qemu-kvm: Fix save/restore of in-kernel i8259
[qemu-kvm.git] / kvm-all.c
blob5982c8b7d41069b919fd35f237eb4b311e638f13
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
30 #include "memory.h"
32 /* This check must be after config-host.h is included */
33 #ifdef CONFIG_EVENTFD
34 #include <sys/eventfd.h>
35 #endif
37 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
38 #define PAGE_SIZE TARGET_PAGE_SIZE
40 //#define DEBUG_KVM
42 #ifdef DEBUG_KVM
43 #define DPRINTF(fmt, ...) \
44 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
45 #else
46 #define DPRINTF(fmt, ...) \
47 do { } while (0)
48 #endif
50 typedef struct KVMSlot
52 target_phys_addr_t start_addr;
53 ram_addr_t memory_size;
54 void *ram;
55 int slot;
56 int flags;
57 } KVMSlot;
59 typedef struct kvm_dirty_log KVMDirtyLog;
61 struct KVMState
63 KVMSlot slots[32];
64 int fd;
65 int vmfd;
66 int coalesced_mmio;
67 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
68 bool coalesced_flush_in_progress;
69 int broken_set_mem_region;
70 int migration_log;
71 int vcpu_events;
72 int robust_singlestep;
73 int debugregs;
74 #ifdef KVM_CAP_SET_GUEST_DEBUG
75 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
76 #endif
77 int irqchip_in_kernel;
78 int pit_in_kernel;
79 int xsave, xcrs;
80 int many_ioeventfds;
81 int pit_state2;
83 int irqchip_inject_ioctl;
84 #ifdef KVM_CAP_IRQ_ROUTING
85 struct kvm_irq_routing *irq_routes;
86 int nr_allocated_irq_routes;
87 #endif
88 void *used_gsi_bitmap;
89 int max_gsi;
92 KVMState *kvm_state;
94 static const KVMCapabilityInfo kvm_required_capabilites[] = {
95 KVM_CAP_INFO(USER_MEMORY),
96 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
97 KVM_CAP_LAST_INFO
100 static KVMSlot *kvm_alloc_slot(KVMState *s)
102 int i;
104 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
105 if (s->slots[i].memory_size == 0) {
106 return &s->slots[i];
110 fprintf(stderr, "%s: no free slot available\n", __func__);
111 abort();
114 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
115 target_phys_addr_t start_addr,
116 target_phys_addr_t end_addr)
118 int i;
120 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
121 KVMSlot *mem = &s->slots[i];
123 if (start_addr == mem->start_addr &&
124 end_addr == mem->start_addr + mem->memory_size) {
125 return mem;
129 return NULL;
133 * Find overlapping slot with lowest start address
135 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
136 target_phys_addr_t start_addr,
137 target_phys_addr_t end_addr)
139 KVMSlot *found = NULL;
140 int i;
142 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
143 KVMSlot *mem = &s->slots[i];
145 if (mem->memory_size == 0 ||
146 (found && found->start_addr < mem->start_addr)) {
147 continue;
150 if (end_addr > mem->start_addr &&
151 start_addr < mem->start_addr + mem->memory_size) {
152 found = mem;
156 return found;
159 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
160 target_phys_addr_t *phys_addr)
162 int i;
164 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
165 KVMSlot *mem = &s->slots[i];
167 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
168 *phys_addr = mem->start_addr + (ram - mem->ram);
169 return 1;
173 return 0;
176 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
178 struct kvm_userspace_memory_region mem;
180 mem.slot = slot->slot;
181 mem.guest_phys_addr = slot->start_addr;
182 mem.memory_size = slot->memory_size;
183 mem.userspace_addr = (unsigned long)slot->ram;
184 mem.flags = slot->flags;
185 if (s->migration_log) {
186 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
188 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
191 static void kvm_reset_vcpu(void *opaque)
193 CPUState *env = opaque;
195 kvm_arch_reset_vcpu(env);
198 int kvm_irqchip_in_kernel(void)
200 return kvm_state->irqchip_in_kernel;
203 int kvm_pit_in_kernel(void)
205 return kvm_state->pit_in_kernel;
208 int kvm_init_vcpu(CPUState *env)
210 KVMState *s = kvm_state;
