Merge branch 'qemu-cvs'
[qemu-kvm/fedora.git] / qemu-kvm.c
blob97f4a81b7ef4f56c3967e9aac45983eb70e9f3f8
1 /*
2 * qemu/kvm integration
4 * Copyright (C) 2006-2008 Qumranet Technologies
6 * Licensed under the terms of the GNU GPL version 2 or higher.
7 */
8 #include "config.h"
9 #include "config-host.h"
11 #include <assert.h>
12 #include <string.h>
13 #include "hw/hw.h"
14 #include "sysemu.h"
15 #include "qemu-common.h"
16 #include "console.h"
17 #include "block.h"
18 #include "compatfd.h"
19 #include "gdbstub.h"
21 #include "qemu-kvm.h"
22 #include <libkvm.h>
23 #include <pthread.h>
24 #include <sys/utsname.h>
25 #include <sys/syscall.h>
26 #include <sys/mman.h>
28 #define false 0
29 #define true 1
31 int kvm_allowed = 1;
32 int kvm_irqchip = 1;
33 int kvm_pit = 1;
34 int kvm_pit_reinject = 1;
35 int kvm_nested = 0;
36 kvm_context_t kvm_context;
38 pthread_mutex_t qemu_mutex = PTHREAD_MUTEX_INITIALIZER;
39 pthread_cond_t qemu_vcpu_cond = PTHREAD_COND_INITIALIZER;
40 pthread_cond_t qemu_system_cond = PTHREAD_COND_INITIALIZER;
41 pthread_cond_t qemu_pause_cond = PTHREAD_COND_INITIALIZER;
42 pthread_cond_t qemu_work_cond = PTHREAD_COND_INITIALIZER;
43 __thread struct CPUState *current_env;
45 static int qemu_system_ready;
47 #define SIG_IPI (SIGRTMIN+4)
49 pthread_t io_thread;
50 static int io_thread_fd = -1;
51 static int io_thread_sigfd = -1;
53 static CPUState *kvm_debug_cpu_requested;
55 /* The list of ioperm_data */
56 static LIST_HEAD(, ioperm_data) ioperm_head;
58 static inline unsigned long kvm_get_thread_id(void)
60 return syscall(SYS_gettid);
63 static void qemu_cond_wait(pthread_cond_t *cond)
65 CPUState *env = cpu_single_env;
66 static const struct timespec ts = {
67 .tv_sec = 0,
68 .tv_nsec = 100000,
71 pthread_cond_timedwait(cond, &qemu_mutex, &ts);
72 cpu_single_env = env;
75 static void sig_ipi_handler(int n)
79 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
81 struct qemu_work_item wi;
83 if (env == current_env) {
84 func(data);
85 return;
88 wi.func = func;
89 wi.data = data;
90 if (!env->kvm_cpu_state.queued_work_first)
91 env->kvm_cpu_state.queued_work_first = &wi;
92 else
93 env->kvm_cpu_state.queued_work_last->next = &wi;
94 env->kvm_cpu_state.queued_work_last = &wi;
95 wi.next = NULL;
96 wi.done = false;
98 pthread_kill(env->kvm_cpu_state.thread, SIG_IPI);
99 while (!wi.done)
100 qemu_cond_wait(&qemu_work_cond);
103 static void inject_interrupt(void *data)
105 cpu_interrupt(current_env, (int)data);
108 void kvm_inject_interrupt(CPUState *env, int mask)
110 on_vcpu(env, inject_interrupt, (void *)mask);
113 void kvm_update_interrupt_request(CPUState *env)
115 int signal = 0;
117 if (env) {
118 if (!current_env || !current_env->kvm_cpu_state.created)
119 signal = 1;
121 * Testing for created here is really redundant
123 if (current_env && current_env->kvm_cpu_state.created &&
124 env != current_env && !env->kvm_cpu_state.signalled)
125 signal = 1;
127 if (signal) {
128 env->kvm_cpu_state.signalled = 1;
129 if (env->kvm_cpu_state.thread)
130 pthread_kill(env->kvm_cpu_state.thread, SIG_IPI);
135 void kvm_update_after_sipi(CPUState *env)
137 env->kvm_cpu_state.sipi_needed = 1;
138 kvm_update_interrupt_request(env);
141 void kvm_apic_init(CPUState *env)
143 if (env->cpu_index != 0)
144 env->kvm_cpu_state.init = 1;
145 kvm_update_interrupt_request(env);
148 #include <signal.h>
150 static int try_push_interrupts(void *opaque)
152 return kvm_arch_try_push_interrupts(opaque);
155 static void post_kvm_run(void *opaque, void *data)
157 CPUState *env = (CPUState *)data;
159 pthread_mutex_lock(&qemu_mutex);
160 kvm_arch_post_kvm_run(opaque, env);
