kvm: Fix IRQ injection into full queue
[qemu-kvm/fedora.git] / gdbstub.c
blob239f2e0a0ebe631ea4b36fa8b53da3b40b5fc25e
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include "config.h"
21 #include "qemu-common.h"
22 #ifdef CONFIG_USER_ONLY
23 #include <stdlib.h>
24 #include <stdio.h>
25 #include <stdarg.h>
26 #include <string.h>
27 #include <errno.h>
28 #include <unistd.h>
29 #include <fcntl.h>
31 #include "qemu.h"
32 #else
33 #include "qemu-char.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #endif
38 #define MAX_PACKET_LENGTH 4096
40 #include "qemu_socket.h"
43 enum {
44 GDB_SIGNAL_0 = 0,
45 GDB_SIGNAL_INT = 2,
46 GDB_SIGNAL_TRAP = 5,
47 GDB_SIGNAL_UNKNOWN = 143
50 #ifdef CONFIG_USER_ONLY
52 /* Map target signal numbers to GDB protocol signal numbers and vice
53 * versa. For user emulation's currently supported systems, we can
54 * assume most signals are defined.
57 static int gdb_signal_table[] = {
59 TARGET_SIGHUP,
60 TARGET_SIGINT,
61 TARGET_SIGQUIT,
62 TARGET_SIGILL,
63 TARGET_SIGTRAP,
64 TARGET_SIGABRT,
65 -1, /* SIGEMT */
66 TARGET_SIGFPE,
67 TARGET_SIGKILL,
68 TARGET_SIGBUS,
69 TARGET_SIGSEGV,
70 TARGET_SIGSYS,
71 TARGET_SIGPIPE,
72 TARGET_SIGALRM,
73 TARGET_SIGTERM,
74 TARGET_SIGURG,
75 TARGET_SIGSTOP,
76 TARGET_SIGTSTP,
77 TARGET_SIGCONT,
78 TARGET_SIGCHLD,
79 TARGET_SIGTTIN,
80 TARGET_SIGTTOU,
81 TARGET_SIGIO,
82 TARGET_SIGXCPU,
83 TARGET_SIGXFSZ,
84 TARGET_SIGVTALRM,
85 TARGET_SIGPROF,
86 TARGET_SIGWINCH,
87 -1, /* SIGLOST */
88 TARGET_SIGUSR1,
89 TARGET_SIGUSR2,
90 #ifdef TARGET_SIGPWR
91 TARGET_SIGPWR,
92 #else
93 -1,
94 #endif
95 -1, /* SIGPOLL */
96 -1,
97 -1,
98 -1,
99 -1,
107 #ifdef __SIGRTMIN
108 __SIGRTMIN + 1,
109 __SIGRTMIN + 2,
110 __SIGRTMIN + 3,
111 __SIGRTMIN + 4,
112 __SIGRTMIN + 5,
113 __SIGRTMIN + 6,
114 __SIGRTMIN + 7,
115 __SIGRTMIN + 8,
116 __SIGRTMIN + 9,
117 __SIGRTMIN + 10,
118 __SIGRTMIN + 11,
119 __SIGRTMIN + 12,
120 __SIGRTMIN + 13,
121 __SIGRTMIN + 14,
122 __SIGRTMIN + 15,
123 __SIGRTMIN + 16,
124 __SIGRTMIN + 17,
125 __SIGRTMIN + 18,
126 __SIGRTMIN + 19,
127 __SIGRTMIN + 20,
128 __SIGRTMIN + 21,
129 __SIGRTMIN + 22,
130 __SIGRTMIN + 23,
131 __SIGRTMIN + 24,
132 __SIGRTMIN + 25,
133 __SIGRTMIN + 26,
134 __SIGRTMIN + 27,
135 __SIGRTMIN + 28,
136 __SIGRTMIN + 29,
137 __SIGRTMIN + 30,
138 __SIGRTMIN + 31,
139 -1, /* SIGCANCEL */
140 __SIGRTMIN,
141 __SIGRTMIN + 32,
142 __SIGRTMIN + 33,
143 __SIGRTMIN + 34,
144 __SIGRTMIN + 35,
145 __SIGRTMIN + 36,
146 __SIGRTMIN + 37,
147 __SIGRTMIN + 38,
148 __SIGRTMIN + 39,
149 __SIGRTMIN + 40,
150 __SIGRTMIN + 41,
151 __SIGRTMIN + 42,
152 __SIGRTMIN + 43,
153 __SIGRTMIN + 44,
154 __SIGRTMIN + 45,
155 __SIGRTMIN + 46,
156 __SIGRTMIN + 47,
157 __SIGRTMIN + 48,
158 __SIGRTMIN + 49,
159 __SIGRTMIN + 50,
160 __SIGRTMIN + 51,
161 __SIGRTMIN + 52,
162 __SIGRTMIN + 53,
163 __SIGRTMIN + 54,
164 __SIGRTMIN + 55,
165 __SIGRTMIN + 56,
166 __SIGRTMIN + 57,
167 __SIGRTMIN + 58,
168 __SIGRTMIN + 59,
169 __SIGRTMIN + 60,
170 __SIGRTMIN + 61,
171 __SIGRTMIN + 62,
172 __SIGRTMIN + 63,
173 __SIGRTMIN + 64,
174 __SIGRTMIN + 65,
175 __SIGRTMIN + 66,
176 __SIGRTMIN + 67,
177 __SIGRTMIN + 68,
178 __SIGRTMIN + 69,
179 __SIGRTMIN + 70,
180 __SIGRTMIN + 71,
181 __SIGRTMIN + 72,
182 __SIGRTMIN + 73,
183 __SIGRTMIN + 74,
184 __SIGRTMIN + 75,
185 __SIGRTMIN + 76,
186 __SIGRTMIN + 77,
187 __SIGRTMIN + 78,
188 __SIGRTMIN + 79,
189 __SIGRTMIN + 80,
190 __SIGRTMIN + 81,
191 __SIGRTMIN + 82,
192 __SIGRTMIN + 83,
193 __SIGRTMIN + 84,
194 __SIGRTMIN + 85,
195 __SIGRTMIN + 86,
196 __SIGRTMIN + 87,
197 __SIGRTMIN + 88,
198 __SIGRTMIN + 89,
199 __SIGRTMIN + 90,
200 __SIGRTMIN + 91,
201 __SIGRTMIN + 92,
202 __SIGRTMIN + 93,
203 __SIGRTMIN + 94,
204 __SIGRTMIN + 95,
205 -1, /* SIGINFO */
206 -1, /* UNKNOWN */
207 -1, /* DEFAULT */
214 #endif
216 #else
217 /* In system mode we only need SIGINT and SIGTRAP; other signals
218 are not yet supported. */
220 enum {
221 TARGET_SIGINT = 2,
222 TARGET_SIGTRAP = 5
225 static int gdb_signal_table[] = {
228 TARGET_SIGINT,
231 TARGET_SIGTRAP
233 #endif
235 #ifdef CONFIG_USER_ONLY
236 static int target_signal_to_gdb (int sig)
238 int i;
239 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
240 if (gdb_signal_table[i] == sig)
241 return i;
242 return GDB_SIGNAL_UNKNOWN;
244 #endif
246 static int gdb_signal_to_target (int sig)
248 if (sig < ARRAY_SIZE (gdb_signal_table))
249 return gdb_signal_table[sig];
250 else
251 return -1;
254 //#define DEBUG_GDB
256 typedef struct GDBRegisterState {
257 int base_reg;
258 int num_regs;
259 gdb_reg_cb get_reg;
260 gdb_reg_cb set_reg;
261 const char *xml;
262 struct GDBRegisterState *next;
263 } GDBRegisterState;
265 enum RSState {
266 RS_IDLE,
267 RS_GETLINE,
268 RS_CHKSUM1,
269 RS_CHKSUM2,
270 RS_SYSCALL,
272 typedef struct GDBState {
273 CPUState *c_cpu; /* current CPU for step/continue ops */
274 CPUState *g_cpu; /* current CPU for other ops */
275 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
276 enum RSState state; /* parsing state */
277 char line_buf[MAX_PACKET_LENGTH];
278 int line_buf_index;
279 int line_csum;
280 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
281 int last_packet_len;
282 int signal;
283 #ifdef CONFIG_USER_ONLY
284 int fd;
285 int running_state;
286 #else
287 CharDriverState *chr;
288 #endif
289 } GDBState;
291 /* By default use no IRQs and no timers while single stepping so as to
292 * make single stepping like an ICE HW step.
