Allow pulseaudio backend to be the default
[qemu-kvm/fedora.git] / target-i386 / kvm.c
blobcfa5b80d555bcf474c4b2a3533a842dfd5335824
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
25 #include "gdbstub.h"
27 #ifdef KVM_UPSTREAM
28 //#define DEBUG_KVM
30 #ifdef DEBUG_KVM
31 #define dprintf(fmt, ...) \
32 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
33 #else
34 #define dprintf(fmt, ...) \
35 do { } while (0)
36 #endif
38 #ifdef KVM_CAP_EXT_CPUID
40 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
42 struct kvm_cpuid2 *cpuid;
43 int r, size;
45 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
46 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
47 cpuid->nent = max;
48 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
49 if (r == 0 && cpuid->nent >= max) {
50 r = -E2BIG;
52 if (r < 0) {
53 if (r == -E2BIG) {
54 qemu_free(cpuid);
55 return NULL;
56 } else {
57 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
58 strerror(-r));
59 exit(1);
62 return cpuid;
65 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
67 struct kvm_cpuid2 *cpuid;
68 int i, max;
69 uint32_t ret = 0;
70 uint32_t cpuid_1_edx;
72 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
73 return -1U;
76 max = 1;
77 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
78 max *= 2;
81 for (i = 0; i < cpuid->nent; ++i) {
82 if (cpuid->entries[i].function == function) {
83 switch (reg) {
84 case R_EAX:
85 ret = cpuid->entries[i].eax;
86 break;
87 case R_EBX:
88 ret = cpuid->entries[i].ebx;
89 break;
90 case R_ECX:
91 ret = cpuid->entries[i].ecx;
92 break;
93 case R_EDX:
94 ret = cpuid->entries[i].edx;
95 if (function == 0x80000001) {
96 /* On Intel, kvm returns cpuid according to the Intel spec,
97 * so add missing bits according to the AMD spec:
99 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
100 ret |= cpuid_1_edx & 0xdfeff7ff;
102 break;
107 qemu_free(cpuid);
109 return ret;
112 #else
114 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
116 return -1U;
119 #endif
121 static void kvm_trim_features(uint32_t *features, uint32_t supported)
123 int i;
124 uint32_t mask;
126 for (i = 0; i < 32; ++i) {
127 mask = 1U << i;
128 if ((*features & mask) && !(supported & mask)) {
129 *features &= ~mask;
134 int kvm_arch_init_vcpu(CPUState *env)
136 struct {
137 struct kvm_cpuid2 cpuid;
138 struct kvm_cpuid_entry2 entries[100];
139 } __attribute__((packed)) cpuid_data;
140 uint32_t limit, i, j, cpuid_i;
141 uint32_t unused;
143 env->mp_state = KVM_MP_STATE_RUNNABLE;
145 kvm_trim_features(&env->cpuid_features,
146 kvm_arch_get_supported_cpuid(env, 1, R_EDX));
148 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
149 kvm_trim_features(&env->cpuid_ext_features,
150 kvm_arch_get_supported_cpuid(env, 1, R_ECX));
151 env->cpuid_ext_features |= i;
153 kvm_trim_features(&env->cpuid_ext2_features,
154 kvm_arch_get_supported_cpuid(env, 0x80000001, R_EDX));
155 kvm_trim_features(&env->cpuid_ext3_features,
156 kvm_arch_get_supported_cpuid(env, 0x80000001, R_ECX));
158 cpuid_i = 0;
160 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
162 for (i = 0; i <= limit; i++) {
163 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
165 switch (i) {
166 case 2: {
167 /* Keep reading function 2 till all the input is received */
168 int times;
170 c->function = i;
171 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
172 KVM_CPUID_FLAG_STATE_READ_NEXT;
173 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
174 times = c->eax & 0xff;
176 for (j = 1; j < times; ++j) {
177 c = &cpuid_data.entries[cpuid_i++];
178 c->function = i;
179 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
180 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
182 break;
184 case 4:
185 case 0xb:
186 case 0xd:
187 for (j = 0; ; j++) {
188 c->function = i;
189 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
190 c->index = j;
