tap-win32: Use correct headers.
[qemu-kvm/fedora.git] / exec.c
blob7d3eb1adabc340ed084a3f71cee07b70df9ccd24
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <inttypes.h>
34 #include "cpu.h"
35 #include "exec-all.h"
36 #include "qemu-common.h"
37 #include "tcg.h"
38 #include "hw/hw.h"
39 #include "osdep.h"
40 #include "kvm.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #endif
45 //#define DEBUG_TB_INVALIDATE
46 //#define DEBUG_FLUSH
47 //#define DEBUG_TLB
48 //#define DEBUG_UNASSIGNED
50 /* make various TB consistency checks */
51 //#define DEBUG_TB_CHECK
52 //#define DEBUG_TLB_CHECK
54 //#define DEBUG_IOPORT
55 //#define DEBUG_SUBPAGE
57 #if !defined(CONFIG_USER_ONLY)
58 /* TB consistency checks only implemented for usermode emulation. */
59 #undef DEBUG_TB_CHECK
60 #endif
62 #define SMC_BITMAP_USE_THRESHOLD 10
64 #if defined(TARGET_SPARC64)
65 #define TARGET_PHYS_ADDR_SPACE_BITS 41
66 #elif defined(TARGET_SPARC)
67 #define TARGET_PHYS_ADDR_SPACE_BITS 36
68 #elif defined(TARGET_ALPHA)
69 #define TARGET_PHYS_ADDR_SPACE_BITS 42
70 #define TARGET_VIRT_ADDR_SPACE_BITS 42
71 #elif defined(TARGET_PPC64)
72 #define TARGET_PHYS_ADDR_SPACE_BITS 42
73 #elif defined(TARGET_X86_64) && !defined(CONFIG_KQEMU)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 42
75 #elif defined(TARGET_I386) && !defined(CONFIG_KQEMU)
76 #define TARGET_PHYS_ADDR_SPACE_BITS 36
77 #else
78 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
79 #define TARGET_PHYS_ADDR_SPACE_BITS 32
80 #endif
82 static TranslationBlock *tbs;
83 int code_gen_max_blocks;
84 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
85 static int nb_tbs;
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
89 #if defined(__arm__) || defined(__sparc_v9__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96 #elif defined(_WIN32)
97 /* Maximum alignment for Win32 is 16. */
98 #define code_gen_section \
99 __attribute__((aligned (16)))
100 #else
101 #define code_gen_section \
102 __attribute__((aligned (32)))
103 #endif
105 uint8_t code_gen_prologue[1024] code_gen_section;
106 static uint8_t *code_gen_buffer;
107 static unsigned long code_gen_buffer_size;
108 /* threshold to flush the translated code buffer */
109 static unsigned long code_gen_buffer_max_size;
110 uint8_t *code_gen_ptr;
112 #if !defined(CONFIG_USER_ONLY)
113 int phys_ram_fd;
114 uint8_t *phys_ram_dirty;
115 static int in_migration;
117 typedef struct RAMBlock {
118 uint8_t *host;
119 ram_addr_t offset;
120 ram_addr_t length;
121 struct RAMBlock *next;
122 } RAMBlock;
124 static RAMBlock *ram_blocks;
125 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
126 then we can no longer assume contiguous ram offsets, and external uses
127 of this variable will break. */
128 ram_addr_t last_ram_offset;
129 #endif
131 CPUState *first_cpu;
132 /* current CPU in the current thread. It is only valid inside
133 cpu_exec() */
134 CPUState *cpu_single_env;
135 /* 0 = Do not count executed instructions.
136 1 = Precise instruction counting.
137 2 = Adaptive rate instruction counting. */
138 int use_icount = 0;
139 /* Current instruction counter. While executing translated code this may
140 include some instructions that have not yet been executed. */
141 int64_t qemu_icount;
143 typedef struct PageDesc {
144 /* list of TBs intersecting this ram page */
145 TranslationBlock *first_tb;
146 /* in order to optimize self modifying code, we count the number
147 of lookups we do to a given page to use a bitmap */
148 unsigned int code_write_count;
149 uint8_t *code_bitmap;
150 #if defined(CONFIG_USER_ONLY)
151 unsigned long flags;
152 #endif
153 } PageDesc;
155 typedef struct PhysPageDesc {
156 /* offset in host memory of the page + io_index in the low bits */
157 ram_addr_t phys_offset;
158 ram_addr_t region_offset;
159 } PhysPageDesc;
161 #define L2_BITS 10
162 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
163 /* XXX: this is a temporary hack for alpha target.
164 * In the future, this is to be replaced by a multi-level table
165 * to actually be able to handle the complete 64 bits address space.
167 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
168 #else
169 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
170 #endif
172 #define L1_SIZE (1 << L1_BITS)
173 #define L2_SIZE (1 << L2_BITS)
175 unsigned long qemu_real_host_page_size;
176 unsigned long qemu_host_page_bits;
177 unsigned long qemu_host_page_size;
178 unsigned long qemu_host_page_mask;
180 /* XXX: for system emulation, it could just be an array */
181 static PageDesc *l1_map[L1_SIZE];
182 static PhysPageDesc **l1_phys_map;
184 #if !defined(CONFIG_USER_ONLY)
185 static void io_mem_init(void);
187 /* io memory support */
188 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
189 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
190 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
191 static char io_mem_used[IO_MEM_NB_ENTRIES];
192 static int io_mem_watch;
193 #endif
195 /* log support */
196 static const char *logfilename = "/tmp/qemu.log";
197 FILE *logfile;
198 int loglevel;
199 static int log_append = 0;
201 /* statistics */
202 static int tlb_flush_count;
203 static int tb_flush_count;
204 static int tb_phys_invalidate_count;
206 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
207 typedef struct subpage_t {
208 target_phys_addr_t base;
209 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
210 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
211 void *opaque[TARGET_PAGE_SIZE][2][4];
212 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
213 } subpage_t;
215 #ifdef _WIN32
216 static void map_exec(void *addr, long size)
218 DWORD old_protect;
219 VirtualProtect(addr, size,
220 PAGE_EXECUTE_READWRITE, &old_protect);
223 #else
224 static void map_exec(void *addr, long size)
226 unsigned long start, end, page_size;
228 page_size = getpagesize();
229 start = (unsigned long)addr;
230 start &= ~(page_size - 1);
232 end = (unsigned long)addr + size;
233 end += page_size - 1;
234 end &= ~(page_size - 1);
236 mprotect((void *)start, end - start,
237 PROT_READ | PROT_WRITE | PROT_EXEC);
239 #endif
241 static void page_init(void)
243 /* NOTE: we can always suppose that qemu_host_page_size >=
244 TARGET_PAGE_SIZE */
245 #ifdef _WIN32
247 SYSTEM_INFO system_info;
249 GetSystemInfo(&system_info);
250 qemu_real_host_page_size = system_info.dwPageSize;
252 #else
253 qemu_real_host_page_size = getpagesize();
254 #endif
255 if (qemu_host_page_size == 0)
256 qemu_host_page_size = qemu_real_host_page_size;
257 if (qemu_host_page_size < TARGET_PAGE_SIZE)
258 qemu_host_page_size = TARGET_PAGE_SIZE;
259 qemu_host_page_bits = 0;
260 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
261 qemu_host_page_bits++;
262 qemu_host_page_mask = ~(qemu_host_page_size - 1);
263 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
264 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
266 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
268 long long startaddr, endaddr;
269 FILE *f;
270 int n;
272 mmap_lock();
273 last_brk = (unsigned long)sbrk(0);
274 f = fopen("/proc/self/maps", "r");
275 if (f) {
276 do {
277 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
278 if (n == 2) {
279 startaddr = MIN(startaddr,
280 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
281 endaddr = MIN(endaddr,
282 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
283 page_set_flags(startaddr & TARGET_PAGE_MASK,
284 TARGET_PAGE_ALIGN(endaddr),
285 PAGE_RESERVED);
287 } while (!feof(f));
288 fclose(f);
290 mmap_unlock();
292 #endif
295 static inline PageDesc **page_l1_map(target_ulong index)
297 #if TARGET_LONG_BITS > 32
298 /* Host memory outside guest VM. For 32-bit targets we have already
299 excluded high addresses. */
300 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
301 return NULL;
302 #endif
303 return &l1_map[index >> L2_BITS];
306 static inline PageDesc *page_find_alloc(target_ulong index)
308 PageDesc **lp, *p;
309 lp = page_l1_map(index);
310 if (!lp)
311 return NULL;
313 p = *lp;
314 if (!p) {
315 /* allocate if not found */
316 #if defined(CONFIG_USER_ONLY)
317 size_t len = sizeof(PageDesc) * L2_SIZE;
318 /* Don't use qemu_malloc because it may recurse. */
319 p = mmap(0, len, PROT_READ | PROT_WRITE,
320 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
321 *lp = p;
322 if (h2g_valid(p)) {
323 unsigned long addr = h2g(p);
324 page_set_flags(addr & TARGET_PAGE_MASK,
325 TARGET_PAGE_ALIGN(addr + len),
326 PAGE_RESERVED);
328 #else
329 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
330 *lp = p;
331 #endif
333 return p + (index & (L2_SIZE - 1));
336 static inline PageDesc *page_find(target_ulong index)
338 PageDesc **lp, *p;
339 lp = page_l1_map(index);
340 if (!lp)
341 return NULL;
343 p = *lp;
344 if (!p)
345 return 0;
346 return p + (index & (L2_SIZE - 1));
349 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
351 void **lp, **p;
352 PhysPageDesc *pd;
354 p = (void **)l1_phys_map;
355 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
357 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
358 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
359 #endif
360 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
361 p = *lp;
362 if (!p) {
363 /* allocate if not found */
364 if (!alloc)
365 return NULL;
366 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
367 memset(p, 0, sizeof(void *) * L1_SIZE);
368 *lp = p;
370 #endif
371 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
372 pd = *lp;
373 if (!pd) {
374 int i;
375 /* allocate if not found */
376 if (!alloc)
377 return NULL;
378 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
379 *lp = pd;
380 for (i = 0; i < L2_SIZE; i++) {
381 pd[i].phys_offset = IO_MEM_UNASSIGNED;
382 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
385 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
388 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
390 return phys_page_find_alloc(index, 0);
393 #if !defined(CONFIG_USER_ONLY)
394 static void tlb_protect_code(ram_addr_t ram_addr);
395 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
396 target_ulong vaddr);
397 #define mmap_lock() do { } while(0)
398 #define mmap_unlock() do { } while(0)
399 #endif
401 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
403 #if defined(CONFIG_USER_ONLY)
404 /* Currently it is not recommended to allocate big chunks of data in
405 user mode. It will change when a dedicated libc will be used */
406 #define USE_STATIC_CODE_GEN_BUFFER
407 #endif
409 #ifdef USE_STATIC_CODE_GEN_BUFFER
410 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
411 #endif
413 static void code_gen_alloc(unsigned long tb_size)
415 #ifdef USE_STATIC_CODE_GEN_BUFFER
416 code_gen_buffer = static_code_gen_buffer;
417 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
418 map_exec(code_gen_buffer, code_gen_buffer_size);
419 #else
420 code_gen_buffer_size = tb_size;
421 if (code_gen_buffer_size == 0) {
422 #if defined(CONFIG_USER_ONLY)
423 /* in user mode, phys_ram_size is not meaningful */
424 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
425 #else