294 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
296 static GDBState *gdbserver_state;
298 /* This is an ugly hack to cope with both new and old gdb.
299 If gdb sends qXfer:features:read then assume we're talking to a newish
300 gdb that understands target descriptions. */
301 static int gdb_has_xml;
303 #ifdef CONFIG_USER_ONLY
304 /* XXX: This is not thread safe. Do we care? */
305 static int gdbserver_fd = -1;
307 static int get_char(GDBState *s)
309 uint8_t ch;
310 int ret;
312 for(;;) {
313 ret = recv(s->fd, &ch, 1, 0);
314 if (ret < 0) {
315 if (errno == ECONNRESET)
316 s->fd = -1;
317 if (errno != EINTR && errno != EAGAIN)
318 return -1;
319 } else if (ret == 0) {
320 close(s->fd);
321 s->fd = -1;
322 return -1;
323 } else {
324 break;
327 return ch;
329 #endif
331 static gdb_syscall_complete_cb gdb_current_syscall_cb;
333 enum {
334 GDB_SYS_UNKNOWN,
335 GDB_SYS_ENABLED,
336 GDB_SYS_DISABLED,
337 } gdb_syscall_mode;
339 /* If gdb is connected when the first semihosting syscall occurs then use
340 remote gdb syscalls. Otherwise use native file IO. */
341 int use_gdb_syscalls(void)
343 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
344 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
345 : GDB_SYS_DISABLED);
347 return gdb_syscall_mode == GDB_SYS_ENABLED;
350 /* Resume execution. */
351 static inline void gdb_continue(GDBState *s)
353 #ifdef CONFIG_USER_ONLY
354 s->running_state = 1;
355 #else
356 vm_start();
357 #endif
360 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
362 #ifdef CONFIG_USER_ONLY
363 int ret;
365 while (len > 0) {
366 ret = send(s->fd, buf, len, 0);
367 if (ret < 0) {
368 if (errno != EINTR && errno != EAGAIN)
369 return;
370 } else {
371 buf += ret;
372 len -= ret;
375 #else
376 qemu_chr_write(s->chr, buf, len);
377 #endif
380 static inline int fromhex(int v)
382 if (v >= '0' && v <= '9')
383 return v - '0';
384 else if (v >= 'A' && v <= 'F')
385 return v - 'A' + 10;
386 else if (v >= 'a' && v <= 'f')
387 return v - 'a' + 10;
388 else
389 return 0;
392 static inline int tohex(int v)
394 if (v < 10)
395 return v + '0';
396 else
397 return v - 10 + 'a';
400 static void memtohex(char *buf, const uint8_t *mem, int len)
402 int i, c;
403 char *q;
404 q = buf;
405 for(i = 0; i < len; i++) {
406 c = mem[i];
407 *q++ = tohex(c >> 4);
408 *q++ = tohex(c & 0xf);
410 *q = '\0';
413 static void hextomem(uint8_t *mem, const char *buf, int len)
415 int i;
417 for(i = 0; i < len; i++) {
418 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
419 buf += 2;
423 /* return -1 if error, 0 if OK */
424 static int put_packet_binary(GDBState *s, const char *buf, int len)
426 int csum, i;
427 uint8_t *p;
429 for(;;) {
430 p = s->last_packet;
431 *(p++) = '$';
432 memcpy(p, buf, len);
433 p += len;
434 csum = 0;
435 for(i = 0; i < len; i++) {
436 csum += buf[i];
438 *(p++) = '#';
439 *(p++) = tohex((csum >> 4) & 0xf);
440 *(p++) = tohex((csum) & 0xf);
442 s->last_packet_len = p - s->last_packet;
443 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
445 #ifdef CONFIG_USER_ONLY
446 i = get_char(s);
447 if (i < 0)
448 return -1;
449 if (i == '+')
450 break;
451 #else
452 break;
453 #endif
455 return 0;
458 /* return -1 if error, 0 if OK */
459 static int put_packet(GDBState *s, const char *buf)
461 #ifdef DEBUG_GDB
462 printf("reply='%s'\n", buf);
463 #endif
465 return put_packet_binary(s, buf, strlen(buf));
468 /* The GDB remote protocol transfers values in target byte order. This means
469 we can use the raw memory access routines to access the value buffer.
470 Conveniently, these also handle the case where the buffer is mis-aligned.
472 #define GET_REG8(val) do { \
473 stb_p(mem_buf, val); \
474 return 1; \
475 } while(0)
476 #define GET_REG16(val) do { \
477 stw_p(mem_buf, val); \
478 return 2; \
479 } while(0)
480 #define GET_REG32(val) do { \
481 stl_p(mem_buf, val); \
482 return 4; \
483 } while(0)
484 #define GET_REG64(val) do { \
485 stq_p(mem_buf, val); \
486 return 8; \
487 } while(0)
489 #if TARGET_LONG_BITS == 64
490 #define GET_REGL(val) GET_REG64(val)
491 #define ldtul_p(addr) ldq_p(addr)
492 #else
493 #define GET_REGL(val) GET_REG32(val)
494 #define ldtul_p(addr) ldl_p(addr)
495 #endif
497 #if defined(TARGET_I386)
499 #ifdef TARGET_X86_64
500 static const int gpr_map[16] = {
501 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
502 8, 9, 10, 11, 12, 13, 14, 15
504 #else
505 static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
506 #endif
508 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
510 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
512 if (n < CPU_NB_REGS) {
513 GET_REGL(env->regs[gpr_map[n]]);
514 } else if (n >= CPU_NB_REGS + 8 && n < CPU_NB_REGS + 16) {
515 /* FIXME: byteswap float values. */
516 #ifdef USE_X86LDOUBLE
517 memcpy(mem_buf, &env->fpregs[n - (CPU_NB_REGS + 8)], 10);
518 #else
519 memset(mem_buf, 0, 10);
520 #endif
521 return 10;
522 } else if (n >= CPU_NB_REGS + 24) {
523 n -= CPU_NB_REGS + 24;
524 if (n < CPU_NB_REGS) {
525 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
526 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
527 return 16;
528 } else if (n == CPU_NB_REGS) {
529 GET_REG32(env->mxcsr);
531 } else {
532 n -= CPU_NB_REGS;
533 switch (n) {
534 case 0: GET_REGL(env->eip);
535 case 1: GET_REG32(env->eflags);
536 case 2: GET_REG32(env->segs[R_CS].selector);
537 case 3: GET_REG32(env->segs[R_SS].selector);
538 case 4: GET_REG32(env->segs[R_DS].selector);
539 case 5: GET_REG32(env->segs[R_ES].selector);
540 case 6: GET_REG32(env->segs[R_FS].selector);
541 case 7: GET_REG32(env->segs[R_GS].selector);
542 /* 8...15 x87 regs. */
543 case 16: GET_REG32(env->fpuc);
544 case 17: GET_REG32((env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11);
545 case 18: GET_REG32(0); /* ftag */
546 case 19: GET_REG32(0); /* fiseg */
547 case 20: GET_REG32(0); /* fioff */
548 case 21: GET_REG32(0); /* foseg */
549 case 22: GET_REG32(0); /* fooff */
550 case 23: GET_REG32(0); /* fop */
551 /* 24+ xmm regs. */
554 return 0;
557 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int i)
559 uint32_t tmp;
561 if (i < CPU_NB_REGS) {
562 env->regs[gpr_map[i]] = ldtul_p(mem_buf);
563 return sizeof(target_ulong);
564 } else if (i >= CPU_NB_REGS + 8 && i < CPU_NB_REGS + 16) {
565 i -= CPU_NB_REGS + 8;
566 #ifdef USE_X86LDOUBLE
567 memcpy(&env->fpregs[i], mem_buf, 10);
568 #endif
569 return 10;
570 } else if (i >= CPU_NB_REGS + 24) {
571 i -= CPU_NB_REGS + 24;
572 if (i < CPU_NB_REGS) {
573 env->xmm_regs[i].XMM_Q(0) = ldq_p(mem_buf);
574 env->xmm_regs[i].XMM_Q(1) = ldq_p(mem_buf + 8);
575 return 16;
576 } else if (i == CPU_NB_REGS) {
577 env->mxcsr = ldl_p(mem_buf);
578 return 4;
580 } else {
581 i -= CPU_NB_REGS;
582 switch (i) {
583 case 0: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong);