211 long mmap_size;
212 int ret;
214 DPRINTF("kvm_init_vcpu\n");
216 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
217 if (ret < 0) {
218 DPRINTF("kvm_create_vcpu failed\n");
219 goto err;
222 env->kvm_fd = ret;
223 env->kvm_state = s;
224 env->kvm_vcpu_dirty = 1;
226 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
227 if (mmap_size < 0) {
228 ret = mmap_size;
229 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
230 goto err;
233 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
234 env->kvm_fd, 0);
235 if (env->kvm_run == MAP_FAILED) {
236 ret = -errno;
237 DPRINTF("mmap'ing vcpu state failed\n");
238 goto err;
241 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
242 s->coalesced_mmio_ring =
243 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
246 ret = kvm_arch_init_vcpu(env);
247 if (ret == 0) {
248 qemu_register_reset(kvm_reset_vcpu, env);
249 kvm_arch_reset_vcpu(env);
251 err:
252 return ret;
256 * dirty pages logging control
259 static int kvm_mem_flags(KVMState *s, bool log_dirty)
261 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
264 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
266 KVMState *s = kvm_state;
267 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
268 int old_flags;
270 old_flags = mem->flags;
272 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
273 mem->flags = flags;
275 /* If nothing changed effectively, no need to issue ioctl */
276 if (s->migration_log) {
277 flags |= KVM_MEM_LOG_DIRTY_PAGES;
280 if (flags == old_flags) {
281 return 0;
284 return kvm_set_user_memory_region(s, mem);
287 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
288 ram_addr_t size, bool log_dirty)
290 KVMState *s = kvm_state;
291 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
293 if (mem == NULL) {
294 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
295 TARGET_FMT_plx "\n", __func__, phys_addr,
296 (target_phys_addr_t)(phys_addr + size - 1));
297 return -EINVAL;
299 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
302 static void kvm_log_start(MemoryListener *listener,
303 MemoryRegionSection *section)
305 int r;
307 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
308 section->size, true);
309 if (r < 0) {
310 abort();
314 static void kvm_log_stop(MemoryListener *listener,
315 MemoryRegionSection *section)
317 int r;
319 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
320 section->size, false);
321 if (r < 0) {
322 abort();
326 static int kvm_set_migration_log(int enable)
328 KVMState *s = kvm_state;
329 KVMSlot *mem;
330 int i, err;
332 s->migration_log = enable;
334 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
335 mem = &s->slots[i];
337 if (!mem->memory_size) {
338 continue;
340 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
341 continue;
343 err = kvm_set_user_memory_region(s, mem);
344 if (err) {
345 return err;
348 return 0;
351 /* get kvm's dirty pages bitmap and update qemu's */
352 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
353 unsigned long *bitmap)
355 unsigned int i, j;
356 unsigned long page_number, addr, addr1, c;
357 unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
360 * bitmap-traveling is faster than memory-traveling (for addr...)
361 * especially when most of the memory is not dirty.
363 for (i = 0; i < len; i++) {
364 if (bitmap[i] != 0) {
365 c = leul_to_cpu(bitmap[i]);
366 do {
367 j = ffsl(c) - 1;
368 c &= ~(1ul << j);
369 page_number = i * HOST_LONG_BITS + j;
370 addr1 = page_number * TARGET_PAGE_SIZE;
371 addr = section->offset_within_region + addr1;
372 memory_region_set_dirty(section->mr, addr);
373 } while (c != 0);
376 return 0;
379 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
382 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
383 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
384 * This means all bits are set to dirty.
386 * @start_add: start of logged region.
387 * @end_addr: end of logged region.
