Make binary stripping conditional (Riku Voipio)
[qemu-kvm/fedora.git] / linux-user / qemu.h
blob41375677fe4f66b10734471f13e0442e6c0b66b8
1 #ifndef QEMU_H
2 #define QEMU_H
4 #include <signal.h>
5 #include <string.h>
7 #include "cpu.h"
9 #undef DEBUG_REMAP
10 #ifdef DEBUG_REMAP
11 #include <stdlib.h>
12 #endif /* DEBUG_REMAP */
14 #include "qemu-types.h"
16 #include "thunk.h"
17 #include "syscall_defs.h"
18 #include "syscall.h"
19 #include "target_signal.h"
20 #include "gdbstub.h"
22 #if defined(USE_NPTL)
23 #define THREAD __thread
24 #else
25 #define THREAD
26 #endif
28 /* This struct is used to hold certain information about the image.
29 * Basically, it replicates in user space what would be certain
30 * task_struct fields in the kernel
32 struct image_info {
33 abi_ulong load_addr;
34 abi_ulong start_code;
35 abi_ulong end_code;
36 abi_ulong start_data;
37 abi_ulong end_data;
38 abi_ulong start_brk;
39 abi_ulong brk;
40 abi_ulong start_mmap;
41 abi_ulong mmap;
42 abi_ulong rss;
43 abi_ulong start_stack;
44 abi_ulong entry;
45 abi_ulong code_offset;
46 abi_ulong data_offset;
47 char **host_argv;
48 int personality;
51 #ifdef TARGET_I386
52 /* Information about the current linux thread */
53 struct vm86_saved_state {
54 uint32_t eax; /* return code */
55 uint32_t ebx;
56 uint32_t ecx;
57 uint32_t edx;
58 uint32_t esi;
59 uint32_t edi;
60 uint32_t ebp;
61 uint32_t esp;
62 uint32_t eflags;
63 uint32_t eip;
64 uint16_t cs, ss, ds, es, fs, gs;
66 #endif
68 #ifdef TARGET_ARM
69 /* FPU emulator */
70 #include "nwfpe/fpa11.h"
71 #endif
73 #define MAX_SIGQUEUE_SIZE 1024
75 struct sigqueue {
76 struct sigqueue *next;
77 target_siginfo_t info;
80 struct emulated_sigtable {
81 int pending; /* true if signal is pending */
82 struct sigqueue *first;
83 struct sigqueue info; /* in order to always have memory for the
84 first signal, we put it here */
87 /* NOTE: we force a big alignment so that the stack stored after is
88 aligned too */
89 typedef struct TaskState {
90 struct TaskState *next;
91 #ifdef TARGET_ARM
92 /* FPA state */
93 FPA11 fpa;
94 int swi_errno;
95 #endif
96 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
97 abi_ulong target_v86;
98 struct vm86_saved_state vm86_saved_regs;
99 struct target_vm86plus_struct vm86plus;
100 uint32_t v86flags;
101 uint32_t v86mask;
102 #endif
103 #ifdef TARGET_M68K
104 int sim_syscalls;
105 #endif
106 #if defined(TARGET_ARM) || defined(TARGET_M68K)
107 /* Extra fields for semihosted binaries. */
108 uint32_t stack_base;
109 uint32_t heap_base;
110 uint32_t heap_limit;
111 #endif
112 int used; /* non zero if used */
113 struct image_info *info;
115 struct emulated_sigtable sigtab[TARGET_NSIG];
116 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
117 struct sigqueue *first_free; /* first free siginfo queue entry */
118 int signal_pending; /* non zero if a signal may be pending */
120 uint8_t stack[0];
121 } __attribute__((aligned(16))) TaskState;
123 extern char *exec_path;
124 void init_task_state(TaskState *ts);
125 extern const char *qemu_uname_release;
127 /* ??? See if we can avoid exposing so much of the loader internals. */
129 * MAX_ARG_PAGES defines the number of pages allocated for arguments
130 * and envelope for the new program. 32 should suffice, this gives
131 * a maximum env+arg of 128kB w/4KB pages!