584 case 1: env->eflags = ldl_p(mem_buf); return 4;
585 #if defined(CONFIG_USER_ONLY)
586 #define LOAD_SEG(index, sreg)\
587 tmp = ldl_p(mem_buf);\
588 if (tmp != env->segs[sreg].selector)\
589 cpu_x86_load_seg(env, sreg, tmp);
590 #else
591 /* FIXME: Honor segment registers. Needs to avoid raising an exception
592 when the selector is invalid. */
593 #define LOAD_SEG(index, sreg) do {} while(0)
594 #endif
595 case 2: LOAD_SEG(10, R_CS); return 4;
596 case 3: LOAD_SEG(11, R_SS); return 4;
597 case 4: LOAD_SEG(12, R_DS); return 4;
598 case 5: LOAD_SEG(13, R_ES); return 4;
599 case 6: LOAD_SEG(14, R_FS); return 4;
600 case 7: LOAD_SEG(15, R_GS); return 4;
601 /* 8...15 x87 regs. */
602 case 16: env->fpuc = ldl_p(mem_buf); return 4;
603 case 17:
604 tmp = ldl_p(mem_buf);
605 env->fpstt = (tmp >> 11) & 7;
606 env->fpus = tmp & ~0x3800;
607 return 4;
608 case 18: /* ftag */ return 4;
609 case 19: /* fiseg */ return 4;
610 case 20: /* fioff */ return 4;
611 case 21: /* foseg */ return 4;
612 case 22: /* fooff */ return 4;
613 case 23: /* fop */ return 4;
614 /* 24+ xmm regs. */
617 /* Unrecognised register. */
618 return 0;
621 #elif defined (TARGET_PPC)
623 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
624 expects whatever the target description contains. Due to a
625 historical mishap the FP registers appear in between core integer
626 regs and PC, MSR, CR, and so forth. We hack round this by giving the
627 FP regs zero size when talking to a newer gdb. */
628 #define NUM_CORE_REGS 71
629 #if defined (TARGET_PPC64)
630 #define GDB_CORE_XML "power64-core.xml"
631 #else
632 #define GDB_CORE_XML "power-core.xml"
633 #endif
635 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
637 if (n < 32) {
638 /* gprs */
639 GET_REGL(env->gpr[n]);
640 } else if (n < 64) {
641 /* fprs */
642 if (gdb_has_xml)
643 return 0;
644 stfq_p(mem_buf, env->fpr[n-32]);
645 return 8;
646 } else {
647 switch (n) {
648 case 64: GET_REGL(env->nip);
649 case 65: GET_REGL(env->msr);
650 case 66:
652 uint32_t cr = 0;
653 int i;
654 for (i = 0; i < 8; i++)
655 cr |= env->crf[i] << (32 - ((i + 1) * 4));
656 GET_REG32(cr);
658 case 67: GET_REGL(env->lr);
659 case 68: GET_REGL(env->ctr);
660 case 69: GET_REGL(env->xer);
661 case 70:
663 if (gdb_has_xml)
664 return 0;
665 GET_REG32(0); /* fpscr */
669 return 0;
672 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
674 if (n < 32) {
675 /* gprs */
676 env->gpr[n] = ldtul_p(mem_buf);
677 return sizeof(target_ulong);
678 } else if (n < 64) {
679 /* fprs */
680 if (gdb_has_xml)
681 return 0;
682 env->fpr[n-32] = ldfq_p(mem_buf);
683 return 8;
684 } else {
685 switch (n) {
686 case 64:
687 env->nip = ldtul_p(mem_buf);
688 return sizeof(target_ulong);
689 case 65:
690 ppc_store_msr(env, ldtul_p(mem_buf));
691 return sizeof(target_ulong);
692 case 66:
694 uint32_t cr = ldl_p(mem_buf);
695 int i;
696 for (i = 0; i < 8; i++)
697 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
698 return 4;
700 case 67:
701 env->lr = ldtul_p(mem_buf);
702 return sizeof(target_ulong);
703 case 68:
704 env->ctr = ldtul_p(mem_buf);
705 return sizeof(target_ulong);
706 case 69:
707 env->xer = ldtul_p(mem_buf);
708 return sizeof(target_ulong);
709 case 70:
710 /* fpscr */
711 if (gdb_has_xml)
712 return 0;
713 return 4;
716 return 0;
719 #elif defined (TARGET_SPARC)
721 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
722 #define NUM_CORE_REGS 86
723 #else
724 #define NUM_CORE_REGS 72
725 #endif
727 #ifdef TARGET_ABI32
728 #define GET_REGA(val) GET_REG32(val)
729 #else
730 #define GET_REGA(val) GET_REGL(val)
731 #endif
733 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
735 if (n < 8) {
736 /* g0..g7 */
737 GET_REGA(env->gregs[n]);
739 if (n < 32) {
740 /* register window */
741 GET_REGA(env->regwptr[n - 8]);
743 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
744 if (n < 64) {
745 /* fprs */
746 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
748 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
749 switch (n) {
750 case 64: GET_REGA(env->y);
751 case 65: GET_REGA(GET_PSR(env));
752 case 66: GET_REGA(env->wim);
753 case 67: GET_REGA(env->tbr);
754 case 68: GET_REGA(env->pc);
755 case 69: GET_REGA(env->npc);
756 case 70: GET_REGA(env->fsr);
757 case 71: GET_REGA(0); /* csr */
758 default: GET_REGA(0);
760 #else
761 if (n < 64) {
762 /* f0-f31 */
763 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
765 if (n < 80) {
766 /* f32-f62 (double width, even numbers only) */
767 uint64_t val;
769 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
770 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
771 GET_REG64(val);
773 switch (n) {
774 case 80: GET_REGL(env->pc);
775 case 81: GET_REGL(env->npc);
776 case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
777 ((env->asi & 0xff) << 24) |
778 ((env->pstate & 0xfff) << 8) |
779 GET_CWP64(env));
780 case 83: GET_REGL(env->fsr);
781 case 84: GET_REGL(env->fprs);
782 case 85: GET_REGL(env->y);
784 #endif
785 return 0;
788 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
790 #if defined(TARGET_ABI32)
791 abi_ulong tmp;
793 tmp = ldl_p(mem_buf);
794 #else
795 target_ulong tmp;
797 tmp = ldtul_p(mem_buf);
798 #endif
800 if (n < 8) {
801 /* g0..g7 */
802 env->gregs[n] = tmp;
803 } else if (n < 32) {
804 /* register window */
805 env->regwptr[n - 8] = tmp;
807 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
808 else if (n < 64) {
809 /* fprs */
810 *((uint32_t *)&env->fpr[n - 32]) = tmp;
811 } else {
812 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
813 switch (n) {
814 case 64: env->y = tmp; break;
815 case 65: PUT_PSR(env, tmp); break;
816 case 66: env->wim = tmp; break;
817 case 67: env->tbr = tmp; break;
818 case 68: env->pc = tmp; break;
819 case 69: env->npc = tmp; break;
820 case 70: env->fsr = tmp; break;
821 default: return 0;
824 return 4;
825 #else
826 else if (n < 64) {
827 /* f0-f31 */
828 env->fpr[n] = ldfl_p(mem_buf);
829 return 4;
830 } else if (n < 80) {
831 /* f32-f62 (double width, even numbers only) */
832 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
833 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
834 } else {
835 switch (n) {
836 case 80: env->pc = tmp; break;
837 case 81: env->npc = tmp; break;
838 case 82:
839 PUT_CCR(env, tmp >> 32);
840 env->asi = (tmp >> 24) & 0xff;
841 env->pstate = (tmp >> 8) & 0xfff;
842 PUT_CWP64(env, tmp & 0xff);
843 break;
844 case 83: env->fsr = tmp; break;
845 case 84: env->fprs = tmp; break;
846 case 85: env->y = tmp; break;
847 default: return 0;
850 return 8;
851 #endif
853 #elif defined (TARGET_ARM)
855 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
856 whatever the target description contains. Due to a historical mishap
857 the FPA registers appear in between core integer regs and the CPSR.