389 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
391 KVMState *s = kvm_state;
392 unsigned long size, allocated_size = 0;
393 KVMDirtyLog d;
394 KVMSlot *mem;
395 int ret = 0;
396 target_phys_addr_t start_addr = section->offset_within_address_space;
397 target_phys_addr_t end_addr = start_addr + section->size;
399 d.dirty_bitmap = NULL;
400 while (start_addr < end_addr) {
401 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
402 if (mem == NULL) {
403 break;
406 /* XXX bad kernel interface alert
407 * For dirty bitmap, kernel allocates array of size aligned to
408 * bits-per-long. But for case when the kernel is 64bits and
409 * the userspace is 32bits, userspace can't align to the same
410 * bits-per-long, since sizeof(long) is different between kernel
411 * and user space. This way, userspace will provide buffer which
412 * may be 4 bytes less than the kernel will use, resulting in
413 * userspace memory corruption (which is not detectable by valgrind
414 * too, in most cases).
415 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
416 * a hope that sizeof(long) wont become >8 any time soon.
418 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
419 /*HOST_LONG_BITS*/ 64) / 8;
420 if (!d.dirty_bitmap) {
421 d.dirty_bitmap = g_malloc(size);
422 } else if (size > allocated_size) {
423 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
425 allocated_size = size;
426 memset(d.dirty_bitmap, 0, allocated_size);
428 d.slot = mem->slot;
430 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
431 DPRINTF("ioctl failed %d\n", errno);
432 ret = -1;
433 break;
436 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
437 start_addr = mem->start_addr + mem->memory_size;
439 g_free(d.dirty_bitmap);
441 return ret;
444 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
446 int ret = -ENOSYS;
447 KVMState *s = kvm_state;
449 if (s->coalesced_mmio) {
450 struct kvm_coalesced_mmio_zone zone;
452 zone.addr = start;
453 zone.size = size;
455 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
458 return ret;
461 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
463 int ret = -ENOSYS;
464 KVMState *s = kvm_state;
466 if (s->coalesced_mmio) {
467 struct kvm_coalesced_mmio_zone zone;
469 zone.addr = start;
470 zone.size = size;
472 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
475 return ret;
478 int kvm_check_extension(KVMState *s, unsigned int extension)
480 int ret;
482 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
483 if (ret < 0) {
484 ret = 0;
487 return ret;
490 static int kvm_check_many_ioeventfds(void)
492 /* Userspace can use ioeventfd for io notification. This requires a host
493 * that supports eventfd(2) and an I/O thread; since eventfd does not
494 * support SIGIO it cannot interrupt the vcpu.
496 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
497 * can avoid creating too many ioeventfds.
499 #if defined(CONFIG_EVENTFD)
500 int ioeventfds[7];
501 int i, ret = 0;
502 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
503 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
504 if (ioeventfds[i] < 0) {
505 break;
507 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
508 if (ret < 0) {
509 close(ioeventfds[i]);
510 break;
514 /* Decide whether many devices are supported or not */
515 ret = i == ARRAY_SIZE(ioeventfds);
517 while (i-- > 0) {
518 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
519 close(ioeventfds[i]);
521 return ret;
522 #else
523 return 0;
524 #endif
527 static const KVMCapabilityInfo *
528 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
530 while (list->name) {
531 if (!kvm_check_extension(s, list->value)) {
532 return list;
534 list++;
536 return NULL;
539 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
541 KVMState *s = kvm_state;
542 KVMSlot *mem, old;
543 int err;
544 MemoryRegion *mr = section->mr;
545 bool log_dirty = memory_region_is_logging(mr);
546 target_phys_addr_t start_addr = section->offset_within_address_space;
547 ram_addr_t size = section->size;
548 void *ram = NULL;
550 /* kvm works in page size chunks, but the function may be called
551 with sub-page size and unaligned start address. */
552 size = TARGET_PAGE_ALIGN(size);
553 start_addr = TARGET_PAGE_ALIGN(start_addr);
555 if (!memory_region_is_ram(mr)) {
556 return;
559 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region;
561 while (1) {
562 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
563 if (!mem) {
564 break;
567 if (add && start_addr >= mem->start_addr &&
568 (start_addr + size <= mem->start_addr + mem->memory_size) &&
569 (ram - start_addr == mem->ram - mem->start_addr)) {
570 /* The new slot fits into the existing one and comes with
571 * identical parameters - update flags and done. */
572 kvm_slot_dirty_pages_log_change(mem, log_dirty);
573 return;
576 old = *mem;
578 /* unregister the overlapping slot */
579 mem->memory_size = 0;
580 err = kvm_set_user_memory_region(s, mem);
581 if (err) {
582 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
583 __func__, strerror(-err));
584 abort();
587 /* Workaround for older KVM versions: we can't join slots, even not by
588 * unregistering the previous ones and then registering the larger
589 * slot. We have to maintain the existing fragmentation. Sigh.