426 /* XXX: needs adjustments */
427 code_gen_buffer_size = (unsigned long)(ram_size / 4);
428 #endif
430 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
431 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
432 /* The code gen buffer location may have constraints depending on
433 the host cpu and OS */
434 #if defined(__linux__)
436 int flags;
437 void *start = NULL;
439 flags = MAP_PRIVATE | MAP_ANONYMOUS;
440 #if defined(__x86_64__)
441 flags |= MAP_32BIT;
442 /* Cannot map more than that */
443 if (code_gen_buffer_size > (800 * 1024 * 1024))
444 code_gen_buffer_size = (800 * 1024 * 1024);
445 #elif defined(__sparc_v9__)
446 // Map the buffer below 2G, so we can use direct calls and branches
447 flags |= MAP_FIXED;
448 start = (void *) 0x60000000UL;
449 if (code_gen_buffer_size > (512 * 1024 * 1024))
450 code_gen_buffer_size = (512 * 1024 * 1024);
451 #elif defined(__arm__)
452 /* Map the buffer below 32M, so we can use direct calls and branches */
453 flags |= MAP_FIXED;
454 start = (void *) 0x01000000UL;
455 if (code_gen_buffer_size > 16 * 1024 * 1024)
456 code_gen_buffer_size = 16 * 1024 * 1024;
457 #endif
458 code_gen_buffer = mmap(start, code_gen_buffer_size,
459 PROT_WRITE | PROT_READ | PROT_EXEC,
460 flags, -1, 0);
461 if (code_gen_buffer == MAP_FAILED) {
462 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
463 exit(1);
466 #elif defined(__FreeBSD__) || defined(__DragonFly__)
468 int flags;
469 void *addr = NULL;
470 flags = MAP_PRIVATE | MAP_ANONYMOUS;
471 #if defined(__x86_64__)
472 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
473 * 0x40000000 is free */
474 flags |= MAP_FIXED;
475 addr = (void *)0x40000000;
476 /* Cannot map more than that */
477 if (code_gen_buffer_size > (800 * 1024 * 1024))
478 code_gen_buffer_size = (800 * 1024 * 1024);
479 #endif
480 code_gen_buffer = mmap(addr, code_gen_buffer_size,
481 PROT_WRITE | PROT_READ | PROT_EXEC,
482 flags, -1, 0);
483 if (code_gen_buffer == MAP_FAILED) {
484 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
485 exit(1);
488 #else
489 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
490 map_exec(code_gen_buffer, code_gen_buffer_size);
491 #endif
492 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
493 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
494 code_gen_buffer_max_size = code_gen_buffer_size -
495 code_gen_max_block_size();
496 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
497 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
500 /* Must be called before using the QEMU cpus. 'tb_size' is the size
501 (in bytes) allocated to the translation buffer. Zero means default
502 size. */
503 void cpu_exec_init_all(unsigned long tb_size)
505 cpu_gen_init();
506 code_gen_alloc(tb_size);
507 code_gen_ptr = code_gen_buffer;
508 page_init();
509 #if !defined(CONFIG_USER_ONLY)
510 io_mem_init();
511 #endif
514 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
516 #define CPU_COMMON_SAVE_VERSION 1
518 static void cpu_common_save(QEMUFile *f, void *opaque)
520 CPUState *env = opaque;
522 cpu_synchronize_state(env, 0);
524 qemu_put_be32s(f, &env->halted);
525 qemu_put_be32s(f, &env->interrupt_request);
528 static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
530 CPUState *env = opaque;
532 if (version_id != CPU_COMMON_SAVE_VERSION)
533 return -EINVAL;
535 qemu_get_be32s(f, &env->halted);
536 qemu_get_be32s(f, &env->interrupt_request);
537 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
538 version_id is increased. */
539 env->interrupt_request &= ~0x01;
540 tlb_flush(env, 1);
541 cpu_synchronize_state(env, 1);
543 return 0;
545 #endif
547 CPUState *qemu_get_cpu(int cpu)
549 CPUState *env = first_cpu;
551 while (env) {
552 if (env->cpu_index == cpu)
553 break;
554 env = env->next_cpu;
557 return env;
560 void cpu_exec_init(CPUState *env)
562 CPUState **penv;
563 int cpu_index;
565 #if defined(CONFIG_USER_ONLY)
566 cpu_list_lock();
567 #endif
568 env->next_cpu = NULL;
569 penv = &first_cpu;
570 cpu_index = 0;
571 while (*penv != NULL) {
572 penv = &(*penv)->next_cpu;
573 cpu_index++;
575 env->cpu_index = cpu_index;
576 env->numa_node = 0;
577 TAILQ_INIT(&env->breakpoints);
578 TAILQ_INIT(&env->watchpoints);
579 *penv = env;
580 #if defined(CONFIG_USER_ONLY)
581 cpu_list_unlock();
582 #endif
583 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
584 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
585 cpu_common_save, cpu_common_load, env);
586 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
587 cpu_save, cpu_load, env);
588 #endif
591 static inline void invalidate_page_bitmap(PageDesc *p)
593 if (p->code_bitmap) {
594 qemu_free(p->code_bitmap);
595 p->code_bitmap = NULL;
597 p->code_write_count = 0;
600 /* set to NULL all the 'first_tb' fields in all PageDescs */
601 static void page_flush_tb(void)
603 int i, j;
604 PageDesc *p;
606 for(i = 0; i < L1_SIZE; i++) {
607 p = l1_map[i];
608 if (p) {
609 for(j = 0; j < L2_SIZE; j++) {
610 p->first_tb = NULL;
611 invalidate_page_bitmap(p);
612 p++;
618 /* flush all the translation blocks */
619 /* XXX: tb_flush is currently not thread safe */
620 void tb_flush(CPUState *env1)
622 CPUState *env;
623 #if defined(DEBUG_FLUSH)
624 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
625 (unsigned long)(code_gen_ptr - code_gen_buffer),
626 nb_tbs, nb_tbs > 0 ?
627 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
628 #endif
629 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
630 cpu_abort(env1, "Internal error: code buffer overflow\n");
632 nb_tbs = 0;
634 for(env = first_cpu; env != NULL; env = env->next_cpu) {
635 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
638 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
639 page_flush_tb();
641 code_gen_ptr = code_gen_buffer;
642 /* XXX: flush processor icache at this point if cache flush is
643 expensive */
644 tb_flush_count++;
647 #ifdef DEBUG_TB_CHECK
649 static void tb_invalidate_check(target_ulong address)
651 TranslationBlock *tb;
652 int i;
653 address &= TARGET_PAGE_MASK;
654 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
655 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
656 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
657 address >= tb->pc + tb->size)) {
658 printf("ERROR invalidate: address=" TARGET_FMT_lx
659 " PC=%08lx size=%04x\n",
660 address, (long)tb->pc, tb->size);
666 /* verify that all the pages have correct rights for code */
667 static void tb_page_check(void)
669 TranslationBlock *tb;
670 int i, flags1, flags2;
672 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
673 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
674 flags1 = page_get_flags(tb->pc);
675 flags2 = page_get_flags(tb->pc + tb->size - 1);
676 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
677 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
678 (long)tb->pc, tb->size, flags1, flags2);
684 #endif
686 /* invalidate one TB */
687 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
688 int next_offset)
690 TranslationBlock *tb1;
691 for(;;) {
692 tb1 = *ptb;
693 if (tb1 == tb) {
694 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
695 break;
697 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
701 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
703 TranslationBlock *tb1;
704 unsigned int n1;
706 for(;;) {
707 tb1 = *ptb;
708 n1 = (long)tb1 & 3;
709 tb1 = (TranslationBlock *)((long)tb1 & ~3);
710 if (tb1 == tb) {
711 *ptb = tb1->page_next[n1];
712 break;
714 ptb = &tb1->page_next[n1];
718 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
720 TranslationBlock *tb1, **ptb;
721 unsigned int n1;
723 ptb = &tb->jmp_next[n];
724 tb1 = *ptb;
725 if (tb1) {
726 /* find tb(n) in circular list */
727 for(;;) {
728 tb1 = *ptb;
729 n1 = (long)tb1 & 3;
730 tb1 = (TranslationBlock *)((long)tb1 & ~3);
731 if (n1 == n && tb1 == tb)
732 break;
733 if (n1 == 2) {
734 ptb = &tb1->jmp_first;
735 } else {
736 ptb = &tb1->jmp_next[n1];
739 /* now we can suppress tb(n) from the list */
740 *ptb = tb->jmp_next[n];
742 tb->jmp_next[n] = NULL;
746 /* reset the jump entry 'n' of a TB so that it is not chained to
747 another TB */
748 static inline void tb_reset_jump(TranslationBlock *tb, int n)
750 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
753 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
755 CPUState *env;
756 PageDesc *p;
757 unsigned int h, n1;
758 target_phys_addr_t phys_pc;
759 TranslationBlock *tb1, *tb2;
761 /* remove the TB from the hash list */
762 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
763 h = tb_phys_hash_func(phys_pc);
764 tb_remove(&tb_phys_hash[h], tb,
765 offsetof(TranslationBlock, phys_hash_next));
767 /* remove the TB from the page list */
768 if (tb->page_addr[0] != page_addr) {
769 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
770 tb_page_remove(&p->first_tb, tb);
771 invalidate_page_bitmap(p);
773 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
774 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
775 tb_page_remove(&p->first_tb, tb);
776 invalidate_page_bitmap(p);
779 tb_invalidated_flag = 1;
781 /* remove the TB from the hash list */
782 h = tb_jmp_cache_hash_func(tb->pc);
783 for(env = first_cpu; env != NULL; env = env->next_cpu) {
784 if (env->tb_jmp_cache[h] == tb)
785 env->tb_jmp_cache[h] = NULL;
788 /* suppress this TB from the two jump lists */
789 tb_jmp_remove(tb, 0);
790 tb_jmp_remove(tb, 1);
792 /* suppress any remaining jumps to this TB */
793 tb1 = tb->jmp_first;
794 for(;;) {
795 n1 = (long)tb1 & 3;
796 if (n1 == 2)
797 break;
798 tb1 = (TranslationBlock *)((long)tb1 & ~3);
799 tb2 = tb1->jmp_next[n1];
800 tb_reset_jump(tb1, n1);
801 tb1->jmp_next[n1] = NULL;
802 tb1 = tb2;
804 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
806 tb_phys_invalidate_count++;
809 static inline void set_bits(uint8_t *tab, int start, int len)
811 int end, mask, end1;
813 end = start + len;
814 tab += start >> 3;
815 mask = 0xff << (start & 7);
816 if ((start & ~7) == (end & ~7)) {
817 if (start < end) {
818 mask &= ~(0xff << (end & 7));
819 *tab |= mask;
821 } else {
822 *tab++ |= mask;
823 start = (start + 8) & ~7;
824 end1 = end & ~7;
825 while (start < end1) {
826 *tab++ = 0xff;
827 start += 8;
829 if (start < end) {
830 mask = ~(0xff << (end & 7));
831 *tab |= mask;
836 static void build_page_bitmap(PageDesc *p)
838 int n, tb_start, tb_end;
839 TranslationBlock *tb;
841 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
843 tb = p->first_tb;
844 while (tb != NULL) {
845 n = (long)tb & 3;
846 tb = (TranslationBlock *)((long)tb & ~3);
847 /* NOTE: this is subtle as a TB may span two physical pages */
848 if (n == 0) {
849 /* NOTE: tb_end may be after the end of the page, but
850 it is not a problem */
851 tb_start = tb->pc & ~TARGET_PAGE_MASK;
852 tb_end = tb_start + tb->size;
853 if (tb_end > TARGET_PAGE_SIZE)
854 tb_end = TARGET_PAGE_SIZE;
855 } else {
856 tb_start = 0;
857 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
859 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
860 tb = tb->page_next[n];
864 TranslationBlock *tb_gen_code(CPUState *env,