858 We hack round this by giving the FPA regs zero size when talking to a
859 newer gdb. */
860 #define NUM_CORE_REGS 26
861 #define GDB_CORE_XML "arm-core.xml"
863 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
865 if (n < 16) {
866 /* Core integer register. */
867 GET_REG32(env->regs[n]);
869 if (n < 24) {
870 /* FPA registers. */
871 if (gdb_has_xml)
872 return 0;
873 memset(mem_buf, 0, 12);
874 return 12;
876 switch (n) {
877 case 24:
878 /* FPA status register. */
879 if (gdb_has_xml)
880 return 0;
881 GET_REG32(0);
882 case 25:
883 /* CPSR */
884 GET_REG32(cpsr_read(env));
886 /* Unknown register. */
887 return 0;
890 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
892 uint32_t tmp;
894 tmp = ldl_p(mem_buf);
896 /* Mask out low bit of PC to workaround gdb bugs. This will probably
897 cause problems if we ever implement the Jazelle DBX extensions. */
898 if (n == 15)
899 tmp &= ~1;
901 if (n < 16) {
902 /* Core integer register. */
903 env->regs[n] = tmp;
904 return 4;
906 if (n < 24) { /* 16-23 */
907 /* FPA registers (ignored). */
908 if (gdb_has_xml)
909 return 0;
910 return 12;
912 switch (n) {
913 case 24:
914 /* FPA status register (ignored). */
915 if (gdb_has_xml)
916 return 0;
917 return 4;
918 case 25:
919 /* CPSR */
920 cpsr_write (env, tmp, 0xffffffff);
921 return 4;
923 /* Unknown register. */
924 return 0;
927 #elif defined (TARGET_M68K)
929 #define NUM_CORE_REGS 18
931 #define GDB_CORE_XML "cf-core.xml"
933 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
935 if (n < 8) {
936 /* D0-D7 */
937 GET_REG32(env->dregs[n]);
938 } else if (n < 16) {
939 /* A0-A7 */
940 GET_REG32(env->aregs[n - 8]);
941 } else {
942 switch (n) {
943 case 16: GET_REG32(env->sr);
944 case 17: GET_REG32(env->pc);
947 /* FP registers not included here because they vary between
948 ColdFire and m68k. Use XML bits for these. */
949 return 0;
952 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
954 uint32_t tmp;
956 tmp = ldl_p(mem_buf);
958 if (n < 8) {
959 /* D0-D7 */
960 env->dregs[n] = tmp;
961 } else if (n < 8) {
962 /* A0-A7 */
963 env->aregs[n - 8] = tmp;
964 } else {
965 switch (n) {
966 case 16: env->sr = tmp; break;
967 case 17: env->pc = tmp; break;
968 default: return 0;
971 return 4;
973 #elif defined (TARGET_MIPS)
975 #define NUM_CORE_REGS 73
977 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
979 if (n < 32) {
980 GET_REGL(env->active_tc.gpr[n]);
982 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
983 if (n >= 38 && n < 70) {
984 if (env->CP0_Status & (1 << CP0St_FR))
985 GET_REGL(env->active_fpu.fpr[n - 38].d);
986 else
987 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
989 switch (n) {
990 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
991 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
994 switch (n) {
995 case 32: GET_REGL((int32_t)env->CP0_Status);
996 case 33: GET_REGL(env->active_tc.LO[0]);
997 case 34: GET_REGL(env->active_tc.HI[0]);
998 case 35: GET_REGL(env->CP0_BadVAddr);
999 case 36: GET_REGL((int32_t)env->CP0_Cause);
1000 case 37: GET_REGL(env->active_tc.PC);
1001 case 72: GET_REGL(0); /* fp */
1002 case 89: GET_REGL((int32_t)env->CP0_PRid);
1004 if (n >= 73 && n <= 88) {
1005 /* 16 embedded regs. */
1006 GET_REGL(0);
1009 return 0;
1012 /* convert MIPS rounding mode in FCR31 to IEEE library */
1013 static unsigned int ieee_rm[] =
1015 float_round_nearest_even,
1016 float_round_to_zero,
1017 float_round_up,
1018 float_round_down
1020 #define RESTORE_ROUNDING_MODE \
1021 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1023 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1025 target_ulong tmp;
1027 tmp = ldtul_p(mem_buf);
1029 if (n < 32) {
1030 env->active_tc.gpr[n] = tmp;
1031 return sizeof(target_ulong);
1033 if (env->CP0_Config1 & (1 << CP0C1_FP)
1034 && n >= 38 && n < 73) {
1035 if (n < 70) {
1036 if (env->CP0_Status & (1 << CP0St_FR))
1037 env->active_fpu.fpr[n - 38].d = tmp;
1038 else
1039 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1041 switch (n) {
1042 case 70:
1043 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1044 /* set rounding mode */
1045 RESTORE_ROUNDING_MODE;
1046 #ifndef CONFIG_SOFTFLOAT
1047 /* no floating point exception for native float */
1048 SET_FP_ENABLE(env->active_fpu.fcr31, 0);
1049 #endif
1050 break;
1051 case 71: env->active_fpu.fcr0 = tmp; break;
1053 return sizeof(target_ulong);
1055 switch (n) {
1056 case 32: env->CP0_Status = tmp; break;
1057 case 33: env->active_tc.LO[0] = tmp; break;
1058 case 34: env->active_tc.HI[0] = tmp; break;
1059 case 35: env->CP0_BadVAddr = tmp; break;
1060 case 36: env->CP0_Cause = tmp; break;
1061 case 37: env->active_tc.PC = tmp; break;
1062 case 72: /* fp, ignored */ break;
1063 default:
1064 if (n > 89)
1065 return 0;
1066 /* Other registers are readonly. Ignore writes. */
1067 break;
1070 return sizeof(target_ulong);
1072 #elif defined (TARGET_SH4)
1074 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1075 /* FIXME: We should use XML for this. */
1077 #define NUM_CORE_REGS 59
1079 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1081 if (n < 8) {
1082 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1083 GET_REGL(env->gregs[n + 16]);
1084 } else {
1085 GET_REGL(env->gregs[n]);
1087 } else if (n < 16) {
1088 GET_REGL(env->gregs[n - 8]);
1089 } else if (n >= 25 && n < 41) {
1090 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
1091 } else if (n >= 43 && n < 51) {
1092 GET_REGL(env->gregs[n - 43]);
1093 } else if (n >= 51 && n < 59) {
1094 GET_REGL(env->gregs[n - (51 - 16)]);
1096 switch (n) {
1097 case 16: GET_REGL(env->pc);
1098 case 17: GET_REGL(env->pr);
1099 case 18: GET_REGL(env->gbr);
1100 case 19: GET_REGL(env->vbr);
1101 case 20: GET_REGL(env->mach);
1102 case 21: GET_REGL(env->macl);
1103 case 22: GET_REGL(env->sr);
1104 case 23: GET_REGL(env->fpul);
1105 case 24: GET_REGL(env->fpscr);
1106 case 41: GET_REGL(env->ssr);
1107 case 42: GET_REGL(env->spc);
1110 return 0;
1113 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1115 uint32_t tmp;
1117 tmp = ldl_p(mem_buf);
1119 if (n < 8) {
1120 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1121 env->gregs[n + 16] = tmp;
1122 } else {
1123 env->gregs[n] = tmp;
1125 return 4;
1126 } else if (n < 16) {
1127 env->gregs[n - 8] = tmp;
1128 return 4;
1129 } else if (n >= 25 && n < 41) {
1130 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
1131 } else if (n >= 43 && n < 51) {
1132 env->gregs[n - 43] = tmp;
1133 return 4;
1134 } else if (n >= 51 && n < 59) {
1135 env->gregs[n - (51 - 16)] = tmp;
1136 return 4;
1138 switch (n) {
1139 case 16: env->pc = tmp;
1140 case 17: env->pr = tmp;
1141 case 18: env->gbr = tmp;
1142 case 19: env->vbr = tmp;
1143 case 20: env->mach = tmp;
1144 case 21: env->macl = tmp;
1145 case 22: env->sr = tmp;
1146 case 23: env->fpul = tmp;
1147 case 24: env->fpscr = tmp;
1148 case 41: env->ssr = tmp;
1149 case 42: env->spc = tmp;
1150 default: return 0;
1153 return 4;
1155 #elif defined (TARGET_CRIS)
1157 #define NUM_CORE_REGS 49
1159 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1161 uint8_t srs;
1163 srs = env->pregs[PR_SRS];
1164 if (n < 16) {
1165 GET_REG32(env->regs[n]);
1168 if (n >= 21 && n < 32) {
1169 GET_REG32(env->pregs[n - 16]);
1171 if (n >= 33 && n < 49) {
1172 GET_REG32(env->sregs[srs][n - 33]);
1174 switch (n) {
1175 case 16: GET_REG8(env->pregs[0]);
1176 case 17: GET_REG8(env->pregs[1]);
1177 case 18: GET_REG32(env->pregs[2]);
1178 case 19: GET_REG8(srs);
1179 case 20: GET_REG16(env->pregs[4]);
1180 case 32: GET_REG32(env->pc);
1183 return 0;
