Add SASL authentication support ("Daniel P. Berrange")
[qemu-kvm/fedora.git] / qemu-doc.texi
blob3ba727efb9b56fd622c1511a32e7a3bcfda53601
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
19 @ifnottex
20 @node Top
21 @top
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
34 @contents
36 @node Introduction
37 @chapter Introduction
39 @menu
40 * intro_features:: Features
41 @end menu
43 @node intro_features
44 @section Features
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
49 QEMU has two operating modes:
51 @itemize @minus
53 @item
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
59 @item
60 User mode emulation. In this mode, QEMU can launch
61 processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
65 @end itemize
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance.
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 Beige PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78 @item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit and 64-bit MIPS processors)
80 @item MIPS Magnum (64-bit MIPS processor)
81 @item ARM Integrator/CP (ARM)
82 @item ARM Versatile baseboard (ARM)
83 @item ARM RealView Emulation baseboard (ARM)
84 @item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
85 @item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86 @item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87 @item Freescale MCF5208EVB (ColdFire V2).
88 @item Arnewsh MCF5206 evaluation board (ColdFire V2).
89 @item Palm Tungsten|E PDA (OMAP310 processor)
90 @item N800 and N810 tablets (OMAP2420 processor)
91 @item MusicPal (MV88W8618 ARM processor)
92 @item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
93 @item Siemens SX1 smartphone (OMAP310 processor)
94 @end itemize
96 For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
98 @node Installation
99 @chapter Installation
101 If you want to compile QEMU yourself, see @ref{compilation}.
103 @menu
104 * install_linux::   Linux
105 * install_windows:: Windows
106 * install_mac::     Macintosh
107 @end menu
109 @node install_linux
110 @section Linux
112 If a precompiled package is available for your distribution - you just
113 have to install it. Otherwise, see @ref{compilation}.
115 @node install_windows
116 @section Windows
118 Download the experimental binary installer at
119 @url{http://www.free.oszoo.org/@/download.html}.
121 @node install_mac
122 @section Mac OS X
124 Download the experimental binary installer at
125 @url{http://www.free.oszoo.org/@/download.html}.
127 @node QEMU PC System emulator
128 @chapter QEMU PC System emulator
130 @menu
131 * pcsys_introduction:: Introduction
132 * pcsys_quickstart::   Quick Start
133 * sec_invocation::     Invocation
134 * pcsys_keys::         Keys
135 * pcsys_monitor::      QEMU Monitor
136 * disk_images::        Disk Images
137 * pcsys_network::      Network emulation
138 * direct_linux_boot::  Direct Linux Boot
139 * pcsys_usb::          USB emulation
140 * vnc_security::       VNC security
141 * gdb_usage::          GDB usage
142 * pcsys_os_specific::  Target OS specific information
143 @end menu
145 @node pcsys_introduction
146 @section Introduction
148 @c man begin DESCRIPTION
150 The QEMU PC System emulator simulates the
151 following peripherals:
153 @itemize @minus
154 @item
155 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
156 @item
157 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
158 extensions (hardware level, including all non standard modes).
159 @item
160 PS/2 mouse and keyboard
161 @item
162 2 PCI IDE interfaces with hard disk and CD-ROM support
163 @item
164 Floppy disk
165 @item
166 PCI/ISA PCI network adapters
167 @item
168 Serial ports
169 @item
170 Creative SoundBlaster 16 sound card
171 @item
172 ENSONIQ AudioPCI ES1370 sound card
173 @item
174 Intel 82801AA AC97 Audio compatible sound card
175 @item
176 Adlib(OPL2) - Yamaha YM3812 compatible chip
177 @item
178 Gravis Ultrasound GF1 sound card
179 @item
180 CS4231A compatible sound card
181 @item
182 PCI UHCI USB controller and a virtual USB hub.
183 @end itemize
185 SMP is supported with up to 255 CPUs.
187 Note that adlib, gus and cs4231a are only available when QEMU was
188 configured with --audio-card-list option containing the name(s) of
189 required card(s).
191 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
192 VGA BIOS.
194 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
196 QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
197 by Tibor "TS" Schütz.
199 CS4231A is the chip used in Windows Sound System and GUSMAX products
201 @c man end
203 @node pcsys_quickstart
204 @section Quick Start
206 Download and uncompress the linux image (@file{linux.img}) and type:
208 @example
209 qemu linux.img
210 @end example
212 Linux should boot and give you a prompt.
214 @node sec_invocation
215 @section Invocation
217 @example
218 @c man begin SYNOPSIS
219 usage: qemu [options] [@var{disk_image}]
220 @c man end
221 @end example
223 @c man begin OPTIONS
224 @var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
225 targets do not need a disk image.
227 General options:
228 @table @option
229 @item -h
230 Display help and exit
232 @item -M @var{machine}
233 Select the emulated @var{machine} (@code{-M ?} for list)
235 @item -cpu @var{model}
236 Select CPU model (-cpu ? for list and additional feature selection)
238 @item -smp @var{n}
239 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
240 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
241 to 4.
243 @item -fda @var{file}
244 @item -fdb @var{file}
245 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
246 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
248 @item -hda @var{file}
249 @item -hdb @var{file}
250 @item -hdc @var{file}
251 @item -hdd @var{file}
252 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
254 @item -cdrom @var{file}
255 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
256 @option{-cdrom} at the same time). You can use the host CD-ROM by
257 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
259 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
261 Define a new drive. Valid options are:
263 @table @code
264 @item file=@var{file}
265 This option defines which disk image (@pxref{disk_images}) to use with
266 this drive. If the filename contains comma, you must double it
267 (for instance, "file=my,,file" to use file "my,file").
268 @item if=@var{interface}
269 This option defines on which type on interface the drive is connected.
270 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
271 @item bus=@var{bus},unit=@var{unit}
272 These options define where is connected the drive by defining the bus number and
273 the unit id.
274 @item index=@var{index}
275 This option defines where is connected the drive by using an index in the list
276 of available connectors of a given interface type.
277 @item media=@var{media}
278 This option defines the type of the media: disk or cdrom.
279 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
280 These options have the same definition as they have in @option{-hdachs}.
281 @item snapshot=@var{snapshot}
282 @var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
283 @item cache=@var{cache}
284 @var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
285 @item format=@var{format}
286 Specify which disk @var{format} will be used rather than detecting
287 the format.  Can be used to specifiy format=raw to avoid interpreting
288 an untrusted format header.
289 @item serial=@var{serial}
290 This option specifies the serial number to assign to the device.
291 @item boot=@var{boot}
292 @var{boot} if "on" enables extboot for a given drive so it can be used as a boot drive.
293 @end table
295 By default, writethrough caching is used for all block device.  This means that
296 the host page cache will be used to read and write data but write notification
297 will be sent to the guest only when the data has been reported as written by
298 the storage subsystem.
300 Writeback caching will report data writes as completed as soon as the data is
301 present in the host page cache.  This is safe as long as you trust your host.
302 If your host crashes or loses power, then the guest may experience data
303 corruption.  When using the @option{-snapshot} option, writeback caching is
304 used by default.
306 The host page can be avoided entirely with @option{cache=none}.  This will
307 attempt to do disk IO directly to the guests memory.  QEMU may still perform
308 an internal copy of the data.
310 Some block drivers perform badly with @option{cache=writethrough}, most notably,
311 qcow2.  If performance is more important than correctness,
312 @option{cache=writeback} should be used with qcow2.  By default, if no explicit
313 caching is specified for a qcow2 disk image, @option{cache=writeback} will be
314 used.  For all other disk types, @option{cache=writethrough} is the default.
316 Instead of @option{-cdrom} you can use:
317 @example
318 qemu -drive file=file,index=2,media=cdrom
319 @end example
321 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
322 use:
323 @example
324 qemu -drive file=file,index=0,media=disk
325 qemu -drive file=file,index=1,media=disk
326 qemu -drive file=file,index=2,media=disk
327 qemu -drive file=file,index=3,media=disk
328 @end example
330 You can connect a CDROM to the slave of ide0:
331 @example
332 qemu -drive file=file,if=ide,index=1,media=cdrom
333 @end example
335 If you don't specify the "file=" argument, you define an empty drive:
336 @example
337 qemu -drive if=ide,index=1,media=cdrom
338 @end example
340 You can connect a SCSI disk with unit ID 6 on the bus #0:
341 @example
342 qemu -drive file=file,if=scsi,bus=0,unit=6
343 @end example
345 To boot from a SCSI disk, one would use:
347 @example
348 qemu -drive file=file,if=scsi,boot=on
349 @end example
351 Instead of @option{-fda}, @option{-fdb}, you can use:
352 @example
353 qemu -drive file=file,index=0,if=floppy
354 qemu -drive file=file,index=1,if=floppy
355 @end example
357 By default, @var{interface} is "ide" and @var{index} is automatically
358 incremented:
359 @example
360 qemu -drive file=a -drive file=b"
361 @end example
362 is interpreted like:
363 @example
364 qemu -hda a -hdb b
365 @end example
367 @item -mtdblock file
368 Use 'file' as on-board Flash memory image.
370 @item -sd file
371 Use 'file' as SecureDigital card image.
373 @item -pflash file
374 Use 'file' as a parallel flash image.
376 @item -boot [a|c|d|n]
377 Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
378 is the default.
380 @item -snapshot
381 Write to temporary files instead of disk image files. In this case,
382 the raw disk image you use is not written back. You can however force
383 the write back by pressing @key{C-a s} (@pxref{disk_images}).
385 @item -m @var{megs}
386 Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
387 a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
388 gigabytes respectively.
390 @item -k @var{language}
392 Use keyboard layout @var{language} (for example @code{fr} for
393 French). This option is only needed where it is not easy to get raw PC
394 keycodes (e.g. on Macs, with some X11 servers or with a VNC
395 display). You don't normally need to use it on PC/Linux or PC/Windows
396 hosts.
398 The available layouts are:
399 @example
400 ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
401 da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
402 de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
403 @end example
405 The default is @code{en-us}.
407 @item -audio-help
409 Will show the audio subsystem help: list of drivers, tunable
410 parameters.
412 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
414 Enable audio and selected sound hardware. Use ? to print all
415 available sound hardware.
417 @example
418 qemu -soundhw sb16,adlib disk.img
419 qemu -soundhw es1370 disk.img
420 qemu -soundhw ac97 disk.img
421 qemu -soundhw all disk.img
422 qemu -soundhw ?
423 @end example
425 Note that Linux's i810_audio OSS kernel (for AC97) module might
426 require manually specifying clocking.
428 @example
429 modprobe i810_audio clocking=48000
430 @end example
432 @end table
434 USB options:
435 @table @option
437 @item -usb
438 Enable the USB driver (will be the default soon)
440 @item -usbdevice @var{devname}
441 Add the USB device @var{devname}. @xref{usb_devices}.
443 @table @code
445 @item mouse
446 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
448 @item tablet
449 Pointer device that uses absolute coordinates (like a touchscreen). This
450 means qemu is able to report the mouse position without having to grab the
451 mouse. Also overrides the PS/2 mouse emulation when activated.
453 @item disk:[format=@var{format}]:file
454 Mass storage device based on file. The optional @var{format} argument
455 will be used rather than detecting the format. Can be used to specifiy
456 format=raw to avoid interpreting an untrusted format header.
458 @item host:bus.addr
459 Pass through the host device identified by bus.addr (Linux only).
461 @item host:vendor_id:product_id
462 Pass through the host device identified by vendor_id:product_id (Linux only).
464 @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
465 Serial converter to host character device @var{dev}, see @code{-serial} for the
466 available devices.
468 @item braille
469 Braille device.  This will use BrlAPI to display the braille output on a real
470 or fake device.
472 @item net:options
473 Network adapter that supports CDC ethernet and RNDIS protocols.
475 @end table
477 @item -name @var{name}
478 Sets the @var{name} of the guest.
479 This name will be displayed in the SDL window caption.
480 The @var{name} will also be used for the VNC server.
482 @item -uuid @var{uuid}
483 Set system UUID.
485 @end table
487 Display options:
488 @table @option
490 @item -nographic
492 Normally, QEMU uses SDL to display the VGA output. With this option,
493 you can totally disable graphical output so that QEMU is a simple
494 command line application. The emulated serial port is redirected on
495 the console. Therefore, you can still use QEMU to debug a Linux kernel
496 with a serial console.
498 @item -curses
500 Normally, QEMU uses SDL to display the VGA output.  With this option,
501 QEMU can display the VGA output when in text mode using a 
502 curses/ncurses interface.  Nothing is displayed in graphical mode.
504 @item -no-frame
506 Do not use decorations for SDL windows and start them using the whole
507 available screen space. This makes the using QEMU in a dedicated desktop
508 workspace more convenient.
510 @item -alt-grab
512 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt).
