i386: wire up MSR_IA32_MISC_ENABLE
[qemu-kvm.git] / target-i386 / kvm.c
blobddd115c53c1c09a55e9fcae3132977adcce35f15
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "kvm.h"
26 #include "cpu.h"
27 #include "gdbstub.h"
28 #include "host-utils.h"
29 #include "hw/pc.h"
30 #include "hw/apic.h"
31 #include "ioport.h"
33 //#define DEBUG_KVM
35 #ifdef DEBUG_KVM
36 #define DPRINTF(fmt, ...) \
37 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF(fmt, ...) \
40 do { } while (0)
41 #endif
43 #define MSR_KVM_WALL_CLOCK 0x11
44 #define MSR_KVM_SYSTEM_TIME 0x12
46 #ifndef BUS_MCEERR_AR
47 #define BUS_MCEERR_AR 4
48 #endif
49 #ifndef BUS_MCEERR_AO
50 #define BUS_MCEERR_AO 5
51 #endif
53 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
54 KVM_CAP_INFO(SET_TSS_ADDR),
55 KVM_CAP_INFO(EXT_CPUID),
56 KVM_CAP_INFO(MP_STATE),
57 KVM_CAP_LAST_INFO
60 static bool has_msr_star;
61 static bool has_msr_hsave_pa;
62 static bool has_msr_tsc_deadline;
63 static bool has_msr_async_pf_en;
64 static bool has_msr_misc_enable;
65 static int lm_capable_kernel;
67 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
69 struct kvm_cpuid2 *cpuid;
70 int r, size;
72 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
73 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
74 cpuid->nent = max;
75 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76 if (r == 0 && cpuid->nent >= max) {
77 r = -E2BIG;
79 if (r < 0) {
80 if (r == -E2BIG) {
81 g_free(cpuid);
82 return NULL;
83 } else {
84 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
85 strerror(-r));
86 exit(1);
89 return cpuid;
92 struct kvm_para_features {
93 int cap;
94 int feature;
95 } para_features[] = {
96 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
97 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
98 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
99 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
100 { -1, -1 }
103 static int get_para_features(KVMState *s)
105 int i, features = 0;
107 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
108 if (kvm_check_extension(s, para_features[i].cap)) {
109 features |= (1 << para_features[i].feature);
113 return features;
117 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
118 uint32_t index, int reg)
120 struct kvm_cpuid2 *cpuid;
121 int i, max;
122 uint32_t ret = 0;
123 uint32_t cpuid_1_edx;
124 int has_kvm_features = 0;
126 max = 1;
127 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
128 max *= 2;
131 for (i = 0; i < cpuid->nent; ++i) {
132 if (cpuid->entries[i].function == function &&
133 cpuid->entries[i].index == index) {
134 if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
135 has_kvm_features = 1;
137 switch (reg) {
138 case R_EAX:
139 ret = cpuid->entries[i].eax;
140 break;
141 case R_EBX:
142 ret = cpuid->entries[i].ebx;
143 break;
144 case R_ECX:
145 ret = cpuid->entries[i].ecx;
146 break;
147 case R_EDX:
148 ret = cpuid->entries[i].edx;
149 switch (function) {
150 case 1:
151 /* KVM before 2.6.30 misreports the following features */
152 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
153 break;
154 case 0x80000001:
155 /* On Intel, kvm returns cpuid according to the Intel spec,
156 * so add missing bits according to the AMD spec:
158 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
159 ret |= cpuid_1_edx & 0x183f7ff;
160 break;
162 break;
167 g_free(cpuid);
169 /* fallback for older kernels */
170 if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
171 ret = get_para_features(s);
174 return ret;
177 typedef struct HWPoisonPage {
178 ram_addr_t ram_addr;
179 QLIST_ENTRY(HWPoisonPage) list;
180 } HWPoisonPage;
182 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
183 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
185 static void kvm_unpoison_all(void *param)
187 HWPoisonPage *page, *next_page;
189 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
190 QLIST_REMOVE(page, list);
191 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
192 g_free(page);
196 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
198 HWPoisonPage *page;
200 QLIST_FOREACH(page, &hwpoison_page_list, list) {
201 if (page->ram_addr == ram_addr) {
202 return;
205 page = g_malloc(sizeof(HWPoisonPage));
206 page->ram_addr = ram_addr;
207 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
210 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
211 int *max_banks)
213 int r;
215 r = kvm_check_extension(s, KVM_CAP_MCE);
216 if (r > 0) {
217 *max_banks = r;
218 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
220 return -ENOSYS;
223 static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code)
225 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
226 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
227 uint64_t mcg_status = MCG_STATUS_MCIP;
229 if (code == BUS_MCEERR_AR) {
230 status |= MCI_STATUS_AR | 0x134;
231 mcg_status |= MCG_STATUS_EIPV;
232 } else {
233 status |= 0xc0;
234 mcg_status |= MCG_STATUS_RIPV;
236 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
237 (MCM_ADDR_PHYS << 6) | 0xc,
238 cpu_x86_support_mca_broadcast(env) ?