1186 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1188 uint32_t tmp;
1190 if (n > 49)
1191 return 0;
1193 tmp = ldl_p(mem_buf);
1195 if (n < 16) {
1196 env->regs[n] = tmp;
1199 if (n >= 21 && n < 32) {
1200 env->pregs[n - 16] = tmp;
1203 /* FIXME: Should support function regs be writable? */
1204 switch (n) {
1205 case 16: return 1;
1206 case 17: return 1;
1207 case 18: env->pregs[PR_PID] = tmp; break;
1208 case 19: return 1;
1209 case 20: return 2;
1210 case 32: env->pc = tmp; break;
1213 return 4;
1215 #elif defined (TARGET_ALPHA)
1217 #define NUM_CORE_REGS 65
1219 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1221 if (n < 31) {
1222 GET_REGL(env->ir[n]);
1224 else if (n == 31) {
1225 GET_REGL(0);
1227 else if (n<63) {
1228 uint64_t val;
1230 val=*((uint64_t *)&env->fir[n-32]);
1231 GET_REGL(val);
1233 else if (n==63) {
1234 GET_REGL(env->fpcr);
1236 else if (n==64) {
1237 GET_REGL(env->pc);
1239 else {
1240 GET_REGL(0);
1243 return 0;
1246 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1248 target_ulong tmp;
1249 tmp = ldtul_p(mem_buf);
1251 if (n < 31) {
1252 env->ir[n] = tmp;
1255 if (n > 31 && n < 63) {
1256 env->fir[n - 32] = ldfl_p(mem_buf);
1259 if (n == 64 ) {
1260 env->pc=tmp;
1263 return 8;
1265 #else
1267 #define NUM_CORE_REGS 0
1269 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1271 return 0;
1274 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1276 return 0;
1279 #endif
1281 static int num_g_regs = NUM_CORE_REGS;
1283 #ifdef GDB_CORE_XML
1284 /* Encode data using the encoding for 'x' packets. */
1285 static int memtox(char *buf, const char *mem, int len)
1287 char *p = buf;
1288 char c;
1290 while (len--) {
1291 c = *(mem++);
1292 switch (c) {
1293 case '#': case '$': case '*': case '}':
1294 *(p++) = '}';
1295 *(p++) = c ^ 0x20;
1296 break;
1297 default:
1298 *(p++) = c;
1299 break;
1302 return p - buf;
1305 static const char *get_feature_xml(const char *p, const char **newp)
1307 extern const char *const xml_builtin[][2];
1308 size_t len;
1309 int i;
1310 const char *name;
1311 static char target_xml[1024];
1313 len = 0;
1314 while (p[len] && p[len] != ':')
1315 len++;
1316 *newp = p + len;
1318 name = NULL;
1319 if (strncmp(p, "target.xml", len) == 0) {
1320 /* Generate the XML description for this CPU. */
1321 if (!target_xml[0]) {
1322 GDBRegisterState *r;
1324 snprintf(target_xml, sizeof(target_xml),
1325 "<?xml version=\"1.0\"?>"
1326 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1327 "<target>"
1328 "<xi:include href=\"%s\"/>",
1329 GDB_CORE_XML);
1331 for (r = first_cpu->gdb_regs; r; r = r->next) {
1332 strcat(target_xml, "<xi:include href=\"");
1333 strcat(target_xml, r->xml);
1334 strcat(target_xml, "\"/>");
1336 strcat(target_xml, "</target>");
1338 return target_xml;
1340 for (i = 0; ; i++) {
1341 name = xml_builtin[i][0];
1342 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1343 break;
1345 return name ? xml_builtin[i][1] : NULL;
1347 #endif
1349 static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
1351 GDBRegisterState *r;
1353 if (reg < NUM_CORE_REGS)
1354 return cpu_gdb_read_register(env, mem_buf, reg);
1356 for (r = env->gdb_regs; r; r = r->next) {
1357 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1358 return r->get_reg(env, mem_buf, reg - r->base_reg);
1361 return 0;
1364 static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1366 GDBRegisterState *r;
1368 if (reg < NUM_CORE_REGS)
1369 return cpu_gdb_write_register(env, mem_buf, reg);
1371 for (r = env->gdb_regs; r; r = r->next) {
1372 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1373 return r->set_reg(env, mem_buf, reg - r->base_reg);
1376 return 0;
1379 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1380 specifies the first register number and these registers are included in
1381 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1382 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1385 void gdb_register_coprocessor(CPUState * env,
1386 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1387 int num_regs, const char *xml, int g_pos)
1389 GDBRegisterState *s;
1390 GDBRegisterState **p;
1391 static int last_reg = NUM_CORE_REGS;
1393 s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
1394 s->base_reg = last_reg;
1395 s->num_regs = num_regs;
1396 s->get_reg = get_reg;
1397 s->set_reg = set_reg;
1398 s->xml = xml;
1399 p = &env->gdb_regs;
1400 while (*p) {
1401 /* Check for duplicates. */
1402 if (strcmp((*p)->xml, xml) == 0)
1403 return;
1404 p = &(*p)->next;
1406 /* Add to end of list. */
1407 last_reg += num_regs;
1408 *p = s;
1409 if (g_pos) {
1410 if (g_pos != s->base_reg) {
1411 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1412 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1413 } else {
1414 num_g_regs = last_reg;
1419 /* GDB breakpoint/watchpoint types */
1420 #define GDB_BREAKPOINT_SW 0
1421 #define GDB_BREAKPOINT_HW 1
1422 #define GDB_WATCHPOINT_WRITE 2
1423 #define GDB_WATCHPOINT_READ 3
1424 #define GDB_WATCHPOINT_ACCESS 4
1426 #ifndef CONFIG_USER_ONLY
1427 static const int xlat_gdb_type[] = {
1428 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1429 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1430 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1432 #endif
1434 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1436 CPUState *env;
1437 int err = 0;
1439 switch (type) {
1440 case GDB_BREAKPOINT_SW:
1441 case GDB_BREAKPOINT_HW:
1442 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1443 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1444 if (err)
1445 break;
1447 return err;
1448 #ifndef CONFIG_USER_ONLY
1449 case GDB_WATCHPOINT_WRITE:
1450 case GDB_WATCHPOINT_READ:
1451 case GDB_WATCHPOINT_ACCESS:
1452 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1453 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1454 NULL);
1455 if (err)
1456 break;
1458 return err;
1459 #endif
1460 default:
1461 return -ENOSYS;
1465 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1467 CPUState *env;
1468 int err = 0;
1470 switch (type) {
1471 case GDB_BREAKPOINT_SW:
1472 case GDB_BREAKPOINT_HW:
1473 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1474 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1475 if (err)
1476 break;
1478 return err;
1479 #ifndef CONFIG_USER_ONLY
1480 case GDB_WATCHPOINT_WRITE:
1481 case GDB_WATCHPOINT_READ:
1482 case GDB_WATCHPOINT_ACCESS:
1483 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1484 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
1485 if (err)
1486 break;
1488 return err;
1489 #endif
1490 default:
1491 return -ENOSYS;
1495 static void gdb_breakpoint_remove_all(void)
1497 CPUState *env;
1499 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1500 cpu_breakpoint_remove_all(env, BP_GDB);
1501 #ifndef CONFIG_USER_ONLY
1502 cpu_watchpoint_remove_all(env, BP_GDB);
1503 #endif
1507 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1509 CPUState *env;
1510 const char *p;
1511 int ch, reg_size, type, res, thread;
1512 char buf[MAX_PACKET_LENGTH];
1513 uint8_t mem_buf[MAX_PACKET_LENGTH];
1514 uint8_t *registers;
1515 target_ulong addr, len;
1517 #ifdef DEBUG_GDB
1518 printf("command='%s'\n", line_buf);
1519 #endif
1520 p = line_buf;
1521 ch = *p++;
1522 switch(ch) {
1523 case '?':
1524 /* TODO: Make this return the correct value for user-mode. */
1525 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1526 s->c_cpu->cpu_index+1);
1527 put_packet(s, buf);
1528 /* Remove all the breakpoints when this query is issued,
1529 * because gdb is doing and initial connect and the state
1530 * should be cleaned up.
