Wrap assign_device and assign_irq
[qemu-kvm/fedora.git] / qemu-kvm.c
blobada1012d720db1b1d4c3e1f413de1ee6e7318abc
1 /*
2 * qemu/kvm integration
4 * Copyright (C) 2006-2008 Qumranet Technologies
6 * Licensed under the terms of the GNU GPL version 2 or higher.
7 */
8 #include "config.h"
9 #include "config-host.h"
11 #include <assert.h>
12 #include <string.h>
13 #include "hw/hw.h"
14 #include "sysemu.h"
15 #include "qemu-common.h"
16 #include "console.h"
17 #include "block.h"
18 #include "compatfd.h"
19 #include "gdbstub.h"
21 #include "qemu-kvm.h"
22 #include <libkvm.h>
23 #include <pthread.h>
24 #include <sys/utsname.h>
25 #include <sys/syscall.h>
26 #include <sys/mman.h>
28 #define false 0
29 #define true 1
31 int kvm_allowed = 1;
32 int kvm_irqchip = 1;
33 int kvm_pit = 1;
34 int kvm_pit_reinject = 1;
35 int kvm_nested = 0;
36 kvm_context_t kvm_context;
38 pthread_mutex_t qemu_mutex = PTHREAD_MUTEX_INITIALIZER;
39 pthread_cond_t qemu_vcpu_cond = PTHREAD_COND_INITIALIZER;
40 pthread_cond_t qemu_system_cond = PTHREAD_COND_INITIALIZER;
41 pthread_cond_t qemu_pause_cond = PTHREAD_COND_INITIALIZER;
42 pthread_cond_t qemu_work_cond = PTHREAD_COND_INITIALIZER;
43 __thread struct CPUState *current_env;
45 static int qemu_system_ready;
47 #define SIG_IPI (SIGRTMIN+4)
49 pthread_t io_thread;
50 static int io_thread_fd = -1;
51 static int io_thread_sigfd = -1;
53 static CPUState *kvm_debug_cpu_requested;
55 /* The list of ioperm_data */
56 static LIST_HEAD(, ioperm_data) ioperm_head;
58 static inline unsigned long kvm_get_thread_id(void)
60 return syscall(SYS_gettid);
63 static void qemu_cond_wait(pthread_cond_t *cond)
65 CPUState *env = cpu_single_env;
66 static const struct timespec ts = {
67 .tv_sec = 0,
68 .tv_nsec = 100000,
71 pthread_cond_timedwait(cond, &qemu_mutex, &ts);
72 cpu_single_env = env;
75 static void sig_ipi_handler(int n)
79 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
81 struct qemu_work_item wi;
83 if (env == current_env) {
84 func(data);
85 return;
88 wi.func = func;
89 wi.data = data;
90 if (!env->kvm_cpu_state.queued_work_first)
91 env->kvm_cpu_state.queued_work_first = &wi;
92 else
93 env->kvm_cpu_state.queued_work_last->next = &wi;
94 env->kvm_cpu_state.queued_work_last = &wi;
95 wi.next = NULL;
96 wi.done = false;
98 pthread_kill(env->kvm_cpu_state.thread, SIG_IPI);
99 while (!wi.done)
100 qemu_cond_wait(&qemu_work_cond);
103 static void inject_interrupt(void *data)
105 cpu_interrupt(current_env, (long)data);
108 void kvm_inject_interrupt(CPUState *env, int mask)
110 on_vcpu(env, inject_interrupt, (void *)(long)mask);
113 void kvm_update_interrupt_request(CPUState *env)
115 int signal = 0;
117 if (env) {
118 if (!current_env || !current_env->kvm_cpu_state.created)
119 signal = 1;
121 * Testing for created here is really redundant
123 if (current_env && current_env->kvm_cpu_state.created &&
124 env != current_env && !env->kvm_cpu_state.signalled)
125 signal = 1;
127 if (signal) {
128 env->kvm_cpu_state.signalled = 1;
129 if (env->kvm_cpu_state.thread)
130 pthread_kill(env->kvm_cpu_state.thread, SIG_IPI);
135 void kvm_update_after_sipi(CPUState *env)
137 env->kvm_cpu_state.sipi_needed = 1;
138 kvm_update_interrupt_request(env);
141 void kvm_apic_init(CPUState *env)
143 if (env->cpu_index != 0)
144 env->kvm_cpu_state.init = 1;
145 kvm_update_interrupt_request(env);
148 #include <signal.h>
150 static int try_push_interrupts(void *opaque)
152 return kvm_arch_try_push_interrupts(opaque);
155 static void post_kvm_run(void *opaque, void *data)
157 CPUState *env = (CPUState *)data;
159 pthread_mutex_lock(&qemu_mutex);
160 kvm_arch_post_kvm_run(opaque, env);