239 MCE_INJECT_BROADCAST : 0);
242 static void hardware_memory_error(void)
244 fprintf(stderr, "Hardware memory error!\n");
245 exit(1);
248 int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
250 ram_addr_t ram_addr;
251 target_phys_addr_t paddr;
253 if ((env->mcg_cap & MCG_SER_P) && addr
254 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
255 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
256 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr,
257 &paddr)) {
258 fprintf(stderr, "Hardware memory error for memory used by "
259 "QEMU itself instead of guest system!\n");
260 /* Hope we are lucky for AO MCE */
261 if (code == BUS_MCEERR_AO) {
262 return 0;
263 } else {
264 hardware_memory_error();
267 kvm_hwpoison_page_add(ram_addr);
268 kvm_mce_inject(env, paddr, code);
269 } else {
270 if (code == BUS_MCEERR_AO) {
271 return 0;
272 } else if (code == BUS_MCEERR_AR) {
273 hardware_memory_error();
274 } else {
275 return 1;
278 return 0;
281 int kvm_arch_on_sigbus(int code, void *addr)
283 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
284 ram_addr_t ram_addr;
285 target_phys_addr_t paddr;
287 /* Hope we are lucky for AO MCE */
288 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
289 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr,
290 &paddr)) {
291 fprintf(stderr, "Hardware memory error for memory used by "
292 "QEMU itself instead of guest system!: %p\n", addr);
293 return 0;
295 kvm_hwpoison_page_add(ram_addr);
296 kvm_mce_inject(first_cpu, paddr, code);
297 } else {
298 if (code == BUS_MCEERR_AO) {
299 return 0;
300 } else if (code == BUS_MCEERR_AR) {
301 hardware_memory_error();
302 } else {
303 return 1;
306 return 0;
309 static int kvm_inject_mce_oldstyle(CPUState *env)
311 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
312 unsigned int bank, bank_num = env->mcg_cap & 0xff;
313 struct kvm_x86_mce mce;
315 env->exception_injected = -1;
318 * There must be at least one bank in use if an MCE is pending.
319 * Find it and use its values for the event injection.