1532 gdb_breakpoint_remove_all();
1533 break;
1534 case 'c':
1535 if (*p != '\0') {
1536 addr = strtoull(p, (char **)&p, 16);
1537 #if defined(TARGET_I386)
1538 s->c_cpu->eip = addr;
1539 #elif defined (TARGET_PPC)
1540 s->c_cpu->nip = addr;
1541 #elif defined (TARGET_SPARC)
1542 s->c_cpu->pc = addr;
1543 s->c_cpu->npc = addr + 4;
1544 #elif defined (TARGET_ARM)
1545 s->c_cpu->regs[15] = addr;
1546 #elif defined (TARGET_SH4)
1547 s->c_cpu->pc = addr;
1548 #elif defined (TARGET_MIPS)
1549 s->c_cpu->active_tc.PC = addr;
1550 #elif defined (TARGET_CRIS)
1551 s->c_cpu->pc = addr;
1552 #elif defined (TARGET_ALPHA)
1553 s->c_cpu->pc = addr;
1554 #endif
1556 s->signal = 0;
1557 gdb_continue(s);
1558 return RS_IDLE;
1559 case 'C':
1560 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
1561 if (s->signal == -1)
1562 s->signal = 0;
1563 gdb_continue(s);
1564 return RS_IDLE;
1565 case 'k':
1566 /* Kill the target */
1567 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1568 exit(0);
1569 case 'D':
1570 /* Detach packet */
1571 gdb_breakpoint_remove_all();
1572 gdb_continue(s);
1573 put_packet(s, "OK");
1574 break;
1575 case 's':
1576 if (*p != '\0') {
1577 addr = strtoull(p, (char **)&p, 16);
1578 #if defined(TARGET_I386)
1579 s->c_cpu->eip = addr;
1580 #elif defined (TARGET_PPC)
1581 s->c_cpu->nip = addr;
1582 #elif defined (TARGET_SPARC)
1583 s->c_cpu->pc = addr;
1584 s->c_cpu->npc = addr + 4;
1585 #elif defined (TARGET_ARM)
1586 s->c_cpu->regs[15] = addr;
1587 #elif defined (TARGET_SH4)
1588 s->c_cpu->pc = addr;
1589 #elif defined (TARGET_MIPS)
1590 s->c_cpu->active_tc.PC = addr;
1591 #elif defined (TARGET_CRIS)
1592 s->c_cpu->pc = addr;
1593 #elif defined (TARGET_ALPHA)
1594 s->c_cpu->pc = addr;
1595 #endif
1597 cpu_single_step(s->c_cpu, sstep_flags);
1598 gdb_continue(s);
1599 return RS_IDLE;
1600 case 'F':
1602 target_ulong ret;
1603 target_ulong err;
1605 ret = strtoull(p, (char **)&p, 16);
1606 if (*p == ',') {
1607 p++;
1608 err = strtoull(p, (char **)&p, 16);
1609 } else {
1610 err = 0;
1612 if (*p == ',')
1613 p++;
1614 type = *p;
1615 if (gdb_current_syscall_cb)
1616 gdb_current_syscall_cb(s->c_cpu, ret, err);
1617 if (type == 'C') {
1618 put_packet(s, "T02");
1619 } else {
1620 gdb_continue(s);
1623 break;
1624 case 'g':
1625 len = 0;
1626 for (addr = 0; addr < num_g_regs; addr++) {
1627 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1628 len += reg_size;
1630 memtohex(buf, mem_buf, len);
1631 put_packet(s, buf);
1632 break;
1633 case 'G':
1634 registers = mem_buf;
1635 len = strlen(p) / 2;
1636 hextomem((uint8_t *)registers, p, len);
1637 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1638 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1639 len -= reg_size;
1640 registers += reg_size;
1642 put_packet(s, "OK");
1643 break;
1644 case 'm':
1645 addr = strtoull(p, (char **)&p, 16);
1646 if (*p == ',')
1647 p++;
1648 len = strtoull(p, NULL, 16);
1649 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
1650 put_packet (s, "E14");
1651 } else {
1652 memtohex(buf, mem_buf, len);
1653 put_packet(s, buf);
1655 break;
1656 case 'M':
1657 addr = strtoull(p, (char **)&p, 16);
1658 if (*p == ',')
1659 p++;
1660 len = strtoull(p, (char **)&p, 16);
1661 if (*p == ':')
1662 p++;
1663 hextomem(mem_buf, p, len);
1664 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
1665 put_packet(s, "E14");
1666 else
1667 put_packet(s, "OK");
1668 break;
1669 case 'p':
1670 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1671 This works, but can be very slow. Anything new enough to
1672 understand XML also knows how to use this properly. */
1673 if (!gdb_has_xml)
1674 goto unknown_command;
1675 addr = strtoull(p, (char **)&p, 16);
1676 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1677 if (reg_size) {
1678 memtohex(buf, mem_buf, reg_size);
1679 put_packet(s, buf);
1680 } else {
1681 put_packet(s, "E14");
1683 break;
1684 case 'P':
1685 if (!gdb_has_xml)
1686 goto unknown_command;
1687 addr = strtoull(p, (char **)&p, 16);
1688 if (*p == '=')
1689 p++;
1690 reg_size = strlen(p) / 2;
1691 hextomem(mem_buf, p, reg_size);
1692 gdb_write_register(s->g_cpu, mem_buf, addr);
1693 put_packet(s, "OK");
1694 break;
1695 case 'Z':
1696 case 'z':
1697 type = strtoul(p, (char **)&p, 16);
1698 if (*p == ',')
1699 p++;
1700 addr = strtoull(p, (char **)&p, 16);
1701 if (*p == ',')
1702 p++;
1703 len = strtoull(p, (char **)&p, 16);
1704 if (ch == 'Z')
1705 res = gdb_breakpoint_insert(addr, len, type);
1706 else
1707 res = gdb_breakpoint_remove(addr, len, type);
1708 if (res >= 0)
1709 put_packet(s, "OK");
1710 else if (res == -ENOSYS)
1711 put_packet(s, "");
1712 else
1713 put_packet(s, "E22");
1714 break;
1715 case 'H':
1716 type = *p++;
1717 thread = strtoull(p, (char **)&p, 16);
1718 if (thread == -1 || thread == 0) {
1719 put_packet(s, "OK");
1720 break;
1722 for (env = first_cpu; env != NULL; env = env->next_cpu)
1723 if (env->cpu_index + 1 == thread)
1724 break;
1725 if (env == NULL) {
1726 put_packet(s, "E22");
1727 break;
1729 switch (type) {
1730 case 'c':
1731 s->c_cpu = env;
1732 put_packet(s, "OK");
1733 break;
1734 case 'g':
1735 s->g_cpu = env;
1736 put_packet(s, "OK");
1737 break;