191 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
193 if (i == 4 && c->eax == 0)
194 break;
195 if (i == 0xb && !(c->ecx & 0xff00))
196 break;
197 if (i == 0xd && c->eax == 0)
198 break;
200 c = &cpuid_data.entries[cpuid_i++];
202 break;
203 default:
204 c->function = i;
205 c->flags = 0;
206 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
207 break;
210 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
212 for (i = 0x80000000; i <= limit; i++) {
213 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
215 c->function = i;
216 c->flags = 0;
217 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
220 cpuid_data.cpuid.nent = cpuid_i;
222 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
225 static int kvm_has_msr_star(CPUState *env)
227 static int has_msr_star;
228 int ret;
230 /* first time */
231 if (has_msr_star == 0) {
232 struct kvm_msr_list msr_list, *kvm_msr_list;
234 has_msr_star = -1;
236 /* Obtain MSR list from KVM. These are the MSRs that we must
237 * save/restore */
238 msr_list.nmsrs = 0;
239 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
240 if (ret < 0)
241 return 0;
243 /* Old kernel modules had a bug and could write beyond the provided
244 memory. Allocate at least a safe amount of 1K. */
245 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
246 msr_list.nmsrs *
247 sizeof(msr_list.indices[0])));
249 kvm_msr_list->nmsrs = msr_list.nmsrs;
250 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
251 if (ret >= 0) {
252 int i;
254 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
255 if (kvm_msr_list->indices[i] == MSR_STAR) {
256 has_msr_star = 1;
257 break;
262 free(kvm_msr_list);
265 if (has_msr_star == 1)
266 return 1;
267 return 0;
270 int kvm_arch_init(KVMState *s, int smp_cpus)
272 int ret;
274 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
275 * directly. In order to use vm86 mode, a TSS is needed. Since this
276 * must be part of guest physical memory, we need to allocate it. Older
277 * versions of KVM just assumed that it would be at the end of physical
278 * memory but that doesn't work with more than 4GB of memory. We simply
279 * refuse to work with those older versions of KVM. */
280 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
281 if (ret <= 0) {
282 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
283 return ret;
286 /* this address is 3 pages before the bios, and the bios should present
287 * as unavaible memory. FIXME, need to ensure the e820 map deals with
288 * this?
290 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
293 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
295 lhs->selector = rhs->selector;
296 lhs->base = rhs->base;
297 lhs->limit = rhs->limit;
298 lhs->type = 3;
299 lhs->present = 1;
300 lhs->dpl = 3;
301 lhs->db = 0;
302 lhs->s = 1;
303 lhs->l = 0;
304 lhs->g = 0;
305 lhs->avl = 0;
306 lhs->unusable = 0;
309 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
311 unsigned flags = rhs->flags;
312 lhs->selector = rhs->selector;
313 lhs->base = rhs->base;
314 lhs->limit = rhs->limit;
315 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
316 lhs->present = (flags & DESC_P_MASK) != 0;
317 lhs->dpl = rhs->selector & 3;
318 lhs->db = (flags >> DESC_B_SHIFT) & 1;
319 lhs->s = (flags & DESC_S_MASK) != 0;
320 lhs->l = (flags >> DESC_L_SHIFT) & 1;
321 lhs->g = (flags & DESC_G_MASK) != 0;
322 lhs->avl = (flags & DESC_AVL_MASK) != 0;
323 lhs->unusable = 0;
326 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
328 lhs->selector = rhs->selector;
329 lhs->base = rhs->base;
330 lhs->limit = rhs->limit;
331 lhs->flags =
332 (rhs->type << DESC_TYPE_SHIFT)
333 | (rhs->present * DESC_P_MASK)
334 | (rhs->dpl << DESC_DPL_SHIFT)
335 | (rhs->db << DESC_B_SHIFT)
336 | (rhs->s * DESC_S_MASK)
337 | (rhs->l << DESC_L_SHIFT)
338 | (rhs->g * DESC_G_MASK)
339 | (rhs->avl * DESC_AVL_MASK);