163 static int pre_kvm_run(void *opaque, void *data)
165 CPUState *env = (CPUState *)data;
167 kvm_arch_pre_kvm_run(opaque, env);
169 if (env->interrupt_request & CPU_INTERRUPT_EXIT)
170 return 1;
171 pthread_mutex_unlock(&qemu_mutex);
172 return 0;
175 static void kvm_do_load_registers(void *_env)
177 CPUState *env = _env;
179 kvm_arch_load_regs(env);
182 void kvm_load_registers(CPUState *env)
184 if (kvm_enabled() && qemu_system_ready)
185 on_vcpu(env, kvm_do_load_registers, env);
188 static void kvm_do_save_registers(void *_env)
190 CPUState *env = _env;
192 kvm_arch_save_regs(env);
195 void kvm_save_registers(CPUState *env)
197 if (kvm_enabled())
198 on_vcpu(env, kvm_do_save_registers, env);
201 int kvm_cpu_exec(CPUState *env)
203 int r;
205 r = kvm_run(kvm_context, env->cpu_index, env);
206 if (r < 0) {
207 printf("kvm_run returned %d\n", r);
208 exit(1);
211 return 0;
214 static int has_work(CPUState *env)
216 if (!vm_running || (env && env->kvm_cpu_state.stopped))
217 return 0;
218 if (!env->halted)
219 return 1;
220 return kvm_arch_has_work(env);
223 static void flush_queued_work(CPUState *env)
225 struct qemu_work_item *wi;
227 if (!env->kvm_cpu_state.queued_work_first)
228 return;
230 while ((wi = env->kvm_cpu_state.queued_work_first)) {
231 env->kvm_cpu_state.queued_work_first = wi->next;
232 wi->func(wi->data);
233 wi->done = true;
235 env->kvm_cpu_state.queued_work_last = NULL;
236 pthread_cond_broadcast(&qemu_work_cond);
239 static void kvm_main_loop_wait(CPUState *env, int timeout)
241 struct timespec ts;
242 int r, e;
243 siginfo_t siginfo;
244 sigset_t waitset;
246 pthread_mutex_unlock(&qemu_mutex);
248 ts.tv_sec = timeout / 1000;
249 ts.tv_nsec = (timeout % 1000) * 1000000;
250 sigemptyset(&waitset);
251 sigaddset(&waitset, SIG_IPI);
253 r = sigtimedwait(&waitset, &siginfo, &ts);
254 e = errno;
256 pthread_mutex_lock(&qemu_mutex);
258 if (r == -1 && !(e == EAGAIN || e == EINTR)) {
259 printf("sigtimedwait: %s\n", strerror(e));
260 exit(1);
263 cpu_single_env = env;
264 flush_queued_work(env);
266 if (env->kvm_cpu_state.stop) {
267 env->kvm_cpu_state.stop = 0;
268 env->kvm_cpu_state.stopped = 1;
269 pthread_cond_signal(&qemu_pause_cond);
272 env->kvm_cpu_state.signalled = 0;
275 static int all_threads_paused(void)
277 CPUState *penv = first_cpu;
279 while (penv) {
280 if (penv->kvm_cpu_state.stop)
281 return 0;
282 penv = (CPUState *)penv->next_cpu;
285 return 1;
288 static void pause_all_threads(void)
290 CPUState *penv = first_cpu;
292 while (penv) {
293 if (penv != cpu_single_env) {
294 penv->kvm_cpu_state.stop = 1;
295 pthread_kill(penv->kvm_cpu_state.thread, SIG_IPI);
296 } else {
297 penv->kvm_cpu_state.stop = 0;
298 penv->kvm_cpu_state.stopped = 1;
299 cpu_interrupt(penv, CPU_INTERRUPT_EXIT);
301 penv = (CPUState *)penv->next_cpu;
304 while (!all_threads_paused())
305 qemu_cond_wait(&qemu_pause_cond);
308 static void resume_all_threads(void)
310 CPUState *penv = first_cpu;
312 assert(!cpu_single_env);
314 while (penv) {
315 penv->kvm_cpu_state.stop = 0;
316 penv->kvm_cpu_state.stopped = 0;
317 pthread_kill(penv->kvm_cpu_state.thread, SIG_IPI);
318 penv = (CPUState *)penv->next_cpu;
322 static void kvm_vm_state_change_handler(void *context, int running, int reason)
324 if (running)
325 resume_all_threads();
326 else
327 pause_all_threads();
330 static void update_regs_for_sipi(CPUState *env)
332 kvm_arch_update_regs_for_sipi(env);
333 env->kvm_cpu_state.sipi_needed = 0;
336 static void update_regs_for_init(CPUState *env)
338 #ifdef TARGET_I386
339 SegmentCache cs = env->segs[R_CS];
340 #endif
342 cpu_reset(env);
344 #ifdef TARGET_I386