1738 default:
1739 put_packet(s, "E22");
1740 break;
1742 break;
1743 case 'T':
1744 thread = strtoull(p, (char **)&p, 16);
1745 #ifndef CONFIG_USER_ONLY
1746 if (thread > 0 && thread < smp_cpus + 1)
1747 #else
1748 if (thread == 1)
1749 #endif
1750 put_packet(s, "OK");
1751 else
1752 put_packet(s, "E22");
1753 break;
1754 case 'q':
1755 case 'Q':
1756 /* parse any 'q' packets here */
1757 if (!strcmp(p,"qemu.sstepbits")) {
1758 /* Query Breakpoint bit definitions */
1759 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1760 SSTEP_ENABLE,
1761 SSTEP_NOIRQ,
1762 SSTEP_NOTIMER);
1763 put_packet(s, buf);
1764 break;
1765 } else if (strncmp(p,"qemu.sstep",10) == 0) {
1766 /* Display or change the sstep_flags */
1767 p += 10;
1768 if (*p != '=') {
1769 /* Display current setting */
1770 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1771 put_packet(s, buf);
1772 break;
1774 p++;
1775 type = strtoul(p, (char **)&p, 16);
1776 sstep_flags = type;
1777 put_packet(s, "OK");
1778 break;
1779 } else if (strcmp(p,"C") == 0) {
1780 /* "Current thread" remains vague in the spec, so always return
1781 * the first CPU (gdb returns the first thread). */
1782 put_packet(s, "QC1");
1783 break;
1784 } else if (strcmp(p,"fThreadInfo") == 0) {
1785 s->query_cpu = first_cpu;
1786 goto report_cpuinfo;
1787 } else if (strcmp(p,"sThreadInfo") == 0) {
1788 report_cpuinfo:
1789 if (s->query_cpu) {
1790 snprintf(buf, sizeof(buf), "m%x", s->query_cpu->cpu_index+1);
1791 put_packet(s, buf);
1792 s->query_cpu = s->query_cpu->next_cpu;
1793 } else
1794 put_packet(s, "l");
1795 break;
1796 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
1797 thread = strtoull(p+16, (char **)&p, 16);
1798 for (env = first_cpu; env != NULL; env = env->next_cpu)
1799 if (env->cpu_index + 1 == thread) {
1800 len = snprintf((char *)mem_buf, sizeof(mem_buf),
1801 "CPU#%d [%s]", env->cpu_index,
1802 env->halted ? "halted " : "running");
1803 memtohex(buf, mem_buf, len);
1804 put_packet(s, buf);
1805 break;
1807 break;
1809 #ifdef CONFIG_LINUX_USER
1810 else if (strncmp(p, "Offsets", 7) == 0) {
1811 TaskState *ts = s->c_cpu->opaque;
1813 snprintf(buf, sizeof(buf),
1814 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1815 ";Bss=" TARGET_ABI_FMT_lx,
1816 ts->info->code_offset,
1817 ts->info->data_offset,
1818 ts->info->data_offset);
1819 put_packet(s, buf);
1820 break;
1822 #endif
1823 if (strncmp(p, "Supported", 9) == 0) {
1824 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1825 #ifdef GDB_CORE_XML
1826 strcat(buf, ";qXfer:features:read+");
1827 #endif
1828 put_packet(s, buf);
1829 break;
1831 #ifdef GDB_CORE_XML
1832 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
1833 const char *xml;
1834 target_ulong total_len;
1836 gdb_has_xml = 1;
1837 p += 19;
1838 xml = get_feature_xml(p, &p);
1839 if (!xml) {
1840 snprintf(buf, sizeof(buf), "E00");
1841 put_packet(s, buf);
1842 break;
1845 if (*p == ':')
1846 p++;
1847 addr = strtoul(p, (char **)&p, 16);
1848 if (*p == ',')
1849 p++;
1850 len = strtoul(p, (char **)&p, 16);
1852 total_len = strlen(xml);
1853 if (addr > total_len) {
1854 snprintf(buf, sizeof(buf), "E00");
1855 put_packet(s, buf);
1856 break;
1858 if (len > (MAX_PACKET_LENGTH - 5) / 2)
1859 len = (MAX_PACKET_LENGTH - 5) / 2;
1860 if (len < total_len - addr) {
1861 buf[0] = 'm';
1862 len = memtox(buf + 1, xml + addr, len);
1863 } else {
1864 buf[0] = 'l';
1865 len = memtox(buf + 1, xml + addr, total_len - addr);
1867 put_packet_binary(s, buf, len + 1);
1868 break;
1870 #endif
1871 /* Unrecognised 'q' command. */
1872 goto unknown_command;
1874 default:
1875 unknown_command:
1876 /* put empty packet */
1877 buf[0] = '\0';
1878 put_packet(s, buf);
1879 break;
1881 return RS_IDLE;
1884 void gdb_set_stop_cpu(CPUState *env)
1886 gdbserver_state->c_cpu = env;
1887 gdbserver_state->g_cpu = env;
1890 #ifndef CONFIG_USER_ONLY
1891 static void gdb_vm_state_change(void *opaque, int running, int reason)
1893 GDBState *s = gdbserver_state;
1894 CPUState *env = s->c_cpu;
1895 char buf[256];
1896 const char *type;
1897 int ret;
1899 if (running || (reason != EXCP_DEBUG && reason != EXCP_INTERRUPT) ||
1900 s->state == RS_SYSCALL)
1901 return;
1903 /* disable single step if it was enable */
1904 cpu_single_step(env, 0);
1906 if (reason == EXCP_DEBUG) {
1907 if (env->watchpoint_hit) {
1908 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
1909 case BP_MEM_READ:
1910 type = "r";
1911 break;
1912 case BP_MEM_ACCESS:
1913 type = "a";
1914 break;
1915 default:
1916 type = "";
1917 break;
1919 snprintf(buf, sizeof(buf),
1920 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
1921 GDB_SIGNAL_TRAP, env->cpu_index+1, type,
1922 env->watchpoint_hit->vaddr);
1923 put_packet(s, buf);
1924 env->watchpoint_hit = NULL;
1925 return;
1927 tb_flush(env);
1928 ret = GDB_SIGNAL_TRAP;
1929 } else {
1930 ret = GDB_SIGNAL_INT;
1932 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, env->cpu_index+1);
1933 put_packet(s, buf);
1935 #endif
1937 /* Send a gdb syscall request.
1938 This accepts limited printf-style format specifiers, specifically:
1939 %x - target_ulong argument printed in hex.
1940 %lx - 64-bit argument printed in hex.