342 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
344 if (set)
345 *kvm_reg = *qemu_reg;
346 else
347 *qemu_reg = *kvm_reg;
350 static int kvm_getput_regs(CPUState *env, int set)
352 struct kvm_regs regs;
353 int ret = 0;
355 if (!set) {
356 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
357 if (ret < 0)
358 return ret;
361 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
362 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
363 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
364 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
365 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
366 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
367 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
368 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
369 #ifdef TARGET_X86_64
370 kvm_getput_reg(&regs.r8, &env->regs[8], set);
371 kvm_getput_reg(&regs.r9, &env->regs[9], set);
372 kvm_getput_reg(&regs.r10, &env->regs[10], set);
373 kvm_getput_reg(&regs.r11, &env->regs[11], set);
374 kvm_getput_reg(&regs.r12, &env->regs[12], set);
375 kvm_getput_reg(&regs.r13, &env->regs[13], set);
376 kvm_getput_reg(&regs.r14, &env->regs[14], set);
377 kvm_getput_reg(&regs.r15, &env->regs[15], set);
378 #endif
380 kvm_getput_reg(&regs.rflags, &env->eflags, set);
381 kvm_getput_reg(&regs.rip, &env->eip, set);
383 if (set)
384 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
386 return ret;
389 static int kvm_put_fpu(CPUState *env)
391 struct kvm_fpu fpu;
392 int i;
394 memset(&fpu, 0, sizeof fpu);
395 fpu.fsw = env->fpus & ~(7 << 11);
396 fpu.fsw |= (env->fpstt & 7) << 11;
397 fpu.fcw = env->fpuc;
398 for (i = 0; i < 8; ++i)
399 fpu.ftwx |= (!env->fptags[i]) << i;
400 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
401 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
402 fpu.mxcsr = env->mxcsr;
404 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
407 static int kvm_put_sregs(CPUState *env)
409 struct kvm_sregs sregs;
411 memcpy(sregs.interrupt_bitmap,
412 env->interrupt_bitmap,
413 sizeof(sregs.interrupt_bitmap));
415 if ((env->eflags & VM_MASK)) {
416 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
417 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
418 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
419 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
420 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
421 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
422 } else {
423 set_seg(&sregs.cs, &env->segs[R_CS]);
424 set_seg(&sregs.ds, &env->segs[R_DS]);
425 set_seg(&sregs.es, &env->segs[R_ES]);
426 set_seg(&sregs.fs, &env->segs[R_FS]);
427 set_seg(&sregs.gs, &env->segs[R_GS]);
428 set_seg(&sregs.ss, &env->segs[R_SS]);
430 if (env->cr[0] & CR0_PE_MASK) {
431 /* force ss cpl to cs cpl */
432 sregs.ss.selector = (sregs.ss.selector & ~3) |
433 (sregs.cs.selector & 3);
434 sregs.ss.dpl = sregs.ss.selector & 3;
438 set_seg(&sregs.tr, &env->tr);
439 set_seg(&sregs.ldt, &env->ldt);
441 sregs.idt.limit = env->idt.limit;
442 sregs.idt.base = env->idt.base;
443 sregs.gdt.limit = env->gdt.limit;
444 sregs.gdt.base = env->gdt.base;
446 sregs.cr0 = env->cr[0];
447 sregs.cr2 = env->cr[2];
448 sregs.cr3 = env->cr[3];
449 sregs.cr4 = env->cr[4];
451 sregs.cr8 = cpu_get_apic_tpr(env);
452 sregs.apic_base = cpu_get_apic_base(env);
454 sregs.efer = env->efer;
456 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
459 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
460 uint32_t index, uint64_t value)
462 entry->index = index;
463 entry->data = value;
466 static int kvm_put_msrs(CPUState *env)
468 struct {
469 struct kvm_msrs info;
470 struct kvm_msr_entry entries[100];
471 } msr_data;
472 struct kvm_msr_entry *msrs = msr_data.entries;
473 int n = 0;
475 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
476 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