514 @item -no-quit
516 Disable SDL window close capability.
518 @item -sdl
520 Enable SDL.
522 @item -portrait
524 Rotate graphical output 90 deg left (only PXA LCD).
526 @item -vga @var{type}
527 Select type of VGA card to emulate. Valid values for @var{type} are
528 @table @code
529 @item cirrus
530 Cirrus Logic GD5446 Video card. All Windows versions starting from
531 Windows 95 should recognize and use this graphic card. For optimal
532 performances, use 16 bit color depth in the guest and the host OS.
533 (This one is the default)
534 @item std
535 Standard VGA card with Bochs VBE extensions.  If your guest OS
536 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
537 to use high resolution modes (>= 1280x1024x16) then you should use
538 this option.
539 @item vmware
540 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
541 recent XFree86/XOrg server or Windows guest with a driver for this
542 card.
543 @item none
544 Disable VGA card.
545 @end table
547 @item -full-screen
548 Start in full screen.
550 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
552 Normally, QEMU uses SDL to display the VGA output.  With this option,
553 you can have QEMU listen on VNC display @var{display} and redirect the VGA
554 display over the VNC session.  It is very useful to enable the usb
555 tablet device when using this option (option @option{-usbdevice
556 tablet}). When using the VNC display, you must use the @option{-k}
557 parameter to set the keyboard layout if you are not using en-us. Valid
558 syntax for the @var{display} is
560 @table @code
562 @item @var{host}:@var{d}
564 TCP connections will only be allowed from @var{host} on display @var{d}.
565 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
566 be omitted in which case the server will accept connections from any host.
568 @item @code{unix}:@var{path}
570 Connections will be allowed over UNIX domain sockets where @var{path} is the
571 location of a unix socket to listen for connections on.
573 @item none
575 VNC is initialized but not started. The monitor @code{change} command
576 can be used to later start the VNC server.
578 @end table
580 Following the @var{display} value there may be one or more @var{option} flags
581 separated by commas. Valid options are
583 @table @code
585 @item reverse
587 Connect to a listening VNC client via a ``reverse'' connection. The
588 client is specified by the @var{display}. For reverse network
589 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
590 is a TCP port number, not a display number.
592 @item password
594 Require that password based authentication is used for client connections.
595 The password must be set separately using the @code{change} command in the
596 @ref{pcsys_monitor}
598 @item tls
600 Require that client use TLS when communicating with the VNC server. This
601 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
602 attack. It is recommended that this option be combined with either the
603 @var{x509} or @var{x509verify} options.
605 @item x509=@var{/path/to/certificate/dir}
607 Valid if @option{tls} is specified. Require that x509 credentials are used
608 for negotiating the TLS session. The server will send its x509 certificate
609 to the client. It is recommended that a password be set on the VNC server
610 to provide authentication of the client when this is used. The path following
611 this option specifies where the x509 certificates are to be loaded from.
612 See the @ref{vnc_security} section for details on generating certificates.
614 @item x509verify=@var{/path/to/certificate/dir}
616 Valid if @option{tls} is specified. Require that x509 credentials are used
617 for negotiating the TLS session. The server will send its x509 certificate
618 to the client, and request that the client send its own x509 certificate.
619 The server will validate the client's certificate against the CA certificate,
620 and reject clients when validation fails. If the certificate authority is
621 trusted, this is a sufficient authentication mechanism. You may still wish
622 to set a password on the VNC server as a second authentication layer. The
623 path following this option specifies where the x509 certificates are to
624 be loaded from. See the @ref{vnc_security} section for details on generating
625 certificates.
627 @item sasl
629 Require that the client use SASL to authenticate with the VNC server.
630 The exact choice of authentication method used is controlled from the
631 system / user's SASL configuration file for the 'qemu' service. This
632 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
633 unprivileged user, an environment variable SASL_CONF_PATH can be used
634 to make it search alternate locations for the service config.
635 While some SASL auth methods can also provide data encryption (eg GSSAPI),
636 it is recommended that SASL always be combined with the 'tls' and
637 'x509' settings to enable use of SSL and server certificates. This
638 ensures a data encryption preventing compromise of authentication
639 credentials. See the @ref{vnc_security} section for details on using
640 SASL authentication.
642 @end table
644 @end table
646 Network options:
648 @table @option
650 @item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}][,name=@var{name}]
651 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
652 = 0 is the default). The NIC is an rtl8139 by default on the PC
653 target. Optionally, the MAC address can be changed to @var{addr}
654 and a @var{name} can be assigned for use in monitor commands. If no
655 @option{-net} option is specified, a single NIC is created.
656 Qemu can emulate several different models of network card.
657 Valid values for @var{type} are
658 @code{i82551}, @code{i82557b}, @code{i82559er},
659 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
660 @code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
661 Not all devices are supported on all targets.  Use -net nic,model=?
662 for a list of available devices for your target.
664 @item -net user[,vlan=@var{n}][,hostname=@var{name}][,name=@var{name}]
665 Use the user mode network stack which requires no administrator
666 privilege to run.  @option{hostname=name} can be used to specify the client
667 hostname reported by the builtin DHCP server.
669 @item -net channel,@var{port}:@var{dev}
670 Forward @option{user} TCP connection to port @var{port} to character device @var{dev}
672 @item -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}]
673 Connect the host TAP network interface @var{name} to VLAN @var{n}, use
674 the network script @var{file} to configure it and the network script 
675 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS 
676 automatically provides one. @option{fd}=@var{h} can be used to specify
677 the handle of an already opened host TAP interface. The default network 
678 configure script is @file{/etc/qemu-ifup} and the default network 
679 deconfigure script is @file{/etc/qemu-ifdown}. Use @option{script=no} 
680 or @option{downscript=no} to disable script execution. Example:
682 @example
683 qemu linux.img -net nic -net tap
684 @end example
686 More complicated example (two NICs, each one connected to a TAP device)
687 @example
688 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
689                -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
690 @end example
693 @item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
695 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
696 machine using a TCP socket connection. If @option{listen} is
697 specified, QEMU waits for incoming connections on @var{port}
698 (@var{host} is optional). @option{connect} is used to connect to
699 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
700 specifies an already opened TCP socket.
702 Example:
703 @example
704 # launch a first QEMU instance
705 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
706                -net socket,listen=:1234
707 # connect the VLAN 0 of this instance to the VLAN 0
708 # of the first instance
709 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
710                -net socket,connect=127.0.0.1:1234
711 @end example
713 @item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
715 Create a VLAN @var{n} shared with another QEMU virtual
716 machines using a UDP multicast socket, effectively making a bus for
717 every QEMU with same multicast address @var{maddr} and @var{port}.
718 NOTES:
719 @enumerate
720 @item
721 Several QEMU can be running on different hosts and share same bus (assuming
722 correct multicast setup for these hosts).
723 @item
724 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
725 @url{http://user-mode-linux.sf.net}.
726 @item
727 Use @option{fd=h} to specify an already opened UDP multicast socket.
728 @end enumerate
730 Example:
731 @example
732 # launch one QEMU instance
733 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
734                -net socket,mcast=230.0.0.1:1234
735 # launch another QEMU instance on same "bus"
736 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
737                -net socket,mcast=230.0.0.1:1234
738 # launch yet another QEMU instance on same "bus"
739 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
740                -net socket,mcast=230.0.0.1:1234
741 @end example
743 Example (User Mode Linux compat.):
744 @example
745 # launch QEMU instance (note mcast address selected
746 # is UML's default)
747 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
748                -net socket,mcast=239.192.168.1:1102
749 # launch UML
750 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
751 @end example
753 @item -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
754 Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
755 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
756 and MODE @var{octalmode} to change default ownership and permissions for
757 communication port. This option is available only if QEMU has been compiled
758 with vde support enabled.
760 Example:
761 @example
762 # launch vde switch
763 vde_switch -F -sock /tmp/myswitch
764 # launch QEMU instance
765 qemu linux.img -net nic -net vde,sock=/tmp/myswitch
766 @end example
768 @item -net none
769 Indicate that no network devices should be configured. It is used to
770 override the default configuration (@option{-net nic -net user}) which
771 is activated if no @option{-net} options are provided.
773 @item -tftp @var{dir}
774 When using the user mode network stack, activate a built-in TFTP
775 server. The files in @var{dir} will be exposed as the root of a TFTP server.
776 The TFTP client on the guest must be configured in binary mode (use the command
777 @code{bin} of the Unix TFTP client). The host IP address on the guest is as
778 usual 10.0.2.2.
780 @item -bootp @var{file}
781 When using the user mode network stack, broadcast @var{file} as the BOOTP
782 filename.  In conjunction with @option{-tftp}, this can be used to network boot
783 a guest from a local directory.
785 Example (using pxelinux):
786 @example
787 qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
788 @end example
790 @item -smb @var{dir}
791 When using the user mode network stack, activate a built-in SMB
792 server so that Windows OSes can access to the host files in @file{@var{dir}}
793 transparently.
795 In the guest Windows OS, the line:
796 @example
797 10.0.2.4 smbserver
798 @end example
799 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
800 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
802 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
804 Note that a SAMBA server must be installed on the host OS in
805 @file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
806 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
808 @item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
810 When using the user mode network stack, redirect incoming TCP or UDP
811 connections to the host port @var{host-port} to the guest
812 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
813 is not specified, its value is 10.0.2.15 (default address given by the
814 built-in DHCP server).
816 For example, to redirect host X11 connection from screen 1 to guest
817 screen 0, use the following:
819 @example
820 # on the host
821 qemu -redir tcp:6001::6000 [...]
822 # this host xterm should open in the guest X11 server
823 xterm -display :1
824 @end example
826 To redirect telnet connections from host port 5555 to telnet port on
827 the guest, use the following:
829 @example
830 # on the host
831 qemu -redir tcp:5555::23 [...]
832 telnet localhost 5555
833 @end example
835 Then when you use on the host @code{telnet localhost 5555}, you
836 connect to the guest telnet server.
838 @end table
840 Bluetooth(R) options:
841 @table @option
843 @item -bt hci[...]
844 Defines the function of the corresponding Bluetooth HCI.  -bt options
845 are matched with the HCIs present in the chosen machine type.  For
846 example when emulating a machine with only one HCI built into it, only
847 the first @code{-bt hci[...]} option is valid and defines the HCI's
848 logic.  The Transport Layer is decided by the machine type.  Currently
849 the machines @code{n800} and @code{n810} have one HCI and all other
850 machines have none.
852 @anchor{bt-hcis}
853 The following three types are recognized:
855 @table @code
856 @item -bt hci,null
857 (default) The corresponding Bluetooth HCI assumes no internal logic
858 and will not respond to any HCI commands or emit events.
860 @item -bt hci,host[:@var{id}]
861 (@code{bluez} only) The corresponding HCI passes commands / events
862 to / from the physical HCI identified by the name @var{id} (default:
863 @code{hci0}) on the computer running QEMU.  Only available on @code{bluez}
864 capable systems like Linux.
866 @item -bt hci[,vlan=@var{n}]
867 Add a virtual, standard HCI that will participate in the Bluetooth
868 scatternet @var{n} (default @code{0}).  Similarly to @option{-net}
869 VLANs, devices inside a bluetooth network @var{n} can only communicate
870 with other devices in the same network (scatternet).
871 @end table
873 @item -bt vhci[,vlan=@var{n}]
874 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
875 to the host bluetooth stack instead of to the emulated target.  This
876 allows the host and target machines to participate in a common scatternet
877 and communicate.  Requires the Linux @code{vhci} driver installed.  Can
878 be used as following:
880 @example
881 qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
882 @end example
884 @item -bt device:@var{dev}[,vlan=@var{n}]
885 Emulate a bluetooth device @var{dev} and place it in network @var{n}
886 (default @code{0}).  QEMU can only emulate one type of bluetooth devices
887 currently:
889 @table @code
890 @item keyboard
891 Virtual wireless keyboard implementing the HIDP bluetooth profile.
892 @end table
894 @end table
896 i386 target only:
898 @table @option
900 @item -win2k-hack
901 Use it when installing Windows 2000 to avoid a disk full bug. After
902 Windows 2000 is installed, you no longer need this option (this option
903 slows down the IDE transfers).
905 @item -rtc-td-hack
906 Use it if you experience time drift problem in Windows with ACPI HAL.
907 This option will try to figure out how many timer interrupts were not
908 processed by the Windows guest and will re-inject them.
910 @item -no-fd-bootchk
911 Disable boot signature checking for floppy disks in Bochs BIOS. It may
912 be needed to boot from old floppy disks.
914 @item -no-acpi
915 Disable ACPI (Advanced Configuration and Power Interface) support. Use
916 it if your guest OS complains about ACPI problems (PC target machine
917 only).
919 @item -no-hpet
920 Disable HPET support.
922 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
923 Add ACPI table with specified header fields and context from specified files.
925 @end table
927 Linux boot specific: When using these options, you can use a given
928 Linux kernel without installing it in the disk image. It can be useful
929 for easier testing of various kernels.