591 * This workaround assumes that the new slot starts at the same
592 * address as the first existing one. If not or if some overlapping
593 * slot comes around later, we will fail (not seen in practice so far)
594 * - and actually require a recent KVM version. */
595 if (s->broken_set_mem_region &&
596 old.start_addr == start_addr && old.memory_size < size && add) {
597 mem = kvm_alloc_slot(s);
598 mem->memory_size = old.memory_size;
599 mem->start_addr = old.start_addr;
600 mem->ram = old.ram;
601 mem->flags = kvm_mem_flags(s, log_dirty);
603 err = kvm_set_user_memory_region(s, mem);
604 if (err) {
605 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
606 strerror(-err));
607 abort();
610 start_addr += old.memory_size;
611 ram += old.memory_size;
612 size -= old.memory_size;
613 continue;
616 /* register prefix slot */
617 if (old.start_addr < start_addr) {
618 mem = kvm_alloc_slot(s);
619 mem->memory_size = start_addr - old.start_addr;
620 mem->start_addr = old.start_addr;
621 mem->ram = old.ram;
622 mem->flags = kvm_mem_flags(s, log_dirty);
624 err = kvm_set_user_memory_region(s, mem);
625 if (err) {
626 fprintf(stderr, "%s: error registering prefix slot: %s\n",
627 __func__, strerror(-err));
628 #ifdef TARGET_PPC
629 fprintf(stderr, "%s: This is probably because your kernel's " \
630 "PAGE_SIZE is too big. Please try to use 4k " \
631 "PAGE_SIZE!\n", __func__);
632 #endif
633 abort();
637 /* register suffix slot */
638 if (old.start_addr + old.memory_size > start_addr + size) {
639 ram_addr_t size_delta;
641 mem = kvm_alloc_slot(s);
642 mem->start_addr = start_addr + size;
643 size_delta = mem->start_addr - old.start_addr;
644 mem->memory_size = old.memory_size - size_delta;
645 mem->ram = old.ram + size_delta;
646 mem->flags = kvm_mem_flags(s, log_dirty);
648 err = kvm_set_user_memory_region(s, mem);
649 if (err) {
650 fprintf(stderr, "%s: error registering suffix slot: %s\n",
651 __func__, strerror(-err));
652 abort();
657 /* in case the KVM bug workaround already "consumed" the new slot */
658 if (!size) {
659 return;
661 if (!add) {
662 return;
664 mem = kvm_alloc_slot(s);
665 mem->memory_size = size;
666 mem->start_addr = start_addr;
667 mem->ram = ram;
668 mem->flags = kvm_mem_flags(s, log_dirty);
670 err = kvm_set_user_memory_region(s, mem);
671 if (err) {
672 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
673 strerror(-err));
674 abort();
678 static void kvm_region_add(MemoryListener *listener,
679 MemoryRegionSection *section)
681 kvm_set_phys_mem(section, true);
684 static void kvm_region_del(MemoryListener *listener,
685 MemoryRegionSection *section)
687 kvm_set_phys_mem(section, false);
690 static void kvm_log_sync(MemoryListener *listener,
691 MemoryRegionSection *section)
693 int r;
695 r = kvm_physical_sync_dirty_bitmap(section);
696 if (r < 0) {
697 abort();
701 static void kvm_log_global_start(struct MemoryListener *listener)
703 int r;
705 r = kvm_set_migration_log(1);
706 assert(r >= 0);
709 static void kvm_log_global_stop(struct MemoryListener *listener)
711 int r;
713 r = kvm_set_migration_log(0);
714 assert(r >= 0);
717 static MemoryListener kvm_memory_listener = {
718 .region_add = kvm_region_add,
719 .region_del = kvm_region_del,
720 .log_start = kvm_log_start,
721 .log_stop = kvm_log_stop,
722 .log_sync = kvm_log_sync,
723 .log_global_start = kvm_log_global_start,
724 .log_global_stop = kvm_log_global_stop,
727 static void kvm_handle_interrupt(CPUState *env, int mask)
729 env->interrupt_request |= mask;
731 if (!qemu_cpu_is_self(env)) {
732 qemu_cpu_kick(env);
736 int kvm_init(void)
738 static const char upgrade_note[] =
739 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
740 "(see http://sourceforge.net/projects/kvm).\n";
741 KVMState *s;
742 const KVMCapabilityInfo *missing_cap;
743 int ret;
744 int i;
746 s = g_malloc0(sizeof(KVMState));