1941 %s - string pointer (target_ulong) and length (int) pair. */
1942 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
1944 va_list va;
1945 char buf[256];
1946 char *p;
1947 target_ulong addr;
1948 uint64_t i64;
1949 GDBState *s;
1951 s = gdbserver_state;
1952 if (!s)
1953 return;
1954 gdb_current_syscall_cb = cb;
1955 s->state = RS_SYSCALL;
1956 #ifndef CONFIG_USER_ONLY
1957 vm_stop(EXCP_DEBUG);
1958 #endif
1959 s->state = RS_IDLE;
1960 va_start(va, fmt);
1961 p = buf;
1962 *(p++) = 'F';
1963 while (*fmt) {
1964 if (*fmt == '%') {
1965 fmt++;
1966 switch (*fmt++) {
1967 case 'x':
1968 addr = va_arg(va, target_ulong);
1969 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
1970 break;
1971 case 'l':
1972 if (*(fmt++) != 'x')
1973 goto bad_format;
1974 i64 = va_arg(va, uint64_t);
1975 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
1976 break;
1977 case 's':
1978 addr = va_arg(va, target_ulong);
1979 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
1980 addr, va_arg(va, int));
1981 break;
1982 default:
1983 bad_format:
1984 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
1985 fmt - 1);
1986 break;
1988 } else {
1989 *(p++) = *(fmt++);
1992 *p = 0;
1993 va_end(va);
1994 put_packet(s, buf);
1995 #ifdef CONFIG_USER_ONLY
1996 gdb_handlesig(s->c_cpu, 0);
1997 #else
1998 cpu_interrupt(s->c_cpu, CPU_INTERRUPT_EXIT);
1999 #endif
2002 static void gdb_read_byte(GDBState *s, int ch)
2004 int i, csum;
2005 uint8_t reply;
2007 #ifndef CONFIG_USER_ONLY
2008 if (s->last_packet_len) {
2009 /* Waiting for a response to the last packet. If we see the start
2010 of a new command then abandon the previous response. */
2011 if (ch == '-') {
2012 #ifdef DEBUG_GDB
2013 printf("Got NACK, retransmitting\n");
2014 #endif
2015 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2017 #ifdef DEBUG_GDB
2018 else if (ch == '+')
2019 printf("Got ACK\n");
2020 else
2021 printf("Got '%c' when expecting ACK/NACK\n", ch);
2022 #endif
2023 if (ch == '+' || ch == '$')
2024 s->last_packet_len = 0;
2025 if (ch != '$')
2026 return;
2028 if (vm_running) {
2029 /* when the CPU is running, we cannot do anything except stop
2030 it when receiving a char */
2031 vm_stop(EXCP_INTERRUPT);
2032 } else
2033 #endif
2035 switch(s->state) {
2036 case RS_IDLE:
2037 if (ch == '$') {
2038 s->line_buf_index = 0;
2039 s->state = RS_GETLINE;
2041 break;
2042 case RS_GETLINE:
2043 if (ch == '#') {
2044 s->state = RS_CHKSUM1;
2045 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2046 s->state = RS_IDLE;
2047 } else {
2048 s->line_buf[s->line_buf_index++] = ch;
2050 break;
2051 case RS_CHKSUM1:
2052 s->line_buf[s->line_buf_index] = '\0';
2053 s->line_csum = fromhex(ch) << 4;
2054 s->state = RS_CHKSUM2;
2055 break;
2056 case RS_CHKSUM2:
2057 s->line_csum |= fromhex(ch);
2058 csum = 0;
2059 for(i = 0; i < s->line_buf_index; i++) {
2060 csum += s->line_buf[i];
2062 if (s->line_csum != (csum & 0xff)) {
2063 reply = '-';
2064 put_buffer(s, &reply, 1);
2065 s->state = RS_IDLE;
2066 } else {
2067 reply = '+';
2068 put_buffer(s, &reply, 1);
2069 s->state = gdb_handle_packet(s, s->line_buf);
2071 break;
2072 default:
2073 abort();
2078 #ifdef CONFIG_USER_ONLY
2080 gdb_queuesig (void)
2082 GDBState *s;
2084 s = gdbserver_state;
2086 if (gdbserver_fd < 0 || s->fd < 0)
2087 return 0;
2088 else
2089 return 1;
2093 gdb_handlesig (CPUState *env, int sig)
2095 GDBState *s;
2096 char buf[256];
2097 int n;
2099 s = gdbserver_state;
2100 if (gdbserver_fd < 0 || s->fd < 0)
2101 return sig;
2103 /* disable single step if it was enabled */
2104 cpu_single_step(env, 0);
2105 tb_flush(env);
2107 if (sig != 0)
2109 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2110 put_packet(s, buf);
2112 /* put_packet() might have detected that the peer terminated the
2113 connection. */
2114 if (s->fd < 0)
2115 return sig;
2117 sig = 0;
2118 s->state = RS_IDLE;
2119 s->running_state = 0;
2120 while (s->running_state == 0) {
2121 n = read (s->fd, buf, 256);
2122 if (n > 0)
2124 int i;
2126 for (i = 0; i < n; i++)
2127 gdb_read_byte (s, buf[i]);
2129 else if (n == 0 || errno != EAGAIN)
2131 /* XXX: Connection closed. Should probably wait for annother
2132 connection before continuing. */
2133 return sig;
2136 sig = s->signal;
2137 s->signal = 0;
2138 return sig;
2141 /* Tell the remote gdb that the process has exited. */
2142 void gdb_exit(CPUState *env, int code)
2144 GDBState *s;
2145 char buf[4];
2147 s = gdbserver_state;
2148 if (gdbserver_fd < 0 || s->fd < 0)
2149 return;
2151 snprintf(buf, sizeof(buf), "W%02x", code);
2152 put_packet(s, buf);
2155 /* Tell the remote gdb that the process has exited due to SIG. */
2156 void gdb_signalled(CPUState *env, int sig)
2158 GDBState *s;
2159 char buf[4];
2161 s = gdbserver_state;
2162 if (gdbserver_fd < 0 || s->fd < 0)
2163 return;
2165 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2166 put_packet(s, buf);
2169 static void gdb_accept(void)
2171 GDBState *s;
2172 struct sockaddr_in sockaddr;
2173 socklen_t len;
2174 int val, fd;
2176 for(;;) {
2177 len = sizeof(sockaddr);
2178 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2179 if (fd < 0 && errno != EINTR) {
2180 perror("accept");
2181 return;
2182 } else if (fd >= 0) {
2183 break;
2187 /* set short latency */
2188 val = 1;
2189 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2191 s = qemu_mallocz(sizeof(GDBState));
2193 memset (s, 0, sizeof (GDBState));
2194 s->c_cpu = first_cpu;
2195 s->g_cpu = first_cpu;
2196 s->fd = fd;
2197 gdb_has_xml = 0;
2199 gdbserver_state = s;
2201 fcntl(fd, F_SETFL, O_NONBLOCK);
2204 static int gdbserver_open(int port)
2206 struct sockaddr_in sockaddr;
2207 int fd, val, ret;
2209 fd = socket(PF_INET, SOCK_STREAM, 0);
2210 if (fd < 0) {
2211 perror("socket");
2212 return -1;
2215 /* allow fast reuse */
2216 val = 1;
2217 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2219 sockaddr.sin_family = AF_INET;
2220 sockaddr.sin_port = htons(port);
2221 sockaddr.sin_addr.s_addr = 0;
2222 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2223 if (ret < 0) {
2224 perror("bind");
2225 return -1;
2227 ret = listen(fd, 0);
2228 if (ret < 0) {
2229 perror("listen");
2230 return -1;
2232 return fd;
2235 int gdbserver_start(int port)
2237 gdbserver_fd = gdbserver_open(port);
2238 if (gdbserver_fd < 0)
2239 return -1;
2240 /* accept connections */
2241 gdb_accept();
2242 return 0;
2245 /* Disable gdb stub for child processes. */
2246 void gdbserver_fork(CPUState *env)
2248 GDBState *s = gdbserver_state;
2249 if (gdbserver_fd < 0 || s->fd < 0)
2250 return;
2251 close(s->fd);
2252 s->fd = -1;
2253 cpu_breakpoint_remove_all(env, BP_GDB);
2254 cpu_watchpoint_remove_all(env, BP_GDB);
2256 #else
2257 static int gdb_chr_can_receive(void *opaque)
2259 /* We can handle an arbitrarily large amount of data.
2260 Pick the maximum packet size, which is as good as anything. */
2261 return MAX_PACKET_LENGTH;
2264 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2266 int i;
2268 for (i = 0; i < size; i++) {
2269 gdb_read_byte(gdbserver_state, buf[i]);
2273 static void gdb_chr_event(void *opaque, int event)
2275 switch (event) {
2276 case CHR_EVENT_RESET:
2277 vm_stop(EXCP_INTERRUPT);
2278 gdb_has_xml = 0;
2279 break;
2280 default:
2281 break;
2285 int gdbserver_start(const char *port)
2287 GDBState *s;
2288 char gdbstub_port_name[128];
2289 int port_num;
2290 char *p;
2291 CharDriverState *chr;
2293 if (!port || !*port)
2294 return -1;
2296 port_num = strtol(port, &p, 10);
2297 if (*p == 0) {
2298 /* A numeric value is interpreted as a port number. */
2299 snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
2300 "tcp::%d,nowait,nodelay,server", port_num);
2301 port = gdbstub_port_name;
2304 chr = qemu_chr_open("gdb", port, NULL);
2305 if (!chr)
2306 return -1;
2308 s = qemu_mallocz(sizeof(GDBState));
2309 s->c_cpu = first_cpu;
2310 s->g_cpu = first_cpu;
2311 s->chr = chr;
2312 gdbserver_state = s;
2313 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2314 gdb_chr_event, NULL);
2315 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2316 return 0;
2318 #endif