931 @table @option
933 @item -kernel @var{bzImage}
934 Use @var{bzImage} as kernel image.
936 @item -append @var{cmdline}
937 Use @var{cmdline} as kernel command line
939 @item -initrd @var{file}
940 Use @var{file} as initial ram disk.
942 @end table
944 Debug/Expert options:
945 @table @option
947 @item -serial @var{dev}
948 Redirect the virtual serial port to host character device
949 @var{dev}. The default device is @code{vc} in graphical mode and
950 @code{stdio} in non graphical mode.
952 This option can be used several times to simulate up to 4 serial
953 ports.
955 Use @code{-serial none} to disable all serial ports.
957 Available character devices are:
958 @table @code
959 @item vc[:WxH]
960 Virtual console. Optionally, a width and height can be given in pixel with
961 @example
962 vc:800x600
963 @end example
964 It is also possible to specify width or height in characters:
965 @example
966 vc:80Cx24C
967 @end example
968 @item pty
969 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
970 @item none
971 No device is allocated.
972 @item null
973 void device
974 @item /dev/XXX
975 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
976 parameters are set according to the emulated ones.
977 @item /dev/parport@var{N}
978 [Linux only, parallel port only] Use host parallel port
979 @var{N}. Currently SPP and EPP parallel port features can be used.
980 @item file:@var{filename}
981 Write output to @var{filename}. No character can be read.
982 @item stdio
983 [Unix only] standard input/output
984 @item pipe:@var{filename}
985 name pipe @var{filename}
986 @item COM@var{n}
987 [Windows only] Use host serial port @var{n}
988 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
989 This implements UDP Net Console.
990 When @var{remote_host} or @var{src_ip} are not specified
991 they default to @code{0.0.0.0}.
992 When not using a specified @var{src_port} a random port is automatically chosen.
993 @item msmouse
994 Three button serial mouse. Configure the guest to use Microsoft protocol.
996 If you just want a simple readonly console you can use @code{netcat} or
997 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
998 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
999 will appear in the netconsole session.
1001 If you plan to send characters back via netconsole or you want to stop
1002 and start qemu a lot of times, you should have qemu use the same
1003 source port each time by using something like @code{-serial
1004 udp::4555@@:4556} to qemu. Another approach is to use a patched
1005 version of netcat which can listen to a TCP port and send and receive
1006 characters via udp.  If you have a patched version of netcat which
1007 activates telnet remote echo and single char transfer, then you can
1008 use the following options to step up a netcat redirector to allow
1009 telnet on port 5555 to access the qemu port.
1010 @table @code
1011 @item Qemu Options:
1012 -serial udp::4555@@:4556
1013 @item netcat options:
1014 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
1015 @item telnet options:
1016 localhost 5555
1017 @end table
1020 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
1021 The TCP Net Console has two modes of operation.  It can send the serial
1022 I/O to a location or wait for a connection from a location.  By default
1023 the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
1024 the @var{server} option QEMU will wait for a client socket application
1025 to connect to the port before continuing, unless the @code{nowait}
1026 option was specified.  The @code{nodelay} option disables the Nagle buffering
1027 algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
1028 one TCP connection at a time is accepted. You can use @code{telnet} to
1029 connect to the corresponding character device.
1030 @table @code
1031 @item Example to send tcp console to 192.168.0.2 port 4444
1032 -serial tcp:192.168.0.2:4444
1033 @item Example to listen and wait on port 4444 for connection
1034 -serial tcp::4444,server
1035 @item Example to not wait and listen on ip 192.168.0.100 port 4444
1036 -serial tcp:192.168.0.100:4444,server,nowait
1037 @end table
1039 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
1040 The telnet protocol is used instead of raw tcp sockets.  The options
1041 work the same as if you had specified @code{-serial tcp}.  The
1042 difference is that the port acts like a telnet server or client using
1043 telnet option negotiation.  This will also allow you to send the
1044 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
1045 sequence.  Typically in unix telnet you do it with Control-] and then
1046 type "send break" followed by pressing the enter key.
1048 @item unix:@var{path}[,server][,nowait]
1049 A unix domain socket is used instead of a tcp socket.  The option works the
1050 same as if you had specified @code{-serial tcp} except the unix domain socket
1051 @var{path} is used for connections.
1053 @item mon:@var{dev_string}
1054 This is a special option to allow the monitor to be multiplexed onto
1055 another serial port.  The monitor is accessed with key sequence of
1056 @key{Control-a} and then pressing @key{c}. See monitor access
1057 @ref{pcsys_keys} in the -nographic section for more keys.
1058 @var{dev_string} should be any one of the serial devices specified
1059 above.  An example to multiplex the monitor onto a telnet server
1060 listening on port 4444 would be:
1061 @table @code
1062 @item -serial mon:telnet::4444,server,nowait
1063 @end table
1065 @item braille
1066 Braille device.  This will use BrlAPI to display the braille output on a real
1067 or fake device.
1069 @end table
1071 @item -parallel @var{dev}
1072 Redirect the virtual parallel port to host device @var{dev} (same
1073 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
1074 be used to use hardware devices connected on the corresponding host
1075 parallel port.
1077 This option can be used several times to simulate up to 3 parallel
1078 ports.
1080 Use @code{-parallel none} to disable all parallel ports.
1082 @item -monitor @var{dev}
1083 Redirect the monitor to host device @var{dev} (same devices as the
1084 serial port).
1085 The default device is @code{vc} in graphical mode and @code{stdio} in
1086 non graphical mode.
1088 @item -pidfile @var{file}
1089 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
1090 from a script.
1092 @item -S
1093 Do not start CPU at startup (you must type 'c' in the monitor).
1095 @item -s
1096 Wait gdb connection to port 1234 (@pxref{gdb_usage}).
1098 @item -p @var{port}
1099 Change gdb connection port.  @var{port} can be either a decimal number
1100 to specify a TCP port, or a host device (same devices as the serial port).
1102 @item -d
1103 Output log in /tmp/qemu.log
1104 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
1105 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
1106 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
1107 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
1108 all those parameters. This option is useful for old MS-DOS disk
1109 images.
1111 @item -L  @var{path}
1112 Set the directory for the BIOS, VGA BIOS and keymaps.
1114 @item -bios @var{file}
1115 Set the filename for the BIOS.
1117 @item -kernel-kqemu
1118 Enable KQEMU full virtualization (default is user mode only).
1120 @item -no-kqemu
1121 Disable KQEMU kernel module usage. KQEMU options are only available if
1122 KQEMU support is enabled when compiling.
1124 @item -enable-kvm
1125 Enable KVM full virtualization support. This option is only available
1126 if KVM support is enabled when compiling.
1128 @item -no-reboot
1129 Exit instead of rebooting.
1131 @item -no-shutdown
1132 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
1133 This allows for instance switching to monitor to commit changes to the
1134 disk image.
1136 @item -loadvm @var{file}
1137 Start right away with a saved state (@code{loadvm} in monitor)
1139 @item -daemonize
1140 Daemonize the QEMU process after initialization.  QEMU will not detach from
1141 standard IO until it is ready to receive connections on any of its devices.
1142 This option is a useful way for external programs to launch QEMU without having
1143 to cope with initialization race conditions.
1145 @item -option-rom @var{file}
1146 Load the contents of @var{file} as an option ROM.
1147 This option is useful to load things like EtherBoot.
1149 @item -clock @var{method}
1150 Force the use of the given methods for timer alarm. To see what timers
1151 are available use -clock ?.
1153 @item -localtime
1154 Set the real time clock to local time (the default is to UTC
1155 time). This option is needed to have correct date in MS-DOS or
1156 Windows.
1158 @item -startdate @var{date}
1159 Set the initial date of the real time clock. Valid formats for
1160 @var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
1161 @code{2006-06-17}. The default value is @code{now}.
1163 @item -icount [N|auto]
1164 Enable virtual instruction counter.  The virtual cpu will execute one
1165 instruction every 2^N ns of virtual time.  If @code{auto} is specified
1166 then the virtual cpu speed will be automatically adjusted to keep virtual
1167 time within a few seconds of real time.
1169 Note that while this option can give deterministic behavior, it does not
1170 provide cycle accurate emulation.  Modern CPUs contain superscalar out of
1171 order cores with complex cache hierarchies.  The number of instructions
1172 executed often has little or no correlation with actual performance.
1174 @item -echr numeric_ascii_value
1175 Change the escape character used for switching to the monitor when using
1176 monitor and serial sharing.  The default is @code{0x01} when using the
1177 @code{-nographic} option.  @code{0x01} is equal to pressing
1178 @code{Control-a}.  You can select a different character from the ascii
1179 control keys where 1 through 26 map to Control-a through Control-z.  For
1180 instance you could use the either of the following to change the escape
1181 character to Control-t.
1182 @table @code
1183 @item -echr 0x14
1184 @item -echr 20
1185 @end table
1187 @item -chroot dir
1188 Immediately before starting guest execution, chroot to the specified
1189 directory.  Especially useful in combination with -runas.
1191 @item -runas user
1192 Immediately before starting guest execution, drop root privileges, switching
1193 to the specified user.
1195 @end table
1197 @c man end
1199 @node pcsys_keys
1200 @section Keys
1202 @c man begin OPTIONS
1204 During the graphical emulation, you can use the following keys:
1205 @table @key
1206 @item Ctrl-Alt-f
1207 Toggle full screen
1209 @item Ctrl-Alt-n
1210 Switch to virtual console 'n'. Standard console mappings are:
1211 @table @emph
1212 @item 1
1213 Target system display
1214 @item 2
1215 Monitor
1216 @item 3
1217 Serial port
1218 @end table
1220 @item Ctrl-Alt
1221 Toggle mouse and keyboard grab.
1222 @end table
1224 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1225 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1227 During emulation, if you are using the @option{-nographic} option, use
1228 @key{Ctrl-a h} to get terminal commands:
1230 @table @key
1231 @item Ctrl-a h
1232 @item Ctrl-a ?
1233 Print this help
1234 @item Ctrl-a x
1235 Exit emulator
1236 @item Ctrl-a s
1237 Save disk data back to file (if -snapshot)
1238 @item Ctrl-a t
1239 Toggle console timestamps
1240 @item Ctrl-a b
1241 Send break (magic sysrq in Linux)
1242 @item Ctrl-a c
1243 Switch between console and monitor
1244 @item Ctrl-a Ctrl-a
1245 Send Ctrl-a
1246 @end table
1247 @c man end
1249 @ignore
1251 @c man begin SEEALSO
1252 The HTML documentation of QEMU for more precise information and Linux
1253 user mode emulator invocation.
1254 @c man end
1256 @c man begin AUTHOR
1257 Fabrice Bellard
1258 @c man end
1260 @end ignore
1262 @node pcsys_monitor
1263 @section QEMU Monitor
1265 The QEMU monitor is used to give complex commands to the QEMU
1266 emulator. You can use it to:
1268 @itemize @minus
1270 @item
1271 Remove or insert removable media images
1272 (such as CD-ROM or floppies).
1274 @item
1275 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1276 from a disk file.
1278 @item Inspect the VM state without an external debugger.
1280 @end itemize
1282 @subsection Commands
1284 The following commands are available:
1286 @table @option
1288 @item help or ? [@var{cmd}]
1289 Show the help for all commands or just for command @var{cmd}.
1291 @item commit
1292 Commit changes to the disk images (if -snapshot is used).
1294 @item info @var{subcommand}
1295 Show various information about the system state.
1297 @table @option
1298 @item info version
1299 show the version of QEMU
1300 @item info network
1301 show the various VLANs and the associated devices
1302 @item info chardev
1303 show the character devices
1304 @item info block
1305 show the block devices
1306 @item info block
1307 show block device statistics
1308 @item info registers
1309 show the cpu registers
1310 @item info cpus
1311 show infos for each CPU
1312 @item info history
1313 show the command line history
1314 @item info irq
1315 show the interrupts statistics (if available)
1316 @item info pic
1317 show i8259 (PIC) state
1318 @item info pci
1319 show emulated PCI device info
1320 @item info tlb
1321 show virtual to physical memory mappings (i386 only)
1322 @item info mem
1323 show the active virtual memory mappings (i386 only)
1324 @item info hpet
1325 show state of HPET (i386 only)
1326 @item info kqemu
1327 show KQEMU information
1328 @item info kvm
1329 show KVM information
1330 @item info usb
1331 show USB devices plugged on the virtual USB hub
1332 @item info usbhost
1333 show all USB host devices
1334 @item info profile
1335 show profiling information
1336 @item info capture
1337 show information about active capturing
1338 @item info snapshots
1339 show list of VM snapshots
1340 @item info status
1341 show the current VM status (running|paused)
1342 @item info pcmcia
1343 show guest PCMCIA status
1344 @item info mice
1345 show which guest mouse is receiving events
1346 @item info vnc
1347 show the vnc server status
1348 @item info name
1349 show the current VM name
1350 @item info uuid
1351 show the current VM UUID
1352 @item info cpustats
1353 show CPU statistics
1354 @item info slirp
1355 show SLIRP statistics (if available)
1356 @item info migrate
1357 show migration status
1358 @item info balloon
1359 show balloon information
1360 @end table
1362 @item q or quit
1363 Quit the emulator.
1365 @item eject [-f] @var{device}
1366 Eject a removable medium (use -f to force it).
1368 @item change @var{device} @var{setting}
1370 Change the configuration of a device.
1372 @table @option
1373 @item change @var{diskdevice} @var{filename} [@var{format}]
1374 Change the medium for a removable disk device to point to @var{filename}. eg
1376 @example
1377 (qemu) change ide1-cd0 /path/to/some.iso
1378 @end example
1380 @var{format} is optional.