748 #ifdef KVM_CAP_SET_GUEST_DEBUG
749 QTAILQ_INIT(&s->kvm_sw_breakpoints);
750 #endif
751 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
752 s->slots[i].slot = i;
754 s->vmfd = -1;
755 s->fd = qemu_open("/dev/kvm", O_RDWR);
756 if (s->fd == -1) {
757 fprintf(stderr, "Could not access KVM kernel module: %m\n");
758 ret = -errno;
759 goto err;
762 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
763 if (ret < KVM_API_VERSION) {
764 if (ret > 0) {
765 ret = -EINVAL;
767 fprintf(stderr, "kvm version too old\n");
768 goto err;
771 if (ret > KVM_API_VERSION) {
772 ret = -EINVAL;
773 fprintf(stderr, "kvm version not supported\n");
774 goto err;
777 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
778 if (s->vmfd < 0) {
779 #ifdef TARGET_S390X
780 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
781 "your host kernel command line\n");
782 #endif
783 ret = s->vmfd;
784 goto err;
787 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
788 if (!missing_cap) {
789 missing_cap =
790 kvm_check_extension_list(s, kvm_arch_required_capabilities);
792 if (missing_cap) {
793 ret = -EINVAL;
794 fprintf(stderr, "kvm does not support %s\n%s",
795 missing_cap->name, upgrade_note);
796 goto err;
799 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
801 s->broken_set_mem_region = 1;
802 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
803 if (ret > 0) {
804 s->broken_set_mem_region = 0;
807 #ifdef KVM_CAP_VCPU_EVENTS
808 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
809 #endif
811 s->robust_singlestep =
812 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
814 #ifdef KVM_CAP_DEBUGREGS
815 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
816 #endif
818 #ifdef KVM_CAP_XSAVE
819 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
820 #endif
822 #ifdef KVM_CAP_XCRS
823 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
824 #endif
826 s->pit_state2 = 0;
827 #ifdef KVM_CAP_PIT_STATE2
828 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
829 #endif
831 s->pit_in_kernel = kvm_pit;
833 ret = kvm_arch_init(s);
834 if (ret < 0) {
835 goto err;
838 kvm_state = s;
839 memory_listener_register(&kvm_memory_listener);
841 s->many_ioeventfds = kvm_check_many_ioeventfds();
843 ret = kvm_create_irqchip(s);
844 if (ret < 0) {
845 return ret;
848 cpu_interrupt_handler = kvm_handle_interrupt;
850 return 0;
852 err:
853 if (s) {
854 if (s->vmfd >= 0) {
855 close(s->vmfd);
857 if (s->fd != -1) {
858 close(s->fd);
861 g_free(s);
863 return ret;
866 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
867 uint32_t count)
869 int i;
870 uint8_t *ptr = data;
872 for (i = 0; i < count; i++) {
873 if (direction == KVM_EXIT_IO_IN) {
874 switch (size) {
875 case 1:
876 stb_p(ptr, cpu_inb(port));
877 break;
878 case 2:
879 stw_p(ptr, cpu_inw(port));
880 break;
881 case 4:
882 stl_p(ptr, cpu_inl(port));
883 break;
885 } else {
886 switch (size) {
887 case 1:
888 cpu_outb(port, ldub_p(ptr));
889 break;
890 case 2:
891 cpu_outw(port, lduw_p(ptr));
892 break;
893 case 4:
894 cpu_outl(port, ldl_p(ptr));
895 break;
899 ptr += size;
903 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
905 fprintf(stderr, "KVM internal error.");
906 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
907 int i;
909 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
910 for (i = 0; i < run->internal.ndata; ++i) {
911 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
912 i, (uint64_t)run->internal.data[i]);
914 } else {
915 fprintf(stderr, "\n");
917 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
918 fprintf(stderr, "emulation failure\n");
919 if (!kvm_arch_stop_on_emulation_error(env)) {
920 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
921 return EXCP_INTERRUPT;
924 /* FIXME: Should trigger a qmp message to let management know
925 * something went wrong.