345 /* restore SIPI vector */
346 if(env->kvm_cpu_state.sipi_needed)
347 env->segs[R_CS] = cs;
348 #endif
350 env->kvm_cpu_state.init = 0;
351 kvm_arch_load_regs(env);
354 static void setup_kernel_sigmask(CPUState *env)
356 sigset_t set;
358 sigemptyset(&set);
359 sigaddset(&set, SIGUSR2);
360 sigaddset(&set, SIGIO);
361 sigaddset(&set, SIGALRM);
362 sigprocmask(SIG_BLOCK, &set, NULL);
364 sigprocmask(SIG_BLOCK, NULL, &set);
365 sigdelset(&set, SIG_IPI);
367 kvm_set_signal_mask(kvm_context, env->cpu_index, &set);
370 static void qemu_kvm_system_reset(void)
372 CPUState *penv = first_cpu;
374 pause_all_threads();
376 qemu_system_reset();
378 while (penv) {
379 kvm_arch_cpu_reset(penv);
380 penv = (CPUState *)penv->next_cpu;
383 resume_all_threads();
386 static int kvm_main_loop_cpu(CPUState *env)
388 setup_kernel_sigmask(env);
390 pthread_mutex_lock(&qemu_mutex);
391 if (kvm_irqchip_in_kernel(kvm_context))
392 env->halted = 0;
394 kvm_qemu_init_env(env);
395 #ifdef TARGET_I386
396 kvm_tpr_vcpu_start(env);
397 #endif
399 cpu_single_env = env;
400 kvm_load_registers(env);
402 while (1) {
403 while (!has_work(env))
404 kvm_main_loop_wait(env, 1000);
405 if (env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_NMI))
406 env->halted = 0;
407 if (!kvm_irqchip_in_kernel(kvm_context)) {
408 if (env->kvm_cpu_state.init)
409 update_regs_for_init(env);
410 if (env->kvm_cpu_state.sipi_needed)
411 update_regs_for_sipi(env);
413 if (!env->halted && !env->kvm_cpu_state.init)
414 kvm_cpu_exec(env);
415 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
416 kvm_main_loop_wait(env, 0);
418 pthread_mutex_unlock(&qemu_mutex);
419 return 0;
422 static void *ap_main_loop(void *_env)
424 CPUState *env = _env;
425 sigset_t signals;
426 struct ioperm_data *data = NULL;
428 current_env = env;
429 env->thread_id = kvm_get_thread_id();
430 sigfillset(&signals);
431 sigprocmask(SIG_BLOCK, &signals, NULL);
432 kvm_create_vcpu(kvm_context, env->cpu_index);
433 kvm_qemu_init_env(env);
435 #ifdef USE_KVM_DEVICE_ASSIGNMENT
436 /* do ioperm for io ports of assigned devices */
437 LIST_FOREACH(data, &ioperm_head, entries)
438 on_vcpu(env, kvm_arch_do_ioperm, data);
439 #endif
441 /* signal VCPU creation */
442 pthread_mutex_lock(&qemu_mutex);
443 current_env->kvm_cpu_state.created = 1;
444 pthread_cond_signal(&qemu_vcpu_cond);
446 /* and wait for machine initialization */
447 while (!qemu_system_ready)
448 qemu_cond_wait(&qemu_system_cond);
449 pthread_mutex_unlock(&qemu_mutex);
451 kvm_main_loop_cpu(env);
452 return NULL;
455 void kvm_init_vcpu(CPUState *env)
457 pthread_create(&env->kvm_cpu_state.thread, NULL, ap_main_loop, env);
459 while (env->kvm_cpu_state.created == 0)
460 qemu_cond_wait(&qemu_vcpu_cond);
463 int kvm_init_ap(void)
465 #ifdef TARGET_I386
466 kvm_tpr_opt_setup();
467 #endif
468 qemu_add_vm_change_state_handler(kvm_vm_state_change_handler, NULL);
470 signal(SIG_IPI, sig_ipi_handler);
471 return 0;
474 void qemu_kvm_notify_work(void)
476 uint64_t value = 1;
477 char buffer[8];
478 size_t offset = 0;
480 if (io_thread_fd == -1)
481 return;
483 memcpy(buffer, &value, sizeof(value));
485 while (offset < 8) {
486 ssize_t len;
488 len = write(io_thread_fd, buffer + offset, 8 - offset);
489 if (len == -1 && errno == EINTR)
490 continue;
492 if (len <= 0)
493 break;
495 offset += len;
498 if (offset != 8)
499 fprintf(stderr, "failed to notify io thread\n");
502 /* If we have signalfd, we mask out the signals we want to handle and then
503 * use signalfd to listen for them. We rely on whatever the current signal
504 * handler is to dispatch the signals when we receive them.