1382 @item change vnc @var{display},@var{options}
1383 Change the configuration of the VNC server. The valid syntax for @var{display}
1384 and @var{options} are described at @ref{sec_invocation}. eg
1386 @example
1387 (qemu) change vnc localhost:1
1388 @end example
1390 @item change vnc password [@var{password}]
1392 Change the password associated with the VNC server. If the new password is not
1393 supplied, the monitor will prompt for it to be entered. VNC passwords are only
1394 significant up to 8 letters. eg
1396 @example
1397 (qemu) change vnc password
1398 Password: ********
1399 @end example
1401 @end table
1403 @item screendump @var{filename}
1404 Save screen into PPM image @var{filename}.
1406 @item logfile @var{filename}
1407 Output logs to @var{filename}.
1409 @item log @var{item1}[,...]
1410 Activate logging of the specified items to @file{/tmp/qemu.log}.
1412 @item savevm [@var{tag}|@var{id}]
1413 Create a snapshot of the whole virtual machine. If @var{tag} is
1414 provided, it is used as human readable identifier. If there is already
1415 a snapshot with the same tag or ID, it is replaced. More info at
1416 @ref{vm_snapshots}.
1418 @item loadvm @var{tag}|@var{id}
1419 Set the whole virtual machine to the snapshot identified by the tag
1420 @var{tag} or the unique snapshot ID @var{id}.
1422 @item delvm @var{tag}|@var{id}
1423 Delete the snapshot identified by @var{tag} or @var{id}.
1425 @item stop
1426 Stop emulation.
1428 @item c or cont
1429 Resume emulation.
1431 @item gdbserver [@var{port}]
1432 Start gdbserver session (default @var{port}=1234)
1434 @item x/fmt @var{addr}
1435 Virtual memory dump starting at @var{addr}.
1437 @item xp /@var{fmt} @var{addr}
1438 Physical memory dump starting at @var{addr}.
1440 @var{fmt} is a format which tells the command how to format the
1441 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1443 @table @var
1444 @item count
1445 is the number of items to be dumped.
1447 @item format
1448 can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1449 c (char) or i (asm instruction).
1451 @item size
1452 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1453 @code{h} or @code{w} can be specified with the @code{i} format to
1454 respectively select 16 or 32 bit code instruction size.
1456 @end table
1458 Examples:
1459 @itemize
1460 @item
1461 Dump 10 instructions at the current instruction pointer:
1462 @example
1463 (qemu) x/10i $eip
1464 0x90107063:  ret
1465 0x90107064:  sti
1466 0x90107065:  lea    0x0(%esi,1),%esi
1467 0x90107069:  lea    0x0(%edi,1),%edi
1468 0x90107070:  ret
1469 0x90107071:  jmp    0x90107080
1470 0x90107073:  nop
1471 0x90107074:  nop
1472 0x90107075:  nop
1473 0x90107076:  nop
1474 @end example
1476 @item
1477 Dump 80 16 bit values at the start of the video memory.
1478 @smallexample
1479 (qemu) xp/80hx 0xb8000
1480 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1481 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1482 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1483 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1484 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1485 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1486 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1487 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1488 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1489 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1490 @end smallexample
1491 @end itemize
1493 @item p or print/@var{fmt} @var{expr}
1495 Print expression value. Only the @var{format} part of @var{fmt} is
1496 used.
1498 @item sendkey @var{keys}
1500 Send @var{keys} to the emulator. @var{keys} could be the name of the
1501 key or @code{#} followed by the raw value in either decimal or hexadecimal
1502 format. Use @code{-} to press several keys simultaneously. Example:
1503 @example
1504 sendkey ctrl-alt-f1
1505 @end example
1507 This command is useful to send keys that your graphical user interface
1508 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1510 @item system_reset
1512 Reset the system.
1514 @item system_powerdown
1516 Power down the system (if supported).
1518 @item sum @var{addr} @var{size}
1520 Compute the checksum of a memory region.
1522 @item usb_add @var{devname}
1524 Add the USB device @var{devname}.  For details of available devices see
1525 @ref{usb_devices}
1527 @item usb_del @var{devname}
1529 Remove the USB device @var{devname} from the QEMU virtual USB
1530 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1531 command @code{info usb} to see the devices you can remove.
1533 @item mouse_move @var{dx} @var{dy} [@var{dz}]
1534 Move the active mouse to the specified coordinates @var{dx} @var{dy}
1535 with optional scroll axis @var{dz}.
1537 @item mouse_button @var{val}
1538 Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1540 @item mouse_set @var{index}
1541 Set which mouse device receives events at given @var{index}, index
1542 can be obtained with
1543 @example
1544 info mice
1545 @end example
1547 @item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1548 Capture audio into @var{filename}. Using sample rate @var{frequency}
1549 bits per sample @var{bits} and number of channels @var{channels}.
1551 Defaults:
1552 @itemize @minus
1553 @item Sample rate = 44100 Hz - CD quality
1554 @item Bits = 16
1555 @item Number of channels = 2 - Stereo
1556 @end itemize
1558 @item stopcapture @var{index}
1559 Stop capture with a given @var{index}, index can be obtained with
1560 @example
1561 info capture
1562 @end example
1564 @item memsave @var{addr} @var{size} @var{file}
1565 save to disk virtual memory dump starting at @var{addr} of size @var{size}.
1567 @item pmemsave @var{addr} @var{size} @var{file}
1568 save to disk physical memory dump starting at @var{addr} of size @var{size}.
1570 @item boot_set @var{bootdevicelist}
1572 Define new values for the boot device list. Those values will override
1573 the values specified on the command line through the @code{-boot} option.
1575 The values that can be specified here depend on the machine type, but are
1576 the same that can be specified in the @code{-boot} command line option.
1578 @item nmi @var{cpu}
1579 Inject an NMI on the given CPU.
1581 @item migrate [-d] @var{uri}
1582 Migrate to @var{uri} (using -d to not wait for completion).
1584 @item migrate_cancel
1585 Cancel the current VM migration.
1587 @item migrate_set_speed @var{value}
1588 Set maximum speed to @var{value} (in bytes) for migrations.
1590 @item balloon @var{value}
1591 Request VM to change its memory allocation to @var{value} (in MB).
1593 @item set_link @var{name} [up|down]
1594 Set link @var{name} up or down.
1596 @end table
1598 @subsection Integer expressions
1600 The monitor understands integers expressions for every integer
1601 argument. You can use register names to get the value of specifics
1602 CPU registers by prefixing them with @emph{$}.
1604 @node disk_images
1605 @section Disk Images
1607 Since version 0.6.1, QEMU supports many disk image formats, including
1608 growable disk images (their size increase as non empty sectors are
1609 written), compressed and encrypted disk images. Version 0.8.3 added
1610 the new qcow2 disk image format which is essential to support VM
1611 snapshots.
1613 @menu
1614 * disk_images_quickstart::    Quick start for disk image creation
1615 * disk_images_snapshot_mode:: Snapshot mode
1616 * vm_snapshots::              VM snapshots
1617 * qemu_img_invocation::       qemu-img Invocation
1618 * qemu_nbd_invocation::       qemu-nbd Invocation
1619 * host_drives::               Using host drives
1620 * disk_images_fat_images::    Virtual FAT disk images
1621 * disk_images_nbd::           NBD access
1622 @end menu
1624 @node disk_images_quickstart
1625 @subsection Quick start for disk image creation
1627 You can create a disk image with the command:
1628 @example
1629 qemu-img create myimage.img mysize
1630 @end example
1631 where @var{myimage.img} is the disk image filename and @var{mysize} is its
1632 size in kilobytes. You can add an @code{M} suffix to give the size in
1633 megabytes and a @code{G} suffix for gigabytes.
1635 See @ref{qemu_img_invocation} for more information.
1637 @node disk_images_snapshot_mode
1638 @subsection Snapshot mode
1640 If you use the option @option{-snapshot}, all disk images are
1641 considered as read only. When sectors in written, they are written in
1642 a temporary file created in @file{/tmp}. You can however force the
1643 write back to the raw disk images by using the @code{commit} monitor
1644 command (or @key{C-a s} in the serial console).
1646 @node vm_snapshots
1647 @subsection VM snapshots
1649 VM snapshots are snapshots of the complete virtual machine including
1650 CPU state, RAM, device state and the content of all the writable
1651 disks. In order to use VM snapshots, you must have at least one non
1652 removable and writable block device using the @code{qcow2} disk image
1653 format. Normally this device is the first virtual hard drive.
1655 Use the monitor command @code{savevm} to create a new VM snapshot or
1656 replace an existing one. A human readable name can be assigned to each
1657 snapshot in addition to its numerical ID.
1659 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1660 a VM snapshot. @code{info snapshots} lists the available snapshots
1661 with their associated information:
1663 @example
1664 (qemu) info snapshots
1665 Snapshot devices: hda
1666 Snapshot list (from hda):
1667 ID        TAG                 VM SIZE                DATE       VM CLOCK
1668 1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1669 2                                 40M 2006-08-06 12:43:29   00:00:18.633
1670 3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1671 @end example
1673 A VM snapshot is made of a VM state info (its size is shown in
1674 @code{info snapshots}) and a snapshot of every writable disk image.
1675 The VM state info is stored in the first @code{qcow2} non removable
1676 and writable block device. The disk image snapshots are stored in
1677 every disk image. The size of a snapshot in a disk image is difficult
1678 to evaluate and is not shown by @code{info snapshots} because the
1679 associated disk sectors are shared among all the snapshots to save
1680 disk space (otherwise each snapshot would need a full copy of all the
1681 disk images).
1683 When using the (unrelated) @code{-snapshot} option
1684 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1685 but they are deleted as soon as you exit QEMU.
1687 VM snapshots currently have the following known limitations:
1688 @itemize
1689 @item
1690 They cannot cope with removable devices if they are removed or
1691 inserted after a snapshot is done.
1692 @item
1693 A few device drivers still have incomplete snapshot support so their
1694 state is not saved or restored properly (in particular USB).
1695 @end itemize
1697 @node qemu_img_invocation
1698 @subsection @code{qemu-img} Invocation
1700 @include qemu-img.texi
1702 @node qemu_nbd_invocation
1703 @subsection @code{qemu-nbd} Invocation
1705 @include qemu-nbd.texi
1707 @node host_drives
1708 @subsection Using host drives
1710 In addition to disk image files, QEMU can directly access host
1711 devices. We describe here the usage for QEMU version >= 0.8.3.
1713 @subsubsection Linux
1715 On Linux, you can directly use the host device filename instead of a
1716 disk image filename provided you have enough privileges to access
1717 it. For example, use @file{/dev/cdrom} to access to the CDROM or
1718 @file{/dev/fd0} for the floppy.
1720 @table @code
1721 @item CD
1722 You can specify a CDROM device even if no CDROM is loaded. QEMU has
1723 specific code to detect CDROM insertion or removal. CDROM ejection by
1724 the guest OS is supported. Currently only data CDs are supported.
1725 @item Floppy
1726 You can specify a floppy device even if no floppy is loaded. Floppy
1727 removal is currently not detected accurately (if you change floppy
1728 without doing floppy access while the floppy is not loaded, the guest
1729 OS will think that the same floppy is loaded).
1730 @item Hard disks
1731 Hard disks can be used. Normally you must specify the whole disk
1732 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1733 see it as a partitioned disk. WARNING: unless you know what you do, it
1734 is better to only make READ-ONLY accesses to the hard disk otherwise
1735 you may corrupt your host data (use the @option{-snapshot} command
1736 line option or modify the device permissions accordingly).
1737 @end table
1739 @subsubsection Windows
1741 @table @code
1742 @item CD
1743 The preferred syntax is the drive letter (e.g. @file{d:}). The
1744 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1745 supported as an alias to the first CDROM drive.
1747 Currently there is no specific code to handle removable media, so it
1748 is better to use the @code{change} or @code{eject} monitor commands to
1749 change or eject media.
1750 @item Hard disks
1751 Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1752 where @var{N} is the drive number (0 is the first hard disk).
1754 WARNING: unless you know what you do, it is better to only make
1755 READ-ONLY accesses to the hard disk otherwise you may corrupt your
1756 host data (use the @option{-snapshot} command line so that the
1757 modifications are written in a temporary file).