163 static int pre_kvm_run(void *opaque, void *data)
165 CPUState *env = (CPUState *)data;
167 kvm_arch_pre_kvm_run(opaque, env);
169 if (env->interrupt_request & CPU_INTERRUPT_EXIT)
170 return 1;
171 pthread_mutex_unlock(&qemu_mutex);
172 return 0;
175 static void kvm_do_load_registers(void *_env)
177 CPUState *env = _env;
179 kvm_arch_load_regs(env);
182 void kvm_load_registers(CPUState *env)
184 if (kvm_enabled() && qemu_system_ready)
185 on_vcpu(env, kvm_do_load_registers, env);
188 static void kvm_do_save_registers(void *_env)
190 CPUState *env = _env;
192 kvm_arch_save_regs(env);
195 void kvm_save_registers(CPUState *env)
197 if (kvm_enabled())
198 on_vcpu(env, kvm_do_save_registers, env);
201 int kvm_cpu_exec(CPUState *env)
203 int r;
205 r = kvm_run(kvm_context, env->cpu_index, env);
206 if (r < 0) {
207 printf("kvm_run returned %d\n", r);
208 exit(1);
211 return 0;
214 static int has_work(CPUState *env)
216 if (!vm_running || (env && env->kvm_cpu_state.stopped))
217 return 0;
218 if (!env->halted)
219 return 1;
220 return kvm_arch_has_work(env);
223 static void flush_queued_work(CPUState *env)
225 struct qemu_work_item *wi;
227 if (!env->kvm_cpu_state.queued_work_first)
228 return;
230 while ((wi = env->kvm_cpu_state.queued_work_first)) {
231 env->kvm_cpu_state.queued_work_first = wi->next;
232 wi->func(wi->data);
233 wi->done = true;
235 env->kvm_cpu_state.queued_work_last = NULL;
236 pthread_cond_broadcast(&qemu_work_cond);
239 static void kvm_main_loop_wait(CPUState *env, int timeout)
241 struct timespec ts;
242 int r, e;
243 siginfo_t siginfo;
244 sigset_t waitset;
246 pthread_mutex_unlock(&qemu_mutex);
248 ts.tv_sec = timeout / 1000;
249 ts.tv_nsec = (timeout % 1000) * 1000000;
250 sigemptyset(&waitset);
251 sigaddset(&waitset, SIG_IPI);
253 r = sigtimedwait(&waitset, &siginfo, &ts);
254 e = errno;
256 pthread_mutex_lock(&qemu_mutex);
258 if (r == -1 && !(e == EAGAIN || e == EINTR)) {
259 printf("sigtimedwait: %s\n", strerror(e));
260 exit(1);
263 cpu_single_env = env;
264 flush_queued_work(env);
266 if (env->kvm_cpu_state.stop) {
267 env->kvm_cpu_state.stop = 0;
268 env->kvm_cpu_state.stopped = 1;
269 pthread_cond_signal(&qemu_pause_cond);
272 env->kvm_cpu_state.signalled = 0;
275 static int all_threads_paused(void)
277 CPUState *penv = first_cpu;
279 while (penv) {
280 if (penv->kvm_cpu_state.stop)
281 return 0;
282 penv = (CPUState *)penv->next_cpu;
285 return 1;
288 static void pause_all_threads(void)
290 CPUState *penv = first_cpu;
292 while (penv) {
293 if (penv != cpu_single_env) {
294 penv->kvm_cpu_state.stop = 1;
295 pthread_kill(penv->kvm_cpu_state.thread, SIG_IPI);
296 } else {
297 penv->kvm_cpu_state.stop = 0;
298 penv->kvm_cpu_state.stopped = 1;
299 cpu_interrupt(penv, CPU_INTERRUPT_EXIT);
301 penv = (CPUState *)penv->next_cpu;
304 while (!all_threads_paused())
305 qemu_cond_wait(&qemu_pause_cond);
308 static void resume_all_threads(void)
310 CPUState *penv = first_cpu;
312 assert(!cpu_single_env);
314 while (penv) {
315 penv->kvm_cpu_state.stop = 0;
316 penv->kvm_cpu_state.stopped = 0;
317 pthread_kill(penv->kvm_cpu_state.thread, SIG_IPI);
318 penv = (CPUState *)penv->next_cpu;
322 static void kvm_vm_state_change_handler(void *context, int running)
324 if (running)
325 resume_all_threads();
326 else
327 pause_all_threads();
330 static void update_regs_for_sipi(CPUState *env)
332 kvm_arch_update_regs_for_sipi(env);
333 env->kvm_cpu_state.sipi_needed = 0;
336 static void update_regs_for_init(CPUState *env)
338 #ifdef TARGET_I386
339 SegmentCache cs = env->segs[R_CS];
340 #endif
342 cpu_reset(env);
344 #ifdef TARGET_I386