477 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
478 if (kvm_has_msr_star(env))
479 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
480 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
481 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
482 #ifdef TARGET_X86_64
483 /* FIXME if lm capable */
484 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
485 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
486 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
487 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
488 #endif
489 msr_data.info.nmsrs = n;
491 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
496 static int kvm_get_fpu(CPUState *env)
498 struct kvm_fpu fpu;
499 int i, ret;
501 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
502 if (ret < 0)
503 return ret;
505 env->fpstt = (fpu.fsw >> 11) & 7;
506 env->fpus = fpu.fsw;
507 env->fpuc = fpu.fcw;
508 for (i = 0; i < 8; ++i)
509 env->fptags[i] = !((fpu.ftwx >> i) & 1);
510 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
511 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
512 env->mxcsr = fpu.mxcsr;
514 return 0;
517 static int kvm_get_sregs(CPUState *env)
519 struct kvm_sregs sregs;
520 uint32_t hflags;
521 int ret;
523 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
524 if (ret < 0)
525 return ret;
527 memcpy(env->interrupt_bitmap,
528 sregs.interrupt_bitmap,
529 sizeof(sregs.interrupt_bitmap));
531 get_seg(&env->segs[R_CS], &sregs.cs);
532 get_seg(&env->segs[R_DS], &sregs.ds);
533 get_seg(&env->segs[R_ES], &sregs.es);
534 get_seg(&env->segs[R_FS], &sregs.fs);
535 get_seg(&env->segs[R_GS], &sregs.gs);
536 get_seg(&env->segs[R_SS], &sregs.ss);
538 get_seg(&env->tr, &sregs.tr);
539 get_seg(&env->ldt, &sregs.ldt);
541 env->idt.limit = sregs.idt.limit;
542 env->idt.base = sregs.idt.base;
543 env->gdt.limit = sregs.gdt.limit;
544 env->gdt.base = sregs.gdt.base;
546 env->cr[0] = sregs.cr0;
547 env->cr[2] = sregs.cr2;
548 env->cr[3] = sregs.cr3;
549 env->cr[4] = sregs.cr4;
551 cpu_set_apic_base(env, sregs.apic_base);
553 env->efer = sregs.efer;
554 //cpu_set_apic_tpr(env, sregs.cr8);
556 #define HFLAG_COPY_MASK ~( \
557 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
558 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
559 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
560 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
564 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
565 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
566 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
567 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
568 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
569 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
570 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
572 if (env->efer & MSR_EFER_LMA) {
573 hflags |= HF_LMA_MASK;
576 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
577 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
578 } else {
579 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
580 (DESC_B_SHIFT - HF_CS32_SHIFT);
581 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
582 (DESC_B_SHIFT - HF_SS32_SHIFT);
583 if (!(env->cr[0] & CR0_PE_MASK) ||
584 (env->eflags & VM_MASK) ||
585 !(hflags & HF_CS32_MASK)) {
586 hflags |= HF_ADDSEG_MASK;
587 } else {
588 hflags |= ((env->segs[R_DS].base |
589 env->segs[R_ES].base |
590 env->segs[R_SS].base) != 0) <<
591 HF_ADDSEG_SHIFT;
594 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
596 return 0;
599 static int kvm_get_msrs(CPUState *env)
601 struct {
602 struct kvm_msrs info;
603 struct kvm_msr_entry entries[100];
604 } msr_data;
605 struct kvm_msr_entry *msrs = msr_data.entries;
606 int ret, i, n;
608 n = 0;
609 msrs[n++].index = MSR_IA32_SYSENTER_CS;
610 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
611 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