1758 @end table
1761 @subsubsection Mac OS X
1763 @file{/dev/cdrom} is an alias to the first CDROM.
1765 Currently there is no specific code to handle removable media, so it
1766 is better to use the @code{change} or @code{eject} monitor commands to
1767 change or eject media.
1769 @node disk_images_fat_images
1770 @subsection Virtual FAT disk images
1772 QEMU can automatically create a virtual FAT disk image from a
1773 directory tree. In order to use it, just type:
1775 @example
1776 qemu linux.img -hdb fat:/my_directory
1777 @end example
1779 Then you access access to all the files in the @file{/my_directory}
1780 directory without having to copy them in a disk image or to export
1781 them via SAMBA or NFS. The default access is @emph{read-only}.
1783 Floppies can be emulated with the @code{:floppy:} option:
1785 @example
1786 qemu linux.img -fda fat:floppy:/my_directory
1787 @end example
1789 A read/write support is available for testing (beta stage) with the
1790 @code{:rw:} option:
1792 @example
1793 qemu linux.img -fda fat:floppy:rw:/my_directory
1794 @end example
1796 What you should @emph{never} do:
1797 @itemize
1798 @item use non-ASCII filenames ;
1799 @item use "-snapshot" together with ":rw:" ;
1800 @item expect it to work when loadvm'ing ;
1801 @item write to the FAT directory on the host system while accessing it with the guest system.
1802 @end itemize
1804 @node disk_images_nbd
1805 @subsection NBD access
1807 QEMU can access directly to block device exported using the Network Block Device
1808 protocol.
1810 @example
1811 qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1812 @end example
1814 If the NBD server is located on the same host, you can use an unix socket instead
1815 of an inet socket:
1817 @example
1818 qemu linux.img -hdb nbd:unix:/tmp/my_socket
1819 @end example
1821 In this case, the block device must be exported using qemu-nbd:
1823 @example
1824 qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1825 @end example
1827 The use of qemu-nbd allows to share a disk between several guests:
1828 @example
1829 qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1830 @end example
1832 and then you can use it with two guests:
1833 @example
1834 qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1835 qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1836 @end example
1838 @node pcsys_network
1839 @section Network emulation
1841 QEMU can simulate several network cards (PCI or ISA cards on the PC
1842 target) and can connect them to an arbitrary number of Virtual Local
1843 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1844 VLAN. VLAN can be connected between separate instances of QEMU to
1845 simulate large networks. For simpler usage, a non privileged user mode
1846 network stack can replace the TAP device to have a basic network
1847 connection.
1849 @subsection VLANs
1851 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1852 connection between several network devices. These devices can be for
1853 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1854 (TAP devices).
1856 @subsection Using TAP network interfaces
1858 This is the standard way to connect QEMU to a real network. QEMU adds
1859 a virtual network device on your host (called @code{tapN}), and you
1860 can then configure it as if it was a real ethernet card.
1862 @subsubsection Linux host
1864 As an example, you can download the @file{linux-test-xxx.tar.gz}
1865 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1866 configure properly @code{sudo} so that the command @code{ifconfig}
1867 contained in @file{qemu-ifup} can be executed as root. You must verify
1868 that your host kernel supports the TAP network interfaces: the
1869 device @file{/dev/net/tun} must be present.
1871 See @ref{sec_invocation} to have examples of command lines using the
1872 TAP network interfaces.
1874 @subsubsection Windows host
1876 There is a virtual ethernet driver for Windows 2000/XP systems, called
1877 TAP-Win32. But it is not included in standard QEMU for Windows,
1878 so you will need to get it separately. It is part of OpenVPN package,
1879 so download OpenVPN from : @url{http://openvpn.net/}.
1881 @subsection Using the user mode network stack
1883 By using the option @option{-net user} (default configuration if no
1884 @option{-net} option is specified), QEMU uses a completely user mode
1885 network stack (you don't need root privilege to use the virtual
1886 network). The virtual network configuration is the following:
1888 @example
1890          QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1891                            |          (10.0.2.2)
1892                            |
1893                            ---->  DNS server (10.0.2.3)
1894                            |
1895                            ---->  SMB server (10.0.2.4)
1896 @end example
1898 The QEMU VM behaves as if it was behind a firewall which blocks all
1899 incoming connections. You can use a DHCP client to automatically
1900 configure the network in the QEMU VM. The DHCP server assign addresses
1901 to the hosts starting from 10.0.2.15.
1903 In order to check that the user mode network is working, you can ping
1904 the address 10.0.2.2 and verify that you got an address in the range
1905 10.0.2.x from the QEMU virtual DHCP server.
1907 Note that @code{ping} is not supported reliably to the internet as it
1908 would require root privileges. It means you can only ping the local
1909 router (10.0.2.2).
1911 When using the built-in TFTP server, the router is also the TFTP
1912 server.
1914 When using the @option{-redir} option, TCP or UDP connections can be
1915 redirected from the host to the guest. It allows for example to
1916 redirect X11, telnet or SSH connections.
1918 @subsection Connecting VLANs between QEMU instances
1920 Using the @option{-net socket} option, it is possible to make VLANs
1921 that span several QEMU instances. See @ref{sec_invocation} to have a
1922 basic example.
1924 @node direct_linux_boot
1925 @section Direct Linux Boot
1927 This section explains how to launch a Linux kernel inside QEMU without
1928 having to make a full bootable image. It is very useful for fast Linux
1929 kernel testing.
1931 The syntax is:
1932 @example
1933 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1934 @end example
1936 Use @option{-kernel} to provide the Linux kernel image and
1937 @option{-append} to give the kernel command line arguments. The
1938 @option{-initrd} option can be used to provide an INITRD image.
1940 When using the direct Linux boot, a disk image for the first hard disk
1941 @file{hda} is required because its boot sector is used to launch the
1942 Linux kernel.
1944 If you do not need graphical output, you can disable it and redirect
1945 the virtual serial port and the QEMU monitor to the console with the
1946 @option{-nographic} option. The typical command line is:
1947 @example
1948 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1949      -append "root=/dev/hda console=ttyS0" -nographic
1950 @end example
1952 Use @key{Ctrl-a c} to switch between the serial console and the
1953 monitor (@pxref{pcsys_keys}).
1955 @node pcsys_usb
1956 @section USB emulation
1958 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1959 virtual USB devices or real host USB devices (experimental, works only
1960 on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1961 as necessary to connect multiple USB devices.
1963 @menu
1964 * usb_devices::
1965 * host_usb_devices::
1966 @end menu
1967 @node usb_devices
1968 @subsection Connecting USB devices
1970 USB devices can be connected with the @option{-usbdevice} commandline option
1971 or the @code{usb_add} monitor command.  Available devices are:
1973 @table @code
1974 @item mouse
1975 Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1976 @item tablet
1977 Pointer device that uses absolute coordinates (like a touchscreen).
1978 This means qemu is able to report the mouse position without having
1979 to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1980 @item disk:@var{file}
1981 Mass storage device based on @var{file} (@pxref{disk_images})
1982 @item host:@var{bus.addr}
1983 Pass through the host device identified by @var{bus.addr}
1984 (Linux only)
1985 @item host:@var{vendor_id:product_id}
1986 Pass through the host device identified by @var{vendor_id:product_id}
1987 (Linux only)
1988 @item wacom-tablet
1989 Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1990 above but it can be used with the tslib library because in addition to touch
1991 coordinates it reports touch pressure.
1992 @item keyboard
1993 Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1994 @item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1995 Serial converter. This emulates an FTDI FT232BM chip connected to host character
1996 device @var{dev}. The available character devices are the same as for the
1997 @code{-serial} option. The @code{vendorid} and @code{productid} options can be
1998 used to override the default 0403:6001. For instance, 
1999 @example
2000 usb_add serial:productid=FA00:tcp:192.168.0.2:4444
2001 @end example
2002 will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
2003 serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2004 @item braille
2005 Braille device.  This will use BrlAPI to display the braille output on a real
2006 or fake device.
2007 @item net:@var{options}
2008 Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
2009 specifies NIC options as with @code{-net nic,}@var{options} (see description).
2010 For instance, user-mode networking can be used with
2011 @example
2012 qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
2013 @end example
2014 Currently this cannot be used in machines that support PCI NICs.
2015 @item bt[:@var{hci-type}]
2016 Bluetooth dongle whose type is specified in the same format as with
2017 the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
2018 no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
2019 This USB device implements the USB Transport Layer of HCI.  Example
2020 usage:
2021 @example
2022 qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
2023 @end example
2024 @end table
2026 @node host_usb_devices
2027 @subsection Using host USB devices on a Linux host
2029 WARNING: this is an experimental feature. QEMU will slow down when
2030 using it. USB devices requiring real time streaming (i.e. USB Video
2031 Cameras) are not supported yet.
2033 @enumerate
2034 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
2035 is actually using the USB device. A simple way to do that is simply to
2036 disable the corresponding kernel module by renaming it from @file{mydriver.o}
2037 to @file{mydriver.o.disabled}.
2039 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
2040 @example
2041 ls /proc/bus/usb
2042 001  devices  drivers
2043 @end example
2045 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
2046 @example
2047 chown -R myuid /proc/bus/usb
2048 @end example
2050 @item Launch QEMU and do in the monitor:
2051 @example
2052 info usbhost
2053   Device 1.2, speed 480 Mb/s
2054     Class 00: USB device 1234:5678, USB DISK
2055 @end example
2056 You should see the list of the devices you can use (Never try to use
2057 hubs, it won't work).
2059 @item Add the device in QEMU by using:
2060 @example
2061 usb_add host:1234:5678
2062 @end example
2064 Normally the guest OS should report that a new USB device is
2065 plugged. You can use the option @option{-usbdevice} to do the same.
2067 @item Now you can try to use the host USB device in QEMU.
2069 @end enumerate
2071 When relaunching QEMU, you may have to unplug and plug again the USB
2072 device to make it work again (this is a bug).
2074 @node vnc_security
2075 @section VNC security
2077 The VNC server capability provides access to the graphical console
2078 of the guest VM across the network. This has a number of security
2079 considerations depending on the deployment scenarios.
2081 @menu
2082 * vnc_sec_none::
2083 * vnc_sec_password::
2084 * vnc_sec_certificate::
2085 * vnc_sec_certificate_verify::
2086 * vnc_sec_certificate_pw::
2087 * vnc_sec_sasl::
2088 * vnc_sec_certificate_sasl::
2089 * vnc_generate_cert::
2090 * vnc_setup_sasl::
2091 @end menu
2092 @node vnc_sec_none
2093 @subsection Without passwords
2095 The simplest VNC server setup does not include any form of authentication.
2096 For this setup it is recommended to restrict it to listen on a UNIX domain
2097 socket only. For example
2099 @example
2100 qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
2101 @end example
2103 This ensures that only users on local box with read/write access to that
2104 path can access the VNC server. To securely access the VNC server from a
2105 remote machine, a combination of netcat+ssh can be used to provide a secure
2106 tunnel.
2108 @node vnc_sec_password
2109 @subsection With passwords
2111 The VNC protocol has limited support for password based authentication. Since
2112 the protocol limits passwords to 8 characters it should not be considered
2113 to provide high security. The password can be fairly easily brute-forced by
2114 a client making repeat connections. For this reason, a VNC server using password
2115 authentication should be restricted to only listen on the loopback interface
2116 or UNIX domain sockets. Password authentication is requested with the @code{password}
2117 option, and then once QEMU is running the password is set with the monitor. Until
2118 the monitor is used to set the password all clients will be rejected.
2120 @example
2121 qemu [...OPTIONS...] -vnc :1,password -monitor stdio
2122 (qemu) change vnc password
2123 Password: ********
2124 (qemu)
2125 @end example
2127 @node vnc_sec_certificate
2128 @subsection With x509 certificates
2130 The QEMU VNC server also implements the VeNCrypt extension allowing use of
2131 TLS for encryption of the session, and x509 certificates for authentication.
2132 The use of x509 certificates is strongly recommended, because TLS on its
2133 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
2134 support provides a secure session, but no authentication. This allows any
2135 client to connect, and provides an encrypted session.
2137 @example
2138 qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
2139 @end example
2141 In the above example @code{/etc/pki/qemu} should contain at least three files,
2142 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
2143 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
2144 NB the @code{server-key.pem} file should be protected with file mode 0600 to
2145 only be readable by the user owning it.
2147 @node vnc_sec_certificate_verify
2148 @subsection With x509 certificates and client verification
2150 Certificates can also provide a means to authenticate the client connecting.
2151 The server will request that the client provide a certificate, which it will
2152 then validate against the CA certificate. This is a good choice if deploying
2153 in an environment with a private internal certificate authority.
2155 @example
2156 qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
2157 @end example
2160 @node vnc_sec_certificate_pw
2161 @subsection With x509 certificates, client verification and passwords
2163 Finally, the previous method can be combined with VNC password authentication
2164 to provide two layers of authentication for clients.