507 static void sigfd_handler(void *opaque)
509 int fd = (unsigned long)opaque;
510 struct qemu_signalfd_siginfo info;
511 struct sigaction action;
512 ssize_t len;
514 while (1) {
515 do {
516 len = read(fd, &info, sizeof(info));
517 } while (len == -1 && errno == EINTR);
519 if (len == -1 && errno == EAGAIN)
520 break;
522 if (len != sizeof(info)) {
523 printf("read from sigfd returned %ld: %m\n", len);
524 return;
527 sigaction(info.ssi_signo, NULL, &action);
528 if (action.sa_handler)
529 action.sa_handler(info.ssi_signo);
534 /* Used to break IO thread out of select */
535 static void io_thread_wakeup(void *opaque)
537 int fd = (unsigned long)opaque;
538 char buffer[8];
539 size_t offset = 0;
541 while (offset < 8) {
542 ssize_t len;
544 len = read(fd, buffer + offset, 8 - offset);
545 if (len == -1 && errno == EINTR)
546 continue;
548 if (len <= 0)
549 break;
551 offset += len;
555 int kvm_main_loop(void)
557 int fds[2];
558 sigset_t mask;
559 int sigfd;
561 io_thread = pthread_self();
562 qemu_system_ready = 1;
564 if (qemu_eventfd(fds) == -1) {
565 fprintf(stderr, "failed to create eventfd\n");
566 return -errno;
569 qemu_set_fd_handler2(fds[0], NULL, io_thread_wakeup, NULL,
570 (void *)(unsigned long)fds[0]);
572 io_thread_fd = fds[1];
574 sigemptyset(&mask);
575 sigaddset(&mask, SIGIO);
576 sigaddset(&mask, SIGALRM);
577 sigprocmask(SIG_BLOCK, &mask, NULL);
579 sigfd = qemu_signalfd(&mask);
580 if (sigfd == -1) {
581 fprintf(stderr, "failed to create signalfd\n");
582 return -errno;
585 fcntl(sigfd, F_SETFL, O_NONBLOCK);
587 qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL,
588 (void *)(unsigned long)sigfd);
590 pthread_cond_broadcast(&qemu_system_cond);
592 io_thread_sigfd = sigfd;
593 cpu_single_env = NULL;
595 while (1) {
596 main_loop_wait(1000);
597 if (qemu_shutdown_requested())
598 break;
599 else if (qemu_powerdown_requested())
600 qemu_system_powerdown();
601 else if (qemu_reset_requested())
602 qemu_kvm_system_reset();
603 #ifdef CONFIG_GDBSTUB
604 else if (kvm_debug_cpu_requested) {
605 gdb_set_stop_cpu(kvm_debug_cpu_requested);
606 vm_stop(EXCP_DEBUG);
607 kvm_debug_cpu_requested = NULL;
609 #endif
612 pause_all_threads();
613 pthread_mutex_unlock(&qemu_mutex);
615 return 0;
618 #ifdef KVM_CAP_SET_GUEST_DEBUG
619 static int kvm_debug(void *opaque, void *data,
620 struct kvm_debug_exit_arch *arch_info)
622 int handle = kvm_arch_debug(arch_info);
623 struct CPUState *env = data;
625 if (handle) {
626 kvm_debug_cpu_requested = env;
627 env->kvm_cpu_state.stopped = 1;
629 return handle;
631 #endif
633 static int kvm_inb(void *opaque, uint16_t addr, uint8_t *data)
635 *data = cpu_inb(0, addr);
636 return 0;
639 static int kvm_inw(void *opaque, uint16_t addr, uint16_t *data)
641 *data = cpu_inw(0, addr);
642 return 0;
645 static int kvm_inl(void *opaque, uint16_t addr, uint32_t *data)
647 *data = cpu_inl(0, addr);
648 return 0;
651 #define PM_IO_BASE 0xb000
653 static int kvm_outb(void *opaque, uint16_t addr, uint8_t data)
655 if (addr == 0xb2) {
656 switch (data) {
657 case 0: {
658 cpu_outb(0, 0xb3, 0);
659 break;
661 case 0xf0: {
662 unsigned x;
664 /* enable acpi */
665 x = cpu_inw(0, PM_IO_BASE + 4);
666 x &= ~1;
667 cpu_outw(0, PM_IO_BASE + 4, x);
668 break;
670 case 0xf1: {
671 unsigned x;
673 /* enable acpi */
674 x = cpu_inw(0, PM_IO_BASE + 4);
675 x |= 1;
676 cpu_outw(0, PM_IO_BASE + 4, x);
677 break;
679 default:
680 break;
682 return 0;
684 cpu_outb(0, addr, data);
685 return 0;
688 static int kvm_outw(void *opaque, uint16_t addr, uint16_t data)
690 cpu_outw(0, addr, data);
691 return 0;
694 static int kvm_outl(void *opaque, uint16_t addr, uint32_t data)
696 cpu_outl(0, addr, data);
697 return 0;
700 static int kvm_mmio_read(void *opaque, uint64_t addr, uint8_t *data, int len)
702 cpu_physical_memory_rw(addr, data, len, 0);
703 return 0;
706 static int kvm_mmio_write(void *opaque, uint64_t addr, uint8_t *data, int len)
708 cpu_physical_memory_rw(addr, data, len, 1);
709 return 0;