321 for (bank = 0; bank < bank_num; bank++) {
322 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
323 break;
326 assert(bank < bank_num);
328 mce.bank = bank;
329 mce.status = env->mce_banks[bank * 4 + 1];
330 mce.mcg_status = env->mcg_status;
331 mce.addr = env->mce_banks[bank * 4 + 2];
332 mce.misc = env->mce_banks[bank * 4 + 3];
334 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
336 return 0;
339 static void cpu_update_state(void *opaque, int running, RunState state)
341 CPUState *env = opaque;
343 if (running) {
344 env->tsc_valid = false;
348 int kvm_arch_init_vcpu(CPUState *env)
350 struct {
351 struct kvm_cpuid2 cpuid;
352 struct kvm_cpuid_entry2 entries[100];
353 } QEMU_PACKED cpuid_data;
354 KVMState *s = env->kvm_state;
355 uint32_t limit, i, j, cpuid_i;
356 uint32_t unused;
357 struct kvm_cpuid_entry2 *c;
358 uint32_t signature[3];
359 int r;
361 env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
363 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
364 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
365 env->cpuid_ext_features |= i;
367 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
368 0, R_EDX);
369 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
370 0, R_ECX);
371 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
372 0, R_EDX);
374 cpuid_i = 0;
376 /* Paravirtualization CPUIDs */
377 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
378 c = &cpuid_data.entries[cpuid_i++];
379 memset(c, 0, sizeof(*c));
380 c->function = KVM_CPUID_SIGNATURE;
381 c->eax = 0;
382 c->ebx = signature[0];
383 c->ecx = signature[1];
384 c->edx = signature[2];
386 c = &cpuid_data.entries[cpuid_i++];
387 memset(c, 0, sizeof(*c));
388 c->function = KVM_CPUID_FEATURES;
389 c->eax = env->cpuid_kvm_features &
390 kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
392 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
394 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
396 for (i = 0; i <= limit; i++) {
397 c = &cpuid_data.entries[cpuid_i++];
399 switch (i) {
400 case 2: {
401 /* Keep reading function 2 till all the input is received */
402 int times;
404 c->function = i;
405 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
406 KVM_CPUID_FLAG_STATE_READ_NEXT;
407 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
408 times = c->eax & 0xff;
410 for (j = 1; j < times; ++j) {
411 c = &cpuid_data.entries[cpuid_i++];
412 c->function = i;
413 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
414 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
416 break;
418 case 4:
419 case 0xb:
420 case 0xd:
421 for (j = 0; ; j++) {
422 if (i == 0xd && j == 64) {
423 break;
425 c->function = i;
426 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
427 c->index = j;
428 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
430 if (i == 4 && c->eax == 0) {
431 break;
433 if (i == 0xb && !(c->ecx & 0xff00)) {
434 break;
436 if (i == 0xd && c->eax == 0) {
437 continue;
439 c = &cpuid_data.entries[cpuid_i++];
441 break;
442 default:
443 c->function = i;
444 c->flags = 0;
445 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
446 break;
449 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
451 for (i = 0x80000000; i <= limit; i++) {
452 c = &cpuid_data.entries[cpuid_i++];
454 c->function = i;
455 c->flags = 0;
456 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
459 /* Call Centaur's CPUID instructions they are supported. */
460 if (env->cpuid_xlevel2 > 0) {
461 env->cpuid_ext4_features &=
462 kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
463 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
465 for (i = 0xC0000000; i <= limit; i++) {
466 c = &cpuid_data.entries[cpuid_i++];
468 c->function = i;
469 c->flags = 0;
470 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
474 cpuid_data.cpuid.nent = cpuid_i;
476 if (((env->cpuid_version >> 8)&0xF) >= 6
477 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
478 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
479 uint64_t mcg_cap;
480 int banks;
481 int ret;
483 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
484 if (ret < 0) {
485 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
486 return ret;
489 if (banks > MCE_BANKS_DEF) {
490 banks = MCE_BANKS_DEF;
492 mcg_cap &= MCE_CAP_DEF;
493 mcg_cap |= banks;
494 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
495 if (ret < 0) {
496 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
497 return ret;
500 env->mcg_cap = mcg_cap;