345 /* restore SIPI vector */
346 if(env->kvm_cpu_state.sipi_needed)
347 env->segs[R_CS] = cs;
348 #endif
350 env->kvm_cpu_state.init = 0;
351 kvm_arch_load_regs(env);
354 static void setup_kernel_sigmask(CPUState *env)
356 sigset_t set;
358 sigemptyset(&set);
359 sigaddset(&set, SIGUSR2);
360 sigaddset(&set, SIGIO);
361 sigaddset(&set, SIGALRM);
362 sigprocmask(SIG_BLOCK, &set, NULL);
364 sigprocmask(SIG_BLOCK, NULL, &set);
365 sigdelset(&set, SIG_IPI);
367 kvm_set_signal_mask(kvm_context, env->cpu_index, &set);
370 static void qemu_kvm_system_reset(void)
372 CPUState *penv = first_cpu;
374 pause_all_threads();
376 qemu_system_reset();
378 while (penv) {
379 kvm_arch_cpu_reset(penv);
380 penv = (CPUState *)penv->next_cpu;
383 resume_all_threads();
386 static int kvm_main_loop_cpu(CPUState *env)
388 setup_kernel_sigmask(env);
390 pthread_mutex_lock(&qemu_mutex);
391 if (kvm_irqchip_in_kernel(kvm_context))
392 env->halted = 0;
394 kvm_qemu_init_env(env);
395 #ifdef TARGET_I386
396 kvm_tpr_vcpu_start(env);
397 #endif
399 cpu_single_env = env;
400 kvm_load_registers(env);
402 while (1) {
403 while (!has_work(env))
404 kvm_main_loop_wait(env, 1000);
405 if (env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_NMI))
406 env->halted = 0;
407 if (!kvm_irqchip_in_kernel(kvm_context)) {
408 if (env->kvm_cpu_state.init)
409 update_regs_for_init(env);
410 if (env->kvm_cpu_state.sipi_needed)
411 update_regs_for_sipi(env);
413 if (!env->halted && !env->kvm_cpu_state.init)
414 kvm_cpu_exec(env);
415 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
416 kvm_main_loop_wait(env, 0);
418 pthread_mutex_unlock(&qemu_mutex);
419 return 0;
422 static void *ap_main_loop(void *_env)
424 CPUState *env = _env;
425 sigset_t signals;
426 struct ioperm_data *data = NULL;
428 current_env = env;
429 env->thread_id = kvm_get_thread_id();
430 sigfillset(&signals);
431 sigprocmask(SIG_BLOCK, &signals, NULL);
432 kvm_create_vcpu(kvm_context, env->cpu_index);
433 kvm_qemu_init_env(env);
435 #ifdef USE_KVM_DEVICE_ASSIGNMENT
436 /* do ioperm for io ports of assigned devices */
437 LIST_FOREACH(data, &ioperm_head, entries)
438 on_vcpu(env, kvm_arch_do_ioperm, data);
439 #endif
441 /* signal VCPU creation */
442 pthread_mutex_lock(&qemu_mutex);
443 current_env->kvm_cpu_state.created = 1;
444 pthread_cond_signal(&qemu_vcpu_cond);
446 /* and wait for machine initialization */
447 while (!qemu_system_ready)
448 qemu_cond_wait(&qemu_system_cond);
449 pthread_mutex_unlock(&qemu_mutex);
451 kvm_main_loop_cpu(env);
452 return NULL;
455 void kvm_init_vcpu(CPUState *env)
457 pthread_create(&env->kvm_cpu_state.thread, NULL, ap_main_loop, env);
459 while (env->kvm_cpu_state.created == 0)
460 qemu_cond_wait(&qemu_vcpu_cond);
463 int kvm_init_ap(void)
465 #ifdef TARGET_I386
466 kvm_tpr_opt_setup();
467 #endif
468 qemu_add_vm_change_state_handler(kvm_vm_state_change_handler, NULL);
470 signal(SIG_IPI, sig_ipi_handler);
471 return 0;
474 void qemu_kvm_notify_work(void)
476 uint64_t value = 1;
477 char buffer[8];
478 size_t offset = 0;
480 if (io_thread_fd == -1)
481 return;
483 memcpy(buffer, &value, sizeof(value));
485 while (offset < 8) {
486 ssize_t len;
488 len = write(io_thread_fd, buffer + offset, 8 - offset);
489 if (len == -1 && errno == EINTR)
490 continue;
492 if (len <= 0)
493 break;
495 offset += len;
498 if (offset != 8)
499 fprintf(stderr, "failed to notify io thread\n");
502 /* If we have signalfd, we mask out the signals we want to handle and then
503 * use signalfd to listen for them. We rely on whatever the current signal
504 * handler is to dispatch the signals when we receive them.