712 static int kvm_io_window(void *opaque)
714 return 1;
718 static int kvm_halt(void *opaque, int vcpu)
720 return kvm_arch_halt(opaque, vcpu);
723 static int kvm_shutdown(void *opaque, void *data)
725 struct CPUState *env = (struct CPUState *)data;
727 /* stop the current vcpu from going back to guest mode */
728 env->kvm_cpu_state.stopped = 1;
730 qemu_system_reset_request();
731 return 1;
734 static struct kvm_callbacks qemu_kvm_ops = {
735 #ifdef KVM_CAP_SET_GUEST_DEBUG
736 .debug = kvm_debug,
737 #endif
738 .inb = kvm_inb,
739 .inw = kvm_inw,
740 .inl = kvm_inl,
741 .outb = kvm_outb,
742 .outw = kvm_outw,
743 .outl = kvm_outl,
744 .mmio_read = kvm_mmio_read,
745 .mmio_write = kvm_mmio_write,
746 .halt = kvm_halt,
747 .shutdown = kvm_shutdown,
748 .io_window = kvm_io_window,
749 .try_push_interrupts = try_push_interrupts,
750 #ifdef KVM_CAP_USER_NMI
751 .push_nmi = kvm_arch_push_nmi,
752 #endif
753 .post_kvm_run = post_kvm_run,
754 .pre_kvm_run = pre_kvm_run,
755 #ifdef TARGET_I386
756 .tpr_access = handle_tpr_access,
757 #endif
758 #ifdef TARGET_PPC
759 .powerpc_dcr_read = handle_powerpc_dcr_read,
760 .powerpc_dcr_write = handle_powerpc_dcr_write,
761 #endif
764 int kvm_qemu_init()
766 /* Try to initialize kvm */
767 kvm_context = kvm_init(&qemu_kvm_ops, cpu_single_env);
768 if (!kvm_context) {
769 return -1;
771 pthread_mutex_lock(&qemu_mutex);
773 return 0;
776 #ifdef TARGET_I386
777 static int destroy_region_works = 0;
778 #endif
780 int kvm_qemu_create_context(void)
782 int r;
783 int i;
785 if (!kvm_irqchip) {
786 kvm_disable_irqchip_creation(kvm_context);
788 if (!kvm_pit) {
789 kvm_disable_pit_creation(kvm_context);
791 if (kvm_create(kvm_context, phys_ram_size, (void**)&phys_ram_base) < 0) {
792 kvm_qemu_destroy();
793 return -1;
795 r = kvm_arch_qemu_create_context();
796 if(r <0)
797 kvm_qemu_destroy();
798 if (kvm_pit && !kvm_pit_reinject) {
799 if (kvm_reinject_control(kvm_context, 0)) {
800 fprintf(stderr, "failure to disable in-kernel PIT reinjection\n");
801 return -1;
804 #ifdef TARGET_I386
805 destroy_region_works = kvm_destroy_memory_region_works(kvm_context);
806 #endif
808 if (kvm_irqchip && kvm_has_gsi_routing(kvm_context)) {
809 kvm_clear_gsi_routes(kvm_context);
810 for (i = 0; i < 8; ++i) {
811 if (i == 2)
812 continue;
813 r = kvm_add_irq_route(kvm_context, i, KVM_IRQCHIP_PIC_MASTER, i);
814 if (r < 0)
815 return r;
817 for (i = 8; i < 16; ++i) {
818 r = kvm_add_irq_route(kvm_context, i, KVM_IRQCHIP_PIC_SLAVE, i - 8);
819 if (r < 0)
820 return r;
822 for (i = 0; i < 24; ++i) {
823 r = kvm_add_irq_route(kvm_context, i, KVM_IRQCHIP_IOAPIC, i);
824 if (r < 0)
825 return r;
827 kvm_commit_irq_routes(kvm_context);
829 return 0;
832 void kvm_qemu_destroy(void)
834 kvm_finalize(kvm_context);
837 #ifdef TARGET_I386
838 static int must_use_aliases_source(target_phys_addr_t addr)
840 if (destroy_region_works)
841 return false;
842 if (addr == 0xa0000 || addr == 0xa8000)
843 return true;
844 return false;
847 static int must_use_aliases_target(target_phys_addr_t addr)
849 if (destroy_region_works)
850 return false;
851 if (addr >= 0xe0000000 && addr < 0x100000000ull)
852 return true;
853 return false;
856 static struct mapping {
857 target_phys_addr_t phys;
858 ram_addr_t ram;
859 ram_addr_t len;
860 } mappings[50];
861 static int nr_mappings;
863 static struct mapping *find_ram_mapping(ram_addr_t ram_addr)
865 struct mapping *p;
867 for (p = mappings; p < mappings + nr_mappings; ++p) {
868 if (p->ram <= ram_addr && ram_addr < p->ram + p->len) {
869 return p;
872 return NULL;
875 static struct mapping *find_mapping(target_phys_addr_t start_addr)
877 struct mapping *p;
879 for (p = mappings; p < mappings + nr_mappings; ++p) {
880 if (p->phys <= start_addr && start_addr < p->phys + p->len) {
881 return p;
884 return NULL;
887 static void drop_mapping(target_phys_addr_t start_addr)
889 struct mapping *p = find_mapping(start_addr);
891 if (p)
892 *p = mappings[--nr_mappings];
894 #endif