503 qemu_add_vm_change_state_handler(cpu_update_state, env);
505 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
506 if (r) {
507 return r;
510 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
511 if (r && env->tsc_khz) {
512 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
513 if (r < 0) {
514 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
515 return r;
519 return 0;
522 void kvm_arch_reset_vcpu(CPUState *env)
524 env->exception_injected = -1;
525 env->interrupt_injected = -1;
526 env->xcr0 = 1;
527 if (kvm_irqchip_in_kernel()) {
528 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
529 KVM_MP_STATE_UNINITIALIZED;
530 } else {
531 env->mp_state = KVM_MP_STATE_RUNNABLE;
535 static int kvm_get_supported_msrs(KVMState *s)
537 static int kvm_supported_msrs;
538 int ret = 0;
540 /* first time */
541 if (kvm_supported_msrs == 0) {
542 struct kvm_msr_list msr_list, *kvm_msr_list;
544 kvm_supported_msrs = -1;
546 /* Obtain MSR list from KVM. These are the MSRs that we must
547 * save/restore */
548 msr_list.nmsrs = 0;
549 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
550 if (ret < 0 && ret != -E2BIG) {
551 return ret;
553 /* Old kernel modules had a bug and could write beyond the provided
554 memory. Allocate at least a safe amount of 1K. */
555 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
556 msr_list.nmsrs *
557 sizeof(msr_list.indices[0])));
559 kvm_msr_list->nmsrs = msr_list.nmsrs;
560 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
561 if (ret >= 0) {
562 int i;
564 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
565 if (kvm_msr_list->indices[i] == MSR_STAR) {
566 has_msr_star = true;
567 continue;
569 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
570 has_msr_hsave_pa = true;
571 continue;
573 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
574 has_msr_tsc_deadline = true;
575 continue;
577 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
578 has_msr_misc_enable = true;
579 continue;
584 g_free(kvm_msr_list);
587 return ret;
590 int kvm_arch_init(KVMState *s)
592 uint64_t identity_base = 0xfffbc000;
593 int ret;
594 struct utsname utsname;
596 ret = kvm_get_supported_msrs(s);
597 if (ret < 0) {
598 return ret;
601 uname(&utsname);
602 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
605 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
606 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
607 * Since these must be part of guest physical memory, we need to allocate
608 * them, both by setting their start addresses in the kernel and by
609 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
611 * Older KVM versions may not support setting the identity map base. In
612 * that case we need to stick with the default, i.e. a 256K maximum BIOS
613 * size.
615 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
616 /* Allows up to 16M BIOSes. */
617 identity_base = 0xfeffc000;
619 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
620 if (ret < 0) {
621 return ret;
625 /* Set TSS base one page after EPT identity map. */
626 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
627 if (ret < 0) {
628 return ret;
631 /* Tell fw_cfg to notify the BIOS to reserve the range. */
632 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
633 if (ret < 0) {
634 fprintf(stderr, "e820_add_entry() table is full\n");
635 return ret;
637 qemu_register_reset(kvm_unpoison_all, NULL);
639 return 0;
642 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
644 lhs->selector = rhs->selector;
645 lhs->base = rhs->base;
646 lhs->limit = rhs->limit;
647 lhs->type = 3;
648 lhs->present = 1;
649 lhs->dpl = 3;
650 lhs->db = 0;
651 lhs->s = 1;
652 lhs->l = 0;
653 lhs->g = 0;
654 lhs->avl = 0;
655 lhs->unusable = 0;
658 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
660 unsigned flags = rhs->flags;
661 lhs->selector = rhs->selector;
662 lhs->base = rhs->base;
663 lhs->limit = rhs->limit;
664 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
665 lhs->present = (flags & DESC_P_MASK) != 0;
666 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
667 lhs->db = (flags >> DESC_B_SHIFT) & 1;
668 lhs->s = (flags & DESC_S_MASK) != 0;
669 lhs->l = (flags >> DESC_L_SHIFT) & 1;
670 lhs->g = (flags & DESC_G_MASK) != 0;
671 lhs->avl = (flags & DESC_AVL_MASK) != 0;
672 lhs->unusable = 0;
675 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
677 lhs->selector = rhs->selector;
678 lhs->base = rhs->base;
679 lhs->limit = rhs->limit;
680 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