865 target_ulong pc, target_ulong cs_base,
866 int flags, int cflags)
868 TranslationBlock *tb;
869 uint8_t *tc_ptr;
870 target_ulong phys_pc, phys_page2, virt_page2;
871 int code_gen_size;
873 phys_pc = get_phys_addr_code(env, pc);
874 tb = tb_alloc(pc);
875 if (!tb) {
876 /* flush must be done */
877 tb_flush(env);
878 /* cannot fail at this point */
879 tb = tb_alloc(pc);
880 /* Don't forget to invalidate previous TB info. */
881 tb_invalidated_flag = 1;
883 tc_ptr = code_gen_ptr;
884 tb->tc_ptr = tc_ptr;
885 tb->cs_base = cs_base;
886 tb->flags = flags;
887 tb->cflags = cflags;
888 cpu_gen_code(env, tb, &code_gen_size);
889 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
891 /* check next page if needed */
892 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
893 phys_page2 = -1;
894 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
895 phys_page2 = get_phys_addr_code(env, virt_page2);
897 tb_link_phys(tb, phys_pc, phys_page2);
898 return tb;
901 /* invalidate all TBs which intersect with the target physical page
902 starting in range [start;end[. NOTE: start and end must refer to
903 the same physical page. 'is_cpu_write_access' should be true if called
904 from a real cpu write access: the virtual CPU will exit the current
905 TB if code is modified inside this TB. */
906 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
907 int is_cpu_write_access)
909 TranslationBlock *tb, *tb_next, *saved_tb;
910 CPUState *env = cpu_single_env;
911 target_ulong tb_start, tb_end;
912 PageDesc *p;
913 int n;
914 #ifdef TARGET_HAS_PRECISE_SMC
915 int current_tb_not_found = is_cpu_write_access;
916 TranslationBlock *current_tb = NULL;
917 int current_tb_modified = 0;
918 target_ulong current_pc = 0;
919 target_ulong current_cs_base = 0;
920 int current_flags = 0;
921 #endif /* TARGET_HAS_PRECISE_SMC */
923 p = page_find(start >> TARGET_PAGE_BITS);
924 if (!p)
925 return;
926 if (!p->code_bitmap &&
927 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
928 is_cpu_write_access) {
929 /* build code bitmap */
930 build_page_bitmap(p);
933 /* we remove all the TBs in the range [start, end[ */
934 /* XXX: see if in some cases it could be faster to invalidate all the code */
935 tb = p->first_tb;
936 while (tb != NULL) {
937 n = (long)tb & 3;
938 tb = (TranslationBlock *)((long)tb & ~3);
939 tb_next = tb->page_next[n];
940 /* NOTE: this is subtle as a TB may span two physical pages */
941 if (n == 0) {
942 /* NOTE: tb_end may be after the end of the page, but
943 it is not a problem */
944 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
945 tb_end = tb_start + tb->size;
946 } else {
947 tb_start = tb->page_addr[1];
948 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
950 if (!(tb_end <= start || tb_start >= end)) {
951 #ifdef TARGET_HAS_PRECISE_SMC
952 if (current_tb_not_found) {
953 current_tb_not_found = 0;
954 current_tb = NULL;
955 if (env->mem_io_pc) {
956 /* now we have a real cpu fault */
957 current_tb = tb_find_pc(env->mem_io_pc);
960 if (current_tb == tb &&
961 (current_tb->cflags & CF_COUNT_MASK) != 1) {
962 /* If we are modifying the current TB, we must stop
963 its execution. We could be more precise by checking
964 that the modification is after the current PC, but it
965 would require a specialized function to partially
966 restore the CPU state */
968 current_tb_modified = 1;
969 cpu_restore_state(current_tb, env,
970 env->mem_io_pc, NULL);
971 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
972 &current_flags);
974 #endif /* TARGET_HAS_PRECISE_SMC */
975 /* we need to do that to handle the case where a signal
976 occurs while doing tb_phys_invalidate() */
977 saved_tb = NULL;
978 if (env) {
979 saved_tb = env->current_tb;
980 env->current_tb = NULL;
982 tb_phys_invalidate(tb, -1);
983 if (env) {
984 env->current_tb = saved_tb;
985 if (env->interrupt_request && env->current_tb)
986 cpu_interrupt(env, env->interrupt_request);
989 tb = tb_next;
991 #if !defined(CONFIG_USER_ONLY)
992 /* if no code remaining, no need to continue to use slow writes */
993 if (!p->first_tb) {
994 invalidate_page_bitmap(p);
995 if (is_cpu_write_access) {
996 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
999 #endif
1000 #ifdef TARGET_HAS_PRECISE_SMC
1001 if (current_tb_modified) {
1002 /* we generate a block containing just the instruction
1003 modifying the memory. It will ensure that it cannot modify
1004 itself */
1005 env->current_tb = NULL;
1006 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1007 cpu_resume_from_signal(env, NULL);
1009 #endif
1012 /* len must be <= 8 and start must be a multiple of len */
1013 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1015 PageDesc *p;
1016 int offset, b;
1017 #if 0
1018 if (1) {
1019 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1020 cpu_single_env->mem_io_vaddr, len,
1021 cpu_single_env->eip,
1022 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1024 #endif
1025 p = page_find(start >> TARGET_PAGE_BITS);
1026 if (!p)
1027 return;
1028 if (p->code_bitmap) {
1029 offset = start & ~TARGET_PAGE_MASK;
1030 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1031 if (b & ((1 << len) - 1))
1032 goto do_invalidate;
1033 } else {
1034 do_invalidate:
1035 tb_invalidate_phys_page_range(start, start + len, 1);
1039 #if !defined(CONFIG_SOFTMMU)
1040 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1041 unsigned long pc, void *puc)
1043 TranslationBlock *tb;
1044 PageDesc *p;
1045 int n;
1046 #ifdef TARGET_HAS_PRECISE_SMC
1047 TranslationBlock *current_tb = NULL;
1048 CPUState *env = cpu_single_env;
1049 int current_tb_modified = 0;
1050 target_ulong current_pc = 0;
1051 target_ulong current_cs_base = 0;
1052 int current_flags = 0;
1053 #endif
1055 addr &= TARGET_PAGE_MASK;
1056 p = page_find(addr >> TARGET_PAGE_BITS);
1057 if (!p)
1058 return;
1059 tb = p->first_tb;
1060 #ifdef TARGET_HAS_PRECISE_SMC
1061 if (tb && pc != 0) {
1062 current_tb = tb_find_pc(pc);
1064 #endif
1065 while (tb != NULL) {
1066 n = (long)tb & 3;
1067 tb = (TranslationBlock *)((long)tb & ~3);
1068 #ifdef TARGET_HAS_PRECISE_SMC
1069 if (current_tb == tb &&
1070 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1071 /* If we are modifying the current TB, we must stop
1072 its execution. We could be more precise by checking
1073 that the modification is after the current PC, but it
1074 would require a specialized function to partially
1075 restore the CPU state */
1077 current_tb_modified = 1;
1078 cpu_restore_state(current_tb, env, pc, puc);
1079 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1080 &current_flags);
1082 #endif /* TARGET_HAS_PRECISE_SMC */
1083 tb_phys_invalidate(tb, addr);
1084 tb = tb->page_next[n];
1086 p->first_tb = NULL;
1087 #ifdef TARGET_HAS_PRECISE_SMC
1088 if (current_tb_modified) {
1089 /* we generate a block containing just the instruction
1090 modifying the memory. It will ensure that it cannot modify
1091 itself */
1092 env->current_tb = NULL;
1093 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1094 cpu_resume_from_signal(env, puc);
1096 #endif
1098 #endif
1100 /* add the tb in the target page and protect it if necessary */
1101 static inline void tb_alloc_page(TranslationBlock *tb,
1102 unsigned int n, target_ulong page_addr)
1104 PageDesc *p;
1105 TranslationBlock *last_first_tb;
1107 tb->page_addr[n] = page_addr;
1108 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1109 tb->page_next[n] = p->first_tb;
1110 last_first_tb = p->first_tb;
1111 p->first_tb = (TranslationBlock *)((long)tb | n);
1112 invalidate_page_bitmap(p);
1114 #if defined(TARGET_HAS_SMC) || 1
1116 #if defined(CONFIG_USER_ONLY)
1117 if (p->flags & PAGE_WRITE) {
1118 target_ulong addr;
1119 PageDesc *p2;
1120 int prot;
1122 /* force the host page as non writable (writes will have a
1123 page fault + mprotect overhead) */
1124 page_addr &= qemu_host_page_mask;
1125 prot = 0;
1126 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1127 addr += TARGET_PAGE_SIZE) {
1129 p2 = page_find (addr >> TARGET_PAGE_BITS);
1130 if (!p2)
1131 continue;
1132 prot |= p2->flags;
1133 p2->flags &= ~PAGE_WRITE;
1134 page_get_flags(addr);
1136 mprotect(g2h(page_addr), qemu_host_page_size,
1137 (prot & PAGE_BITS) & ~PAGE_WRITE);
1138 #ifdef DEBUG_TB_INVALIDATE
1139 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1140 page_addr);
1141 #endif
1143 #else
1144 /* if some code is already present, then the pages are already
1145 protected. So we handle the case where only the first TB is
1146 allocated in a physical page */
1147 if (!last_first_tb) {
1148 tlb_protect_code(page_addr);
1150 #endif
1152 #endif /* TARGET_HAS_SMC */
1155 /* Allocate a new translation block. Flush the translation buffer if
1156 too many translation blocks or too much generated code. */
1157 TranslationBlock *tb_alloc(target_ulong pc)
1159 TranslationBlock *tb;
1161 if (nb_tbs >= code_gen_max_blocks ||
1162 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1163 return NULL;
1164 tb = &tbs[nb_tbs++];
1165 tb->pc = pc;
1166 tb->cflags = 0;
1167 return tb;
1170 void tb_free(TranslationBlock *tb)
1172 /* In practice this is mostly used for single use temporary TB
1173 Ignore the hard cases and just back up if this TB happens to
1174 be the last one generated. */
1175 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1176 code_gen_ptr = tb->tc_ptr;
1177 nb_tbs--;
1181 /* add a new TB and link it to the physical page tables. phys_page2 is
1182 (-1) to indicate that only one page contains the TB. */
1183 void tb_link_phys(TranslationBlock *tb,
1184 target_ulong phys_pc, target_ulong phys_page2)
1186 unsigned int h;
1187 TranslationBlock **ptb;
1189 /* Grab the mmap lock to stop another thread invalidating this TB
1190 before we are done. */
1191 mmap_lock();
1192 /* add in the physical hash table */
1193 h = tb_phys_hash_func(phys_pc);
1194 ptb = &tb_phys_hash[h];
1195 tb->phys_hash_next = *ptb;
1196 *ptb = tb;
1198 /* add in the page list */
1199 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1200 if (phys_page2 != -1)
1201 tb_alloc_page(tb, 1, phys_page2);
1202 else
1203 tb->page_addr[1] = -1;
1205 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1206 tb->jmp_next[0] = NULL;
1207 tb->jmp_next[1] = NULL;
1209 /* init original jump addresses */
1210 if (tb->tb_next_offset[0] != 0xffff)
1211 tb_reset_jump(tb, 0);
1212 if (tb->tb_next_offset[1] != 0xffff)
1213 tb_reset_jump(tb, 1);
1215 #ifdef DEBUG_TB_CHECK
1216 tb_page_check();
1217 #endif
1218 mmap_unlock();
1221 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1222 tb[1].tc_ptr. Return NULL if not found */
1223 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1225 int m_min, m_max, m;
1226 unsigned long v;
1227 TranslationBlock *tb;
1229 if (nb_tbs <= 0)
1230 return NULL;
1231 if (tc_ptr < (unsigned long)code_gen_buffer ||
1232 tc_ptr >= (unsigned long)code_gen_ptr)
1233 return NULL;
1234 /* binary search (cf Knuth) */
1235 m_min = 0;
1236 m_max = nb_tbs - 1;
1237 while (m_min <= m_max) {
1238 m = (m_min + m_max) >> 1;
1239 tb = &tbs[m];
1240 v = (unsigned long)tb->tc_ptr;
1241 if (v == tc_ptr)
