block: add support for partial streaming
[qemu-kvm.git] / block / qcow2-cluster.c
blob07a2e936fdcd7197d4ea2c100bacf738ca3952b7
1 /*
2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include <zlib.h>
27 #include "qemu-common.h"
28 #include "block_int.h"
29 #include "block/qcow2.h"
31 int qcow2_grow_l1_table(BlockDriverState *bs, int min_size, bool exact_size)
33 BDRVQcowState *s = bs->opaque;
34 int new_l1_size, new_l1_size2, ret, i;
35 uint64_t *new_l1_table;
36 int64_t new_l1_table_offset;
37 uint8_t data[12];
39 if (min_size <= s->l1_size)
40 return 0;
42 if (exact_size) {
43 new_l1_size = min_size;
44 } else {
45 /* Bump size up to reduce the number of times we have to grow */
46 new_l1_size = s->l1_size;
47 if (new_l1_size == 0) {
48 new_l1_size = 1;
50 while (min_size > new_l1_size) {
51 new_l1_size = (new_l1_size * 3 + 1) / 2;
55 #ifdef DEBUG_ALLOC2
56 fprintf(stderr, "grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
57 #endif
59 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
60 new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
61 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
63 /* write new table (align to cluster) */
64 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
65 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
66 if (new_l1_table_offset < 0) {
67 g_free(new_l1_table);
68 return new_l1_table_offset;
71 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
72 if (ret < 0) {
73 goto fail;
76 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
77 for(i = 0; i < s->l1_size; i++)
78 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
79 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
80 if (ret < 0)
81 goto fail;
82 for(i = 0; i < s->l1_size; i++)
83 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
85 /* set new table */
86 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
87 cpu_to_be32w((uint32_t*)data, new_l1_size);
88 cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset);
89 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
90 if (ret < 0) {
91 goto fail;
93 g_free(s->l1_table);
94 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
95 s->l1_table_offset = new_l1_table_offset;
96 s->l1_table = new_l1_table;
97 s->l1_size = new_l1_size;
98 return 0;
99 fail:
100 g_free(new_l1_table);
101 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
102 return ret;
106 * l2_load
108 * Loads a L2 table into memory. If the table is in the cache, the cache
109 * is used; otherwise the L2 table is loaded from the image file.
111 * Returns a pointer to the L2 table on success, or NULL if the read from
112 * the image file failed.
115 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
116 uint64_t **l2_table)
118 BDRVQcowState *s = bs->opaque;
119 int ret;
121 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
123 return ret;
127 * Writes one sector of the L1 table to the disk (can't update single entries
128 * and we really don't want bdrv_pread to perform a read-modify-write)
130 #define L1_ENTRIES_PER_SECTOR (512 / 8)
131 static int write_l1_entry(BlockDriverState *bs, int l1_index)
133 BDRVQcowState *s = bs->opaque;
134 uint64_t buf[L1_ENTRIES_PER_SECTOR];
135 int l1_start_index;
136 int i, ret;
138 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
139 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
140 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
143 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
144 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
145 buf, sizeof(buf));
146 if (ret < 0) {
147 return ret;
150 return 0;
154 * l2_allocate
156 * Allocate a new l2 entry in the file. If l1_index points to an already
157 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
158 * table) copy the contents of the old L2 table into the newly allocated one.
159 * Otherwise the new table is initialized with zeros.