612 if (kvm_has_msr_star(env))
613 msrs[n++].index = MSR_STAR;
614 msrs[n++].index = MSR_IA32_TSC;
615 msrs[n++].index = MSR_VM_HSAVE_PA;
616 #ifdef TARGET_X86_64
617 /* FIXME lm_capable_kernel */
618 msrs[n++].index = MSR_CSTAR;
619 msrs[n++].index = MSR_KERNELGSBASE;
620 msrs[n++].index = MSR_FMASK;
621 msrs[n++].index = MSR_LSTAR;
622 #endif
623 msr_data.info.nmsrs = n;
624 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
625 if (ret < 0)
626 return ret;
628 for (i = 0; i < ret; i++) {
629 switch (msrs[i].index) {
630 case MSR_IA32_SYSENTER_CS:
631 env->sysenter_cs = msrs[i].data;
632 break;
633 case MSR_IA32_SYSENTER_ESP:
634 env->sysenter_esp = msrs[i].data;
635 break;
636 case MSR_IA32_SYSENTER_EIP:
637 env->sysenter_eip = msrs[i].data;
638 break;
639 case MSR_STAR:
640 env->star = msrs[i].data;
641 break;
642 #ifdef TARGET_X86_64
643 case MSR_CSTAR:
644 env->cstar = msrs[i].data;
645 break;
646 case MSR_KERNELGSBASE:
647 env->kernelgsbase = msrs[i].data;
648 break;
649 case MSR_FMASK:
650 env->fmask = msrs[i].data;
651 break;
652 case MSR_LSTAR:
653 env->lstar = msrs[i].data;
654 break;
655 #endif
656 case MSR_IA32_TSC:
657 env->tsc = msrs[i].data;
658 break;
659 case MSR_VM_HSAVE_PA:
660 env->vm_hsave = msrs[i].data;
661 break;
665 return 0;
668 int kvm_arch_put_registers(CPUState *env)
670 int ret;
672 ret = kvm_getput_regs(env, 1);
673 if (ret < 0)
674 return ret;
676 ret = kvm_put_fpu(env);
677 if (ret < 0)
678 return ret;
680 ret = kvm_put_sregs(env);
681 if (ret < 0)
682 return ret;
684 ret = kvm_put_msrs(env);
685 if (ret < 0)
686 return ret;
688 ret = kvm_put_mp_state(env);
689 if (ret < 0)
690 return ret;
692 ret = kvm_get_mp_state(env);
693 if (ret < 0)
694 return ret;
696 return 0;
699 int kvm_arch_get_registers(CPUState *env)
701 int ret;
703 ret = kvm_getput_regs(env, 0);
704 if (ret < 0)
705 return ret;
707 ret = kvm_get_fpu(env);
708 if (ret < 0)
709 return ret;
711 ret = kvm_get_sregs(env);
712 if (ret < 0)
713 return ret;
715 ret = kvm_get_msrs(env);
716 if (ret < 0)
717 return ret;
719 return 0;
722 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
724 /* Try to inject an interrupt if the guest can accept it */
725 if (run->ready_for_interrupt_injection &&
726 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
727 (env->eflags & IF_MASK)) {
728 int irq;
730 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
731 irq = cpu_get_pic_interrupt(env);
732 if (irq >= 0) {
733 struct kvm_interrupt intr;
734 intr.irq = irq;
735 /* FIXME: errors */
736 dprintf("injected interrupt %d\n", irq);
737 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
741 /* If we have an interrupt but the guest is not ready to receive an
742 * interrupt, request an interrupt window exit. This will
743 * cause a return to userspace as soon as the guest is ready to
744 * receive interrupts. */
745 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
746 run->request_interrupt_window = 1;
747 else
748 run->request_interrupt_window = 0;
750 dprintf("setting tpr\n");
751 run->cr8 = cpu_get_apic_tpr(env);
753 return 0;
756 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
758 if (run->if_flag)
759 env->eflags |= IF_MASK;
760 else
761 env->eflags &= ~IF_MASK;
763 cpu_set_apic_tpr(env, run->cr8);
764 cpu_set_apic_base(env, run->apic_base);
766 return 0;
769 static int kvm_handle_halt(CPUState *env)
771 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
772 (env->eflags & IF_MASK)) &&
773 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
774 env->halted = 1;
775 env->exception_index = EXCP_HLT;
776 return 0;
779 return 1;
782 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
784 int ret = 0;
786 switch (run->exit_reason) {
787 case KVM_EXIT_HLT:
788 dprintf("handle_hlt\n");
789 ret = kvm_handle_halt(env);
790 break;
793 return ret;
796 #ifdef KVM_CAP_SET_GUEST_DEBUG
