Make binary stripping conditional (Riku Voipio)
[qemu-kvm/fedora.git] / qemu-kvm-x86.c
blob838ae186d524b4724708fca2956ed3b7ddef7357
1 /*
2 * qemu/kvm integration, x86 specific code
4 * Copyright (C) 2006-2008 Qumranet Technologies
6 * Licensed under the terms of the GNU GPL version 2 or higher.
7 */
9 #include "config.h"
10 #include "config-host.h"
12 #include <string.h>
13 #include "hw/hw.h"
14 #include "gdbstub.h"
15 #include <sys/io.h>
17 #include "qemu-kvm.h"
18 #include <libkvm.h>
19 #include <pthread.h>
20 #include <sys/utsname.h>
21 #include <linux/kvm_para.h>
23 #define MSR_IA32_TSC 0x10
25 static struct kvm_msr_list *kvm_msr_list;
26 extern unsigned int kvm_shadow_memory;
27 static int kvm_has_msr_star;
29 static int lm_capable_kernel;
31 int kvm_qemu_create_memory_alias(uint64_t phys_start,
32 uint64_t len,
33 uint64_t target_phys)
35 return kvm_create_memory_alias(kvm_context, phys_start, len, target_phys);
38 int kvm_qemu_destroy_memory_alias(uint64_t phys_start)
40 return kvm_destroy_memory_alias(kvm_context, phys_start);
43 int kvm_arch_qemu_create_context(void)
45 int i;
46 struct utsname utsname;
48 uname(&utsname);
49 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
51 if (kvm_shadow_memory)
52 kvm_set_shadow_pages(kvm_context, kvm_shadow_memory);
54 kvm_msr_list = kvm_get_msr_list(kvm_context);
55 if (!kvm_msr_list)
56 return -1;
57 for (i = 0; i < kvm_msr_list->nmsrs; ++i)
58 if (kvm_msr_list->indices[i] == MSR_STAR)
59 kvm_has_msr_star = 1;
60 return 0;
63 static void set_msr_entry(struct kvm_msr_entry *entry, uint32_t index,
64 uint64_t data)
66 entry->index = index;
67 entry->data = data;
70 /* returns 0 on success, non-0 on failure */
71 static int get_msr_entry(struct kvm_msr_entry *entry, CPUState *env)
73 switch (entry->index) {
74 case MSR_IA32_SYSENTER_CS:
75 env->sysenter_cs = entry->data;
76 break;
77 case MSR_IA32_SYSENTER_ESP:
78 env->sysenter_esp = entry->data;
79 break;
80 case MSR_IA32_SYSENTER_EIP:
81 env->sysenter_eip = entry->data;
82 break;
83 case MSR_STAR:
84 env->star = entry->data;
85 break;
86 #ifdef TARGET_X86_64
87 case MSR_CSTAR:
88 env->cstar = entry->data;
89 break;
90 case MSR_KERNELGSBASE:
91 env->kernelgsbase = entry->data;
92 break;
93 case MSR_FMASK:
94 env->fmask = entry->data;
95 break;
96 case MSR_LSTAR:
97 env->lstar = entry->data;
98 break;
99 #endif
100 case MSR_IA32_TSC:
101 env->tsc = entry->data;
102 break;
103 case MSR_VM_HSAVE_PA:
104 env->vm_hsave = entry->data;
105 break;
106 default:
107 printf("Warning unknown msr index 0x%x\n", entry->index);
108 return 1;
110 return 0;
113 #ifdef TARGET_X86_64
114 #define MSR_COUNT 9
115 #else
116 #define MSR_COUNT 5
117 #endif
119 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