163 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
165 BDRVQcowState *s = bs->opaque;
166 uint64_t old_l2_offset;
167 uint64_t *l2_table;
168 int64_t l2_offset;
169 int ret;
171 old_l2_offset = s->l1_table[l1_index];
173 /* allocate a new l2 entry */
175 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
176 if (l2_offset < 0) {
177 return l2_offset;
180 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
181 if (ret < 0) {
182 goto fail;
185 /* allocate a new entry in the l2 cache */
187 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
188 if (ret < 0) {
189 return ret;
192 l2_table = *table;
194 if (old_l2_offset == 0) {
195 /* if there was no old l2 table, clear the new table */
196 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
197 } else {
198 uint64_t* old_table;
200 /* if there was an old l2 table, read it from the disk */
201 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
202 ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_offset,
203 (void**) &old_table);
204 if (ret < 0) {
205 goto fail;
208 memcpy(l2_table, old_table, s->cluster_size);
210 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
211 if (ret < 0) {
212 goto fail;
216 /* write the l2 table to the file */
217 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
219 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
220 ret = qcow2_cache_flush(bs, s->l2_table_cache);
221 if (ret < 0) {
222 goto fail;
225 /* update the L1 entry */
226 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
227 ret = write_l1_entry(bs, l1_index);
228 if (ret < 0) {
229 goto fail;
232 *table = l2_table;
233 return 0;
235 fail:
236 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
237 s->l1_table[l1_index] = old_l2_offset;
238 return ret;
241 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
242 uint64_t *l2_table, uint64_t start, uint64_t mask)
244 int i;
245 uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask;
247 if (!offset)
248 return 0;
250 for (i = start; i < start + nb_clusters; i++)
251 if (offset + (uint64_t) i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask))
252 break;
254 return (i - start);
257 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
259 int i = 0;
261 while(nb_clusters-- && l2_table[i] == 0)
262 i++;
264 return i;
267 /* The crypt function is compatible with the linux cryptoloop
268 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
269 supported */
270 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
271 uint8_t *out_buf, const uint8_t *in_buf,
272 int nb_sectors, int enc,
273 const AES_KEY *key)
275 union {
276 uint64_t ll[2];
277 uint8_t b[16];
278 } ivec;
279 int i;
281 for(i = 0; i < nb_sectors; i++) {
282 ivec.ll[0] = cpu_to_le64(sector_num);
283 ivec.ll[1] = 0;
284 AES_cbc_encrypt(in_buf, out_buf, 512, key,
285 ivec.b, enc);
286 sector_num++;
287 in_buf += 512;
288 out_buf += 512;
292 static int coroutine_fn copy_sectors(BlockDriverState *bs,
293 uint64_t start_sect,
294 uint64_t cluster_offset,
295 int n_start, int n_end)
297 BDRVQcowState *s = bs->opaque;
298 QEMUIOVector qiov;
299 struct iovec iov;
300 int n, ret;
303 * If this is the last cluster and it is only partially used, we must only
304 * copy until the end of the image, or bdrv_check_request will fail for the
305 * bdrv_read/write calls below.
307 if (start_sect + n_end > bs->total_sectors) {
308 n_end = bs->total_sectors - start_sect;
311 n = n_end - n_start;
312 if (n <= 0) {
313 return 0;
316 iov.iov_len = n * BDRV_SECTOR_SIZE;
317 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
319 qemu_iovec_init_external(&qiov, &iov, 1);
321 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
323 /* Call .bdrv_co_readv() directly instead of using the public block-layer
324 * interface. This avoids double I/O throttling and request tracking,
325 * which can lead to deadlock when block layer copy-on-read is enabled.
327 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
328 if (ret < 0) {
329 goto out;
332 if (s->crypt_method) {
333 qcow2_encrypt_sectors(s, start_sect + n_start,
334 iov.iov_base, iov.iov_base, n, 1,
335 &s->aes_encrypt_key);
338 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
339 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
340 if (ret < 0) {
341 goto out;
344 ret = 0;
345 out:
346 qemu_vfree(iov.iov_base);
347 return ret;
352 * get_cluster_offset
354 * For a given offset of the disk image, find the cluster offset in
355 * qcow2 file. The offset is stored in *cluster_offset.
357 * on entry, *num is the number of contiguous sectors we'd like to
358 * access following offset.
360 * on exit, *num is the number of contiguous sectors we can read.
362 * Return 0, if the offset is found
363 * Return -errno, otherwise.
367 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
368 int *num, uint64_t *cluster_offset)
370 BDRVQcowState *s = bs->opaque;
371 unsigned int l1_index, l2_index;
372 uint64_t l2_offset, *l2_table;
373 int l1_bits, c;
374 unsigned int index_in_cluster, nb_clusters;
375 uint64_t nb_available, nb_needed;
376 int ret;
378 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
379 nb_needed = *num + index_in_cluster;
381 l1_bits = s->l2_bits + s->cluster_bits;
383 /* compute how many bytes there are between the offset and
384 * the end of the l1 entry
387 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
389 /* compute the number of available sectors */
391 nb_available = (nb_available >> 9) + index_in_cluster;
393 if (nb_needed > nb_available) {
394 nb_needed = nb_available;
397 *cluster_offset = 0;
399 /* seek the the l2 offset in the l1 table */
401 l1_index = offset >> l1_bits;
402 if (l1_index >= s->l1_size)
403 goto out;
405 l2_offset = s->l1_table[l1_index];
407 /* seek the l2 table of the given l2 offset */
409 if (!l2_offset)
410 goto out;
412 /* load the l2 table in memory */
414 l2_offset &= ~QCOW_OFLAG_COPIED;
415 ret = l2_load(bs, l2_offset, &l2_table);
416 if (ret < 0) {
417 return ret;
420 /* find the cluster offset for the given disk offset */
422 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
423 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
424 nb_clusters = size_to_clusters(s, nb_needed << 9);
426 if (!*cluster_offset) {
427 /* how many empty clusters ? */
428 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
429 } else {
430 /* how many allocated clusters ? */
431 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
432 &l2_table[l2_index], 0, QCOW_OFLAG_COPIED);
435 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
437 nb_available = (c * s->cluster_sectors);
438 out:
439 if (nb_available > nb_needed)
440 nb_available = nb_needed;
442 *num = nb_available - index_in_cluster;
444 *cluster_offset &=~QCOW_OFLAG_COPIED;
445 return 0;
449 * get_cluster_table
451 * for a given disk offset, load (and allocate if needed)
452 * the l2 table.