896 void kvm_cpu_register_physical_memory(target_phys_addr_t start_addr,
897 unsigned long size,
898 unsigned long phys_offset)
900 int r = 0;
901 unsigned long area_flags = phys_offset & ~TARGET_PAGE_MASK;
902 #ifdef TARGET_I386
903 struct mapping *p;
904 #endif
906 phys_offset &= ~IO_MEM_ROM;
908 if (area_flags == IO_MEM_UNASSIGNED) {
909 #ifdef TARGET_I386
910 if (must_use_aliases_source(start_addr)) {
911 kvm_destroy_memory_alias(kvm_context, start_addr);
912 return;
914 if (must_use_aliases_target(start_addr))
915 return;
916 #endif
917 kvm_unregister_memory_area(kvm_context, start_addr, size);
918 return;
921 r = kvm_is_containing_region(kvm_context, start_addr, size);
922 if (r)
923 return;
925 if (area_flags >= TLB_MMIO)
926 return;
928 #ifdef TARGET_I386
929 if (must_use_aliases_source(start_addr)) {
930 p = find_ram_mapping(phys_offset);
931 if (p) {
932 kvm_create_memory_alias(kvm_context, start_addr, size,
933 p->phys + (phys_offset - p->ram));
935 return;
937 #endif
939 r = kvm_register_phys_mem(kvm_context, start_addr,
940 phys_ram_base + phys_offset,
941 size, 0);
942 if (r < 0) {
943 printf("kvm_cpu_register_physical_memory: failed\n");
944 exit(1);
947 #ifdef TARGET_I386
948 drop_mapping(start_addr);
949 p = &mappings[nr_mappings++];
950 p->phys = start_addr;
951 p->ram = phys_offset;
952 p->len = size;
953 #endif
955 return;
958 void kvm_cpu_unregister_physical_memory(target_phys_addr_t start_addr,
959 target_phys_addr_t size,
960 unsigned long phys_offset)
962 kvm_unregister_memory_area(kvm_context, start_addr, size);
965 int kvm_setup_guest_memory(void *area, unsigned long size)
967 int ret = 0;
969 #ifdef MADV_DONTFORK
970 if (kvm_enabled() && !kvm_has_sync_mmu())
971 ret = madvise(area, size, MADV_DONTFORK);
972 #endif
974 if (ret)
975 perror ("madvise");
977 return ret;
980 int kvm_qemu_check_extension(int ext)
982 return kvm_check_extension(kvm_context, ext);
985 int kvm_qemu_init_env(CPUState *cenv)
987 return kvm_arch_qemu_init_env(cenv);
990 #ifdef KVM_CAP_SET_GUEST_DEBUG
991 struct kvm_sw_breakpoint_head kvm_sw_breakpoints =
992 TAILQ_HEAD_INITIALIZER(kvm_sw_breakpoints);
994 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(target_ulong pc)
996 struct kvm_sw_breakpoint *bp;
998 TAILQ_FOREACH(bp, &kvm_sw_breakpoints, entry) {
999 if (bp->pc == pc)
1000 return bp;
1002 return NULL;
1005 struct kvm_set_guest_debug_data {
1006 struct kvm_guest_debug dbg;
1007 int err;
1010 static void kvm_invoke_set_guest_debug(void *data)
1012 struct kvm_set_guest_debug_data *dbg_data = data;
1014 dbg_data->err = kvm_set_guest_debug(kvm_context, cpu_single_env->cpu_index,
1015 &dbg_data->dbg);
1018 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1020 struct kvm_set_guest_debug_data data;
1022 data.dbg.control = 0;
1023 if (env->singlestep_enabled)
1024 data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1026 kvm_arch_update_guest_debug(env, &data.dbg);
1027 data.dbg.control |= reinject_trap;
1029 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
1030 return data.err;
1033 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1034 target_ulong len, int type)
1036 struct kvm_sw_breakpoint *bp;
1037 CPUState *env;
1038 int err;
1040 if (type == GDB_BREAKPOINT_SW) {
1041 bp = kvm_find_sw_breakpoint(addr);
1042 if (bp) {
1043 bp->use_count++;
1044 return 0;
1047 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1048 if (!bp)
1049 return -ENOMEM;
1051 bp->pc = addr;
1052 bp->use_count = 1;
1053 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1054 if (err) {
1055 free(bp);
1056 return err;
1059 TAILQ_INSERT_HEAD(&kvm_sw_breakpoints, bp, entry);
1060 } else {
1061 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1062 if (err)
1063 return err;
1066 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1067 err = kvm_update_guest_debug(env, 0);
1068 if (err)
1069 return err;
1071 return 0;
1074 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1075 target_ulong len, int type)