1242 return tb;
1243 else if (tc_ptr < v) {
1244 m_max = m - 1;
1245 } else {
1246 m_min = m + 1;
1249 return &tbs[m_max];
1252 static void tb_reset_jump_recursive(TranslationBlock *tb);
1254 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1256 TranslationBlock *tb1, *tb_next, **ptb;
1257 unsigned int n1;
1259 tb1 = tb->jmp_next[n];
1260 if (tb1 != NULL) {
1261 /* find head of list */
1262 for(;;) {
1263 n1 = (long)tb1 & 3;
1264 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1265 if (n1 == 2)
1266 break;
1267 tb1 = tb1->jmp_next[n1];
1269 /* we are now sure now that tb jumps to tb1 */
1270 tb_next = tb1;
1272 /* remove tb from the jmp_first list */
1273 ptb = &tb_next->jmp_first;
1274 for(;;) {
1275 tb1 = *ptb;
1276 n1 = (long)tb1 & 3;
1277 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1278 if (n1 == n && tb1 == tb)
1279 break;
1280 ptb = &tb1->jmp_next[n1];
1282 *ptb = tb->jmp_next[n];
1283 tb->jmp_next[n] = NULL;
1285 /* suppress the jump to next tb in generated code */
1286 tb_reset_jump(tb, n);
1288 /* suppress jumps in the tb on which we could have jumped */
1289 tb_reset_jump_recursive(tb_next);
1293 static void tb_reset_jump_recursive(TranslationBlock *tb)
1295 tb_reset_jump_recursive2(tb, 0);
1296 tb_reset_jump_recursive2(tb, 1);
1299 #if defined(TARGET_HAS_ICE)
1300 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1302 target_phys_addr_t addr;
1303 target_ulong pd;
1304 ram_addr_t ram_addr;
1305 PhysPageDesc *p;
1307 addr = cpu_get_phys_page_debug(env, pc);
1308 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1309 if (!p) {
1310 pd = IO_MEM_UNASSIGNED;
1311 } else {
1312 pd = p->phys_offset;
1314 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1315 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1317 #endif
1319 /* Add a watchpoint. */
1320 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1321 int flags, CPUWatchpoint **watchpoint)
1323 target_ulong len_mask = ~(len - 1);
1324 CPUWatchpoint *wp;
1326 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1327 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1328 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1329 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1330 return -EINVAL;
1332 wp = qemu_malloc(sizeof(*wp));
1334 wp->vaddr = addr;
1335 wp->len_mask = len_mask;
1336 wp->flags = flags;
1338 /* keep all GDB-injected watchpoints in front */
1339 if (flags & BP_GDB)
1340 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1341 else
1342 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1344 tlb_flush_page(env, addr);
1346 if (watchpoint)
1347 *watchpoint = wp;
1348 return 0;
1351 /* Remove a specific watchpoint. */
1352 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1353 int flags)
1355 target_ulong len_mask = ~(len - 1);
1356 CPUWatchpoint *wp;
1358 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1359 if (addr == wp->vaddr && len_mask == wp->len_mask
1360 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1361 cpu_watchpoint_remove_by_ref(env, wp);
1362 return 0;
1365 return -ENOENT;
1368 /* Remove a specific watchpoint by reference. */
1369 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1371 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1373 tlb_flush_page(env, watchpoint->vaddr);
1375 qemu_free(watchpoint);
1378 /* Remove all matching watchpoints. */
1379 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1381 CPUWatchpoint *wp, *next;
1383 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1384 if (wp->flags & mask)
1385 cpu_watchpoint_remove_by_ref(env, wp);
1389 /* Add a breakpoint. */
1390 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1391 CPUBreakpoint **breakpoint)
1393 #if defined(TARGET_HAS_ICE)
1394 CPUBreakpoint *bp;
1396 bp = qemu_malloc(sizeof(*bp));
1398 bp->pc = pc;
1399 bp->flags = flags;
1401 /* keep all GDB-injected breakpoints in front */
1402 if (flags & BP_GDB)
1403 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1404 else
1405 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1407 breakpoint_invalidate(env, pc);
1409 if (breakpoint)
1410 *breakpoint = bp;
1411 return 0;
1412 #else
1413 return -ENOSYS;
1414 #endif
1417 /* Remove a specific breakpoint. */
1418 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1420 #if defined(TARGET_HAS_ICE)
1421 CPUBreakpoint *bp;
1423 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1424 if (bp->pc == pc && bp->flags == flags) {
1425 cpu_breakpoint_remove_by_ref(env, bp);
1426 return 0;
1429 return -ENOENT;
1430 #else
1431 return -ENOSYS;
1432 #endif
1435 /* Remove a specific breakpoint by reference. */
1436 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1438 #if defined(TARGET_HAS_ICE)
1439 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1441 breakpoint_invalidate(env, breakpoint->pc);
1443 qemu_free(breakpoint);
1444 #endif
1447 /* Remove all matching breakpoints. */
1448 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1450 #if defined(TARGET_HAS_ICE)
1451 CPUBreakpoint *bp, *next;
1453 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1454 if (bp->flags & mask)
1455 cpu_breakpoint_remove_by_ref(env, bp);
1457 #endif
1460 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1461 CPU loop after each instruction */
1462 void cpu_single_step(CPUState *env, int enabled)
1464 #if defined(TARGET_HAS_ICE)
1465 if (env->singlestep_enabled != enabled) {
1466 env->singlestep_enabled = enabled;
1467 if (kvm_enabled())
1468 kvm_update_guest_debug(env, 0);
1469 else {
1470 /* must flush all the translated code to avoid inconsistencies */
1471 /* XXX: only flush what is necessary */
1472 tb_flush(env);
1475 #endif
1478 /* enable or disable low levels log */
1479 void cpu_set_log(int log_flags)
1481 loglevel = log_flags;
1482 if (loglevel && !logfile) {
1483 logfile = fopen(logfilename, log_append ? "a" : "w");
1484 if (!logfile) {
1485 perror(logfilename);
1486 _exit(1);
1488 #if !defined(CONFIG_SOFTMMU)
1489 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1491 static char logfile_buf[4096];
1492 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1494 #else
1495 setvbuf(logfile, NULL, _IOLBF, 0);
1496 #endif
1497 log_append = 1;
1499 if (!loglevel && logfile) {
1500 fclose(logfile);
1501 logfile = NULL;
1505 void cpu_set_log_filename(const char *filename)
1507 logfilename = strdup(filename);
1508 if (logfile) {
1509 fclose(logfile);
1510 logfile = NULL;
1512 cpu_set_log(loglevel);
1515 static void cpu_unlink_tb(CPUState *env)
1517 #if defined(USE_NPTL)
1518 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1519 problem and hope the cpu will stop of its own accord. For userspace
1520 emulation this often isn't actually as bad as it sounds. Often
1521 signals are used primarily to interrupt blocking syscalls. */
1522 #else
1523 TranslationBlock *tb;
1524 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1526 tb = env->current_tb;
1527 /* if the cpu is currently executing code, we must unlink it and
1528 all the potentially executing TB */
1529 if (tb && !testandset(&interrupt_lock)) {
1530 env->current_tb = NULL;
1531 tb_reset_jump_recursive(tb);
1532 resetlock(&interrupt_lock);
1534 #endif
1537 /* mask must never be zero, except for A20 change call */
1538 void cpu_interrupt(CPUState *env, int mask)
1540 int old_mask;
1542 old_mask = env->interrupt_request;
1543 env->interrupt_request |= mask;
1545 #ifndef CONFIG_USER_ONLY
1547 * If called from iothread context, wake the target cpu in
1548 * case its halted.
1550 if (!qemu_cpu_self(env)) {
1551 qemu_cpu_kick(env);
1552 return;
1554 #endif
1556 if (use_icount) {
1557 env->icount_decr.u16.high = 0xffff;
1558 #ifndef CONFIG_USER_ONLY
1559 if (!can_do_io(env)
1560 && (mask & ~old_mask) != 0) {
1561 cpu_abort(env, "Raised interrupt while not in I/O function");
1563 #endif
1564 } else {
1565 cpu_unlink_tb(env);
1569 void cpu_reset_interrupt(CPUState *env, int mask)
1571 env->interrupt_request &= ~mask;
1574 void cpu_exit(CPUState *env)
1576 env->exit_request = 1;
1577 cpu_unlink_tb(env);
1580 const CPULogItem cpu_log_items[] = {
1581 { CPU_LOG_TB_OUT_ASM, "out_asm",
1582 "show generated host assembly code for each compiled TB" },
1583 { CPU_LOG_TB_IN_ASM, "in_asm",
1584 "show target assembly code for each compiled TB" },
1585 { CPU_LOG_TB_OP, "op",
1586 "show micro ops for each compiled TB" },
1587 { CPU_LOG_TB_OP_OPT, "op_opt",
1588 "show micro ops "
1589 #ifdef TARGET_I386
1590 "before eflags optimization and "
1591 #endif
1592 "after liveness analysis" },
1593 { CPU_LOG_INT, "int",
1594 "show interrupts/exceptions in short format" },
1595 { CPU_LOG_EXEC, "exec",
1596 "show trace before each executed TB (lots of logs)" },
1597 { CPU_LOG_TB_CPU, "cpu",
1598 "show CPU state before block translation" },
1599 #ifdef TARGET_I386
1600 { CPU_LOG_PCALL, "pcall",
1601 "show protected mode far calls/returns/exceptions" },
1602 { CPU_LOG_RESET, "cpu_reset",
1603 "show CPU state before CPU resets" },
1604 #endif
1605 #ifdef DEBUG_IOPORT
1606 { CPU_LOG_IOPORT, "ioport",
1607 "show all i/o ports accesses" },
1608 #endif
1609 { 0, NULL, NULL },
1612 static int cmp1(const char *s1, int n, const char *s2)
1614 if (strlen(s2) != n)
1615 return 0;
1616 return memcmp(s1, s2, n) == 0;
1619 /* takes a comma separated list of log masks. Return 0 if error. */
1620 int cpu_str_to_log_mask(const char *str)
1622 const CPULogItem *item;
1623 int mask;
1624 const char *p, *p1;
1626 p = str;
1627 mask = 0;
1628 for(;;) {
1629 p1 = strchr(p, ',');
1630 if (!p1)
1631 p1 = p + strlen(p);
1632 if(cmp1(p,p1-p,"all")) {
1633 for(item = cpu_log_items; item->mask != 0; item++) {
1634 mask |= item->mask;
1636 } else {
1637 for(item = cpu_log_items; item->mask != 0; item++) {
1638 if (cmp1(p, p1 - p, item->name))
1639 goto found;
1641 return 0;
1643 found:
1644 mask |= item->mask;
1645 if (*p1 != ',')
1646 break;
1647 p = p1 + 1;
1649 return mask;
1652 void cpu_abort(CPUState *env, const char *fmt, ...)
1654 va_list ap;
1655 va_list ap2;
1657 va_start(ap, fmt);
1658 va_copy(ap2, ap);
1659 fprintf(stderr, "qemu: fatal: ");
1660 vfprintf(stderr, fmt, ap);
1661 fprintf(stderr, "\n");
1662 #ifdef TARGET_I386
1663 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1664 #else
1665 cpu_dump_state(env, stderr, fprintf, 0);
1666 #endif
1667 if (qemu_log_enabled()) {
1668 qemu_log("qemu: fatal: ");
1669 qemu_log_vprintf(fmt, ap2);
1670 qemu_log("\n");
1671 #ifdef TARGET_I386
1672 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1673 #else
1674 log_cpu_state(env, 0);
1675 #endif
1676 qemu_log_flush();
1677 qemu_log_close();
1679 va_end(ap2);
1680 va_end(ap);
1681 abort();
1684 CPUState *cpu_copy(CPUState *env)
1686 CPUState *new_env = cpu_init(env->cpu_model_str);
1687 CPUState *next_cpu = new_env->next_cpu;
1688 int cpu_index = new_env->cpu_index;
1689 #if defined(TARGET_HAS_ICE)
1690 CPUBreakpoint *bp;
1691 CPUWatchpoint *wp;
1692 #endif
1694 memcpy(new_env, env, sizeof(CPUState));
1696 /* Preserve chaining and index. */
1697 new_env->next_cpu = next_cpu;
1698 new_env->cpu_index = cpu_index;
1700 /* Clone all break/watchpoints.