507 static void sigfd_handler(void *opaque)
509 int fd = (unsigned long)opaque;
510 struct qemu_signalfd_siginfo info;
511 struct sigaction action;
512 ssize_t len;
514 while (1) {
515 do {
516 len = read(fd, &info, sizeof(info));
517 } while (len == -1 && errno == EINTR);
519 if (len == -1 && errno == EAGAIN)
520 break;
522 if (len != sizeof(info)) {
523 printf("read from sigfd returned %ld: %m\n", len);
524 return;
527 sigaction(info.ssi_signo, NULL, &action);
528 if (action.sa_handler)
529 action.sa_handler(info.ssi_signo);
534 /* Used to break IO thread out of select */
535 static void io_thread_wakeup(void *opaque)
537 int fd = (unsigned long)opaque;
538 char buffer[8];
539 size_t offset = 0;
541 while (offset < 8) {
542 ssize_t len;
544 len = read(fd, buffer + offset, 8 - offset);
545 if (len == -1 && errno == EINTR)
546 continue;
548 if (len <= 0)
549 break;
551 offset += len;
555 int kvm_main_loop(void)
557 int fds[2];
558 sigset_t mask;
559 int sigfd;
561 io_thread = pthread_self();
562 qemu_system_ready = 1;
564 if (qemu_eventfd(fds) == -1) {
565 fprintf(stderr, "failed to create eventfd\n");
566 return -errno;
569 qemu_set_fd_handler2(fds[0], NULL, io_thread_wakeup, NULL,
570 (void *)(unsigned long)fds[0]);
572 io_thread_fd = fds[1];
574 sigemptyset(&mask);
575 sigaddset(&mask, SIGIO);
576 sigaddset(&mask, SIGALRM);
577 sigprocmask(SIG_BLOCK, &mask, NULL);
579 sigfd = qemu_signalfd(&mask);
580 if (sigfd == -1) {
581 fprintf(stderr, "failed to create signalfd\n");
582 return -errno;
585 fcntl(sigfd, F_SETFL, O_NONBLOCK);
587 qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL,
588 (void *)(unsigned long)sigfd);
590 pthread_cond_broadcast(&qemu_system_cond);
592 io_thread_sigfd = sigfd;
593 cpu_single_env = NULL;
595 while (1) {
596 main_loop_wait(1000);
597 if (qemu_shutdown_requested())
598 break;
599 else if (qemu_powerdown_requested())
600 qemu_system_powerdown();
601 else if (qemu_reset_requested())
602 qemu_kvm_system_reset();
603 #ifdef CONFIG_GDBSTUB
604 else if (kvm_debug_cpu_requested) {
605 gdb_set_stop_cpu(kvm_debug_cpu_requested);
606 vm_stop(EXCP_DEBUG);
607 kvm_debug_cpu_requested = NULL;
609 #endif
612 pause_all_threads();
613 pthread_mutex_unlock(&qemu_mutex);
615 return 0;
618 #ifdef KVM_CAP_SET_GUEST_DEBUG
619 int kvm_debug(void *opaque, void *data, struct kvm_debug_exit_arch *arch_info)
621 int handle = kvm_arch_debug(arch_info);
622 struct CPUState *env = data;
624 if (handle) {
625 kvm_debug_cpu_requested = env;
626 env->kvm_cpu_state.stopped = 1;
628 return handle;
630 #endif
632 static int kvm_inb(void *opaque, uint16_t addr, uint8_t *data)
634 *data = cpu_inb(0, addr);
635 return 0;
638 static int kvm_inw(void *opaque, uint16_t addr, uint16_t *data)
640 *data = cpu_inw(0, addr);
641 return 0;
644 static int kvm_inl(void *opaque, uint16_t addr, uint32_t *data)
646 *data = cpu_inl(0, addr);
647 return 0;
650 #define PM_IO_BASE 0xb000
652 static int kvm_outb(void *opaque, uint16_t addr, uint8_t data)
654 if (addr == 0xb2) {
655 switch (data) {
656 case 0: {
657 cpu_outb(0, 0xb3, 0);
658 break;
660 case 0xf0: {
661 unsigned x;
663 /* enable acpi */
664 x = cpu_inw(0, PM_IO_BASE + 4);
665 x &= ~1;
666 cpu_outw(0, PM_IO_BASE + 4, x);
667 break;
669 case 0xf1: {
670 unsigned x;
672 /* enable acpi */
673 x = cpu_inw(0, PM_IO_BASE + 4);
674 x |= 1;
675 cpu_outw(0, PM_IO_BASE + 4, x);
676 break;
678 default:
679 break;
681 return 0;
683 cpu_outb(0, addr, data);
684 return 0;
687 static int kvm_outw(void *opaque, uint16_t addr, uint16_t data)
689 cpu_outw(0, addr, data);
690 return 0;
693 static int kvm_outl(void *opaque, uint16_t addr, uint32_t data)
695 cpu_outl(0, addr, data);
696 return 0;