2166 @example
2167 qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
2168 (qemu) change vnc password
2169 Password: ********
2170 (qemu)
2171 @end example
2174 @node vnc_sec_sasl
2175 @subsection With SASL authentication
2177 The SASL authentication method is a VNC extension, that provides an
2178 easily extendable, pluggable authentication method. This allows for
2179 integration with a wide range of authentication mechanisms, such as
2180 PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
2181 The strength of the authentication depends on the exact mechanism
2182 configured. If the chosen mechanism also provides a SSF layer, then
2183 it will encrypt the datastream as well.
2185 Refer to the later docs on how to choose the exact SASL mechanism
2186 used for authentication, but assuming use of one supporting SSF,
2187 then QEMU can be launched with:
2189 @example
2190 qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
2191 @end example
2193 @node vnc_sec_certificate_sasl
2194 @subsection With x509 certificates and SASL authentication
2196 If the desired SASL authentication mechanism does not supported
2197 SSF layers, then it is strongly advised to run it in combination
2198 with TLS and x509 certificates. This provides securely encrypted
2199 data stream, avoiding risk of compromising of the security
2200 credentials. This can be enabled, by combining the 'sasl' option
2201 with the aforementioned TLS + x509 options:
2203 @example
2204 qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2205 @end example
2208 @node vnc_generate_cert
2209 @subsection Generating certificates for VNC
2211 The GNU TLS packages provides a command called @code{certtool} which can
2212 be used to generate certificates and keys in PEM format. At a minimum it
2213 is neccessary to setup a certificate authority, and issue certificates to
2214 each server. If using certificates for authentication, then each client
2215 will also need to be issued a certificate. The recommendation is for the
2216 server to keep its certificates in either @code{/etc/pki/qemu} or for
2217 unprivileged users in @code{$HOME/.pki/qemu}.
2219 @menu
2220 * vnc_generate_ca::
2221 * vnc_generate_server::
2222 * vnc_generate_client::
2223 @end menu
2224 @node vnc_generate_ca
2225 @subsubsection Setup the Certificate Authority
2227 This step only needs to be performed once per organization / organizational
2228 unit. First the CA needs a private key. This key must be kept VERY secret
2229 and secure. If this key is compromised the entire trust chain of the certificates
2230 issued with it is lost.
2232 @example
2233 # certtool --generate-privkey > ca-key.pem
2234 @end example
2236 A CA needs to have a public certificate. For simplicity it can be a self-signed
2237 certificate, or one issue by a commercial certificate issuing authority. To
2238 generate a self-signed certificate requires one core piece of information, the
2239 name of the organization.
2241 @example
2242 # cat > ca.info <<EOF
2243 cn = Name of your organization
2245 cert_signing_key
2247 # certtool --generate-self-signed \
2248            --load-privkey ca-key.pem
2249            --template ca.info \
2250            --outfile ca-cert.pem
2251 @end example
2253 The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
2254 TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
2256 @node vnc_generate_server
2257 @subsubsection Issuing server certificates
2259 Each server (or host) needs to be issued with a key and certificate. When connecting
2260 the certificate is sent to the client which validates it against the CA certificate.
2261 The core piece of information for a server certificate is the hostname. This should
2262 be the fully qualified hostname that the client will connect with, since the client
2263 will typically also verify the hostname in the certificate. On the host holding the
2264 secure CA private key:
2266 @example
2267 # cat > server.info <<EOF
2268 organization = Name  of your organization
2269 cn = server.foo.example.com
2270 tls_www_server
2271 encryption_key
2272 signing_key
2274 # certtool --generate-privkey > server-key.pem
2275 # certtool --generate-certificate \
2276            --load-ca-certificate ca-cert.pem \
2277            --load-ca-privkey ca-key.pem \
2278            --load-privkey server server-key.pem \
2279            --template server.info \
2280            --outfile server-cert.pem
2281 @end example
2283 The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
2284 to the server for which they were generated. The @code{server-key.pem} is security
2285 sensitive and should be kept protected with file mode 0600 to prevent disclosure.
2287 @node vnc_generate_client
2288 @subsubsection Issuing client certificates
2290 If the QEMU VNC server is to use the @code{x509verify} option to validate client
2291 certificates as its authentication mechanism, each client also needs to be issued
2292 a certificate. The client certificate contains enough metadata to uniquely identify
2293 the client, typically organization, state, city, building, etc. On the host holding
2294 the secure CA private key:
2296 @example
2297 # cat > client.info <<EOF
2298 country = GB
2299 state = London
2300 locality = London
2301 organiazation = Name of your organization
2302 cn = client.foo.example.com
2303 tls_www_client
2304 encryption_key
2305 signing_key
2307 # certtool --generate-privkey > client-key.pem
2308 # certtool --generate-certificate \
2309            --load-ca-certificate ca-cert.pem \
2310            --load-ca-privkey ca-key.pem \
2311            --load-privkey client-key.pem \
2312            --template client.info \
2313            --outfile client-cert.pem
2314 @end example
2316 The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
2317 copied to the client for which they were generated.
2320 @node vnc_setup_sasl
2322 @subsection Configuring SASL mechanisms
2324 The following documentation assumes use of the Cyrus SASL implementation on a
2325 Linux host, but the principals should apply to any other SASL impl. When SASL
2326 is enabled, the mechanism configuration will be loaded from system default
2327 SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
2328 unprivileged user, an environment variable SASL_CONF_PATH can be used
2329 to make it search alternate locations for the service config.
2331 The default configuration might contain
2333 @example
2334 mech_list: digest-md5
2335 sasldb_path: /etc/qemu/passwd.db
2336 @end example
2338 This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
2339 Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
2340 in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
2341 command. While this mechanism is easy to configure and use, it is not
2342 considered secure by modern standards, so only suitable for developers /
2343 ad-hoc testing.
2345 A more serious deployment might use Kerberos, which is done with the 'gssapi'
2346 mechanism
2348 @example
2349 mech_list: gssapi
2350 keytab: /etc/qemu/krb5.tab
2351 @end example
2353 For this to work the administrator of your KDC must generate a Kerberos
2354 principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
2355 replacing 'somehost.example.com' with the fully qualified host name of the
2356 machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm.
2358 Other configurations will be left as an exercise for the reader. It should
2359 be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
2360 encryption. For all other mechanisms, VNC should always be configured to
2361 use TLS and x509 certificates to protect security credentials from snooping.
2363 @node gdb_usage
2364 @section GDB usage
2366 QEMU has a primitive support to work with gdb, so that you can do
2367 'Ctrl-C' while the virtual machine is running and inspect its state.
2369 In order to use gdb, launch qemu with the '-s' option. It will wait for a
2370 gdb connection:
2371 @example
2372 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
2373        -append "root=/dev/hda"
2374 Connected to host network interface: tun0
2375 Waiting gdb connection on port 1234
2376 @end example
2378 Then launch gdb on the 'vmlinux' executable:
2379 @example
2380 > gdb vmlinux
2381 @end example
2383 In gdb, connect to QEMU:
2384 @example
2385 (gdb) target remote localhost:1234
2386 @end example
2388 Then you can use gdb normally. For example, type 'c' to launch the kernel:
2389 @example
2390 (gdb) c
2391 @end example
2393 Here are some useful tips in order to use gdb on system code:
2395 @enumerate
2396 @item
2397 Use @code{info reg} to display all the CPU registers.
2398 @item
2399 Use @code{x/10i $eip} to display the code at the PC position.
2400 @item
2401 Use @code{set architecture i8086} to dump 16 bit code. Then use
2402 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
2403 @end enumerate
2405 Advanced debugging options:
2407 The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
2408 @table @code
2409 @item maintenance packet qqemu.sstepbits
2411 This will display the MASK bits used to control the single stepping IE:
2412 @example
2413 (gdb) maintenance packet qqemu.sstepbits
2414 sending: "qqemu.sstepbits"
2415 received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2416 @end example
2417 @item maintenance packet qqemu.sstep
2419 This will display the current value of the mask used when single stepping IE:
2420 @example
2421 (gdb) maintenance packet qqemu.sstep
2422 sending: "qqemu.sstep"
2423 received: "0x7"
2424 @end example
2425 @item maintenance packet Qqemu.sstep=HEX_VALUE
2427 This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2428 @example
2429 (gdb) maintenance packet Qqemu.sstep=0x5
2430 sending: "qemu.sstep=0x5"
2431 received: "OK"
2432 @end example
2433 @end table
2435 @node pcsys_os_specific
2436 @section Target OS specific information
2438 @subsection Linux
2440 To have access to SVGA graphic modes under X11, use the @code{vesa} or
2441 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2442 color depth in the guest and the host OS.
2444 When using a 2.6 guest Linux kernel, you should add the option
2445 @code{clock=pit} on the kernel command line because the 2.6 Linux
2446 kernels make very strict real time clock checks by default that QEMU
2447 cannot simulate exactly.
2449 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2450 not activated because QEMU is slower with this patch. The QEMU
2451 Accelerator Module is also much slower in this case. Earlier Fedora
2452 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
2453 patch by default. Newer kernels don't have it.
2455 @subsection Windows
2457 If you have a slow host, using Windows 95 is better as it gives the
2458 best speed. Windows 2000 is also a good choice.
2460 @subsubsection SVGA graphic modes support
2462 QEMU emulates a Cirrus Logic GD5446 Video
2463 card. All Windows versions starting from Windows 95 should recognize
2464 and use this graphic card. For optimal performances, use 16 bit color
2465 depth in the guest and the host OS.
2467 If you are using Windows XP as guest OS and if you want to use high
2468 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
2469 1280x1024x16), then you should use the VESA VBE virtual graphic card
2470 (option @option{-std-vga}).
2472 @subsubsection CPU usage reduction
2474 Windows 9x does not correctly use the CPU HLT
2475 instruction. The result is that it takes host CPU cycles even when
2476 idle. You can install the utility from
2477 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2478 problem. Note that no such tool is needed for NT, 2000 or XP.
2480 @subsubsection Windows 2000 disk full problem
2482 Windows 2000 has a bug which gives a disk full problem during its
2483 installation. When installing it, use the @option{-win2k-hack} QEMU
2484 option to enable a specific workaround. After Windows 2000 is
2485 installed, you no longer need this option (this option slows down the
2486 IDE transfers).
2488 @subsubsection Windows 2000 shutdown
2490 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2491 can. It comes from the fact that Windows 2000 does not automatically
2492 use the APM driver provided by the BIOS.
2494 In order to correct that, do the following (thanks to Struan
2495 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2496 Add/Troubleshoot a device => Add a new device & Next => No, select the
2497 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2498 (again) a few times. Now the driver is installed and Windows 2000 now
2499 correctly instructs QEMU to shutdown at the appropriate moment.
2501 @subsubsection Share a directory between Unix and Windows
2503 See @ref{sec_invocation} about the help of the option @option{-smb}.
2505 @subsubsection Windows XP security problem
2507 Some releases of Windows XP install correctly but give a security
2508 error when booting:
2509 @example
2510 A problem is preventing Windows from accurately checking the
2511 license for this computer. Error code: 0x800703e6.
2512 @end example
2514 The workaround is to install a service pack for XP after a boot in safe
2515 mode. Then reboot, and the problem should go away. Since there is no
2516 network while in safe mode, its recommended to download the full
2517 installation of SP1 or SP2 and transfer that via an ISO or using the
2518 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2520 @subsection MS-DOS and FreeDOS
2522 @subsubsection CPU usage reduction
2524 DOS does not correctly use the CPU HLT instruction. The result is that
2525 it takes host CPU cycles even when idle. You can install the utility
2526 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2527 problem.
2529 @node QEMU System emulator for non PC targets
2530 @chapter QEMU System emulator for non PC targets
2532 QEMU is a generic emulator and it emulates many non PC
2533 machines. Most of the options are similar to the PC emulator. The
2534 differences are mentioned in the following sections.
2536 @menu
2537 * QEMU PowerPC System emulator::
2538 * Sparc32 System emulator::
2539 * Sparc64 System emulator::
2540 * MIPS System emulator::
2541 * ARM System emulator::
2542 * ColdFire System emulator::
2543 @end menu
2545 @node QEMU PowerPC System emulator
2546 @section QEMU PowerPC System emulator
2548 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2549 or PowerMac PowerPC system.