927 return -1;
930 void kvm_flush_coalesced_mmio_buffer(void)
932 KVMState *s = kvm_state;
934 if (s->coalesced_flush_in_progress) {
935 return;
938 s->coalesced_flush_in_progress = true;
940 if (s->coalesced_mmio_ring) {
941 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
942 while (ring->first != ring->last) {
943 struct kvm_coalesced_mmio *ent;
945 ent = &ring->coalesced_mmio[ring->first];
947 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
948 smp_wmb();
949 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
953 s->coalesced_flush_in_progress = false;
956 static void do_kvm_cpu_synchronize_state(void *_env)
958 CPUState *env = _env;
960 if (!env->kvm_vcpu_dirty) {
961 kvm_arch_get_registers(env);
962 env->kvm_vcpu_dirty = 1;
966 void kvm_cpu_synchronize_state(CPUState *env)
968 if (!env->kvm_vcpu_dirty) {
969 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
973 void kvm_cpu_synchronize_post_reset(CPUState *env)
975 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
976 env->kvm_vcpu_dirty = 0;
979 void kvm_cpu_synchronize_post_init(CPUState *env)
981 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
982 env->kvm_vcpu_dirty = 0;
985 int kvm_cpu_exec(CPUState *env)
987 struct kvm_run *run = env->kvm_run;
988 int ret, run_ret;
990 DPRINTF("kvm_cpu_exec()\n");
992 if (kvm_arch_process_async_events(env)) {
993 env->exit_request = 0;
994 return EXCP_HLT;
997 cpu_single_env = env;
999 do {
1000 if (env->kvm_vcpu_dirty) {
1001 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
1002 env->kvm_vcpu_dirty = 0;
1005 kvm_arch_pre_run(env, run);
1006 if (env->exit_request) {
1007 DPRINTF("interrupt exit requested\n");
1009 * KVM requires us to reenter the kernel after IO exits to complete
1010 * instruction emulation. This self-signal will ensure that we
1011 * leave ASAP again.
1013 qemu_cpu_kick_self();
1015 cpu_single_env = NULL;
1016 qemu_mutex_unlock_iothread();
1018 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1020 qemu_mutex_lock_iothread();
1021 cpu_single_env = env;
1022 kvm_arch_post_run(env, run);
1024 kvm_flush_coalesced_mmio_buffer();
1026 if (run_ret < 0) {
1027 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1028 DPRINTF("io window exit\n");
1029 ret = EXCP_INTERRUPT;
1030 break;
1032 fprintf(stderr, "error: kvm run failed %s\n",
1033 strerror(-run_ret));
1034 abort();
1037 switch (run->exit_reason) {
1038 case KVM_EXIT_IO:
1039 DPRINTF("handle_io\n");
1040 kvm_handle_io(run->io.port,
1041 (uint8_t *)run + run->io.data_offset,
1042 run->io.direction,
1043 run->io.size,
1044 run->io.count);
1045 ret = 0;
1046 break;
1047 case KVM_EXIT_MMIO:
1048 DPRINTF("handle_mmio\n");
1049 cpu_physical_memory_rw(run->mmio.phys_addr,
1050 run->mmio.data,
1051 run->mmio.len,
1052 run->mmio.is_write);
1053 ret = 0;
1054 break;
1055 case KVM_EXIT_IRQ_WINDOW_OPEN:
1056 DPRINTF("irq_window_open\n");
1057 ret = EXCP_INTERRUPT;
1058 break;
1059 case KVM_EXIT_SHUTDOWN:
1060 DPRINTF("shutdown\n");
1061 qemu_system_reset_request();
1062 ret = EXCP_INTERRUPT;
1063 break;
1064 case KVM_EXIT_UNKNOWN:
1065 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1066 (uint64_t)run->hw.hardware_exit_reason);
1067 ret = -1;
1068 break;
1069 case KVM_EXIT_INTERNAL_ERROR:
1070 ret = kvm_handle_internal_error(env, run);
1071 break;
1072 default:
1073 DPRINTF("kvm_arch_handle_exit\n");
1074 ret = kvm_arch_handle_exit(env, run);
1075 break;
1077 } while (ret == 0);
1079 if (ret < 0) {
1080 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1081 vm_stop(RUN_STATE_INTERNAL_ERROR);
1084 env->exit_request = 0;
1085 cpu_single_env = NULL;
1086 return ret;
1089 int kvm_ioctl(KVMState *s, int type, ...)