121 lhs->selector = rhs->selector;
122 lhs->base = rhs->base;
123 lhs->limit = rhs->limit;
124 lhs->type = 3;
125 lhs->present = 1;
126 lhs->dpl = 3;
127 lhs->db = 0;
128 lhs->s = 1;
129 lhs->l = 0;
130 lhs->g = 0;
131 lhs->avl = 0;
132 lhs->unusable = 0;
135 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
137 unsigned flags = rhs->flags;
138 lhs->selector = rhs->selector;
139 lhs->base = rhs->base;
140 lhs->limit = rhs->limit;
141 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
142 lhs->present = (flags & DESC_P_MASK) != 0;
143 lhs->dpl = rhs->selector & 3;
144 lhs->db = (flags >> DESC_B_SHIFT) & 1;
145 lhs->s = (flags & DESC_S_MASK) != 0;
146 lhs->l = (flags >> DESC_L_SHIFT) & 1;
147 lhs->g = (flags & DESC_G_MASK) != 0;
148 lhs->avl = (flags & DESC_AVL_MASK) != 0;
149 lhs->unusable = 0;
152 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
154 lhs->selector = rhs->selector;
155 lhs->base = rhs->base;
156 lhs->limit = rhs->limit;
157 lhs->flags =
158 (rhs->type << DESC_TYPE_SHIFT)
159 | (rhs->present * DESC_P_MASK)
160 | (rhs->dpl << DESC_DPL_SHIFT)
161 | (rhs->db << DESC_B_SHIFT)
162 | (rhs->s * DESC_S_MASK)
163 | (rhs->l << DESC_L_SHIFT)
164 | (rhs->g * DESC_G_MASK)
165 | (rhs->avl * DESC_AVL_MASK);
168 void kvm_arch_load_regs(CPUState *env)
170 struct kvm_regs regs;
171 struct kvm_fpu fpu;
172 struct kvm_sregs sregs;
173 struct kvm_msr_entry msrs[MSR_COUNT];
174 int rc, n, i;
176 regs.rax = env->regs[R_EAX];
177 regs.rbx = env->regs[R_EBX];
178 regs.rcx = env->regs[R_ECX];
179 regs.rdx = env->regs[R_EDX];
180 regs.rsi = env->regs[R_ESI];
181 regs.rdi = env->regs[R_EDI];
182 regs.rsp = env->regs[R_ESP];
183 regs.rbp = env->regs[R_EBP];
184 #ifdef TARGET_X86_64
185 regs.r8 = env->regs[8];
186 regs.r9 = env->regs[9];
187 regs.r10 = env->regs[10];
188 regs.r11 = env->regs[11];
189 regs.r12 = env->regs[12];
190 regs.r13 = env->regs[13];
191 regs.r14 = env->regs[14];
192 regs.r15 = env->regs[15];
193 #endif
195 regs.rflags = env->eflags;
196 regs.rip = env->eip;
198 kvm_set_regs(kvm_context, env->cpu_index, &regs);
200 memset(&fpu, 0, sizeof fpu);
201 fpu.fsw = env->fpus & ~(7 << 11);
202 fpu.fsw |= (env->fpstt & 7) << 11;
203 fpu.fcw = env->fpuc;
204 for (i = 0; i < 8; ++i)
205 fpu.ftwx |= (!env->fptags[i]) << i;
206 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
207 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
208 fpu.mxcsr = env->mxcsr;
209 kvm_set_fpu(kvm_context, env->cpu_index, &fpu);
211 memcpy(sregs.interrupt_bitmap, env->interrupt_bitmap, sizeof(sregs.interrupt_bitmap));
213 if ((env->eflags & VM_MASK)) {
214 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
215 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