699 static int kvm_mmio_read(void *opaque, uint64_t addr, uint8_t *data, int len)
701 cpu_physical_memory_rw(addr, data, len, 0);
702 return 0;
705 static int kvm_mmio_write(void *opaque, uint64_t addr, uint8_t *data, int len)
707 cpu_physical_memory_rw(addr, data, len, 1);
708 return 0;
711 static int kvm_io_window(void *opaque)
713 return 1;
717 static int kvm_halt(void *opaque, int vcpu)
719 return kvm_arch_halt(opaque, vcpu);
722 static int kvm_shutdown(void *opaque, void *data)
724 struct CPUState *env = (struct CPUState *)data;
726 /* stop the current vcpu from going back to guest mode */
727 env->kvm_cpu_state.stopped = 1;
729 qemu_system_reset_request();
730 return 1;
733 static struct kvm_callbacks qemu_kvm_ops = {
734 #ifdef KVM_CAP_SET_GUEST_DEBUG
735 .debug = kvm_debug,
736 #endif
737 .inb = kvm_inb,
738 .inw = kvm_inw,
739 .inl = kvm_inl,
740 .outb = kvm_outb,
741 .outw = kvm_outw,
742 .outl = kvm_outl,
743 .mmio_read = kvm_mmio_read,
744 .mmio_write = kvm_mmio_write,
745 .halt = kvm_halt,
746 .shutdown = kvm_shutdown,
747 .io_window = kvm_io_window,
748 .try_push_interrupts = try_push_interrupts,
749 #ifdef KVM_CAP_USER_NMI
750 .push_nmi = kvm_arch_push_nmi,
751 #endif
752 .post_kvm_run = post_kvm_run,
753 .pre_kvm_run = pre_kvm_run,
754 #ifdef TARGET_I386
755 .tpr_access = handle_tpr_access,
756 #endif
757 #ifdef TARGET_PPC
758 .powerpc_dcr_read = handle_powerpc_dcr_read,
759 .powerpc_dcr_write = handle_powerpc_dcr_write,
760 #endif
763 int kvm_qemu_init()
765 /* Try to initialize kvm */
766 kvm_context = kvm_init(&qemu_kvm_ops, cpu_single_env);
767 if (!kvm_context) {
768 return -1;
770 pthread_mutex_lock(&qemu_mutex);
772 return 0;
775 #ifdef TARGET_I386
776 static int destroy_region_works = 0;
777 #endif
779 int kvm_qemu_create_context(void)
781 int r;
782 int i;
784 if (!kvm_irqchip) {
785 kvm_disable_irqchip_creation(kvm_context);
787 if (!kvm_pit) {
788 kvm_disable_pit_creation(kvm_context);
790 if (kvm_create(kvm_context, phys_ram_size, (void**)&phys_ram_base) < 0) {
791 kvm_qemu_destroy();
792 return -1;
794 r = kvm_arch_qemu_create_context();
795 if(r <0)
796 kvm_qemu_destroy();
797 if (kvm_pit && !kvm_pit_reinject) {
798 if (kvm_reinject_control(kvm_context, 0)) {
799 fprintf(stderr, "failure to disable in-kernel PIT reinjection\n");
800 return -1;
803 #ifdef TARGET_I386
804 destroy_region_works = kvm_destroy_memory_region_works(kvm_context);
805 #endif
807 if (kvm_irqchip && kvm_has_gsi_routing(kvm_context)) {
808 kvm_clear_gsi_routes(kvm_context);
809 for (i = 0; i < 8; ++i) {
810 if (i == 2)
811 continue;
812 r = kvm_add_irq_route(kvm_context, i, KVM_IRQCHIP_PIC_MASTER, i);
813 if (r < 0)
814 return r;
816 for (i = 8; i < 16; ++i) {
817 r = kvm_add_irq_route(kvm_context, i, KVM_IRQCHIP_PIC_SLAVE, i - 8);
818 if (r < 0)
819 return r;
821 for (i = 0; i < 24; ++i) {
822 r = kvm_add_irq_route(kvm_context, i, KVM_IRQCHIP_IOAPIC, i);
823 if (r < 0)
824 return r;
826 kvm_commit_irq_routes(kvm_context);
828 return 0;
831 void kvm_qemu_destroy(void)
833 kvm_finalize(kvm_context);
836 #ifdef TARGET_I386
837 static int must_use_aliases_source(target_phys_addr_t addr)
839 if (destroy_region_works)
840 return false;
841 if (addr == 0xa0000 || addr == 0xa8000)
842 return true;
843 return false;
846 static int must_use_aliases_target(target_phys_addr_t addr)
848 if (destroy_region_works)
849 return false;
850 if (addr >= 0xe0000000 && addr < 0x100000000ull)
851 return true;
852 return false;
855 static struct mapping {
856 target_phys_addr_t phys;
857 ram_addr_t ram;
858 ram_addr_t len;
859 } mappings[50];
860 static int nr_mappings;
862 static struct mapping *find_ram_mapping(ram_addr_t ram_addr)
864 struct mapping *p;
866 for (p = mappings; p < mappings + nr_mappings; ++p) {