681 (rhs->present * DESC_P_MASK) |
682 (rhs->dpl << DESC_DPL_SHIFT) |
683 (rhs->db << DESC_B_SHIFT) |
684 (rhs->s * DESC_S_MASK) |
685 (rhs->l << DESC_L_SHIFT) |
686 (rhs->g * DESC_G_MASK) |
687 (rhs->avl * DESC_AVL_MASK);
690 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
692 if (set) {
693 *kvm_reg = *qemu_reg;
694 } else {
695 *qemu_reg = *kvm_reg;
699 static int kvm_getput_regs(CPUState *env, int set)
701 struct kvm_regs regs;
702 int ret = 0;
704 if (!set) {
705 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
706 if (ret < 0) {
707 return ret;
711 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
712 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
713 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
714 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
715 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
716 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
717 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
718 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
719 #ifdef TARGET_X86_64
720 kvm_getput_reg(&regs.r8, &env->regs[8], set);
721 kvm_getput_reg(&regs.r9, &env->regs[9], set);
722 kvm_getput_reg(&regs.r10, &env->regs[10], set);
723 kvm_getput_reg(&regs.r11, &env->regs[11], set);
724 kvm_getput_reg(&regs.r12, &env->regs[12], set);
725 kvm_getput_reg(&regs.r13, &env->regs[13], set);
726 kvm_getput_reg(&regs.r14, &env->regs[14], set);
727 kvm_getput_reg(&regs.r15, &env->regs[15], set);
728 #endif
730 kvm_getput_reg(&regs.rflags, &env->eflags, set);
731 kvm_getput_reg(&regs.rip, &env->eip, set);
733 if (set) {
734 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
737 return ret;
740 static int kvm_put_fpu(CPUState *env)
742 struct kvm_fpu fpu;
743 int i;
745 memset(&fpu, 0, sizeof fpu);
746 fpu.fsw = env->fpus & ~(7 << 11);
747 fpu.fsw |= (env->fpstt & 7) << 11;
748 fpu.fcw = env->fpuc;
749 fpu.last_opcode = env->fpop;
750 fpu.last_ip = env->fpip;
751 fpu.last_dp = env->fpdp;
752 for (i = 0; i < 8; ++i) {
753 fpu.ftwx |= (!env->fptags[i]) << i;
755 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
756 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
757 fpu.mxcsr = env->mxcsr;
759 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
762 #define XSAVE_CWD_RIP 2
763 #define XSAVE_CWD_RDP 4
764 #define XSAVE_MXCSR 6
765 #define XSAVE_ST_SPACE 8
766 #define XSAVE_XMM_SPACE 40
767 #define XSAVE_XSTATE_BV 128
768 #define XSAVE_YMMH_SPACE 144
770 static int kvm_put_xsave(CPUState *env)
772 int i, r;
773 struct kvm_xsave* xsave;
774 uint16_t cwd, swd, twd;
776 if (!kvm_has_xsave()) {
777 return kvm_put_fpu(env);
780 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
781 memset(xsave, 0, sizeof(struct kvm_xsave));
782 twd = 0;
783 swd = env->fpus & ~(7 << 11);
784 swd |= (env->fpstt & 7) << 11;
785 cwd = env->fpuc;
786 for (i = 0; i < 8; ++i) {
787 twd |= (!env->fptags[i]) << i;
789 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
790 xsave->region[1] = (uint32_t)(env->fpop << 16) + twd;
791 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
792 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
793 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
794 sizeof env->fpregs);
795 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
796 sizeof env->xmm_regs);
797 xsave->region[XSAVE_MXCSR] = env->mxcsr;
798 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
799 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
800 sizeof env->ymmh_regs);
801 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
802 g_free(xsave);
803 return r;
806 static int kvm_put_xcrs(CPUState *env)
808 struct kvm_xcrs xcrs;
810 if (!kvm_has_xcrs()) {
811 return 0;
814 xcrs.nr_xcrs = 1;
815 xcrs.flags = 0;
816 xcrs.xcrs[0].xcr = 0;
817 xcrs.xcrs[0].value = env->xcr0;
818 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
821 static int kvm_put_sregs(CPUState *env)
823 struct kvm_sregs sregs;
825 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
826 if (env->interrupt_injected >= 0) {
827 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
828 (uint64_t)1 << (env->interrupt_injected % 64);
831 if ((env->eflags & VM_MASK)) {
832 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
833 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
834 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
835 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
836 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
837 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