216 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
217 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
218 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
219 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
220 } else {
221 set_seg(&sregs.cs, &env->segs[R_CS]);
222 set_seg(&sregs.ds, &env->segs[R_DS]);
223 set_seg(&sregs.es, &env->segs[R_ES]);
224 set_seg(&sregs.fs, &env->segs[R_FS]);
225 set_seg(&sregs.gs, &env->segs[R_GS]);
226 set_seg(&sregs.ss, &env->segs[R_SS]);
228 if (env->cr[0] & CR0_PE_MASK) {
229 /* force ss cpl to cs cpl */
230 sregs.ss.selector = (sregs.ss.selector & ~3) |
231 (sregs.cs.selector & 3);
232 sregs.ss.dpl = sregs.ss.selector & 3;
236 set_seg(&sregs.tr, &env->tr);
237 set_seg(&sregs.ldt, &env->ldt);
239 sregs.idt.limit = env->idt.limit;
240 sregs.idt.base = env->idt.base;
241 sregs.gdt.limit = env->gdt.limit;
242 sregs.gdt.base = env->gdt.base;
244 sregs.cr0 = env->cr[0];
245 sregs.cr2 = env->cr[2];
246 sregs.cr3 = env->cr[3];
247 sregs.cr4 = env->cr[4];
249 sregs.cr8 = cpu_get_apic_tpr(env);
250 sregs.apic_base = cpu_get_apic_base(env);
252 sregs.efer = env->efer;
254 kvm_set_sregs(kvm_context, env->cpu_index, &sregs);
256 /* msrs */
257 n = 0;
258 set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
259 set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
260 set_msr_entry(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
261 if (kvm_has_msr_star)
262 set_msr_entry(&msrs[n++], MSR_STAR, env->star);
263 set_msr_entry(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
264 #ifdef TARGET_X86_64
265 if (lm_capable_kernel) {
266 set_msr_entry(&msrs[n++], MSR_CSTAR, env->cstar);
267 set_msr_entry(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
268 set_msr_entry(&msrs[n++], MSR_FMASK, env->fmask);
269 set_msr_entry(&msrs[n++], MSR_LSTAR , env->lstar);
271 #endif
273 rc = kvm_set_msrs(kvm_context, env->cpu_index, msrs, n);
274 if (rc == -1)
275 perror("kvm_set_msrs FAILED");
278 void kvm_load_tsc(CPUState *env)
280 int rc;
281 struct kvm_msr_entry msr;
283 set_msr_entry(&msr, MSR_IA32_TSC, env->tsc);
285 rc = kvm_set_msrs(kvm_context, env->cpu_index, &msr, 1);
286 if (rc == -1)
287 perror("kvm_set_tsc FAILED.\n");
290 void kvm_save_mpstate(CPUState *env)
292 #ifdef KVM_CAP_MP_STATE
293 int r;
294 struct kvm_mp_state mp_state;
296 r = kvm_get_mpstate(kvm_context, env->cpu_index, &mp_state);
297 if (r < 0)
298 env->mp_state = -1;
299 else
300 env->mp_state = mp_state.mp_state;
301 #endif
304 void kvm_load_mpstate(CPUState *env)
306 #ifdef KVM_CAP_MP_STATE
307 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
310 * -1 indicates that the host did not support GET_MP_STATE ioctl,
311 * so don't touch it.