1077 struct kvm_sw_breakpoint *bp;
1078 CPUState *env;
1079 int err;
1081 if (type == GDB_BREAKPOINT_SW) {
1082 bp = kvm_find_sw_breakpoint(addr);
1083 if (!bp)
1084 return -ENOENT;
1086 if (bp->use_count > 1) {
1087 bp->use_count--;
1088 return 0;
1091 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1092 if (err)
1093 return err;
1095 TAILQ_REMOVE(&kvm_sw_breakpoints, bp, entry);
1096 qemu_free(bp);
1097 } else {
1098 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1099 if (err)
1100 return err;
1103 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1104 err = kvm_update_guest_debug(env, 0);
1105 if (err)
1106 return err;
1108 return 0;
1111 void kvm_remove_all_breakpoints(CPUState *current_env)
1113 struct kvm_sw_breakpoint *bp, *next;
1114 CPUState *env;
1116 TAILQ_FOREACH_SAFE(bp, &kvm_sw_breakpoints, entry, next) {
1117 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1118 /* Try harder to find a CPU that currently sees the breakpoint. */
1119 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1120 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1121 break;
1125 kvm_arch_remove_all_hw_breakpoints();
1127 for (env = first_cpu; env != NULL; env = env->next_cpu)
1128 kvm_update_guest_debug(env, 0);
1131 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1133 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1135 return -EINVAL;
1138 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1139 target_ulong len, int type)
1141 return -EINVAL;
1144 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1145 target_ulong len, int type)
1147 return -EINVAL;
1150 void kvm_remove_all_breakpoints(CPUState *current_env)
1153 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1156 * dirty pages logging
1158 /* FIXME: use unsigned long pointer instead of unsigned char */
1159 unsigned char *kvm_dirty_bitmap = NULL;
1160 int kvm_physical_memory_set_dirty_tracking(int enable)
1162 int r = 0;
1164 if (!kvm_enabled())
1165 return 0;
1167 if (enable) {
1168 if (!kvm_dirty_bitmap) {
1169 unsigned bitmap_size = BITMAP_SIZE(phys_ram_size);
1170 kvm_dirty_bitmap = qemu_malloc(bitmap_size);
1171 if (kvm_dirty_bitmap == NULL) {
1172 perror("Failed to allocate dirty pages bitmap");
1173 r=-1;
1175 else {
1176 r = kvm_dirty_pages_log_enable_all(kvm_context);
1180 else {
1181 if (kvm_dirty_bitmap) {
1182 r = kvm_dirty_pages_log_reset(kvm_context);
1183 qemu_free(kvm_dirty_bitmap);
1184 kvm_dirty_bitmap = NULL;
1187 return r;
1190 /* get kvm's dirty pages bitmap and update qemu's */
1191 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
1192 unsigned char *bitmap,
1193 unsigned int offset,
1194 unsigned long mem_size)
1196 unsigned int i, j, n=0;
1197 unsigned char c;
1198 unsigned long page_number, addr, addr1;
1199 ram_addr_t ram_addr;
1200 unsigned int len = ((mem_size/TARGET_PAGE_SIZE) + 7) / 8;
1203 * bitmap-traveling is faster than memory-traveling (for addr...)
1204 * especially when most of the memory is not dirty.
1206 for (i=0; i<len; i++) {
1207 c = bitmap[i];
1208 while (c>0) {
1209 j = ffsl(c) - 1;
1210 c &= ~(1u<<j);
1211 page_number = i * 8 + j;
1212 addr1 = page_number * TARGET_PAGE_SIZE;
1213 addr = offset + addr1;
1214 ram_addr = cpu_get_physical_page_desc(addr);
1215 cpu_physical_memory_set_dirty(ram_addr);
1216 n++;
1219 return 0;
1221 static int kvm_get_dirty_bitmap_cb(unsigned long start, unsigned long len,
1222 void *bitmap, void *opaque)
1224 return kvm_get_dirty_pages_log_range(start, bitmap, start, len);
1228 * get kvm's dirty pages bitmap and update qemu's
1229 * we only care about physical ram, which resides in slots 0 and 3
1231 int kvm_update_dirty_pages_log(void)
1233 int r = 0;
1236 r = kvm_get_dirty_pages_range(kvm_context, 0, phys_ram_size,
1237 kvm_dirty_bitmap, NULL,
1238 kvm_get_dirty_bitmap_cb);
1239 return r;
1242 void kvm_qemu_log_memory(target_phys_addr_t start, target_phys_addr_t size,
1243 int log)
1245 if (log)
1246 kvm_dirty_pages_log_enable_slot(kvm_context, start, size);