1701 Note: Once we support ptrace with hw-debug register access, make sure
1702 BP_CPU break/watchpoints are handled correctly on clone. */
1703 TAILQ_INIT(&env->breakpoints);
1704 TAILQ_INIT(&env->watchpoints);
1705 #if defined(TARGET_HAS_ICE)
1706 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1707 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1709 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1710 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1711 wp->flags, NULL);
1713 #endif
1715 return new_env;
1718 #if !defined(CONFIG_USER_ONLY)
1720 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1722 unsigned int i;
1724 /* Discard jump cache entries for any tb which might potentially
1725 overlap the flushed page. */
1726 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1727 memset (&env->tb_jmp_cache[i], 0,
1728 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1730 i = tb_jmp_cache_hash_page(addr);
1731 memset (&env->tb_jmp_cache[i], 0,
1732 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1735 static CPUTLBEntry s_cputlb_empty_entry = {
1736 .addr_read = -1,
1737 .addr_write = -1,
1738 .addr_code = -1,
1739 .addend = -1,
1742 /* NOTE: if flush_global is true, also flush global entries (not
1743 implemented yet) */
1744 void tlb_flush(CPUState *env, int flush_global)
1746 int i;
1748 #if defined(DEBUG_TLB)
1749 printf("tlb_flush:\n");
1750 #endif
1751 /* must reset current TB so that interrupts cannot modify the
1752 links while we are modifying them */
1753 env->current_tb = NULL;
1755 for(i = 0; i < CPU_TLB_SIZE; i++) {
1756 int mmu_idx;
1757 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1758 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1762 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1764 #ifdef CONFIG_KQEMU
1765 if (env->kqemu_enabled) {
1766 kqemu_flush(env, flush_global);
1768 #endif
1769 tlb_flush_count++;
1772 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1774 if (addr == (tlb_entry->addr_read &
1775 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1776 addr == (tlb_entry->addr_write &
1777 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1778 addr == (tlb_entry->addr_code &
1779 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1780 *tlb_entry = s_cputlb_empty_entry;
1784 void tlb_flush_page(CPUState *env, target_ulong addr)
1786 int i;
1787 int mmu_idx;
1789 #if defined(DEBUG_TLB)
1790 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1791 #endif
1792 /* must reset current TB so that interrupts cannot modify the
1793 links while we are modifying them */
1794 env->current_tb = NULL;
1796 addr &= TARGET_PAGE_MASK;
1797 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1798 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1799 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1801 tlb_flush_jmp_cache(env, addr);
1803 #ifdef CONFIG_KQEMU
1804 if (env->kqemu_enabled) {
1805 kqemu_flush_page(env, addr);
1807 #endif
1810 /* update the TLBs so that writes to code in the virtual page 'addr'
1811 can be detected */
1812 static void tlb_protect_code(ram_addr_t ram_addr)
1814 cpu_physical_memory_reset_dirty(ram_addr,
1815 ram_addr + TARGET_PAGE_SIZE,
1816 CODE_DIRTY_FLAG);
1819 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1820 tested for self modifying code */
1821 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1822 target_ulong vaddr)
1824 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1827 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1828 unsigned long start, unsigned long length)
1830 unsigned long addr;
1831 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1832 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1833 if ((addr - start) < length) {
1834 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1839 /* Note: start and end must be within the same ram block. */
1840 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1841 int dirty_flags)
1843 CPUState *env;
1844 unsigned long length, start1;
1845 int i, mask, len;
1846 uint8_t *p;
1848 start &= TARGET_PAGE_MASK;
1849 end = TARGET_PAGE_ALIGN(end);
1851 length = end - start;
1852 if (length == 0)
1853 return;
1854 len = length >> TARGET_PAGE_BITS;
1855 #ifdef CONFIG_KQEMU
1856 /* XXX: should not depend on cpu context */
1857 env = first_cpu;
1858 if (env->kqemu_enabled) {
1859 ram_addr_t addr;
1860 addr = start;
1861 for(i = 0; i < len; i++) {
1862 kqemu_set_notdirty(env, addr);
1863 addr += TARGET_PAGE_SIZE;
1866 #endif
1867 mask = ~dirty_flags;
1868 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1869 for(i = 0; i < len; i++)
1870 p[i] &= mask;
1872 /* we modify the TLB cache so that the dirty bit will be set again
1873 when accessing the range */
1874 start1 = (unsigned long)qemu_get_ram_ptr(start);
1875 /* Chek that we don't span multiple blocks - this breaks the
1876 address comparisons below. */
1877 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1878 != (end - 1) - start) {
1879 abort();
1882 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1883 int mmu_idx;
1884 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1885 for(i = 0; i < CPU_TLB_SIZE; i++)
1886 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1887 start1, length);
1892 int cpu_physical_memory_set_dirty_tracking(int enable)
1894 in_migration = enable;
1895 if (kvm_enabled()) {
1896 return kvm_set_migration_log(enable);
1898 return 0;
1901 int cpu_physical_memory_get_dirty_tracking(void)
1903 return in_migration;
1906 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1907 target_phys_addr_t end_addr)
1909 int ret = 0;
1911 if (kvm_enabled())
1912 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1913 return ret;
1916 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1918 ram_addr_t ram_addr;
1919 void *p;
1921 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1922 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1923 + tlb_entry->addend);
1924 ram_addr = qemu_ram_addr_from_host(p);
1925 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1926 tlb_entry->addr_write |= TLB_NOTDIRTY;
1931 /* update the TLB according to the current state of the dirty bits */
1932 void cpu_tlb_update_dirty(CPUState *env)
1934 int i;
1935 int mmu_idx;
1936 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1937 for(i = 0; i < CPU_TLB_SIZE; i++)
1938 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
1942 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1944 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1945 tlb_entry->addr_write = vaddr;
1948 /* update the TLB corresponding to virtual page vaddr
1949 so that it is no longer dirty */
1950 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1952 int i;
1953 int mmu_idx;
1955 vaddr &= TARGET_PAGE_MASK;
1956 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1957 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1958 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
1961 /* add a new TLB entry. At most one entry for a given virtual address
1962 is permitted. Return 0 if OK or 2 if the page could not be mapped
1963 (can only happen in non SOFTMMU mode for I/O pages or pages
1964 conflicting with the host address space). */
1965 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1966 target_phys_addr_t paddr, int prot,
1967 int mmu_idx, int is_softmmu)
1969 PhysPageDesc *p;
1970 unsigned long pd;
1971 unsigned int index;
1972 target_ulong address;
1973 target_ulong code_address;
1974 target_phys_addr_t addend;
1975 int ret;
1976 CPUTLBEntry *te;
1977 CPUWatchpoint *wp;
1978 target_phys_addr_t iotlb;
1980 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1981 if (!p) {
1982 pd = IO_MEM_UNASSIGNED;
1983 } else {
1984 pd = p->phys_offset;
1986 #if defined(DEBUG_TLB)
1987 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1988 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1989 #endif
1991 ret = 0;
1992 address = vaddr;
1993 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1994 /* IO memory case (romd handled later) */
1995 address |= TLB_MMIO;
1997 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
1998 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1999 /* Normal RAM. */
2000 iotlb = pd & TARGET_PAGE_MASK;
2001 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2002 iotlb |= IO_MEM_NOTDIRTY;
2003 else
2004 iotlb |= IO_MEM_ROM;
2005 } else {
2006 /* IO handlers are currently passed a physical address.
2007 It would be nice to pass an offset from the base address
2008 of that region. This would avoid having to special case RAM,
2009 and avoid full address decoding in every device.
2010 We can't use the high bits of pd for this because
2011 IO_MEM_ROMD uses these as a ram address. */
2012 iotlb = (pd & ~TARGET_PAGE_MASK);
2013 if (p) {
2014 iotlb += p->region_offset;
2015 } else {
2016 iotlb += paddr;
2020 code_address = address;
2021 /* Make accesses to pages with watchpoints go via the
2022 watchpoint trap routines. */
2023 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2024 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2025 iotlb = io_mem_watch + paddr;
2026 /* TODO: The memory case can be optimized by not trapping
2027 reads of pages with a write breakpoint. */
2028 address |= TLB_MMIO;
2032 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2033 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2034 te = &env->tlb_table[mmu_idx][index];
2035 te->addend = addend - vaddr;
2036 if (prot & PAGE_READ) {
2037 te->addr_read = address;
2038 } else {
2039 te->addr_read = -1;
2042 if (prot & PAGE_EXEC) {
2043 te->addr_code = code_address;
2044 } else {
2045 te->addr_code = -1;
2047 if (prot & PAGE_WRITE) {
2048 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2049 (pd & IO_MEM_ROMD)) {
2050 /* Write access calls the I/O callback. */
2051 te->addr_write = address | TLB_MMIO;
2052 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2053 !cpu_physical_memory_is_dirty(pd)) {
2054 te->addr_write = address | TLB_NOTDIRTY;
2055 } else {
2056 te->addr_write = address;
2058 } else {
2059 te->addr_write = -1;
2061 return ret;
2064 #else
2066 void tlb_flush(CPUState *env, int flush_global)
2070 void tlb_flush_page(CPUState *env, target_ulong addr)
2074 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2075 target_phys_addr_t paddr, int prot,
2076 int mmu_idx, int is_softmmu)
2078 return 0;
2082 * Walks guest process memory "regions" one by one
2083 * and calls callback function 'fn' for each region.
2085 int walk_memory_regions(void *priv,
2086 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
2088 unsigned long start, end;
2089 PageDesc *p = NULL;
2090 int i, j, prot, prot1;
2091 int rc = 0;
2093 start = end = -1;
2094 prot = 0;
2096 for (i = 0; i <= L1_SIZE; i++) {
2097 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2098 for (j = 0; j < L2_SIZE; j++) {
2099 prot1 = (p == NULL) ? 0 : p[j].flags;
2101 * "region" is one continuous chunk of memory
2102 * that has same protection flags set.
2104 if (prot1 != prot) {
2105 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2106 if (start != -1) {
2107 rc = (*fn)(priv, start, end, prot);
2108 /* callback can stop iteration by returning != 0 */
2109 if (rc != 0)
2110 return (rc);
2112 if (prot1 != 0)
2113 start = end;
2114 else
2115 start = -1;
2116 prot = prot1;
2118 if (p == NULL)
2119 break;
2122 return (rc);
2125 static int dump_region(void *priv, unsigned long start,
2126 unsigned long end, unsigned long prot)
2128 FILE *f = (FILE *)priv;
2130 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2131 start, end, end - start,
2132 ((prot & PAGE_READ) ? 'r' : '-'),
2133 ((prot & PAGE_WRITE) ? 'w' : '-'),
2134 ((prot & PAGE_EXEC) ? 'x' : '-'));
2136 return (0);
2139 /* dump memory mappings */
2140 void page_dump(FILE *f)
2142 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2143 "start", "end", "size", "prot");
2144 walk_memory_regions(f, dump_region);
2147 int page_get_flags(target_ulong address)
2149 PageDesc *p;
2151 p = page_find(address >> TARGET_PAGE_BITS);
2152 if (!p)
2153 return 0;
2154 return p->flags;
2157 /* modify the flags of a page and invalidate the code if
2158 necessary. The flag PAGE_WRITE_ORG is positioned automatically
2159 depending on PAGE_WRITE */
2160 void page_set_flags(target_ulong start, target_ulong end, int flags)
2162 PageDesc *p;
2163 target_ulong addr;
2165 /* mmap_lock should already be held. */
2166 start = start & TARGET_PAGE_MASK;
2167 end = TARGET_PAGE_ALIGN(end);
2168 if (flags & PAGE_WRITE)
2169 flags |= PAGE_WRITE_ORG;
2170 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2171 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2172 /* We may be called for host regions that are outside guest
2173 address space. */
2174 if (!p)
2175 return;
2176 /* if the write protection is set, then we invalidate the code
2177 inside */
2178 if (!(p->flags & PAGE_WRITE) &&
2179 (flags & PAGE_WRITE) &&
2180 p->first_tb) {
2181 tb_invalidate_phys_page(addr, 0, NULL);
2183 p->flags = flags;
2187 int page_check_range(target_ulong start, target_ulong len, int flags)
2189 PageDesc *p;
2190 target_ulong end;
2191 target_ulong addr;
2193 if (start + len < start)
2194 /* we've wrapped around */
2195 return -1;
2197 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2198 start = start & TARGET_PAGE_MASK;
2200 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2201 p = page_find(addr >> TARGET_PAGE_BITS);
2202 if( !p )
2203 return -1;
2204 if( !(p->flags & PAGE_VALID) )
2205 return -1;
2207 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2208 return -1;
2209 if (flags & PAGE_WRITE) {
2210 if (!(p->flags & PAGE_WRITE_ORG))
2211 return -1;
2212 /* unprotect the page if it was put read-only because it
2213 contains translated code */
2214 if (!(p->flags & PAGE_WRITE)) {
2215 if (!page_unprotect(addr, 0, NULL))
2216 return -1;
2218 return 0;
2221 return 0;
2224 /* called from signal handler: invalidate the code and unprotect the
2225 page. Return TRUE if the fault was successfully handled. */
2226 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2228 unsigned int page_index, prot, pindex;
2229 PageDesc *p, *p1;
2230 target_ulong host_start, host_end, addr;
2232 /* Technically this isn't safe inside a signal handler. However we
2233 know this only ever happens in a synchronous SEGV handler, so in
2234 practice it seems to be ok. */
2235 mmap_lock();