454 * the l2 table offset in the qcow2 file and the cluster index
455 * in the l2 table are given to the caller.
457 * Returns 0 on success, -errno in failure case
459 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
460 uint64_t **new_l2_table,
461 uint64_t *new_l2_offset,
462 int *new_l2_index)
464 BDRVQcowState *s = bs->opaque;
465 unsigned int l1_index, l2_index;
466 uint64_t l2_offset;
467 uint64_t *l2_table = NULL;
468 int ret;
470 /* seek the the l2 offset in the l1 table */
472 l1_index = offset >> (s->l2_bits + s->cluster_bits);
473 if (l1_index >= s->l1_size) {
474 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
475 if (ret < 0) {
476 return ret;
479 l2_offset = s->l1_table[l1_index];
481 /* seek the l2 table of the given l2 offset */
483 if (l2_offset & QCOW_OFLAG_COPIED) {
484 /* load the l2 table in memory */
485 l2_offset &= ~QCOW_OFLAG_COPIED;
486 ret = l2_load(bs, l2_offset, &l2_table);
487 if (ret < 0) {
488 return ret;
490 } else {
491 /* First allocate a new L2 table (and do COW if needed) */
492 ret = l2_allocate(bs, l1_index, &l2_table);
493 if (ret < 0) {
494 return ret;
497 /* Then decrease the refcount of the old table */
498 if (l2_offset) {
499 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
501 l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
504 /* find the cluster offset for the given disk offset */
506 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
508 *new_l2_table = l2_table;
509 *new_l2_offset = l2_offset;
510 *new_l2_index = l2_index;
512 return 0;
516 * alloc_compressed_cluster_offset
518 * For a given offset of the disk image, return cluster offset in
519 * qcow2 file.
521 * If the offset is not found, allocate a new compressed cluster.
523 * Return the cluster offset if successful,
524 * Return 0, otherwise.
528 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
529 uint64_t offset,
530 int compressed_size)
532 BDRVQcowState *s = bs->opaque;
533 int l2_index, ret;
534 uint64_t l2_offset, *l2_table;
535 int64_t cluster_offset;
536 int nb_csectors;
538 ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
539 if (ret < 0) {
540 return 0;
543 cluster_offset = be64_to_cpu(l2_table[l2_index]);
544 if (cluster_offset & QCOW_OFLAG_COPIED) {
545 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
546 return 0;
549 if (cluster_offset)
550 qcow2_free_any_clusters(bs, cluster_offset, 1);
552 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
553 if (cluster_offset < 0) {
554 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
555 return 0;
558 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
559 (cluster_offset >> 9);
561 cluster_offset |= QCOW_OFLAG_COMPRESSED |
562 ((uint64_t)nb_csectors << s->csize_shift);
564 /* update L2 table */
566 /* compressed clusters never have the copied flag */
568 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
569 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
570 l2_table[l2_index] = cpu_to_be64(cluster_offset);
571 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
572 if (ret < 0) {
573 return 0;
576 return cluster_offset;
579 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
581 BDRVQcowState *s = bs->opaque;
582 int i, j = 0, l2_index, ret;
583 uint64_t *old_cluster, start_sect, l2_offset, *l2_table;
584 uint64_t cluster_offset = m->cluster_offset;
585 bool cow = false;
587 if (m->nb_clusters == 0)
588 return 0;
590 old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
592 /* copy content of unmodified sectors */
593 start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
594 if (m->n_start) {
595 cow = true;
596 qemu_co_mutex_unlock(&s->lock);
597 ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
598 qemu_co_mutex_lock(&s->lock);
599 if (ret < 0)
600 goto err;
603 if (m->nb_available & (s->cluster_sectors - 1)) {
604 uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
605 cow = true;
606 qemu_co_mutex_unlock(&s->lock);
607 ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
608 m->nb_available - end, s->cluster_sectors);
609 qemu_co_mutex_lock(&s->lock);
610 if (ret < 0)
611 goto err;
615 * Update L2 table.