797 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
799 const static uint8_t int3 = 0xcc;
801 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
802 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
803 return -EINVAL;
804 return 0;
807 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
809 uint8_t int3;
811 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
812 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
813 return -EINVAL;
814 return 0;
817 static struct {
818 target_ulong addr;
819 int len;
820 int type;
821 } hw_breakpoint[4];
823 static int nb_hw_breakpoint;
825 static int find_hw_breakpoint(target_ulong addr, int len, int type)
827 int n;
829 for (n = 0; n < nb_hw_breakpoint; n++)
830 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
831 (hw_breakpoint[n].len == len || len == -1))
832 return n;
833 return -1;
836 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
837 target_ulong len, int type)
839 switch (type) {
840 case GDB_BREAKPOINT_HW:
841 len = 1;
842 break;
843 case GDB_WATCHPOINT_WRITE:
844 case GDB_WATCHPOINT_ACCESS:
845 switch (len) {
846 case 1:
847 break;
848 case 2:
849 case 4:
850 case 8:
851 if (addr & (len - 1))
852 return -EINVAL;
853 break;
854 default:
855 return -EINVAL;
857 break;
858 default:
859 return -ENOSYS;
862 if (nb_hw_breakpoint == 4)
863 return -ENOBUFS;
865 if (find_hw_breakpoint(addr, len, type) >= 0)
866 return -EEXIST;
868 hw_breakpoint[nb_hw_breakpoint].addr = addr;
869 hw_breakpoint[nb_hw_breakpoint].len = len;
870 hw_breakpoint[nb_hw_breakpoint].type = type;
871 nb_hw_breakpoint++;
873 return 0;
876 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
877 target_ulong len, int type)
879 int n;
881 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
882 if (n < 0)
883 return -ENOENT;
885 nb_hw_breakpoint--;
886 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
888 return 0;
891 void kvm_arch_remove_all_hw_breakpoints(void)
893 nb_hw_breakpoint = 0;
896 static CPUWatchpoint hw_watchpoint;
898 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
900 int handle = 0;
901 int n;
903 if (arch_info->exception == 1) {
904 if (arch_info->dr6 & (1 << 14)) {
905 if (cpu_single_env->singlestep_enabled)
906 handle = 1;
907 } else {
908 for (n = 0; n < 4; n++)
909 if (arch_info->dr6 & (1 << n))
910 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
911 case 0x0:
912 handle = 1;
913 break;
914 case 0x1:
915 handle = 1;
916 cpu_single_env->watchpoint_hit = &hw_watchpoint;
917 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
918 hw_watchpoint.flags = BP_MEM_WRITE;
919 break;
920 case 0x3:
921 handle = 1;
922 cpu_single_env->watchpoint_hit = &hw_watchpoint;
923 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
924 hw_watchpoint.flags = BP_MEM_ACCESS;
925 break;
928 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
929 handle = 1;
931 if (!handle)
932 kvm_update_guest_debug(cpu_single_env,
933 (arch_info->exception == 1) ?
934 KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
936 return handle;
939 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
941 const uint8_t type_code[] = {
942 [GDB_BREAKPOINT_HW] = 0x0,
943 [GDB_WATCHPOINT_WRITE] = 0x1,
944 [GDB_WATCHPOINT_ACCESS] = 0x3
946 const uint8_t len_code[] = {
947 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
949 int n;
951 if (kvm_sw_breakpoints_active(env))
952 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
954 if (nb_hw_breakpoint > 0) {
955 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
956 dbg->arch.debugreg[7] = 0x0600;
957 for (n = 0; n < nb_hw_breakpoint; n++) {
958 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
959 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
960 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
961 (len_code[hw_breakpoint[n].len] << (18 + n*4));
965 #endif /* KVM_CAP_SET_GUEST_DEBUG */
966 #endif
968 #include "qemu-kvm-x86.c"