1091 int ret;
1092 void *arg;
1093 va_list ap;
1095 va_start(ap, type);
1096 arg = va_arg(ap, void *);
1097 va_end(ap);
1099 ret = ioctl(s->fd, type, arg);
1100 if (ret == -1) {
1101 ret = -errno;
1103 return ret;
1106 int kvm_vm_ioctl(KVMState *s, int type, ...)
1108 int ret;
1109 void *arg;
1110 va_list ap;
1112 va_start(ap, type);
1113 arg = va_arg(ap, void *);
1114 va_end(ap);
1116 ret = ioctl(s->vmfd, type, arg);
1117 if (ret == -1) {
1118 ret = -errno;
1120 return ret;
1123 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1125 int ret;
1126 void *arg;
1127 va_list ap;
1129 va_start(ap, type);
1130 arg = va_arg(ap, void *);
1131 va_end(ap);
1133 ret = ioctl(env->kvm_fd, type, arg);
1134 if (ret == -1) {
1135 ret = -errno;
1137 return ret;
1140 int kvm_has_sync_mmu(void)
1142 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1145 int kvm_has_vcpu_events(void)
1147 return kvm_state->vcpu_events;
1150 int kvm_has_robust_singlestep(void)
1152 return kvm_state->robust_singlestep;
1155 int kvm_has_debugregs(void)
1157 return kvm_state->debugregs;
1160 int kvm_has_xsave(void)
1162 return kvm_state->xsave;
1165 int kvm_has_xcrs(void)
1167 return kvm_state->xcrs;
1170 int kvm_has_pit_state2(void)
1172 return kvm_state->pit_state2;
1175 int kvm_has_many_ioeventfds(void)
1177 if (!kvm_enabled()) {
1178 return 0;
1180 return kvm_state->many_ioeventfds;
1183 int kvm_allows_irq0_override(void)
1185 return !kvm_enabled() || !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
1188 void kvm_setup_guest_memory(void *start, size_t size)
1190 if (!kvm_has_sync_mmu()) {
1191 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1193 if (ret) {
1194 perror("qemu_madvise");
1195 fprintf(stderr,
1196 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1197 exit(1);
1202 #ifdef KVM_CAP_SET_GUEST_DEBUG
1203 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1204 target_ulong pc)
1206 struct kvm_sw_breakpoint *bp;
1208 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1209 if (bp->pc == pc) {
1210 return bp;
1213 return NULL;
1216 int kvm_sw_breakpoints_active(CPUState *env)
1218 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1221 struct kvm_set_guest_debug_data {
1222 struct kvm_guest_debug dbg;
1223 CPUState *env;
1224 int err;
1227 static void kvm_invoke_set_guest_debug(void *data)
1229 struct kvm_set_guest_debug_data *dbg_data = data;
1230 CPUState *env = dbg_data->env;
1232 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1235 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1237 struct kvm_set_guest_debug_data data;
1239 data.dbg.control = reinject_trap;
1241 if (env->singlestep_enabled) {
1242 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1244 kvm_arch_update_guest_debug(env, &data.dbg);
1245 data.env = env;
1247 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1248 return data.err;
1251 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1252 target_ulong len, int type)
1254 struct kvm_sw_breakpoint *bp;
1255 CPUState *env;
1256 int err;
1258 if (type == GDB_BREAKPOINT_SW) {
1259 bp = kvm_find_sw_breakpoint(current_env, addr);
1260 if (bp) {
1261 bp->use_count++;
1262 return 0;
1265 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1266 if (!bp) {
1267 return -ENOMEM;
1270 bp->pc = addr;
1271 bp->use_count = 1;
1272 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1273 if (err) {
1274 g_free(bp);
1275 return err;
1278 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1279 bp, entry);
1280 } else {
1281 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1282 if (err) {
1283 return err;
1287 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1288 err = kvm_update_guest_debug(env, 0);
1289 if (err) {
1290 return err;
1293 return 0;
1296 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1297 target_ulong len, int type)