838 } else {
839 set_seg(&sregs.cs, &env->segs[R_CS]);
840 set_seg(&sregs.ds, &env->segs[R_DS]);
841 set_seg(&sregs.es, &env->segs[R_ES]);
842 set_seg(&sregs.fs, &env->segs[R_FS]);
843 set_seg(&sregs.gs, &env->segs[R_GS]);
844 set_seg(&sregs.ss, &env->segs[R_SS]);
847 set_seg(&sregs.tr, &env->tr);
848 set_seg(&sregs.ldt, &env->ldt);
850 sregs.idt.limit = env->idt.limit;
851 sregs.idt.base = env->idt.base;
852 sregs.gdt.limit = env->gdt.limit;
853 sregs.gdt.base = env->gdt.base;
855 sregs.cr0 = env->cr[0];
856 sregs.cr2 = env->cr[2];
857 sregs.cr3 = env->cr[3];
858 sregs.cr4 = env->cr[4];
860 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
861 sregs.apic_base = cpu_get_apic_base(env->apic_state);
863 sregs.efer = env->efer;
865 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
868 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
869 uint32_t index, uint64_t value)
871 entry->index = index;
872 entry->data = value;
875 static int kvm_put_msrs(CPUState *env, int level)
877 struct {
878 struct kvm_msrs info;
879 struct kvm_msr_entry entries[100];
880 } msr_data;
881 struct kvm_msr_entry *msrs = msr_data.entries;
882 int n = 0;
884 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
885 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
886 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
887 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
888 if (has_msr_star) {
889 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
891 if (has_msr_hsave_pa) {
892 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
894 if (has_msr_tsc_deadline) {
895 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
897 if (has_msr_misc_enable) {
898 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
899 env->msr_ia32_misc_enable);
901 #ifdef TARGET_X86_64
902 if (lm_capable_kernel) {
903 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
904 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
905 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
906 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
908 #endif
909 if (level == KVM_PUT_FULL_STATE) {
911 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
912 * writeback. Until this is fixed, we only write the offset to SMP
913 * guests after migration, desynchronizing the VCPUs, but avoiding
914 * huge jump-backs that would occur without any writeback at all.
916 if (smp_cpus == 1 || env->tsc != 0) {
917 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
921 * The following paravirtual MSRs have side effects on the guest or are
922 * too heavy for normal writeback. Limit them to reset or full state
923 * updates.
925 if (level >= KVM_PUT_RESET_STATE) {
926 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
927 env->system_time_msr);
928 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
929 if (has_msr_async_pf_en) {
930 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
931 env->async_pf_en_msr);
934 if (env->mcg_cap) {
935 int i;
937 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
938 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
939 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
940 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
944 msr_data.info.nmsrs = n;
946 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
951 static int kvm_get_fpu(CPUState *env)
953 struct kvm_fpu fpu;
954 int i, ret;
956 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
957 if (ret < 0) {
958 return ret;
961 env->fpstt = (fpu.fsw >> 11) & 7;
962 env->fpus = fpu.fsw;
963 env->fpuc = fpu.fcw;
964 env->fpop = fpu.last_opcode;
965 env->fpip = fpu.last_ip;
966 env->fpdp = fpu.last_dp;
967 for (i = 0; i < 8; ++i) {
968 env->fptags[i] = !((fpu.ftwx >> i) & 1);
970 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
971 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
972 env->mxcsr = fpu.mxcsr;
974 return 0;
977 static int kvm_get_xsave(CPUState *env)
979 struct kvm_xsave* xsave;
980 int ret, i;
981 uint16_t cwd, swd, twd;
983 if (!kvm_has_xsave()) {
984 return kvm_get_fpu(env);
987 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
988 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
989 if (ret < 0) {
990 g_free(xsave);
991 return ret;
994 cwd = (uint16_t)xsave->region[0];
995 swd = (uint16_t)(xsave->region[0] >> 16);
996 twd = (uint16_t)xsave->region[1];
997 env->fpop = (uint16_t)(xsave->region[1] >> 16);
998 env->fpstt = (swd >> 11) & 7;
999 env->fpus = swd;
1000 env->fpuc = cwd;