867 if (p->ram <= ram_addr && ram_addr < p->ram + p->len) {
868 return p;
871 return NULL;
874 static struct mapping *find_mapping(target_phys_addr_t start_addr)
876 struct mapping *p;
878 for (p = mappings; p < mappings + nr_mappings; ++p) {
879 if (p->phys <= start_addr && start_addr < p->phys + p->len) {
880 return p;
883 return NULL;
886 static void drop_mapping(target_phys_addr_t start_addr)
888 struct mapping *p = find_mapping(start_addr);
890 if (p)
891 *p = mappings[--nr_mappings];
893 #endif
895 void kvm_cpu_register_physical_memory(target_phys_addr_t start_addr,
896 unsigned long size,
897 unsigned long phys_offset)
899 int r = 0;
900 unsigned long area_flags = phys_offset & ~TARGET_PAGE_MASK;
901 #ifdef TARGET_I386
902 struct mapping *p;
903 #endif
905 phys_offset &= ~IO_MEM_ROM;
907 if (area_flags == IO_MEM_UNASSIGNED) {
908 #ifdef TARGET_I386
909 if (must_use_aliases_source(start_addr)) {
910 kvm_destroy_memory_alias(kvm_context, start_addr);
911 return;
913 if (must_use_aliases_target(start_addr))
914 return;
915 #endif
916 kvm_unregister_memory_area(kvm_context, start_addr, size);
917 return;
920 r = kvm_is_containing_region(kvm_context, start_addr, size);
921 if (r)
922 return;
924 if (area_flags >= TLB_MMIO)
925 return;
927 #ifdef TARGET_I386
928 if (must_use_aliases_source(start_addr)) {
929 p = find_ram_mapping(phys_offset);
930 if (p) {
931 kvm_create_memory_alias(kvm_context, start_addr, size,
932 p->phys + (phys_offset - p->ram));
934 return;
936 #endif
938 r = kvm_register_phys_mem(kvm_context, start_addr,
939 phys_ram_base + phys_offset,
940 size, 0);
941 if (r < 0) {
942 printf("kvm_cpu_register_physical_memory: failed\n");
943 exit(1);
946 #ifdef TARGET_I386
947 drop_mapping(start_addr);
948 p = &mappings[nr_mappings++];
949 p->phys = start_addr;
950 p->ram = phys_offset;
951 p->len = size;
952 #endif
954 return;
957 void kvm_cpu_unregister_physical_memory(target_phys_addr_t start_addr,
958 target_phys_addr_t size,
959 unsigned long phys_offset)
961 kvm_unregister_memory_area(kvm_context, start_addr, size);
964 int kvm_setup_guest_memory(void *area, unsigned long size)
966 int ret = 0;
968 #ifdef MADV_DONTFORK
969 if (kvm_enabled() && !kvm_has_sync_mmu())
970 ret = madvise(area, size, MADV_DONTFORK);
971 #endif
973 if (ret)
974 perror ("madvise");
976 return ret;
979 int kvm_qemu_check_extension(int ext)
981 return kvm_check_extension(kvm_context, ext);
984 int kvm_qemu_init_env(CPUState *cenv)
986 return kvm_arch_qemu_init_env(cenv);
989 #ifdef KVM_CAP_SET_GUEST_DEBUG
990 struct kvm_sw_breakpoint_head kvm_sw_breakpoints =
991 TAILQ_HEAD_INITIALIZER(kvm_sw_breakpoints);
993 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(target_ulong pc)
995 struct kvm_sw_breakpoint *bp;
997 TAILQ_FOREACH(bp, &kvm_sw_breakpoints, entry) {
998 if (bp->pc == pc)
999 return bp;
1001 return NULL;
1004 struct kvm_set_guest_debug_data {
1005 struct kvm_guest_debug dbg;
1006 int err;
1009 void kvm_invoke_set_guest_debug(void *data)
1011 struct kvm_set_guest_debug_data *dbg_data = data;
1013 dbg_data->err = kvm_set_guest_debug(kvm_context, cpu_single_env->cpu_index,
1014 &dbg_data->dbg);
1017 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1019 struct kvm_set_guest_debug_data data;
1021 data.dbg.control = 0;
1022 if (env->singlestep_enabled)
1023 data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1025 kvm_arch_update_guest_debug(env, &data.dbg);
1026 data.dbg.control |= reinject_trap;
1028 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
1029 return data.err;
1032 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1033 target_ulong len, int type)
1035 struct kvm_sw_breakpoint *bp;
1036 CPUState *env;
1037 int err;
1039 if (type == GDB_BREAKPOINT_SW) {