133 #define MAX_ARG_PAGES 32
136 * This structure is used to hold the arguments that are
137 * used when loading binaries.
139 struct linux_binprm {
140 char buf[128];
141 void *page[MAX_ARG_PAGES];
142 abi_ulong p;
143 int fd;
144 int e_uid, e_gid;
145 int argc, envc;
146 char **argv;
147 char **envp;
148 char * filename; /* Name of binary */
151 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
152 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
153 abi_ulong stringp, int push_ptr);
154 int loader_exec(const char * filename, char ** argv, char ** envp,
155 struct target_pt_regs * regs, struct image_info *infop);
157 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
158 struct image_info * info);
159 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
160 struct image_info * info);
161 #ifdef TARGET_HAS_ELFLOAD32
162 int load_elf_binary_multi(struct linux_binprm *bprm,
163 struct target_pt_regs *regs,
164 struct image_info *info);
165 #endif
167 abi_long memcpy_to_target(abi_ulong dest, const void *src,
168 unsigned long len);
169 void target_set_brk(abi_ulong new_brk);
170 abi_long do_brk(abi_ulong new_brk);
171 void syscall_init(void);
172 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
173 abi_long arg2, abi_long arg3, abi_long arg4,
174 abi_long arg5, abi_long arg6);
175 void gemu_log(const char *fmt, ...) __attribute__((format(printf,1,2)));
176 extern THREAD CPUState *thread_env;
177 void cpu_loop(CPUState *env);
178 void init_paths(const char *prefix);
179 const char *path(const char *pathname);
180 char *target_strerror(int err);
181 int get_osversion(void);
182 void fork_start(void);
183 void fork_end(int child);
185 #include "qemu-log.h"
187 /* strace.c */
188 void print_syscall(int num,
189 abi_long arg1, abi_long arg2, abi_long arg3,
190 abi_long arg4, abi_long arg5, abi_long arg6);
191 void print_syscall_ret(int num, abi_long arg1);
192 extern int do_strace;
194 /* signal.c */
195 void process_pending_signals(CPUState *cpu_env);
196 void signal_init(void);
197 int queue_signal(CPUState *env, int sig, target_siginfo_t *info);
198 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
199 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
200 int target_to_host_signal(int sig);
201 long do_sigreturn(CPUState *env);
202 long do_rt_sigreturn(CPUState *env);
203 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
205 #ifdef TARGET_I386
206 /* vm86.c */
207 void save_v86_state(CPUX86State *env);
208 void handle_vm86_trap(CPUX86State *env, int trapno);
209 void handle_vm86_fault(CPUX86State *env);
210 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
211 #elif defined(TARGET_SPARC64)
212 void sparc64_set_context(CPUSPARCState *env);
213 void sparc64_get_context(CPUSPARCState *env);
214 #endif
216 /* mmap.c */
217 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
218 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
219 int flags, int fd, abi_ulong offset);
220 int target_munmap(abi_ulong start, abi_ulong len);
221 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
222 abi_ulong new_size, unsigned long flags,
223 abi_ulong new_addr);
224 int target_msync(abi_ulong start, abi_ulong len, int flags);
225 extern unsigned long last_brk;
226 void mmap_lock(void);
227 void mmap_unlock(void);
228 #if defined(USE_NPTL)
229 void mmap_fork_start(void);
230 void mmap_fork_end(int child);
231 #endif
233 /* main.c */
234 extern unsigned long x86_stack_size;
236 /* user access */
238 #define VERIFY_READ 0
239 #define VERIFY_WRITE 1 /* implies read access */
241 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
243 return page_check_range((target_ulong)addr, size,
244 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
247 /* NOTE __get_user and __put_user use host pointers and don't check access. */
248 /* These are usually used to access struct data members once the
249 * struct has been locked - usually with lock_user_struct().