617 * Before we update the L2 table to actually point to the new cluster, we
618 * need to be sure that the refcounts have been increased and COW was
619 * handled.
621 if (cow) {
622 qcow2_cache_depends_on_flush(s->l2_table_cache);
625 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
626 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_offset, &l2_index);
627 if (ret < 0) {
628 goto err;
630 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
632 for (i = 0; i < m->nb_clusters; i++) {
633 /* if two concurrent writes happen to the same unallocated cluster
634 * each write allocates separate cluster and writes data concurrently.
635 * The first one to complete updates l2 table with pointer to its
636 * cluster the second one has to do RMW (which is done above by
637 * copy_sectors()), update l2 table with its cluster pointer and free
638 * old cluster. This is what this loop does */
639 if(l2_table[l2_index + i] != 0)
640 old_cluster[j++] = l2_table[l2_index + i];
642 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
643 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
647 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
648 if (ret < 0) {
649 goto err;
653 * If this was a COW, we need to decrease the refcount of the old cluster.
654 * Also flush bs->file to get the right order for L2 and refcount update.
656 if (j != 0) {
657 for (i = 0; i < j; i++) {
658 qcow2_free_any_clusters(bs,
659 be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1);
663 ret = 0;
664 err:
665 g_free(old_cluster);
666 return ret;
670 * alloc_cluster_offset
672 * For a given offset of the disk image, return cluster offset in qcow2 file.
673 * If the offset is not found, allocate a new cluster.
675 * If the cluster was already allocated, m->nb_clusters is set to 0,
676 * other fields in m are meaningless.
678 * If the cluster is newly allocated, m->nb_clusters is set to the number of
679 * contiguous clusters that have been allocated. In this case, the other
680 * fields of m are valid and contain information about the first allocated
681 * cluster.
683 * If the request conflicts with another write request in flight, the coroutine
684 * is queued and will be reentered when the dependency has completed.
686 * Return 0 on success and -errno in error cases
688 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
689 int n_start, int n_end, int *num, QCowL2Meta *m)
691 BDRVQcowState *s = bs->opaque;
692 int l2_index, ret;
693 uint64_t l2_offset, *l2_table;
694 int64_t cluster_offset;
695 unsigned int nb_clusters, i = 0;
696 QCowL2Meta *old_alloc;
698 ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
699 if (ret < 0) {
700 return ret;
703 again:
704 nb_clusters = size_to_clusters(s, n_end << 9);
706 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
708 cluster_offset = be64_to_cpu(l2_table[l2_index]);
710 /* We keep all QCOW_OFLAG_COPIED clusters */
712 if (cluster_offset & QCOW_OFLAG_COPIED) {
713 nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
714 &l2_table[l2_index], 0, 0);
716 cluster_offset &= ~QCOW_OFLAG_COPIED;
717 m->nb_clusters = 0;
719 goto out;
722 /* for the moment, multiple compressed clusters are not managed */
724 if (cluster_offset & QCOW_OFLAG_COMPRESSED)
725 nb_clusters = 1;
727 /* how many available clusters ? */
729 while (i < nb_clusters) {
730 i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
731 &l2_table[l2_index], i, 0);
732 if ((i >= nb_clusters) || be64_to_cpu(l2_table[l2_index + i])) {
733 break;
736 i += count_contiguous_free_clusters(nb_clusters - i,
737 &l2_table[l2_index + i]);
738 if (i >= nb_clusters) {
739 break;
742 cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
744 if ((cluster_offset & QCOW_OFLAG_COPIED) ||
745 (cluster_offset & QCOW_OFLAG_COMPRESSED))
746 break;
748 assert(i <= nb_clusters);
749 nb_clusters = i;
752 * Check if there already is an AIO write request in flight which allocates
753 * the same cluster. In this case we need to wait until the previous
754 * request has completed and updated the L2 table accordingly.