2237 host_start = address & qemu_host_page_mask;
2238 page_index = host_start >> TARGET_PAGE_BITS;
2239 p1 = page_find(page_index);
2240 if (!p1) {
2241 mmap_unlock();
2242 return 0;
2244 host_end = host_start + qemu_host_page_size;
2245 p = p1;
2246 prot = 0;
2247 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2248 prot |= p->flags;
2249 p++;
2251 /* if the page was really writable, then we change its
2252 protection back to writable */
2253 if (prot & PAGE_WRITE_ORG) {
2254 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2255 if (!(p1[pindex].flags & PAGE_WRITE)) {
2256 mprotect((void *)g2h(host_start), qemu_host_page_size,
2257 (prot & PAGE_BITS) | PAGE_WRITE);
2258 p1[pindex].flags |= PAGE_WRITE;
2259 /* and since the content will be modified, we must invalidate
2260 the corresponding translated code. */
2261 tb_invalidate_phys_page(address, pc, puc);
2262 #ifdef DEBUG_TB_CHECK
2263 tb_invalidate_check(address);
2264 #endif
2265 mmap_unlock();
2266 return 1;
2269 mmap_unlock();
2270 return 0;
2273 static inline void tlb_set_dirty(CPUState *env,
2274 unsigned long addr, target_ulong vaddr)
2277 #endif /* defined(CONFIG_USER_ONLY) */
2279 #if !defined(CONFIG_USER_ONLY)
2281 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2282 ram_addr_t memory, ram_addr_t region_offset);
2283 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2284 ram_addr_t orig_memory, ram_addr_t region_offset);
2285 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2286 need_subpage) \
2287 do { \
2288 if (addr > start_addr) \
2289 start_addr2 = 0; \
2290 else { \
2291 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2292 if (start_addr2 > 0) \
2293 need_subpage = 1; \
2296 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2297 end_addr2 = TARGET_PAGE_SIZE - 1; \
2298 else { \
2299 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2300 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2301 need_subpage = 1; \
2303 } while (0)
2305 /* register physical memory. 'size' must be a multiple of the target
2306 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2307 io memory page. The address used when calling the IO function is
2308 the offset from the start of the region, plus region_offset. Both
2309 start_addr and region_offset are rounded down to a page boundary
2310 before calculating this offset. This should not be a problem unless
2311 the low bits of start_addr and region_offset differ. */
2312 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2313 ram_addr_t size,
2314 ram_addr_t phys_offset,
2315 ram_addr_t region_offset)
2317 target_phys_addr_t addr, end_addr;
2318 PhysPageDesc *p;
2319 CPUState *env;
2320 ram_addr_t orig_size = size;
2321 void *subpage;
2323 #ifdef CONFIG_KQEMU
2324 /* XXX: should not depend on cpu context */
2325 env = first_cpu;
2326 if (env->kqemu_enabled) {
2327 kqemu_set_phys_mem(start_addr, size, phys_offset);
2329 #endif
2330 if (kvm_enabled())
2331 kvm_set_phys_mem(start_addr, size, phys_offset);
2333 if (phys_offset == IO_MEM_UNASSIGNED) {
2334 region_offset = start_addr;
2336 region_offset &= TARGET_PAGE_MASK;
2337 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2338 end_addr = start_addr + (target_phys_addr_t)size;
2339 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2340 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2341 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2342 ram_addr_t orig_memory = p->phys_offset;
2343 target_phys_addr_t start_addr2, end_addr2;
2344 int need_subpage = 0;
2346 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2347 need_subpage);
2348 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2349 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2350 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2351 &p->phys_offset, orig_memory,
2352 p->region_offset);
2353 } else {
2354 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2355 >> IO_MEM_SHIFT];
2357 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2358 region_offset);
2359 p->region_offset = 0;
2360 } else {
2361 p->phys_offset = phys_offset;
2362 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2363 (phys_offset & IO_MEM_ROMD))
2364 phys_offset += TARGET_PAGE_SIZE;
2366 } else {
2367 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2368 p->phys_offset = phys_offset;
2369 p->region_offset = region_offset;
2370 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2371 (phys_offset & IO_MEM_ROMD)) {
2372 phys_offset += TARGET_PAGE_SIZE;
2373 } else {
2374 target_phys_addr_t start_addr2, end_addr2;
2375 int need_subpage = 0;
2377 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2378 end_addr2, need_subpage);
2380 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2381 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2382 &p->phys_offset, IO_MEM_UNASSIGNED,
2383 addr & TARGET_PAGE_MASK);
2384 subpage_register(subpage, start_addr2, end_addr2,
2385 phys_offset, region_offset);
2386 p->region_offset = 0;
2390 region_offset += TARGET_PAGE_SIZE;
2393 /* since each CPU stores ram addresses in its TLB cache, we must
2394 reset the modified entries */
2395 /* XXX: slow ! */
2396 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2397 tlb_flush(env, 1);
2401 /* XXX: temporary until new memory mapping API */
2402 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2404 PhysPageDesc *p;
2406 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2407 if (!p)
2408 return IO_MEM_UNASSIGNED;
2409 return p->phys_offset;
2412 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2414 if (kvm_enabled())
2415 kvm_coalesce_mmio_region(addr, size);
2418 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2420 if (kvm_enabled())
2421 kvm_uncoalesce_mmio_region(addr, size);
2424 #ifdef CONFIG_KQEMU
2425 /* XXX: better than nothing */
2426 static ram_addr_t kqemu_ram_alloc(ram_addr_t size)
2428 ram_addr_t addr;
2429 if ((last_ram_offset + size) > kqemu_phys_ram_size) {
2430 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
2431 (uint64_t)size, (uint64_t)kqemu_phys_ram_size);
2432 abort();
2434 addr = last_ram_offset;
2435 last_ram_offset = TARGET_PAGE_ALIGN(last_ram_offset + size);
2436 return addr;
2438 #endif
2440 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2442 RAMBlock *new_block;
2444 #ifdef CONFIG_KQEMU
2445 if (kqemu_phys_ram_base) {
2446 return kqemu_ram_alloc(size);
2448 #endif
2450 size = TARGET_PAGE_ALIGN(size);
2451 new_block = qemu_malloc(sizeof(*new_block));
2453 new_block->host = qemu_vmalloc(size);
2454 new_block->offset = last_ram_offset;
2455 new_block->length = size;
2457 new_block->next = ram_blocks;
2458 ram_blocks = new_block;
2460 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2461 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2462 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2463 0xff, size >> TARGET_PAGE_BITS);
2465 last_ram_offset += size;
2467 if (kvm_enabled())
2468 kvm_setup_guest_memory(new_block->host, size);
2470 return new_block->offset;
2473 void qemu_ram_free(ram_addr_t addr)
2475 /* TODO: implement this. */
2478 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2479 With the exception of the softmmu code in this file, this should
2480 only be used for local memory (e.g. video ram) that the device owns,
2481 and knows it isn't going to access beyond the end of the block.
2483 It should not be used for general purpose DMA.
2484 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2486 void *qemu_get_ram_ptr(ram_addr_t addr)
2488 RAMBlock *prev;
2489 RAMBlock **prevp;
2490 RAMBlock *block;
2492 #ifdef CONFIG_KQEMU
2493 if (kqemu_phys_ram_base) {
2494 return kqemu_phys_ram_base + addr;
2496 #endif
2498 prev = NULL;
2499 prevp = &ram_blocks;
2500 block = ram_blocks;
2501 while (block && (block->offset > addr
2502 || block->offset + block->length <= addr)) {
2503 if (prev)
2504 prevp = &prev->next;
2505 prev = block;
2506 block = block->next;
2508 if (!block) {
2509 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2510 abort();
2512 /* Move this entry to to start of the list. */
2513 if (prev) {
2514 prev->next = block->next;
2515 block->next = *prevp;
2516 *prevp = block;
2518 return block->host + (addr - block->offset);
2521 /* Some of the softmmu routines need to translate from a host pointer
2522 (typically a TLB entry) back to a ram offset. */
2523 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2525 RAMBlock *prev;
2526 RAMBlock **prevp;
2527 RAMBlock *block;
2528 uint8_t *host = ptr;
2530 #ifdef CONFIG_KQEMU
2531 if (kqemu_phys_ram_base) {
2532 return host - kqemu_phys_ram_base;
2534 #endif
2536 prev = NULL;
2537 prevp = &ram_blocks;
2538 block = ram_blocks;
2539 while (block && (block->host > host
2540 || block->host + block->length <= host)) {
2541 if (prev)
2542 prevp = &prev->next;
2543 prev = block;
2544 block = block->next;
2546 if (!block) {
2547 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2548 abort();
2550 return block->offset + (host - block->host);
2553 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2555 #ifdef DEBUG_UNASSIGNED
2556 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2557 #endif
2558 #if defined(TARGET_SPARC)
2559 do_unassigned_access(addr, 0, 0, 0, 1);
2560 #endif
2561 return 0;
2564 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2566 #ifdef DEBUG_UNASSIGNED
2567 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2568 #endif
2569 #if defined(TARGET_SPARC)
2570 do_unassigned_access(addr, 0, 0, 0, 2);
2571 #endif
2572 return 0;
2575 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2577 #ifdef DEBUG_UNASSIGNED
2578 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2579 #endif
2580 #if defined(TARGET_SPARC)
2581 do_unassigned_access(addr, 0, 0, 0, 4);
2582 #endif
2583 return 0;
2586 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2588 #ifdef DEBUG_UNASSIGNED
2589 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2590 #endif
2591 #if defined(TARGET_SPARC)
2592 do_unassigned_access(addr, 1, 0, 0, 1);
2593 #endif
2596 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2598 #ifdef DEBUG_UNASSIGNED
2599 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2600 #endif
2601 #if defined(TARGET_SPARC)
2602 do_unassigned_access(addr, 1, 0, 0, 2);
2603 #endif
2606 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2608 #ifdef DEBUG_UNASSIGNED
2609 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2610 #endif
2611 #if defined(TARGET_SPARC)
2612 do_unassigned_access(addr, 1, 0, 0, 4);
2613 #endif
2616 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2617 unassigned_mem_readb,
2618 unassigned_mem_readw,
2619 unassigned_mem_readl,
2622 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2623 unassigned_mem_writeb,
2624 unassigned_mem_writew,
2625 unassigned_mem_writel,
2628 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2629 uint32_t val)
2631 int dirty_flags;
2632 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2633 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2634 #if !defined(CONFIG_USER_ONLY)
2635 tb_invalidate_phys_page_fast(ram_addr, 1);
2636 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2637 #endif
2639 stb_p(qemu_get_ram_ptr(ram_addr), val);
2640 #ifdef CONFIG_KQEMU
2641 if (cpu_single_env->kqemu_enabled &&
2642 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2643 kqemu_modify_page(cpu_single_env, ram_addr);
2644 #endif
2645 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2646 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2647 /* we remove the notdirty callback only if the code has been
2648 flushed */
2649 if (dirty_flags == 0xff)
2650 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2653 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2654 uint32_t val)
2656 int dirty_flags;
2657 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2658 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2659 #if !defined(CONFIG_USER_ONLY)
2660 tb_invalidate_phys_page_fast(ram_addr, 2);
2661 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2662 #endif
2664 stw_p(qemu_get_ram_ptr(ram_addr), val);
2665 #ifdef CONFIG_KQEMU
2666 if (cpu_single_env->kqemu_enabled &&
2667 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2668 kqemu_modify_page(cpu_single_env, ram_addr);
2669 #endif
2670 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2671 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2672 /* we remove the notdirty callback only if the code has been
2673 flushed */
2674 if (dirty_flags == 0xff)
2675 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2678 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2679 uint32_t val)
2681 int dirty_flags;
2682 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2683 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2684 #if !defined(CONFIG_USER_ONLY)
2685 tb_invalidate_phys_page_fast(ram_addr, 4);
2686 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2687 #endif
2689 stl_p(qemu_get_ram_ptr(ram_addr), val);
2690 #ifdef CONFIG_KQEMU
2691 if (cpu_single_env->kqemu_enabled &&
2692 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2693 kqemu_modify_page(cpu_single_env, ram_addr);
2694 #endif
2695 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2696 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2697 /* we remove the notdirty callback only if the code has been
2698 flushed */
2699 if (dirty_flags == 0xff)
2700 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2703 static CPUReadMemoryFunc *error_mem_read[3] = {
2704 NULL, /* never used */
2705 NULL, /* never used */
2706 NULL, /* never used */
2709 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2710 notdirty_mem_writeb,
2711 notdirty_mem_writew,
2712 notdirty_mem_writel,
2715 /* Generate a debug exception if a watchpoint has been hit. */
2716 static void check_watchpoint(int offset, int len_mask, int flags)
2718 CPUState *env = cpu_single_env;
2719 target_ulong pc, cs_base;
2720 TranslationBlock *tb;
2721 target_ulong vaddr;
2722 CPUWatchpoint *wp;
2723 int cpu_flags;
2725 if (env->watchpoint_hit) {
2726 /* We re-entered the check after replacing the TB. Now raise
2727 * the debug interrupt so that is will trigger after the
2728 * current instruction. */
2729 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2730 return;
2732 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2733 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2734 if ((vaddr == (wp->vaddr & len_mask) ||