251 #define __put_user(x, hptr)\
253 int size = sizeof(*hptr);\
254 switch(size) {\
255 case 1:\
256 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\
257 break;\
258 case 2:\
259 *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\
260 break;\
261 case 4:\
262 *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\
263 break;\
264 case 8:\
265 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\
266 break;\
267 default:\
268 abort();\
273 #define __get_user(x, hptr) \
275 int size = sizeof(*hptr);\
276 switch(size) {\
277 case 1:\
278 x = (typeof(*hptr))*(uint8_t *)(hptr);\
279 break;\
280 case 2:\
281 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\
282 break;\
283 case 4:\
284 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\
285 break;\
286 case 8:\
287 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\
288 break;\
289 default:\
290 /* avoid warning */\
291 x = 0;\
292 abort();\
297 /* put_user()/get_user() take a guest address and check access */
298 /* These are usually used to access an atomic data type, such as an int,
299 * that has been passed by address. These internally perform locking
300 * and unlocking on the data type.
302 #define put_user(x, gaddr, target_type) \
303 ({ \
304 abi_ulong __gaddr = (gaddr); \
305 target_type *__hptr; \
306 abi_long __ret; \
307 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
308 __ret = __put_user((x), __hptr); \
309 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
310 } else \
311 __ret = -TARGET_EFAULT; \
312 __ret; \
315 #define get_user(x, gaddr, target_type) \
316 ({ \
317 abi_ulong __gaddr = (gaddr); \
318 target_type *__hptr; \
319 abi_long __ret; \
320 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
321 __ret = __get_user((x), __hptr); \
322 unlock_user(__hptr, __gaddr, 0); \
323 } else { \
324 /* avoid warning */ \
325 (x) = 0; \
326 __ret = -TARGET_EFAULT; \
328 __ret; \
331 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
332 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
333 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
334 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
335 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
336 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
337 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
338 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
339 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
340 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
342 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
343 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
344 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
345 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
346 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
347 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
348 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
349 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
350 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
351 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
353 /* copy_from_user() and copy_to_user() are usually used to copy data
354 * buffers between the target and host. These internally perform
355 * locking/unlocking of the memory.
357 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
358 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
360 /* Functions for accessing guest memory. The tget and tput functions
361 read/write single values, byteswapping as neccessary. The lock_user
362 gets a pointer to a contiguous area of guest memory, but does not perform
363 and byteswapping. lock_user may return either a pointer to the guest
364 memory, or a temporary buffer. */
366 /* Lock an area of guest memory into the host. If copy is true then the
367 host area will have the same contents as the guest. */
368 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
370 if (!access_ok(type, guest_addr, len))
371 return NULL;
372 #ifdef DEBUG_REMAP
374 void *addr;
375 addr = malloc(len);
376 if (copy)
377 memcpy(addr, g2h(guest_addr), len);
378 else
379 memset(addr, 0, len);
380 return addr;
382 #else
383 return g2h(guest_addr);
384 #endif
387 /* Unlock an area of guest memory. The first LEN bytes must be
388 flushed back to guest memory. host_ptr = NULL is explicitly
389 allowed and does nothing. */
390 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
391 long len)
394 #ifdef DEBUG_REMAP
395 if (!host_ptr)
396 return;
397 if (host_ptr == g2h(guest_addr))
398 return;
399 if (len > 0)
400 memcpy(g2h(guest_addr), host_ptr, len);
401 free(host_ptr);
402 #endif
405 /* Return the length of a string in target memory or -TARGET_EFAULT if
406 access error. */
407 abi_long target_strlen(abi_ulong gaddr);
409 /* Like lock_user but for null terminated strings. */
410 static inline void *lock_user_string(abi_ulong guest_addr)
412 abi_long len;
413 len = target_strlen(guest_addr);
414 if (len < 0)
415 return NULL;
416 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
419 /* Helper macros for locking/ulocking a target struct. */
420 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
421 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
422 #define unlock_user_struct(host_ptr, guest_addr, copy) \
423 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
425 #if defined(USE_NPTL)
426 #include <pthread.h>
427 #endif
429 #endif /* QEMU_H */