6034 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
6036 dcl = dcl->next;
6039 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
6040 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
6041 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
6044 text_consoles_set_display(display_state);
6045 qemu_chr_initial_reset();
6047 if (monitor_device && monitor_hd)
6048 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
6050 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6051 const char *devname = serial_devices[i];
6052 if (devname && strcmp(devname, "none")) {
6053 if (strstart(devname, "vc", 0))
6054 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6058 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6059 const char *devname = parallel_devices[i];
6060 if (devname && strcmp(devname, "none")) {
6061 if (strstart(devname, "vc", 0))
6062 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6066 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6067 const char *devname = virtio_consoles[i];
6068 if (virtcon_hds[i] && devname) {
6069 if (strstart(devname, "vc", 0))
6070 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6074 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6075 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6076 gdbstub_dev);
6077 exit(1);
6080 if (loadvm)
6081 do_loadvm(cur_mon, loadvm);
6083 if (incoming) {
6084 autostart = 0;
6085 qemu_start_incoming_migration(incoming);
6088 if (autostart)
6089 vm_start();
6091 #ifndef _WIN32
6092 if (daemonize) {
6093 uint8_t status = 0;
6094 ssize_t len;
6096 again1:
6097 len = write(fds[1], &status, 1);
6098 if (len == -1 && (errno == EINTR))
6099 goto again1;
6101 if (len != 1)
6102 exit(1);
6104 chdir("/");
6105 TFR(fd = open("/dev/null", O_RDWR));
6106 if (fd == -1)
6107 exit(1);
6110 if (run_as) {
6111 pwd = getpwnam(run_as);
6112 if (!pwd) {
6113 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6114 exit(1);
6118 if (chroot_dir) {
6119 if (chroot(chroot_dir) < 0) {
6120 fprintf(stderr, "chroot failed\n");
6121 exit(1);
6123 chdir("/");
6126 if (run_as) {
6127 if (setgid(pwd->pw_gid) < 0) {
6128 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6129 exit(1);
6131 if (setuid(pwd->pw_uid) < 0) {
6132 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6133 exit(1);
6135 if (setuid(0) != -1) {
6136 fprintf(stderr, "Dropping privileges failed\n");
6137 exit(1);
6141 if (daemonize) {
6142 dup2(fd, 0);
6143 dup2(fd, 1);
6144 dup2(fd, 2);
6146 close(fd);
6148 #endif
6150 main_loop();
6151 quit_timers();
6152 net_cleanup();
6154 return 0;