1040 bp = kvm_find_sw_breakpoint(addr);
1041 if (bp) {
1042 bp->use_count++;
1043 return 0;
1046 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1047 if (!bp)
1048 return -ENOMEM;
1050 bp->pc = addr;
1051 bp->use_count = 1;
1052 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1053 if (err) {
1054 free(bp);
1055 return err;
1058 TAILQ_INSERT_HEAD(&kvm_sw_breakpoints, bp, entry);
1059 } else {
1060 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1061 if (err)
1062 return err;
1065 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1066 err = kvm_update_guest_debug(env, 0);
1067 if (err)
1068 return err;
1070 return 0;
1073 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1074 target_ulong len, int type)
1076 struct kvm_sw_breakpoint *bp;
1077 CPUState *env;
1078 int err;
1080 if (type == GDB_BREAKPOINT_SW) {
1081 bp = kvm_find_sw_breakpoint(addr);
1082 if (!bp)
1083 return -ENOENT;
1085 if (bp->use_count > 1) {
1086 bp->use_count--;
1087 return 0;
1090 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1091 if (err)
1092 return err;
1094 TAILQ_REMOVE(&kvm_sw_breakpoints, bp, entry);
1095 qemu_free(bp);
1096 } else {
1097 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1098 if (err)
1099 return err;
1102 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1103 err = kvm_update_guest_debug(env, 0);
1104 if (err)
1105 return err;
1107 return 0;
1110 void kvm_remove_all_breakpoints(CPUState *current_env)
1112 struct kvm_sw_breakpoint *bp, *next;
1113 CPUState *env;
1115 TAILQ_FOREACH_SAFE(bp, &kvm_sw_breakpoints, entry, next) {
1116 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1117 /* Try harder to find a CPU that currently sees the breakpoint. */
1118 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1119 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1120 break;
1124 kvm_arch_remove_all_hw_breakpoints();
1126 for (env = first_cpu; env != NULL; env = env->next_cpu)
1127 kvm_update_guest_debug(env, 0);
1130 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1132 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1134 return -EINVAL;
1137 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1138 target_ulong len, int type)
1140 return -EINVAL;
1143 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1144 target_ulong len, int type)
1146 return -EINVAL;
1149 void kvm_remove_all_breakpoints(CPUState *current_env)
1152 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1155 * dirty pages logging
1157 /* FIXME: use unsigned long pointer instead of unsigned char */
1158 unsigned char *kvm_dirty_bitmap = NULL;
1159 int kvm_physical_memory_set_dirty_tracking(int enable)
1161 int r = 0;
1163 if (!kvm_enabled())
1164 return 0;
1166 if (enable) {
1167 if (!kvm_dirty_bitmap) {
1168 unsigned bitmap_size = BITMAP_SIZE(phys_ram_size);
1169 kvm_dirty_bitmap = qemu_malloc(bitmap_size);
1170 if (kvm_dirty_bitmap == NULL) {
1171 perror("Failed to allocate dirty pages bitmap");
1172 r=-1;
1174 else {
1175 r = kvm_dirty_pages_log_enable_all(kvm_context);
1179 else {
1180 if (kvm_dirty_bitmap) {
1181 r = kvm_dirty_pages_log_reset(kvm_context);
1182 qemu_free(kvm_dirty_bitmap);
1183 kvm_dirty_bitmap = NULL;
1186 return r;
1189 /* get kvm's dirty pages bitmap and update qemu's */
1190 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
1191 unsigned char *bitmap,
1192 unsigned int offset,
1193 unsigned long mem_size)
1195 unsigned int i, j, n=0;
1196 unsigned char c;
1197 unsigned long page_number, addr, addr1;
1198 ram_addr_t ram_addr;
1199 unsigned int len = ((mem_size/TARGET_PAGE_SIZE) + 7) / 8;
1202 * bitmap-traveling is faster than memory-traveling (for addr...)
1203 * especially when most of the memory is not dirty.