2551 QEMU emulates the following PowerMac peripherals:
2553 @itemize @minus
2554 @item
2555 UniNorth or Grackle PCI Bridge
2556 @item
2557 PCI VGA compatible card with VESA Bochs Extensions
2558 @item
2559 2 PMAC IDE interfaces with hard disk and CD-ROM support
2560 @item
2561 NE2000 PCI adapters
2562 @item
2563 Non Volatile RAM
2564 @item
2565 VIA-CUDA with ADB keyboard and mouse.
2566 @end itemize
2568 QEMU emulates the following PREP peripherals:
2570 @itemize @minus
2571 @item
2572 PCI Bridge
2573 @item
2574 PCI VGA compatible card with VESA Bochs Extensions
2575 @item
2576 2 IDE interfaces with hard disk and CD-ROM support
2577 @item
2578 Floppy disk
2579 @item
2580 NE2000 network adapters
2581 @item
2582 Serial port
2583 @item
2584 PREP Non Volatile RAM
2585 @item
2586 PC compatible keyboard and mouse.
2587 @end itemize
2589 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2590 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2592 Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
2593 for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
2594 v2) portable firmware implementation. The goal is to implement a 100%
2595 IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
2597 @c man begin OPTIONS
2599 The following options are specific to the PowerPC emulation:
2601 @table @option
2603 @item -g WxH[xDEPTH]
2605 Set the initial VGA graphic mode. The default is 800x600x15.
2607 @item -prom-env string
2609 Set OpenBIOS variables in NVRAM, for example:
2611 @example
2612 qemu-system-ppc -prom-env 'auto-boot?=false' \
2613  -prom-env 'boot-device=hd:2,\yaboot' \
2614  -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2615 @end example
2617 These variables are not used by Open Hack'Ware.
2619 @end table
2621 @c man end
2624 More information is available at
2625 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2627 @node Sparc32 System emulator
2628 @section Sparc32 System emulator
2630 Use the executable @file{qemu-system-sparc} to simulate the following
2631 Sun4m architecture machines:
2632 @itemize @minus
2633 @item
2634 SPARCstation 4
2635 @item
2636 SPARCstation 5
2637 @item
2638 SPARCstation 10
2639 @item
2640 SPARCstation 20
2641 @item
2642 SPARCserver 600MP
2643 @item
2644 SPARCstation LX
2645 @item
2646 SPARCstation Voyager
2647 @item
2648 SPARCclassic
2649 @item
2650 SPARCbook
2651 @end itemize
2653 The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2654 but Linux limits the number of usable CPUs to 4.
2656 It's also possible to simulate a SPARCstation 2 (sun4c architecture),
2657 SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
2658 emulators are not usable yet.
2660 QEMU emulates the following sun4m/sun4c/sun4d peripherals:
2662 @itemize @minus
2663 @item
2664 IOMMU or IO-UNITs
2665 @item
2666 TCX Frame buffer
2667 @item
2668 Lance (Am7990) Ethernet
2669 @item
2670 Non Volatile RAM M48T02/M48T08
2671 @item
2672 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2673 and power/reset logic
2674 @item
2675 ESP SCSI controller with hard disk and CD-ROM support
2676 @item
2677 Floppy drive (not on SS-600MP)
2678 @item
2679 CS4231 sound device (only on SS-5, not working yet)
2680 @end itemize
2682 The number of peripherals is fixed in the architecture.  Maximum
2683 memory size depends on the machine type, for SS-5 it is 256MB and for
2684 others 2047MB.
2686 Since version 0.8.2, QEMU uses OpenBIOS
2687 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2688 firmware implementation. The goal is to implement a 100% IEEE
2689 1275-1994 (referred to as Open Firmware) compliant firmware.
2691 A sample Linux 2.6 series kernel and ram disk image are available on
2692 the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2693 some kernel versions work. Please note that currently Solaris kernels
2694 don't work probably due to interface issues between OpenBIOS and
2695 Solaris.
2697 @c man begin OPTIONS
2699 The following options are specific to the Sparc32 emulation:
2701 @table @option
2703 @item -g WxHx[xDEPTH]
2705 Set the initial TCX graphic mode. The default is 1024x768x8, currently
2706 the only other possible mode is 1024x768x24.
2708 @item -prom-env string
2710 Set OpenBIOS variables in NVRAM, for example:
2712 @example
2713 qemu-system-sparc -prom-env 'auto-boot?=false' \
2714  -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2715 @end example
2717 @item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
2719 Set the emulated machine type. Default is SS-5.
2721 @end table
2723 @c man end
2725 @node Sparc64 System emulator
2726 @section Sparc64 System emulator
2728 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2729 (UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2730 Niagara (T1) machine. The emulator is not usable for anything yet, but
2731 it can launch some kernels.
2733 QEMU emulates the following peripherals:
2735 @itemize @minus
2736 @item
2737 UltraSparc IIi APB PCI Bridge
2738 @item
2739 PCI VGA compatible card with VESA Bochs Extensions
2740 @item
2741 PS/2 mouse and keyboard
2742 @item
2743 Non Volatile RAM M48T59
2744 @item
2745 PC-compatible serial ports
2746 @item
2747 2 PCI IDE interfaces with hard disk and CD-ROM support
2748 @item
2749 Floppy disk
2750 @end itemize
2752 @c man begin OPTIONS
2754 The following options are specific to the Sparc64 emulation:
2756 @table @option
2758 @item -prom-env string
2760 Set OpenBIOS variables in NVRAM, for example:
2762 @example
2763 qemu-system-sparc64 -prom-env 'auto-boot?=false'
2764 @end example
2766 @item -M [sun4u|sun4v|Niagara]
2768 Set the emulated machine type. The default is sun4u.
2770 @end table
2772 @c man end
2774 @node MIPS System emulator
2775 @section MIPS System emulator
2777 Four executables cover simulation of 32 and 64-bit MIPS systems in
2778 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2779 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2780 Five different machine types are emulated:
2782 @itemize @minus
2783 @item
2784 A generic ISA PC-like machine "mips"
2785 @item
2786 The MIPS Malta prototype board "malta"
2787 @item
2788 An ACER Pica "pica61". This machine needs the 64-bit emulator.
2789 @item
2790 MIPS emulator pseudo board "mipssim"
2791 @item
2792 A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2793 @end itemize
2795 The generic emulation is supported by Debian 'Etch' and is able to
2796 install Debian into a virtual disk image. The following devices are
2797 emulated:
2799 @itemize @minus
2800 @item
2801 A range of MIPS CPUs, default is the 24Kf
2802 @item
2803 PC style serial port
2804 @item
2805 PC style IDE disk
2806 @item
2807 NE2000 network card
2808 @end itemize
2810 The Malta emulation supports the following devices:
2812 @itemize @minus
2813 @item
2814 Core board with MIPS 24Kf CPU and Galileo system controller
2815 @item
2816 PIIX4 PCI/USB/SMbus controller
2817 @item
2818 The Multi-I/O chip's serial device
2819 @item
2820 PCnet32 PCI network card
2821 @item
2822 Malta FPGA serial device
2823 @item
2824 Cirrus (default) or any other PCI VGA graphics card
2825 @end itemize
2827 The ACER Pica emulation supports:
2829 @itemize @minus
2830 @item
2831 MIPS R4000 CPU
2832 @item
2833 PC-style IRQ and DMA controllers
2834 @item
2835 PC Keyboard
2836 @item
2837 IDE controller
2838 @end itemize
2840 The mipssim pseudo board emulation provides an environment similiar
2841 to what the proprietary MIPS emulator uses for running Linux.
2842 It supports:
2844 @itemize @minus
2845 @item
2846 A range of MIPS CPUs, default is the 24Kf
2847 @item
2848 PC style serial port
2849 @item
2850 MIPSnet network emulation
2851 @end itemize
2853 The MIPS Magnum R4000 emulation supports:
2855 @itemize @minus
2856 @item
2857 MIPS R4000 CPU
2858 @item
2859 PC-style IRQ controller
2860 @item
2861 PC Keyboard
2862 @item
2863 SCSI controller
2864 @item
2865 G364 framebuffer
2866 @end itemize
2869 @node ARM System emulator
2870 @section ARM System emulator
2872 Use the executable @file{qemu-system-arm} to simulate a ARM
2873 machine. The ARM Integrator/CP board is emulated with the following
2874 devices:
2876 @itemize @minus
2877 @item
2878 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2879 @item
2880 Two PL011 UARTs
2881 @item
2882 SMC 91c111 Ethernet adapter
2883 @item
2884 PL110 LCD controller
2885 @item
2886 PL050 KMI with PS/2 keyboard and mouse.
2887 @item
2888 PL181 MultiMedia Card Interface with SD card.
2889 @end itemize
2891 The ARM Versatile baseboard is emulated with the following devices:
2893 @itemize @minus
2894 @item
2895 ARM926E, ARM1136 or Cortex-A8 CPU
2896 @item
2897 PL190 Vectored Interrupt Controller
2898 @item
2899 Four PL011 UARTs
2900 @item
2901 SMC 91c111 Ethernet adapter
2902 @item
2903 PL110 LCD controller
2904 @item
2905 PL050 KMI with PS/2 keyboard and mouse.
2906 @item
2907 PCI host bridge.  Note the emulated PCI bridge only provides access to
2908 PCI memory space.  It does not provide access to PCI IO space.
2909 This means some devices (eg. ne2k_pci NIC) are not usable, and others
2910 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2911 mapped control registers.
2912 @item
2913 PCI OHCI USB controller.
2914 @item
2915 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2916 @item
2917 PL181 MultiMedia Card Interface with SD card.
2918 @end itemize
2920 The ARM RealView Emulation baseboard is emulated with the following devices:
2922 @itemize @minus
2923 @item
2924 ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2925 @item
2926 ARM AMBA Generic/Distributed Interrupt Controller
2927 @item
2928 Four PL011 UARTs
2929 @item
2930 SMC 91c111 Ethernet adapter
2931 @item
2932 PL110 LCD controller
2933 @item
2934 PL050 KMI with PS/2 keyboard and mouse
2935 @item
2936 PCI host bridge
2937 @item
2938 PCI OHCI USB controller
2939 @item
2940 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2941 @item
2942 PL181 MultiMedia Card Interface with SD card.
2943 @end itemize
2945 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2946 and "Terrier") emulation includes the following peripherals:
2948 @itemize @minus
2949 @item
2950 Intel PXA270 System-on-chip (ARM V5TE core)
2951 @item
2952 NAND Flash memory
2953 @item
2954 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2955 @item
2956 On-chip OHCI USB controller
2957 @item
2958 On-chip LCD controller
2959 @item
2960 On-chip Real Time Clock
2961 @item
2962 TI ADS7846 touchscreen controller on SSP bus
2963 @item
2964 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2965 @item
2966 GPIO-connected keyboard controller and LEDs
2967 @item
2968 Secure Digital card connected to PXA MMC/SD host
2969 @item
2970 Three on-chip UARTs
2971 @item
2972 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2973 @end itemize
2975 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2976 following elements:
2978 @itemize @minus
2979 @item
2980 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2981 @item
2982 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2983 @item
2984 On-chip LCD controller
2985 @item
2986 On-chip Real Time Clock
2987 @item
2988 TI TSC2102i touchscreen controller / analog-digital converter / Audio
2989 CODEC, connected through MicroWire and I@math{^2}S busses
2990 @item
2991 GPIO-connected matrix keypad
2992 @item
2993 Secure Digital card connected to OMAP MMC/SD host
2994 @item
2995 Three on-chip UARTs
2996 @end itemize
2998 Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2999 emulation supports the following elements:
3001 @itemize @minus
3002 @item
3003 Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
3004 @item
3005 RAM and non-volatile OneNAND Flash memories
3006 @item
3007 Display connected to EPSON remote framebuffer chip and OMAP on-chip
3008 display controller and a LS041y3 MIPI DBI-C controller
3009 @item
3010 TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
3011 driven through SPI bus
3012 @item
3013 National Semiconductor LM8323-controlled qwerty keyboard driven
3014 through I@math{^2}C bus
3015 @item
3016 Secure Digital card connected to OMAP MMC/SD host
3017 @item
3018 Three OMAP on-chip UARTs and on-chip STI debugging console
3019 @item
3020 A Bluetooth(R) transciever and HCI connected to an UART
3021 @item
3022 Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
3023 TUSB6010 chip - only USB host mode is supported
3024 @item
3025 TI TMP105 temperature sensor driven through I@math{^2}C bus
3026 @item
3027 TI TWL92230C power management companion with an RTC on I@math{^2}C bus
3028 @item
3029 Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
3030 through CBUS
3031 @end itemize
3033 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
3034 devices:
3036 @itemize @minus
3037 @item
3038 Cortex-M3 CPU core.
3039 @item
3040 64k Flash and 8k SRAM.
3041 @item
3042 Timers, UARTs, ADC and I@math{^2}C interface.
3043 @item
3044 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
3045 @end itemize
3047 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
3048 devices:
3050 @itemize @minus
3051 @item
3052 Cortex-M3 CPU core.
3053 @item
3054 256k Flash and 64k SRAM.
3055 @item
3056 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
3057 @item
3058 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
3059 @end itemize
3061 The Freecom MusicPal internet radio emulation includes the following
3062 elements:
3064 @itemize @minus
3065 @item
3066 Marvell MV88W8618 ARM core.
3067 @item
3068 32 MB RAM, 256 KB SRAM, 8 MB flash.