313 if (env->mp_state != -1)
314 kvm_set_mpstate(kvm_context, env->cpu_index, &mp_state);
315 #endif
318 void kvm_arch_save_regs(CPUState *env)
320 struct kvm_regs regs;
321 struct kvm_fpu fpu;
322 struct kvm_sregs sregs;
323 struct kvm_msr_entry msrs[MSR_COUNT];
324 uint32_t hflags;
325 uint32_t i, n, rc;
327 kvm_get_regs(kvm_context, env->cpu_index, &regs);
329 env->regs[R_EAX] = regs.rax;
330 env->regs[R_EBX] = regs.rbx;
331 env->regs[R_ECX] = regs.rcx;
332 env->regs[R_EDX] = regs.rdx;
333 env->regs[R_ESI] = regs.rsi;
334 env->regs[R_EDI] = regs.rdi;
335 env->regs[R_ESP] = regs.rsp;
336 env->regs[R_EBP] = regs.rbp;
337 #ifdef TARGET_X86_64
338 env->regs[8] = regs.r8;
339 env->regs[9] = regs.r9;
340 env->regs[10] = regs.r10;
341 env->regs[11] = regs.r11;
342 env->regs[12] = regs.r12;
343 env->regs[13] = regs.r13;
344 env->regs[14] = regs.r14;
345 env->regs[15] = regs.r15;
346 #endif
348 env->eflags = regs.rflags;
349 env->eip = regs.rip;
351 kvm_get_fpu(kvm_context, env->cpu_index, &fpu);
352 env->fpstt = (fpu.fsw >> 11) & 7;
353 env->fpus = fpu.fsw;
354 env->fpuc = fpu.fcw;
355 for (i = 0; i < 8; ++i)
356 env->fptags[i] = !((fpu.ftwx >> i) & 1);
357 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
358 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
359 env->mxcsr = fpu.mxcsr;
361 kvm_get_sregs(kvm_context, env->cpu_index, &sregs);
363 memcpy(env->interrupt_bitmap, sregs.interrupt_bitmap, sizeof(env->interrupt_bitmap));
365 get_seg(&env->segs[R_CS], &sregs.cs);
366 get_seg(&env->segs[R_DS], &sregs.ds);
367 get_seg(&env->segs[R_ES], &sregs.es);
368 get_seg(&env->segs[R_FS], &sregs.fs);
369 get_seg(&env->segs[R_GS], &sregs.gs);
370 get_seg(&env->segs[R_SS], &sregs.ss);
372 get_seg(&env->tr, &sregs.tr);
373 get_seg(&env->ldt, &sregs.ldt);
375 env->idt.limit = sregs.idt.limit;
376 env->idt.base = sregs.idt.base;
377 env->gdt.limit = sregs.gdt.limit;
378 env->gdt.base = sregs.gdt.base;
380 env->cr[0] = sregs.cr0;
381 env->cr[2] = sregs.cr2;
382 env->cr[3] = sregs.cr3;
383 env->cr[4] = sregs.cr4;
385 cpu_set_apic_base(env, sregs.apic_base);
387 env->efer = sregs.efer;
388 //cpu_set_apic_tpr(env, sregs.cr8);
390 #define HFLAG_COPY_MASK ~( \
391 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
392 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
393 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
394 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
398 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
399 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
400 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
401 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
402 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
403 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
404 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
406 if (env->efer & MSR_EFER_LMA) {
407 hflags |= HF_LMA_MASK;
410 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
411 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
412 } else {
413 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
414 (DESC_B_SHIFT - HF_CS32_SHIFT);
415 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
416 (DESC_B_SHIFT - HF_SS32_SHIFT);
417 if (!(env->cr[0] & CR0_PE_MASK) ||
418 (env->eflags & VM_MASK) ||
419 !(hflags & HF_CS32_MASK)) {
420 hflags |= HF_ADDSEG_MASK;
421 } else {
422 hflags |= ((env->segs[R_DS].base |
423 env->segs[R_ES].base |
424 env->segs[R_SS].base) != 0) <<
425 HF_ADDSEG_SHIFT;
428 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