756 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
758 uint64_t start = offset >> s->cluster_bits;
759 uint64_t end = start + nb_clusters;
760 uint64_t old_start = old_alloc->offset >> s->cluster_bits;
761 uint64_t old_end = old_start + old_alloc->nb_clusters;
763 if (end < old_start || start > old_end) {
764 /* No intersection */
765 } else {
766 if (start < old_start) {
767 /* Stop at the start of a running allocation */
768 nb_clusters = old_start - start;
769 } else {
770 nb_clusters = 0;
773 if (nb_clusters == 0) {
774 /* Wait for the dependency to complete. We need to recheck
775 * the free/allocated clusters when we continue. */
776 qemu_co_mutex_unlock(&s->lock);
777 qemu_co_queue_wait(&old_alloc->dependent_requests);
778 qemu_co_mutex_lock(&s->lock);
779 goto again;
784 if (!nb_clusters) {
785 abort();
788 /* save info needed for meta data update */
789 m->offset = offset;
790 m->n_start = n_start;
791 m->nb_clusters = nb_clusters;
793 QLIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight);
795 /* allocate a new cluster */
797 cluster_offset = qcow2_alloc_clusters(bs, nb_clusters * s->cluster_size);
798 if (cluster_offset < 0) {
799 ret = cluster_offset;
800 goto fail;
803 out:
804 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
805 if (ret < 0) {
806 goto fail_put;
809 m->nb_available = MIN(nb_clusters << (s->cluster_bits - 9), n_end);
810 m->cluster_offset = cluster_offset;
812 *num = m->nb_available - n_start;
814 return 0;
816 fail:
817 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
818 fail_put:
819 QLIST_REMOVE(m, next_in_flight);
820 return ret;
823 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
824 const uint8_t *buf, int buf_size)
826 z_stream strm1, *strm = &strm1;
827 int ret, out_len;
829 memset(strm, 0, sizeof(*strm));
831 strm->next_in = (uint8_t *)buf;
832 strm->avail_in = buf_size;
833 strm->next_out = out_buf;
834 strm->avail_out = out_buf_size;
836 ret = inflateInit2(strm, -12);
837 if (ret != Z_OK)
838 return -1;
839 ret = inflate(strm, Z_FINISH);
840 out_len = strm->next_out - out_buf;
841 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
842 out_len != out_buf_size) {
843 inflateEnd(strm);
844 return -1;
846 inflateEnd(strm);
847 return 0;
850 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
852 BDRVQcowState *s = bs->opaque;
853 int ret, csize, nb_csectors, sector_offset;
854 uint64_t coffset;
856 coffset = cluster_offset & s->cluster_offset_mask;
857 if (s->cluster_cache_offset != coffset) {
858 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
859 sector_offset = coffset & 511;
860 csize = nb_csectors * 512 - sector_offset;
861 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
862 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
863 if (ret < 0) {
864 return ret;
866 if (decompress_buffer(s->cluster_cache, s->cluster_size,
867 s->cluster_data + sector_offset, csize) < 0) {
868 return -EIO;
870 s->cluster_cache_offset = coffset;
872 return 0;
876 * This discards as many clusters of nb_clusters as possible at once (i.e.
877 * all clusters in the same L2 table) and returns the number of discarded
878 * clusters.
880 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
881 unsigned int nb_clusters)
883 BDRVQcowState *s = bs->opaque;
884 uint64_t l2_offset, *l2_table;
885 int l2_index;
886 int ret;
887 int i;
889 ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
890 if (ret < 0) {
891 return ret;
894 /* Limit nb_clusters to one L2 table */
895 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
897 for (i = 0; i < nb_clusters; i++) {
898 uint64_t old_offset;
900 old_offset = be64_to_cpu(l2_table[l2_index + i]);
901 old_offset &= ~QCOW_OFLAG_COPIED;
903 if (old_offset == 0) {
904 continue;
907 /* First remove L2 entries */
908 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
909 l2_table[l2_index + i] = cpu_to_be64(0);
911 /* Then decrease the refcount */
912 qcow2_free_any_clusters(bs, old_offset, 1);
915 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
916 if (ret < 0) {
917 return ret;
920 return nb_clusters;
923 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
924 int nb_sectors)
926 BDRVQcowState *s = bs->opaque;
927 uint64_t end_offset;
928 unsigned int nb_clusters;
929 int ret;
931 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
933 /* Round start up and end down */
934 offset = align_offset(offset, s->cluster_size);
935 end_offset &= ~(s->cluster_size - 1);
937 if (offset > end_offset) {
938 return 0;
941 nb_clusters = size_to_clusters(s, end_offset - offset);
943 /* Each L2 table is handled by its own loop iteration */
944 while (nb_clusters > 0) {
945 ret = discard_single_l2(bs, offset, nb_clusters);
946 if (ret < 0) {
947 return ret;
950 nb_clusters -= ret;
951 offset += (ret * s->cluster_size);
954 return 0;