3069 @item
3070 Up to 2 16550 UARTs
3071 @item
3072 MV88W8xx8 Ethernet controller
3073 @item
3074 MV88W8618 audio controller, WM8750 CODEC and mixer
3075 @item
3076 128×64 display with brightness control
3077 @item
3078 2 buttons, 2 navigation wheels with button function
3079 @end itemize
3081 The Siemens SX1 models v1 and v2 (default) basic emulation.
3082 The emulaton includes the following elements:
3084 @itemize @minus
3085 @item
3086 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
3087 @item
3088 ROM and RAM memories (ROM firmware image can be loaded with -pflash)
3090 1 Flash of 16MB and 1 Flash of 8MB
3092 1 Flash of 32MB
3093 @item
3094 On-chip LCD controller
3095 @item
3096 On-chip Real Time Clock
3097 @item
3098 Secure Digital card connected to OMAP MMC/SD host
3099 @item
3100 Three on-chip UARTs
3101 @end itemize
3103 A Linux 2.6 test image is available on the QEMU web site. More
3104 information is available in the QEMU mailing-list archive.
3106 @c man begin OPTIONS
3108 The following options are specific to the ARM emulation:
3110 @table @option
3112 @item -semihosting
3113 Enable semihosting syscall emulation.
3115 On ARM this implements the "Angel" interface.
3117 Note that this allows guest direct access to the host filesystem,
3118 so should only be used with trusted guest OS.
3120 @end table
3122 @node ColdFire System emulator
3123 @section ColdFire System emulator
3125 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
3126 The emulator is able to boot a uClinux kernel.
3128 The M5208EVB emulation includes the following devices:
3130 @itemize @minus
3131 @item
3132 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
3133 @item
3134 Three Two on-chip UARTs.
3135 @item
3136 Fast Ethernet Controller (FEC)
3137 @end itemize
3139 The AN5206 emulation includes the following devices:
3141 @itemize @minus
3142 @item
3143 MCF5206 ColdFire V2 Microprocessor.
3144 @item
3145 Two on-chip UARTs.
3146 @end itemize
3148 @c man begin OPTIONS
3150 The following options are specific to the ARM emulation:
3152 @table @option
3154 @item -semihosting
3155 Enable semihosting syscall emulation.
3157 On M68K this implements the "ColdFire GDB" interface used by libgloss.
3159 Note that this allows guest direct access to the host filesystem,
3160 so should only be used with trusted guest OS.
3162 @end table
3164 @node QEMU User space emulator
3165 @chapter QEMU User space emulator
3167 @menu
3168 * Supported Operating Systems ::
3169 * Linux User space emulator::
3170 * Mac OS X/Darwin User space emulator ::
3171 * BSD User space emulator ::
3172 @end menu
3174 @node Supported Operating Systems
3175 @section Supported Operating Systems
3177 The following OS are supported in user space emulation:
3179 @itemize @minus
3180 @item
3181 Linux (referred as qemu-linux-user)
3182 @item
3183 Mac OS X/Darwin (referred as qemu-darwin-user)
3184 @item
3185 BSD (referred as qemu-bsd-user)
3186 @end itemize
3188 @node Linux User space emulator
3189 @section Linux User space emulator
3191 @menu
3192 * Quick Start::
3193 * Wine launch::
3194 * Command line options::
3195 * Other binaries::
3196 @end menu
3198 @node Quick Start
3199 @subsection Quick Start
3201 In order to launch a Linux process, QEMU needs the process executable
3202 itself and all the target (x86) dynamic libraries used by it.
3204 @itemize
3206 @item On x86, you can just try to launch any process by using the native
3207 libraries:
3209 @example
3210 qemu-i386 -L / /bin/ls
3211 @end example
3213 @code{-L /} tells that the x86 dynamic linker must be searched with a
3214 @file{/} prefix.
3216 @item Since QEMU is also a linux process, you can launch qemu with
3217 qemu (NOTE: you can only do that if you compiled QEMU from the sources):
3219 @example
3220 qemu-i386 -L / qemu-i386 -L / /bin/ls
3221 @end example
3223 @item On non x86 CPUs, you need first to download at least an x86 glibc
3224 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
3225 @code{LD_LIBRARY_PATH} is not set:
3227 @example
3228 unset LD_LIBRARY_PATH
3229 @end example
3231 Then you can launch the precompiled @file{ls} x86 executable:
3233 @example
3234 qemu-i386 tests/i386/ls
3235 @end example
3236 You can look at @file{qemu-binfmt-conf.sh} so that
3237 QEMU is automatically launched by the Linux kernel when you try to
3238 launch x86 executables. It requires the @code{binfmt_misc} module in the
3239 Linux kernel.
3241 @item The x86 version of QEMU is also included. You can try weird things such as:
3242 @example
3243 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
3244           /usr/local/qemu-i386/bin/ls-i386
3245 @end example
3247 @end itemize
3249 @node Wine launch
3250 @subsection Wine launch
3252 @itemize
3254 @item Ensure that you have a working QEMU with the x86 glibc
3255 distribution (see previous section). In order to verify it, you must be
3256 able to do:
3258 @example
3259 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
3260 @end example
3262 @item Download the binary x86 Wine install
3263 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
3265 @item Configure Wine on your account. Look at the provided script
3266 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
3267 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
3269 @item Then you can try the example @file{putty.exe}:
3271 @example
3272 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
3273           /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
3274 @end example
3276 @end itemize
3278 @node Command line options
3279 @subsection Command line options
3281 @example
3282 usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] program [arguments...]
3283 @end example
3285 @table @option
3286 @item -h
3287 Print the help
3288 @item -L path
3289 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
3290 @item -s size
3291 Set the x86 stack size in bytes (default=524288)
3292 @item -cpu model
3293 Select CPU model (-cpu ? for list and additional feature selection)
3294 @end table
3296 Debug options:
3298 @table @option
3299 @item -d
3300 Activate log (logfile=/tmp/qemu.log)
3301 @item -p pagesize
3302 Act as if the host page size was 'pagesize' bytes
3303 @item -g port
3304 Wait gdb connection to port
3305 @end table
3307 Environment variables:
3309 @table @env
3310 @item QEMU_STRACE
3311 Print system calls and arguments similar to the 'strace' program
3312 (NOTE: the actual 'strace' program will not work because the user
3313 space emulator hasn't implemented ptrace).  At the moment this is
3314 incomplete.  All system calls that don't have a specific argument
3315 format are printed with information for six arguments.  Many
3316 flag-style arguments don't have decoders and will show up as numbers.
3317 @end table
3319 @node Other binaries
3320 @subsection Other binaries
3322 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
3323 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
3324 configurations), and arm-uclinux bFLT format binaries.
3326 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
3327 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
3328 coldfire uClinux bFLT format binaries.
3330 The binary format is detected automatically.
3332 @command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
3334 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
3335 (Sparc64 CPU, 32 bit ABI).
3337 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
3338 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
3340 @node Mac OS X/Darwin User space emulator
3341 @section Mac OS X/Darwin User space emulator
3343 @menu
3344 * Mac OS X/Darwin Status::
3345 * Mac OS X/Darwin Quick Start::
3346 * Mac OS X/Darwin Command line options::
3347 @end menu
3349 @node Mac OS X/Darwin Status
3350 @subsection Mac OS X/Darwin Status
3352 @itemize @minus
3353 @item
3354 target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
3355 @item
3356 target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
3357 @item
3358 target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
3359 @item
3360 target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
3361 @end itemize
3363 [1] If you're host commpage can be executed by qemu.
3365 @node Mac OS X/Darwin Quick Start
3366 @subsection Quick Start
3368 In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
3369 itself and all the target dynamic libraries used by it. If you don't have the FAT
3370 libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
3371 CD or compile them by hand.
3373 @itemize
3375 @item On x86, you can just try to launch any process by using the native
3376 libraries:
3378 @example
3379 qemu-i386 /bin/ls
3380 @end example
3382 or to run the ppc version of the executable:
3384 @example
3385 qemu-ppc /bin/ls
3386 @end example
3388 @item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
3389 are installed:
3391 @example
3392 qemu-i386 -L /opt/x86_root/ /bin/ls
3393 @end example
3395 @code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
3396 @file{/opt/x86_root/usr/bin/dyld}.
3398 @end itemize
3400 @node Mac OS X/Darwin Command line options
3401 @subsection Command line options
3403 @example
3404 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
3405 @end example
3407 @table @option
3408 @item -h
3409 Print the help
3410 @item -L path
3411 Set the library root path (default=/)
3412 @item -s size
3413 Set the stack size in bytes (default=524288)
3414 @end table
3416 Debug options:
3418 @table @option
3419 @item -d
3420 Activate log (logfile=/tmp/qemu.log)
3421 @item -p pagesize
3422 Act as if the host page size was 'pagesize' bytes
3423 @end table
3425 @node BSD User space emulator
3426 @section BSD User space emulator
3428 @menu
3429 * BSD Status::
3430 * BSD Quick Start::
3431 * BSD Command line options::
3432 @end menu
3434 @node BSD Status
3435 @subsection BSD Status
3437 @itemize @minus
3438 @item
3439 target Sparc64 on Sparc64: Some trivial programs work.
3440 @end itemize
3442 @node BSD Quick Start
3443 @subsection Quick Start
3445 In order to launch a BSD process, QEMU needs the process executable
3446 itself and all the target dynamic libraries used by it.
3448 @itemize
3450 @item On Sparc64, you can just try to launch any process by using the native
3451 libraries:
3453 @example
3454 qemu-sparc64 /bin/ls
3455 @end example
3457 @end itemize
3459 @node BSD Command line options
3460 @subsection Command line options
3462 @example
3463 usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
3464 @end example
3466 @table @option
3467 @item -h
3468 Print the help
3469 @item -L path
3470 Set the library root path (default=/)
3471 @item -s size
3472 Set the stack size in bytes (default=524288)
3473 @item -bsd type
3474 Set the type of the emulated BSD Operating system. Valid values are
3475 FreeBSD, NetBSD and OpenBSD (default).
3476 @end table
3478 Debug options:
3480 @table @option
3481 @item -d
3482 Activate log (logfile=/tmp/qemu.log)
3483 @item -p pagesize
3484 Act as if the host page size was 'pagesize' bytes
3485 @end table
3487 @node compilation
3488 @chapter Compilation from the sources
3490 @menu
3491 * Linux/Unix::
3492 * Windows::
3493 * Cross compilation for Windows with Linux::
3494 * Mac OS X::
3495 @end menu
3497 @node Linux/Unix
3498 @section Linux/Unix
3500 @subsection Compilation
3502 First you must decompress the sources:
3503 @example
3504 cd /tmp
3505 tar zxvf qemu-x.y.z.tar.gz
3506 cd qemu-x.y.z
3507 @end example
3509 Then you configure QEMU and build it (usually no options are needed):
3510 @example
3511 ./configure
3512 make
3513 @end example
3515 Then type as root user:
3516 @example
3517 make install
3518 @end example
3519 to install QEMU in @file{/usr/local}.
3521 @node Windows
3522 @section Windows
3524 @itemize
3525 @item Install the current versions of MSYS and MinGW from
3526 @url{http://www.mingw.org/}. You can find detailed installation
3527 instructions in the download section and the FAQ.
3529 @item Download
3530 the MinGW development library of SDL 1.2.x
3531 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
3532 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
3533 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
3534 directory. Edit the @file{sdl-config} script so that it gives the
3535 correct SDL directory when invoked.
3537 @item Extract the current version of QEMU.
3539 @item Start the MSYS shell (file @file{msys.bat}).
3541 @item Change to the QEMU directory. Launch @file{./configure} and
3542 @file{make}.  If you have problems using SDL, verify that
3543 @file{sdl-config} can be launched from the MSYS command line.
3545 @item You can install QEMU in @file{Program Files/Qemu} by typing
3546 @file{make install}. Don't forget to copy @file{SDL.dll} in
3547 @file{Program Files/Qemu}.
3549 @end itemize
3551 @node Cross compilation for Windows with Linux
3552 @section Cross compilation for Windows with Linux
3554 @itemize
3555 @item
3556 Install the MinGW cross compilation tools available at
3557 @url{http://www.mingw.org/}.
3559 @item
3560 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
3561 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
3562 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
3563 the QEMU configuration script.
3565 @item
3566 Configure QEMU for Windows cross compilation:
3567 @example
3568 ./configure --enable-mingw32
3569 @end example
3570 If necessary, you can change the cross-prefix according to the prefix
3571 chosen for the MinGW tools with --cross-prefix. You can also use
3572 --prefix to set the Win32 install path.
3574 @item You can install QEMU in the installation directory by typing
3575 @file{make install}. Don't forget to copy @file{SDL.dll} in the
3576 installation directory.
3578 @end itemize
3580 Note: Currently, Wine does not seem able to launch
3581 QEMU for Win32.
3583 @node Mac OS X
3584 @section Mac OS X
3586 The Mac OS X patches are not fully merged in QEMU, so you should look
3587 at the QEMU mailing list archive to have all the necessary
3588 information.
3590 @node Index
3591 @chapter Index
3592 @printindex cp
3594 @bye