430 /* msrs */
431 n = 0;
432 msrs[n++].index = MSR_IA32_SYSENTER_CS;
433 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
434 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
435 if (kvm_has_msr_star)
436 msrs[n++].index = MSR_STAR;
437 msrs[n++].index = MSR_IA32_TSC;
438 msrs[n++].index = MSR_VM_HSAVE_PA;
439 #ifdef TARGET_X86_64
440 if (lm_capable_kernel) {
441 msrs[n++].index = MSR_CSTAR;
442 msrs[n++].index = MSR_KERNELGSBASE;
443 msrs[n++].index = MSR_FMASK;
444 msrs[n++].index = MSR_LSTAR;
446 #endif
447 rc = kvm_get_msrs(kvm_context, env->cpu_index, msrs, n);
448 if (rc == -1) {
449 perror("kvm_get_msrs FAILED");
451 else {
452 n = rc; /* actual number of MSRs */
453 for (i=0 ; i<n; i++) {
454 if (get_msr_entry(&msrs[i], env))
455 return;
460 static void do_cpuid_ent(struct kvm_cpuid_entry2 *e, uint32_t function,
461 uint32_t count, CPUState *env)
463 env->regs[R_EAX] = function;
464 env->regs[R_ECX] = count;
465 qemu_kvm_cpuid_on_env(env);
466 e->function = function;
467 e->flags = 0;
468 e->index = 0;
469 e->eax = env->regs[R_EAX];
470 e->ebx = env->regs[R_EBX];
471 e->ecx = env->regs[R_ECX];
472 e->edx = env->regs[R_EDX];
475 struct kvm_para_features {
476 int cap;
477 int feature;
478 } para_features[] = {
479 #ifdef KVM_CAP_CLOCKSOURCE
480 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
481 #endif
482 #ifdef KVM_CAP_NOP_IO_DELAY
483 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
484 #endif
485 #ifdef KVM_CAP_PV_MMU
486 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
487 #endif
488 #ifdef KVM_CAP_CR3_CACHE
489 { KVM_CAP_CR3_CACHE, KVM_FEATURE_CR3_CACHE },
490 #endif
491 { -1, -1 }
494 static int get_para_features(kvm_context_t kvm_context)
496 int i, features = 0;
498 for (i = 0; i < ARRAY_SIZE(para_features)-1; i++) {
499 if (kvm_check_extension(kvm_context, para_features[i].cap))
500 features |= (1 << para_features[i].feature);
503 return features;
506 int kvm_arch_qemu_init_env(CPUState *cenv)
508 struct kvm_cpuid_entry2 cpuid_ent[100];
509 #ifdef KVM_CPUID_SIGNATURE
510 struct kvm_cpuid_entry2 *pv_ent;
511 uint32_t signature[3];
512 #endif
513 int cpuid_nent = 0;
514 CPUState copy;
515 uint32_t i, j, limit;
517 copy = *cenv;
519 #ifdef KVM_CPUID_SIGNATURE
520 /* Paravirtualization CPUIDs */
521 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
522 pv_ent = &cpuid_ent[cpuid_nent++];
523 memset(pv_ent, 0, sizeof(*pv_ent));
524 pv_ent->function = KVM_CPUID_SIGNATURE;
525 pv_ent->eax = 0;
526 pv_ent->ebx = signature[0];
527 pv_ent->ecx = signature[1];
528 pv_ent->edx = signature[2];
530 pv_ent = &cpuid_ent[cpuid_nent++];
531 memset(pv_ent, 0, sizeof(*pv_ent));
532 pv_ent->function = KVM_CPUID_FEATURES;
533 pv_ent->eax = get_para_features(kvm_context);
534 #endif
536 copy.regs[R_EAX] = 0;
537 qemu_kvm_cpuid_on_env(&copy);
538 limit = copy.regs[R_EAX];
540 for (i = 0; i <= limit; ++i) {
541 if (i == 4 || i == 0xb || i == 0xd) {
542 for (j = 0; ; ++j) {
543 do_cpuid_ent(&cpuid_ent[cpuid_nent], i, j, &copy);
545 cpuid_ent[cpuid_nent].flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
546 cpuid_ent[cpuid_nent].index = j;
548 cpuid_nent++;
550 if (i == 4 && copy.regs[R_EAX] == 0)
551 break;
552 if (i == 0xb && !(copy.regs[R_ECX] & 0xff00))
553 break;
554 if (i == 0xd && copy.regs[R_EAX] == 0)
555 break;
557 } else
558 do_cpuid_ent(&cpuid_ent[cpuid_nent++], i, 0, &copy);
561 copy.regs[R_EAX] = 0x80000000;
562 qemu_kvm_cpuid_on_env(&copy);
563 limit = copy.regs[R_EAX];
565 for (i = 0x80000000; i <= limit; ++i)