1247 else {
1248 #ifdef TARGET_I386
1249 if (must_use_aliases_target(start))
1250 return;
1251 #endif
1252 kvm_dirty_pages_log_disable_slot(kvm_context, start, size);
1256 int kvm_get_phys_ram_page_bitmap(unsigned char *bitmap)
1258 unsigned int bsize = BITMAP_SIZE(phys_ram_size);
1259 unsigned int brsize = BITMAP_SIZE(ram_size);
1260 unsigned int extra_pages = (phys_ram_size - ram_size) / TARGET_PAGE_SIZE;
1261 unsigned int extra_bytes = (extra_pages +7)/8;
1262 unsigned int hole_start = BITMAP_SIZE(0xa0000);
1263 unsigned int hole_end = BITMAP_SIZE(0xc0000);
1265 memset(bitmap, 0xFF, brsize + extra_bytes);
1266 memset(bitmap + hole_start, 0, hole_end - hole_start);
1267 memset(bitmap + brsize + extra_bytes, 0, bsize - brsize - extra_bytes);
1269 return 0;
1272 #ifdef KVM_CAP_IRQCHIP
1274 int kvm_set_irq(int irq, int level)
1276 return kvm_set_irq_level(kvm_context, irq, level);
1279 #endif
1281 int qemu_kvm_get_dirty_pages(unsigned long phys_addr, void *buf)
1283 return kvm_get_dirty_pages(kvm_context, phys_addr, buf);
1286 void *kvm_cpu_create_phys_mem(target_phys_addr_t start_addr,
1287 unsigned long size, int log, int writable)
1289 return kvm_create_phys_mem(kvm_context, start_addr, size, log, writable);
1292 void kvm_cpu_destroy_phys_mem(target_phys_addr_t start_addr,
1293 unsigned long size)
1295 kvm_destroy_phys_mem(kvm_context, start_addr, size);
1298 void kvm_mutex_unlock(void)
1300 assert(!cpu_single_env);
1301 pthread_mutex_unlock(&qemu_mutex);
1304 void kvm_mutex_lock(void)
1306 pthread_mutex_lock(&qemu_mutex);
1307 cpu_single_env = NULL;
1310 int qemu_kvm_register_coalesced_mmio(target_phys_addr_t addr, unsigned int size)
1312 return kvm_register_coalesced_mmio(kvm_context, addr, size);
1315 int qemu_kvm_unregister_coalesced_mmio(target_phys_addr_t addr,
1316 unsigned int size)
1318 return kvm_unregister_coalesced_mmio(kvm_context, addr, size);
1321 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
1323 return kvm_register_coalesced_mmio(kvm_context, start, size);
1326 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
1328 return kvm_unregister_coalesced_mmio(kvm_context, start, size);
1331 #ifdef USE_KVM_DEVICE_ASSIGNMENT
1332 void kvm_add_ioperm_data(struct ioperm_data *data)
1334 LIST_INSERT_HEAD(&ioperm_head, data, entries);
1337 void kvm_remove_ioperm_data(unsigned long start_port, unsigned long num)
1339 struct ioperm_data *data;
1341 data = LIST_FIRST(&ioperm_head);
1342 while (data) {
1343 struct ioperm_data *next = LIST_NEXT(data, entries);
1345 if (data->start_port == start_port && data->num == num) {
1346 LIST_REMOVE(data, entries);
1347 qemu_free(data);
1350 data = next;
1354 void kvm_ioperm(CPUState *env, void *data)
1356 if (kvm_enabled() && qemu_system_ready)
1357 on_vcpu(env, kvm_arch_do_ioperm, data);
1360 #endif
1362 void kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr)
1364 #ifndef TARGET_IA64
1365 void *buf;
1367 #ifdef TARGET_I386
1368 if (must_use_aliases_source(start_addr))
1369 return;
1370 #endif
1372 buf = qemu_malloc((end_addr - start_addr) / 8 + 2);
1373 kvm_get_dirty_pages_range(kvm_context, start_addr, end_addr - start_addr,
1374 buf, NULL, kvm_get_dirty_bitmap_cb);
1375 qemu_free(buf);
1376 #endif
1379 int kvm_log_start(target_phys_addr_t phys_addr, target_phys_addr_t len)
1381 #ifdef TARGET_I386
1382 if (must_use_aliases_source(phys_addr))
1383 return 0;
1384 #endif
1385 kvm_qemu_log_memory(phys_addr, len, 1);
1386 return 0;
1389 int kvm_log_stop(target_phys_addr_t phys_addr, target_phys_addr_t len)
1391 #ifdef TARGET_I386
1392 if (must_use_aliases_source(phys_addr))
1393 return 0;
1394 #endif
1395 kvm_qemu_log_memory(phys_addr, len, 0);
1396 return 0;
1399 /* hack: both libkvm and upstream qemu define kvm_has_sync_mmu(), differently */
1400 #undef kvm_has_sync_mmu
1401 int qemu_kvm_has_sync_mmu(void)
1403 return kvm_has_sync_mmu(kvm_context);
1406 void qemu_kvm_cpu_stop(CPUState *env)
1408 if (kvm_enabled())
1409 env->kvm_cpu_state.stopped = 1;