2735 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2736 wp->flags |= BP_WATCHPOINT_HIT;
2737 if (!env->watchpoint_hit) {
2738 env->watchpoint_hit = wp;
2739 tb = tb_find_pc(env->mem_io_pc);
2740 if (!tb) {
2741 cpu_abort(env, "check_watchpoint: could not find TB for "
2742 "pc=%p", (void *)env->mem_io_pc);
2744 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2745 tb_phys_invalidate(tb, -1);
2746 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2747 env->exception_index = EXCP_DEBUG;
2748 } else {
2749 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2750 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2752 cpu_resume_from_signal(env, NULL);
2754 } else {
2755 wp->flags &= ~BP_WATCHPOINT_HIT;
2760 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2761 so these check for a hit then pass through to the normal out-of-line
2762 phys routines. */
2763 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2765 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2766 return ldub_phys(addr);
2769 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2771 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2772 return lduw_phys(addr);
2775 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2777 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2778 return ldl_phys(addr);
2781 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2782 uint32_t val)
2784 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2785 stb_phys(addr, val);
2788 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2789 uint32_t val)
2791 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2792 stw_phys(addr, val);
2795 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2796 uint32_t val)
2798 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2799 stl_phys(addr, val);
2802 static CPUReadMemoryFunc *watch_mem_read[3] = {
2803 watch_mem_readb,
2804 watch_mem_readw,
2805 watch_mem_readl,
2808 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2809 watch_mem_writeb,
2810 watch_mem_writew,
2811 watch_mem_writel,
2814 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2815 unsigned int len)
2817 uint32_t ret;
2818 unsigned int idx;
2820 idx = SUBPAGE_IDX(addr);
2821 #if defined(DEBUG_SUBPAGE)
2822 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2823 mmio, len, addr, idx);
2824 #endif
2825 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2826 addr + mmio->region_offset[idx][0][len]);
2828 return ret;
2831 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2832 uint32_t value, unsigned int len)
2834 unsigned int idx;
2836 idx = SUBPAGE_IDX(addr);
2837 #if defined(DEBUG_SUBPAGE)
2838 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2839 mmio, len, addr, idx, value);
2840 #endif
2841 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2842 addr + mmio->region_offset[idx][1][len],
2843 value);
2846 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2848 #if defined(DEBUG_SUBPAGE)
2849 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2850 #endif
2852 return subpage_readlen(opaque, addr, 0);
2855 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2856 uint32_t value)
2858 #if defined(DEBUG_SUBPAGE)
2859 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2860 #endif
2861 subpage_writelen(opaque, addr, value, 0);
2864 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2866 #if defined(DEBUG_SUBPAGE)
2867 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2868 #endif
2870 return subpage_readlen(opaque, addr, 1);
2873 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2874 uint32_t value)
2876 #if defined(DEBUG_SUBPAGE)
2877 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2878 #endif
2879 subpage_writelen(opaque, addr, value, 1);
2882 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2884 #if defined(DEBUG_SUBPAGE)
2885 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2886 #endif
2888 return subpage_readlen(opaque, addr, 2);
2891 static void subpage_writel (void *opaque,
2892 target_phys_addr_t addr, uint32_t value)
2894 #if defined(DEBUG_SUBPAGE)
2895 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2896 #endif
2897 subpage_writelen(opaque, addr, value, 2);
2900 static CPUReadMemoryFunc *subpage_read[] = {
2901 &subpage_readb,
2902 &subpage_readw,
2903 &subpage_readl,
2906 static CPUWriteMemoryFunc *subpage_write[] = {
2907 &subpage_writeb,
2908 &subpage_writew,
2909 &subpage_writel,
2912 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2913 ram_addr_t memory, ram_addr_t region_offset)
2915 int idx, eidx;
2916 unsigned int i;
2918 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2919 return -1;
2920 idx = SUBPAGE_IDX(start);
2921 eidx = SUBPAGE_IDX(end);
2922 #if defined(DEBUG_SUBPAGE)
2923 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
2924 mmio, start, end, idx, eidx, memory);
2925 #endif
2926 memory >>= IO_MEM_SHIFT;
2927 for (; idx <= eidx; idx++) {
2928 for (i = 0; i < 4; i++) {
2929 if (io_mem_read[memory][i]) {
2930 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2931 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2932 mmio->region_offset[idx][0][i] = region_offset;
2934 if (io_mem_write[memory][i]) {
2935 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2936 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2937 mmio->region_offset[idx][1][i] = region_offset;
2942 return 0;
2945 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2946 ram_addr_t orig_memory, ram_addr_t region_offset)
2948 subpage_t *mmio;
2949 int subpage_memory;
2951 mmio = qemu_mallocz(sizeof(subpage_t));
2953 mmio->base = base;
2954 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
2955 #if defined(DEBUG_SUBPAGE)
2956 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2957 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2958 #endif
2959 *phys = subpage_memory | IO_MEM_SUBPAGE;
2960 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
2961 region_offset);
2963 return mmio;
2966 static int get_free_io_mem_idx(void)
2968 int i;
2970 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2971 if (!io_mem_used[i]) {
2972 io_mem_used[i] = 1;
2973 return i;
2976 return -1;
2979 /* mem_read and mem_write are arrays of functions containing the
2980 function to access byte (index 0), word (index 1) and dword (index
2981 2). Functions can be omitted with a NULL function pointer.
2982 If io_index is non zero, the corresponding io zone is
2983 modified. If it is zero, a new io zone is allocated. The return
2984 value can be used with cpu_register_physical_memory(). (-1) is
2985 returned if error. */
2986 static int cpu_register_io_memory_fixed(int io_index,
2987 CPUReadMemoryFunc **mem_read,
2988 CPUWriteMemoryFunc **mem_write,
2989 void *opaque)
2991 int i, subwidth = 0;
2993 if (io_index <= 0) {
2994 io_index = get_free_io_mem_idx();
2995 if (io_index == -1)
2996 return io_index;
2997 } else {
2998 io_index >>= IO_MEM_SHIFT;
2999 if (io_index >= IO_MEM_NB_ENTRIES)
3000 return -1;
3003 for(i = 0;i < 3; i++) {
3004 if (!mem_read[i] || !mem_write[i])
3005 subwidth = IO_MEM_SUBWIDTH;
3006 io_mem_read[io_index][i] = mem_read[i];
3007 io_mem_write[io_index][i] = mem_write[i];
3009 io_mem_opaque[io_index] = opaque;
3010 return (io_index << IO_MEM_SHIFT) | subwidth;
3013 int cpu_register_io_memory(CPUReadMemoryFunc **mem_read,
3014 CPUWriteMemoryFunc **mem_write,
3015 void *opaque)
3017 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3020 void cpu_unregister_io_memory(int io_table_address)
3022 int i;
3023 int io_index = io_table_address >> IO_MEM_SHIFT;
3025 for (i=0;i < 3; i++) {
3026 io_mem_read[io_index][i] = unassigned_mem_read[i];
3027 io_mem_write[io_index][i] = unassigned_mem_write[i];
3029 io_mem_opaque[io_index] = NULL;
3030 io_mem_used[io_index] = 0;
3033 static void io_mem_init(void)
3035 int i;
3037 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3038 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3039 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3040 for (i=0; i<5; i++)
3041 io_mem_used[i] = 1;
3043 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3044 watch_mem_write, NULL);
3045 #ifdef CONFIG_KQEMU
3046 if (kqemu_phys_ram_base) {
3047 /* alloc dirty bits array */
3048 phys_ram_dirty = qemu_vmalloc(kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3049 memset(phys_ram_dirty, 0xff, kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3051 #endif
3054 #endif /* !defined(CONFIG_USER_ONLY) */
3056 /* physical memory access (slow version, mainly for debug) */
3057 #if defined(CONFIG_USER_ONLY)
3058 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3059 int len, int is_write)
3061 int l, flags;
3062 target_ulong page;
3063 void * p;
3065 while (len > 0) {
3066 page = addr & TARGET_PAGE_MASK;
3067 l = (page + TARGET_PAGE_SIZE) - addr;
3068 if (l > len)
3069 l = len;
3070 flags = page_get_flags(page);
3071 if (!(flags & PAGE_VALID))
3072 return;
3073 if (is_write) {
3074 if (!(flags & PAGE_WRITE))
3075 return;
3076 /* XXX: this code should not depend on lock_user */
3077 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3078 /* FIXME - should this return an error rather than just fail? */
3079 return;
3080 memcpy(p, buf, l);
3081 unlock_user(p, addr, l);
3082 } else {
3083 if (!(flags & PAGE_READ))
3084 return;
3085 /* XXX: this code should not depend on lock_user */
3086 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3087 /* FIXME - should this return an error rather than just fail? */
3088 return;
3089 memcpy(buf, p, l);
3090 unlock_user(p, addr, 0);
3092 len -= l;
3093 buf += l;
3094 addr += l;
3098 #else
3099 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3100 int len, int is_write)
3102 int l, io_index;
3103 uint8_t *ptr;
3104 uint32_t val;
3105 target_phys_addr_t page;
3106 unsigned long pd;
3107 PhysPageDesc *p;
3109 while (len > 0) {
3110 page = addr & TARGET_PAGE_MASK;
3111 l = (page + TARGET_PAGE_SIZE) - addr;
3112 if (l > len)
3113 l = len;
3114 p = phys_page_find(page >> TARGET_PAGE_BITS);
3115 if (!p) {
3116 pd = IO_MEM_UNASSIGNED;
3117 } else {
3118 pd = p->phys_offset;
3121 if (is_write) {
3122 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3123 target_phys_addr_t addr1 = addr;
3124 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3125 if (p)
3126 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3127 /* XXX: could force cpu_single_env to NULL to avoid
3128 potential bugs */
3129 if (l >= 4 && ((addr1 & 3) == 0)) {
3130 /* 32 bit write access */
3131 val = ldl_p(buf);
3132 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3133 l = 4;
3134 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3135 /* 16 bit write access */
3136 val = lduw_p(buf);
3137 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3138 l = 2;
3139 } else {
3140 /* 8 bit write access */
3141 val = ldub_p(buf);
3142 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3143 l = 1;
3145 } else {
3146 unsigned long addr1;
3147 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3148 /* RAM case */
3149 ptr = qemu_get_ram_ptr(addr1);
3150 memcpy(ptr, buf, l);
3151 if (!cpu_physical_memory_is_dirty(addr1)) {
3152 /* invalidate code */
3153 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3154 /* set dirty bit */
3155 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3156 (0xff & ~CODE_DIRTY_FLAG);
3159 } else {
3160 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3161 !(pd & IO_MEM_ROMD)) {
3162 target_phys_addr_t addr1 = addr;
3163 /* I/O case */
3164 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3165 if (p)
3166 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3167 if (l >= 4 && ((addr1 & 3) == 0)) {
3168 /* 32 bit read access */
3169 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3170 stl_p(buf, val);
3171 l = 4;
3172 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3173 /* 16 bit read access */
3174 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3175 stw_p(buf, val);
3176 l = 2;
3177 } else {
3178 /* 8 bit read access */
3179 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3180 stb_p(buf, val);
3181 l = 1;
3183 } else {
3184 /* RAM case */
3185 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3186 (addr & ~TARGET_PAGE_MASK);
3187 memcpy(buf, ptr, l);
3190 len -= l;
3191 buf += l;
3192 addr += l;
3196 /* used for ROM loading : can write in RAM and ROM */
3197 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3198 const uint8_t *buf, int len)
3200 int l;
3201 uint8_t *ptr;
3202 target_phys_addr_t page;
3203 unsigned long pd;
3204 PhysPageDesc *p;
3206 while (len > 0) {
3207 page = addr & TARGET_PAGE_MASK;
3208 l = (page + TARGET_PAGE_SIZE) - addr;
3209 if (l > len)
3210 l = len;
3211 p = phys_page_find(page >> TARGET_PAGE_BITS);
3212 if (!p) {
3213 pd = IO_MEM_UNASSIGNED;
3214 } else {
3215 pd = p->phys_offset;
3218 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3219 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3220 !(pd & IO_MEM_ROMD)) {
3221 /* do nothing */
3222 } else {
3223 unsigned long addr1;
3224 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3225 /* ROM/RAM case */
3226 ptr = qemu_get_ram_ptr(addr1);
3227 memcpy(ptr, buf, l);
3229 len -= l;
3230 buf += l;
3231 addr += l;
3235 typedef struct {
3236 void *buffer;
3237 target_phys_addr_t addr;
3238 target_phys_addr_t len;
3239 } BounceBuffer;
3241 static BounceBuffer bounce;
3243 typedef struct MapClient {
3244 void *opaque;
3245 void (*callback)(void *opaque);
3246 LIST_ENTRY(MapClient) link;
3247 } MapClient;
3249 static LIST_HEAD(map_client_list, MapClient) map_client_list
3250 = LIST_HEAD_INITIALIZER(map_client_list);
3252 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3254 MapClient *client = qemu_malloc(sizeof(*client));
3256 client->opaque = opaque;
3257 client->callback = callback;
3258 LIST_INSERT_HEAD(&map_client_list, client, link);
3259 return client;
3262 void cpu_unregister_map_client(void *_client)
3264 MapClient *client = (MapClient *)_client;
3266 LIST_REMOVE(client, link);
3267 qemu_free(client);
3270 static void cpu_notify_map_clients(void)
3272 MapClient *client;
3274 while (!LIST_EMPTY(&map_client_list)) {
3275 client = LIST_FIRST(&map_client_list);
3276 client->callback(client->opaque);
3277 cpu_unregister_map_client(client);
3281 /* Map a physical memory region into a host virtual address.