566 do_cpuid_ent(&cpuid_ent[cpuid_nent++], i, 0, &copy);
568 kvm_setup_cpuid2(kvm_context, cenv->cpu_index, cpuid_nent, cpuid_ent);
569 return 0;
572 int kvm_arch_halt(void *opaque, int vcpu)
574 CPUState *env = cpu_single_env;
576 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
577 (env->eflags & IF_MASK)) &&
578 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
579 env->halted = 1;
580 env->exception_index = EXCP_HLT;
582 return 1;
585 void kvm_arch_pre_kvm_run(void *opaque, CPUState *env)
587 if (!kvm_irqchip_in_kernel(kvm_context))
588 kvm_set_cr8(kvm_context, env->cpu_index, cpu_get_apic_tpr(env));
591 void kvm_arch_post_kvm_run(void *opaque, CPUState *env)
593 int vcpu = env->cpu_index;
595 cpu_single_env = env;
597 env->eflags = kvm_get_interrupt_flag(kvm_context, vcpu)
598 ? env->eflags | IF_MASK : env->eflags & ~IF_MASK;
600 cpu_set_apic_tpr(env, kvm_get_cr8(kvm_context, vcpu));
601 cpu_set_apic_base(env, kvm_get_apic_base(kvm_context, vcpu));
604 int kvm_arch_has_work(CPUState *env)
606 if (((env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT)) &&
607 (env->eflags & IF_MASK)) ||
608 (env->interrupt_request & CPU_INTERRUPT_NMI))
609 return 1;
610 return 0;
613 int kvm_arch_try_push_interrupts(void *opaque)
615 CPUState *env = cpu_single_env;
616 int r, irq;
618 if (kvm_is_ready_for_interrupt_injection(kvm_context, env->cpu_index) &&
619 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
620 (env->eflags & IF_MASK)) {
621 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
622 irq = cpu_get_pic_interrupt(env);
623 if (irq >= 0) {
624 r = kvm_inject_irq(kvm_context, env->cpu_index, irq);
625 if (r < 0)
626 printf("cpu %d fail inject %x\n", env->cpu_index, irq);
630 return (env->interrupt_request & CPU_INTERRUPT_HARD) != 0;
633 #ifdef KVM_CAP_USER_NMI
634 void kvm_arch_push_nmi(void *opaque)
636 CPUState *env = cpu_single_env;
637 int r;
639 if (likely(!(env->interrupt_request & CPU_INTERRUPT_NMI)))
640 return;
642 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
643 r = kvm_inject_nmi(kvm_context, env->cpu_index);
644 if (r < 0)
645 printf("cpu %d fail inject NMI\n", env->cpu_index);
647 #endif /* KVM_CAP_USER_NMI */
649 void kvm_arch_update_regs_for_sipi(CPUState *env)
651 SegmentCache cs = env->segs[R_CS];
653 kvm_arch_save_regs(env);
654 env->segs[R_CS] = cs;
655 env->eip = 0;
656 kvm_arch_load_regs(env);
659 int handle_tpr_access(void *opaque, int vcpu,
660 uint64_t rip, int is_write)
662 kvm_tpr_access_report(cpu_single_env, rip, is_write);
663 return 0;
666 void kvm_arch_cpu_reset(CPUState *env)
668 kvm_arch_load_regs(env);
669 if (env->cpu_index != 0) {
670 if (kvm_irqchip_in_kernel(kvm_context)) {
671 #ifdef KVM_CAP_MP_STATE
672 kvm_reset_mpstate(kvm_context, env->cpu_index);
673 #endif
674 } else {
675 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
676 env->halted = 1;
677 env->exception_index = EXCP_HLT;
682 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
684 uint8_t int3 = 0xcc;
686 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
687 cpu_memory_rw_debug(env, bp->pc, &int3, 1, 1))
688 return -EINVAL;
689 return 0;
692 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
694 uint8_t int3;
696 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
697 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
698 return -EINVAL;
699 return 0;
702 #ifdef KVM_CAP_SET_GUEST_DEBUG
703 static struct {
704 target_ulong addr;
705 int len;
706 int type;
707 } hw_breakpoint[4];
709 static int nb_hw_breakpoint;