1299 struct kvm_sw_breakpoint *bp;
1300 CPUState *env;
1301 int err;
1303 if (type == GDB_BREAKPOINT_SW) {
1304 bp = kvm_find_sw_breakpoint(current_env, addr);
1305 if (!bp) {
1306 return -ENOENT;
1309 if (bp->use_count > 1) {
1310 bp->use_count--;
1311 return 0;
1314 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1315 if (err) {
1316 return err;
1319 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1320 g_free(bp);
1321 } else {
1322 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1323 if (err) {
1324 return err;
1328 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1329 err = kvm_update_guest_debug(env, 0);
1330 if (err) {
1331 return err;
1334 return 0;
1337 void kvm_remove_all_breakpoints(CPUState *current_env)
1339 struct kvm_sw_breakpoint *bp, *next;
1340 KVMState *s = current_env->kvm_state;
1341 CPUState *env;
1343 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1344 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1345 /* Try harder to find a CPU that currently sees the breakpoint. */
1346 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1347 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1348 break;
1353 kvm_arch_remove_all_hw_breakpoints();
1355 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1356 kvm_update_guest_debug(env, 0);
1360 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1362 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1364 return -EINVAL;
1367 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1368 target_ulong len, int type)
1370 return -EINVAL;
1373 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1374 target_ulong len, int type)
1376 return -EINVAL;
1379 void kvm_remove_all_breakpoints(CPUState *current_env)
1382 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1384 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1386 struct kvm_signal_mask *sigmask;
1387 int r;
1389 if (!sigset) {
1390 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1393 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1395 sigmask->len = 8;
1396 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1397 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1398 g_free(sigmask);
1400 return r;
1403 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1405 int ret;
1406 struct kvm_ioeventfd iofd;
1408 iofd.datamatch = val;
1409 iofd.addr = addr;
1410 iofd.len = 4;
1411 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1412 iofd.fd = fd;
1414 if (!kvm_enabled()) {
1415 return -ENOSYS;
1418 if (!assign) {
1419 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1422 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1424 if (ret < 0) {
1425 return -errno;
1428 return 0;
1431 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1433 struct kvm_ioeventfd kick = {
1434 .datamatch = val,
1435 .addr = addr,
1436 .len = 2,
1437 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1438 .fd = fd,
1440 int r;
1441 if (!kvm_enabled()) {
1442 return -ENOSYS;
1444 if (!assign) {
1445 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1447 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1448 if (r < 0) {
1449 return r;
1451 return 0;
1454 int kvm_set_irqfd(int gsi, int fd, bool assigned)
1456 struct kvm_irqfd irqfd = {
1457 .fd = fd,
1458 .gsi = gsi,
1459 .flags = assigned ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1461 int r;
1462 if (!kvm_enabled() || !kvm_irqchip_in_kernel())
1463 return -ENOSYS;
1465 r = kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd);
1466 if (r < 0)
1467 return r;
1468 return 0;
1471 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1473 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1476 int kvm_on_sigbus(int code, void *addr)
1478 return kvm_arch_on_sigbus(code, addr);
1481 #undef PAGE_SIZE
1482 #include "qemu-kvm.c"