3282 * May map a subset of the requested range, given by and returned in *plen.
3283 * May return NULL if resources needed to perform the mapping are exhausted.
3284 * Use only for reads OR writes - not for read-modify-write operations.
3285 * Use cpu_register_map_client() to know when retrying the map operation is
3286 * likely to succeed.
3288 void *cpu_physical_memory_map(target_phys_addr_t addr,
3289 target_phys_addr_t *plen,
3290 int is_write)
3292 target_phys_addr_t len = *plen;
3293 target_phys_addr_t done = 0;
3294 int l;
3295 uint8_t *ret = NULL;
3296 uint8_t *ptr;
3297 target_phys_addr_t page;
3298 unsigned long pd;
3299 PhysPageDesc *p;
3300 unsigned long addr1;
3302 while (len > 0) {
3303 page = addr & TARGET_PAGE_MASK;
3304 l = (page + TARGET_PAGE_SIZE) - addr;
3305 if (l > len)
3306 l = len;
3307 p = phys_page_find(page >> TARGET_PAGE_BITS);
3308 if (!p) {
3309 pd = IO_MEM_UNASSIGNED;
3310 } else {
3311 pd = p->phys_offset;
3314 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3315 if (done || bounce.buffer) {
3316 break;
3318 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3319 bounce.addr = addr;
3320 bounce.len = l;
3321 if (!is_write) {
3322 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3324 ptr = bounce.buffer;
3325 } else {
3326 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3327 ptr = qemu_get_ram_ptr(addr1);
3329 if (!done) {
3330 ret = ptr;
3331 } else if (ret + done != ptr) {
3332 break;
3335 len -= l;
3336 addr += l;
3337 done += l;
3339 *plen = done;
3340 return ret;
3343 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3344 * Will also mark the memory as dirty if is_write == 1. access_len gives
3345 * the amount of memory that was actually read or written by the caller.
3347 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3348 int is_write, target_phys_addr_t access_len)
3350 if (buffer != bounce.buffer) {
3351 if (is_write) {
3352 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3353 while (access_len) {
3354 unsigned l;
3355 l = TARGET_PAGE_SIZE;
3356 if (l > access_len)
3357 l = access_len;
3358 if (!cpu_physical_memory_is_dirty(addr1)) {
3359 /* invalidate code */
3360 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3361 /* set dirty bit */
3362 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3363 (0xff & ~CODE_DIRTY_FLAG);
3365 addr1 += l;
3366 access_len -= l;
3369 return;
3371 if (is_write) {
3372 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3374 qemu_free(bounce.buffer);
3375 bounce.buffer = NULL;
3376 cpu_notify_map_clients();
3379 /* warning: addr must be aligned */
3380 uint32_t ldl_phys(target_phys_addr_t addr)
3382 int io_index;
3383 uint8_t *ptr;
3384 uint32_t val;
3385 unsigned long pd;
3386 PhysPageDesc *p;
3388 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3389 if (!p) {
3390 pd = IO_MEM_UNASSIGNED;
3391 } else {
3392 pd = p->phys_offset;
3395 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3396 !(pd & IO_MEM_ROMD)) {
3397 /* I/O case */
3398 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3399 if (p)
3400 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3401 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3402 } else {
3403 /* RAM case */
3404 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3405 (addr & ~TARGET_PAGE_MASK);
3406 val = ldl_p(ptr);
3408 return val;
3411 /* warning: addr must be aligned */
3412 uint64_t ldq_phys(target_phys_addr_t addr)
3414 int io_index;
3415 uint8_t *ptr;
3416 uint64_t val;
3417 unsigned long pd;
3418 PhysPageDesc *p;
3420 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3421 if (!p) {
3422 pd = IO_MEM_UNASSIGNED;
3423 } else {
3424 pd = p->phys_offset;
3427 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3428 !(pd & IO_MEM_ROMD)) {
3429 /* I/O case */
3430 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3431 if (p)
3432 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3433 #ifdef TARGET_WORDS_BIGENDIAN
3434 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3435 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3436 #else
3437 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3438 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3439 #endif
3440 } else {
3441 /* RAM case */
3442 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3443 (addr & ~TARGET_PAGE_MASK);
3444 val = ldq_p(ptr);
3446 return val;
3449 /* XXX: optimize */
3450 uint32_t ldub_phys(target_phys_addr_t addr)
3452 uint8_t val;
3453 cpu_physical_memory_read(addr, &val, 1);
3454 return val;
3457 /* XXX: optimize */
3458 uint32_t lduw_phys(target_phys_addr_t addr)
3460 uint16_t val;
3461 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3462 return tswap16(val);
3465 /* warning: addr must be aligned. The ram page is not masked as dirty
3466 and the code inside is not invalidated. It is useful if the dirty
3467 bits are used to track modified PTEs */
3468 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3470 int io_index;
3471 uint8_t *ptr;
3472 unsigned long pd;
3473 PhysPageDesc *p;
3475 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3476 if (!p) {
3477 pd = IO_MEM_UNASSIGNED;
3478 } else {
3479 pd = p->phys_offset;
3482 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3483 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3484 if (p)
3485 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3486 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3487 } else {
3488 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3489 ptr = qemu_get_ram_ptr(addr1);
3490 stl_p(ptr, val);
3492 if (unlikely(in_migration)) {
3493 if (!cpu_physical_memory_is_dirty(addr1)) {
3494 /* invalidate code */
3495 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3496 /* set dirty bit */
3497 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3498 (0xff & ~CODE_DIRTY_FLAG);
3504 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3506 int io_index;
3507 uint8_t *ptr;
3508 unsigned long pd;
3509 PhysPageDesc *p;
3511 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3512 if (!p) {
3513 pd = IO_MEM_UNASSIGNED;
3514 } else {
3515 pd = p->phys_offset;
3518 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3519 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3520 if (p)
3521 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3522 #ifdef TARGET_WORDS_BIGENDIAN
3523 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3524 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3525 #else
3526 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3527 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3528 #endif
3529 } else {
3530 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3531 (addr & ~TARGET_PAGE_MASK);
3532 stq_p(ptr, val);
3536 /* warning: addr must be aligned */
3537 void stl_phys(target_phys_addr_t addr, uint32_t val)
3539 int io_index;
3540 uint8_t *ptr;
3541 unsigned long pd;
3542 PhysPageDesc *p;
3544 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3545 if (!p) {
3546 pd = IO_MEM_UNASSIGNED;
3547 } else {
3548 pd = p->phys_offset;
3551 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3552 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3553 if (p)
3554 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3555 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3556 } else {
3557 unsigned long addr1;
3558 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3559 /* RAM case */
3560 ptr = qemu_get_ram_ptr(addr1);
3561 stl_p(ptr, val);
3562 if (!cpu_physical_memory_is_dirty(addr1)) {
3563 /* invalidate code */
3564 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3565 /* set dirty bit */
3566 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3567 (0xff & ~CODE_DIRTY_FLAG);
3572 /* XXX: optimize */
3573 void stb_phys(target_phys_addr_t addr, uint32_t val)
3575 uint8_t v = val;
3576 cpu_physical_memory_write(addr, &v, 1);
3579 /* XXX: optimize */
3580 void stw_phys(target_phys_addr_t addr, uint32_t val)
3582 uint16_t v = tswap16(val);
3583 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3586 /* XXX: optimize */
3587 void stq_phys(target_phys_addr_t addr, uint64_t val)
3589 val = tswap64(val);
3590 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3593 #endif
3595 /* virtual memory access for debug (includes writing to ROM) */
3596 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3597 uint8_t *buf, int len, int is_write)
3599 int l;
3600 target_phys_addr_t phys_addr;
3601 target_ulong page;
3603 while (len > 0) {
3604 page = addr & TARGET_PAGE_MASK;
3605 phys_addr = cpu_get_phys_page_debug(env, page);
3606 /* if no physical page mapped, return an error */
3607 if (phys_addr == -1)
3608 return -1;
3609 l = (page + TARGET_PAGE_SIZE) - addr;
3610 if (l > len)
3611 l = len;
3612 phys_addr += (addr & ~TARGET_PAGE_MASK);
3613 #if !defined(CONFIG_USER_ONLY)
3614 if (is_write)
3615 cpu_physical_memory_write_rom(phys_addr, buf, l);
3616 else
3617 #endif
3618 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3619 len -= l;
3620 buf += l;
3621 addr += l;
3623 return 0;
3626 /* in deterministic execution mode, instructions doing device I/Os
3627 must be at the end of the TB */
3628 void cpu_io_recompile(CPUState *env, void *retaddr)
3630 TranslationBlock *tb;
3631 uint32_t n, cflags;
3632 target_ulong pc, cs_base;
3633 uint64_t flags;
3635 tb = tb_find_pc((unsigned long)retaddr);
3636 if (!tb) {
3637 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3638 retaddr);
3640 n = env->icount_decr.u16.low + tb->icount;
3641 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3642 /* Calculate how many instructions had been executed before the fault
3643 occurred. */
3644 n = n - env->icount_decr.u16.low;
3645 /* Generate a new TB ending on the I/O insn. */
3646 n++;
3647 /* On MIPS and SH, delay slot instructions can only be restarted if
3648 they were already the first instruction in the TB. If this is not
3649 the first instruction in a TB then re-execute the preceding
3650 branch. */
3651 #if defined(TARGET_MIPS)
3652 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3653 env->active_tc.PC -= 4;
3654 env->icount_decr.u16.low++;
3655 env->hflags &= ~MIPS_HFLAG_BMASK;
3657 #elif defined(TARGET_SH4)
3658 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3659 && n > 1) {
3660 env->pc -= 2;
3661 env->icount_decr.u16.low++;
3662 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3664 #endif
3665 /* This should never happen. */
3666 if (n > CF_COUNT_MASK)
3667 cpu_abort(env, "TB too big during recompile");
3669 cflags = n | CF_LAST_IO;
3670 pc = tb->pc;
3671 cs_base = tb->cs_base;
3672 flags = tb->flags;
3673 tb_phys_invalidate(tb, -1);
3674 /* FIXME: In theory this could raise an exception. In practice
3675 we have already translated the block once so it's probably ok. */
3676 tb_gen_code(env, pc, cs_base, flags, cflags);
3677 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3678 the first in the TB) then we end up generating a whole new TB and
3679 repeating the fault, which is horribly inefficient.
3680 Better would be to execute just this insn uncached, or generate a
3681 second new TB. */
3682 cpu_resume_from_signal(env, NULL);
3685 void dump_exec_info(FILE *f,
3686 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3688 int i, target_code_size, max_target_code_size;
3689 int direct_jmp_count, direct_jmp2_count, cross_page;
3690 TranslationBlock *tb;
3692 target_code_size = 0;
3693 max_target_code_size = 0;
3694 cross_page = 0;
3695 direct_jmp_count = 0;
3696 direct_jmp2_count = 0;
3697 for(i = 0; i < nb_tbs; i++) {
3698 tb = &tbs[i];
3699 target_code_size += tb->size;
3700 if (tb->size > max_target_code_size)
3701 max_target_code_size = tb->size;
3702 if (tb->page_addr[1] != -1)
3703 cross_page++;
3704 if (tb->tb_next_offset[0] != 0xffff) {
3705 direct_jmp_count++;
3706 if (tb->tb_next_offset[1] != 0xffff) {
3707 direct_jmp2_count++;
3711 /* XXX: avoid using doubles ? */
3712 cpu_fprintf(f, "Translation buffer state:\n");
3713 cpu_fprintf(f, "gen code size %ld/%ld\n",
3714 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3715 cpu_fprintf(f, "TB count %d/%d\n",
3716 nb_tbs, code_gen_max_blocks);
3717 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3718 nb_tbs ? target_code_size / nb_tbs : 0,
3719 max_target_code_size);
3720 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3721 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3722 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3723 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3724 cross_page,
3725 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3726 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3727 direct_jmp_count,
3728 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3729 direct_jmp2_count,
3730 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3731 cpu_fprintf(f, "\nStatistics:\n");
3732 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3733 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3734 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3735 tcg_dump_info(f, cpu_fprintf);
3738 #if !defined(CONFIG_USER_ONLY)
3740 #define MMUSUFFIX _cmmu
3741 #define GETPC() NULL
3742 #define env cpu_single_env
3743 #define SOFTMMU_CODE_ACCESS
3745 #define SHIFT 0
3746 #include "softmmu_template.h"
3748 #define SHIFT 1
3749 #include "softmmu_template.h"
3751 #define SHIFT 2
3752 #include "softmmu_template.h"
3754 #define SHIFT 3
3755 #include "softmmu_template.h"
3757 #undef env
3759 #endif