711 static int find_hw_breakpoint(target_ulong addr, int len, int type)
713 int n;
715 for (n = 0; n < nb_hw_breakpoint; n++)
716 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
717 (hw_breakpoint[n].len == len || len == -1))
718 return n;
719 return -1;
722 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
723 target_ulong len, int type)
725 switch (type) {
726 case GDB_BREAKPOINT_HW:
727 len = 1;
728 break;
729 case GDB_WATCHPOINT_WRITE:
730 case GDB_WATCHPOINT_ACCESS:
731 switch (len) {
732 case 1:
733 break;
734 case 2:
735 case 4:
736 case 8:
737 if (addr & (len - 1))
738 return -EINVAL;
739 break;
740 default:
741 return -EINVAL;
743 break;
744 default:
745 return -ENOSYS;
748 if (nb_hw_breakpoint == 4)
749 return -ENOBUFS;
751 if (find_hw_breakpoint(addr, len, type) >= 0)
752 return -EEXIST;
754 hw_breakpoint[nb_hw_breakpoint].addr = addr;
755 hw_breakpoint[nb_hw_breakpoint].len = len;
756 hw_breakpoint[nb_hw_breakpoint].type = type;
757 nb_hw_breakpoint++;
759 return 0;
762 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
763 target_ulong len, int type)
765 int n;
767 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
768 if (n < 0)
769 return -ENOENT;
771 nb_hw_breakpoint--;
772 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
774 return 0;
777 void kvm_arch_remove_all_hw_breakpoints(void)
779 nb_hw_breakpoint = 0;
782 static CPUWatchpoint hw_watchpoint;
784 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
786 int handle = 0;
787 int n;
789 if (arch_info->exception == 1) {
790 if (arch_info->dr6 & (1 << 14)) {
791 if (cpu_single_env->singlestep_enabled)
792 handle = 1;
793 } else {
794 for (n = 0; n < 4; n++)
795 if (arch_info->dr6 & (1 << n))
796 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
797 case 0x0:
798 handle = 1;
799 break;
800 case 0x1:
801 handle = 1;
802 cpu_single_env->watchpoint_hit = &hw_watchpoint;
803 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
804 hw_watchpoint.flags = BP_MEM_WRITE;
805 break;
806 case 0x3:
807 handle = 1;
808 cpu_single_env->watchpoint_hit = &hw_watchpoint;
809 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
810 hw_watchpoint.flags = BP_MEM_ACCESS;
811 break;
814 } else if (kvm_find_sw_breakpoint(arch_info->pc))
815 handle = 1;
817 if (!handle)
818 kvm_update_guest_debug(cpu_single_env,
819 (arch_info->exception == 1) ?
820 KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
822 return handle;
825 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
827 const uint8_t type_code[] = {
828 [GDB_BREAKPOINT_HW] = 0x0,
829 [GDB_WATCHPOINT_WRITE] = 0x1,
830 [GDB_WATCHPOINT_ACCESS] = 0x3
832 const uint8_t len_code[] = {
833 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
835 int n;
837 if (!TAILQ_EMPTY(&kvm_sw_breakpoints))
838 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
840 if (nb_hw_breakpoint > 0) {
841 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
842 dbg->arch.debugreg[7] = 0x0600;
843 for (n = 0; n < nb_hw_breakpoint; n++) {
844 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
845 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
846 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
847 (len_code[hw_breakpoint[n].len] << (18 + n*4));
851 #endif
853 void kvm_arch_do_ioperm(void *_data)
855 struct ioperm_data *data = _data;
856 ioperm(data->start_port, data->num, data->turn_on);
859 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
860 int reg)
862 return kvm_get_supported_cpuid(kvm_context, function, reg);