1205 for (i=0; i<len; i++) {
1206 c = bitmap[i];
1207 while (c>0) {
1208 j = ffsl(c) - 1;
1209 c &= ~(1u<<j);
1210 page_number = i * 8 + j;
1211 addr1 = page_number * TARGET_PAGE_SIZE;
1212 addr = offset + addr1;
1213 ram_addr = cpu_get_physical_page_desc(addr);
1214 cpu_physical_memory_set_dirty(ram_addr);
1215 n++;
1218 return 0;
1220 static int kvm_get_dirty_bitmap_cb(unsigned long start, unsigned long len,
1221 void *bitmap, void *opaque)
1223 return kvm_get_dirty_pages_log_range(start, bitmap, start, len);
1227 * get kvm's dirty pages bitmap and update qemu's
1228 * we only care about physical ram, which resides in slots 0 and 3
1230 int kvm_update_dirty_pages_log(void)
1232 int r = 0;
1235 r = kvm_get_dirty_pages_range(kvm_context, 0, phys_ram_size,
1236 kvm_dirty_bitmap, NULL,
1237 kvm_get_dirty_bitmap_cb);
1238 return r;
1241 void kvm_qemu_log_memory(target_phys_addr_t start, target_phys_addr_t size,
1242 int log)
1244 if (log)
1245 kvm_dirty_pages_log_enable_slot(kvm_context, start, size);
1246 else {
1247 #ifdef TARGET_I386
1248 if (must_use_aliases_target(start))
1249 return;
1250 #endif
1251 kvm_dirty_pages_log_disable_slot(kvm_context, start, size);
1255 int kvm_get_phys_ram_page_bitmap(unsigned char *bitmap)
1257 unsigned int bsize = BITMAP_SIZE(phys_ram_size);
1258 unsigned int brsize = BITMAP_SIZE(ram_size);
1259 unsigned int extra_pages = (phys_ram_size - ram_size) / TARGET_PAGE_SIZE;
1260 unsigned int extra_bytes = (extra_pages +7)/8;
1261 unsigned int hole_start = BITMAP_SIZE(0xa0000);
1262 unsigned int hole_end = BITMAP_SIZE(0xc0000);
1264 memset(bitmap, 0xFF, brsize + extra_bytes);
1265 memset(bitmap + hole_start, 0, hole_end - hole_start);
1266 memset(bitmap + brsize + extra_bytes, 0, bsize - brsize - extra_bytes);
1268 return 0;
1271 #ifdef KVM_CAP_IRQCHIP
1273 int kvm_set_irq(int irq, int level)
1275 return kvm_set_irq_level(kvm_context, irq, level);
1278 #endif
1280 int qemu_kvm_get_dirty_pages(unsigned long phys_addr, void *buf)
1282 return kvm_get_dirty_pages(kvm_context, phys_addr, buf);
1285 void *kvm_cpu_create_phys_mem(target_phys_addr_t start_addr,
1286 unsigned long size, int log, int writable)
1288 return kvm_create_phys_mem(kvm_context, start_addr, size, log, writable);
1291 void kvm_cpu_destroy_phys_mem(target_phys_addr_t start_addr,
1292 unsigned long size)
1294 kvm_destroy_phys_mem(kvm_context, start_addr, size);
1297 void kvm_mutex_unlock(void)
1299 assert(!cpu_single_env);
1300 pthread_mutex_unlock(&qemu_mutex);
1303 void kvm_mutex_lock(void)
1305 pthread_mutex_lock(&qemu_mutex);
1306 cpu_single_env = NULL;
1309 int qemu_kvm_register_coalesced_mmio(target_phys_addr_t addr, unsigned int size)
1311 return kvm_register_coalesced_mmio(kvm_context, addr, size);
1314 int qemu_kvm_unregister_coalesced_mmio(target_phys_addr_t addr,
1315 unsigned int size)
1317 return kvm_unregister_coalesced_mmio(kvm_context, addr, size);
1320 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
1322 return kvm_register_coalesced_mmio(kvm_context, start, size);
1325 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
1327 return kvm_unregister_coalesced_mmio(kvm_context, start, size);
1330 #ifdef USE_KVM_DEVICE_ASSIGNMENT
1331 void kvm_add_ioperm_data(struct ioperm_data *data)
1333 LIST_INSERT_HEAD(&ioperm_head, data, entries);
1336 void kvm_ioperm(CPUState *env, void *data)
1338 if (kvm_enabled() && qemu_system_ready)
1339 on_vcpu(env, kvm_arch_do_ioperm, data);
1342 #endif
1344 void kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr)
1346 #ifndef TARGET_IA64
1347 void *buf;
1349 #ifdef TARGET_I386
1350 if (must_use_aliases_source(start_addr))
1351 return;
1352 #endif
1354 buf = qemu_malloc((end_addr - start_addr) / 8 + 2);
1355 kvm_get_dirty_pages_range(kvm_context, start_addr, end_addr - start_addr,
1356 buf, NULL, kvm_get_dirty_bitmap_cb);
1357 qemu_free(buf);
1358 #endif
1361 int kvm_log_start(target_phys_addr_t phys_addr, target_phys_addr_t len)
1363 #ifdef TARGET_I386
1364 if (must_use_aliases_source(phys_addr))
1365 return 0;
1366 #endif
1367 kvm_qemu_log_memory(phys_addr, len, 1);
1368 return 0;
1371 int kvm_log_stop(target_phys_addr_t phys_addr, target_phys_addr_t len)
1373 #ifdef TARGET_I386
1374 if (must_use_aliases_source(phys_addr))
1375 return 0;
1376 #endif
1377 kvm_qemu_log_memory(phys_addr, len, 0);
1378 return 0;
1381 /* hack: both libkvm and upstream qemu define kvm_has_sync_mmu(), differently */
1382 #undef kvm_has_sync_mmu
1383 int qemu_kvm_has_sync_mmu(void)
1385 return kvm_has_sync_mmu(kvm_context);
1388 void qemu_kvm_cpu_stop(CPUState *env)
1390 if (kvm_enabled())
1391 env->kvm_cpu_state.stopped = 1;