1001 for (i = 0; i < 8; ++i) {
1002 env->fptags[i] = !((twd >> i) & 1);
1004 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1005 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1006 env->mxcsr = xsave->region[XSAVE_MXCSR];
1007 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1008 sizeof env->fpregs);
1009 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1010 sizeof env->xmm_regs);
1011 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1012 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1013 sizeof env->ymmh_regs);
1014 g_free(xsave);
1015 return 0;
1018 static int kvm_get_xcrs(CPUState *env)
1020 int i, ret;
1021 struct kvm_xcrs xcrs;
1023 if (!kvm_has_xcrs()) {
1024 return 0;
1027 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1028 if (ret < 0) {
1029 return ret;
1032 for (i = 0; i < xcrs.nr_xcrs; i++) {
1033 /* Only support xcr0 now */
1034 if (xcrs.xcrs[0].xcr == 0) {
1035 env->xcr0 = xcrs.xcrs[0].value;
1036 break;
1039 return 0;
1042 static int kvm_get_sregs(CPUState *env)
1044 struct kvm_sregs sregs;
1045 uint32_t hflags;
1046 int bit, i, ret;
1048 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1049 if (ret < 0) {
1050 return ret;
1053 /* There can only be one pending IRQ set in the bitmap at a time, so try
1054 to find it and save its number instead (-1 for none). */
1055 env->interrupt_injected = -1;
1056 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1057 if (sregs.interrupt_bitmap[i]) {
1058 bit = ctz64(sregs.interrupt_bitmap[i]);
1059 env->interrupt_injected = i * 64 + bit;
1060 break;
1064 get_seg(&env->segs[R_CS], &sregs.cs);
1065 get_seg(&env->segs[R_DS], &sregs.ds);
1066 get_seg(&env->segs[R_ES], &sregs.es);
1067 get_seg(&env->segs[R_FS], &sregs.fs);
1068 get_seg(&env->segs[R_GS], &sregs.gs);
1069 get_seg(&env->segs[R_SS], &sregs.ss);
1071 get_seg(&env->tr, &sregs.tr);
1072 get_seg(&env->ldt, &sregs.ldt);
1074 env->idt.limit = sregs.idt.limit;
1075 env->idt.base = sregs.idt.base;
1076 env->gdt.limit = sregs.gdt.limit;
1077 env->gdt.base = sregs.gdt.base;
1079 env->cr[0] = sregs.cr0;
1080 env->cr[2] = sregs.cr2;
1081 env->cr[3] = sregs.cr3;
1082 env->cr[4] = sregs.cr4;
1084 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1086 env->efer = sregs.efer;
1087 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1089 #define HFLAG_COPY_MASK \
1090 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1091 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1092 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1093 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1095 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1096 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1097 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1098 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1099 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1100 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1101 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1103 if (env->efer & MSR_EFER_LMA) {
1104 hflags |= HF_LMA_MASK;
1107 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1108 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1109 } else {
1110 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1111 (DESC_B_SHIFT - HF_CS32_SHIFT);
1112 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1113 (DESC_B_SHIFT - HF_SS32_SHIFT);
1114 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1115 !(hflags & HF_CS32_MASK)) {
1116 hflags |= HF_ADDSEG_MASK;
1117 } else {
1118 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1119 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1122 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1124 return 0;
1127 static int kvm_get_msrs(CPUState *env)
1129 struct {
1130 struct kvm_msrs info;
1131 struct kvm_msr_entry entries[100];
1132 } msr_data;
1133 struct kvm_msr_entry *msrs = msr_data.entries;
1134 int ret, i, n;
1136 n = 0;
1137 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1138 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1139 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1140 msrs[n++].index = MSR_PAT;
1141 if (has_msr_star) {
1142 msrs[n++].index = MSR_STAR;
1144 if (has_msr_hsave_pa) {
1145 msrs[n++].index = MSR_VM_HSAVE_PA;
1147 if (has_msr_tsc_deadline) {
1148 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1150 if (has_msr_misc_enable) {
1151 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1154 if (!env->tsc_valid) {
1155 msrs[n++].index = MSR_IA32_TSC;
1156 env->tsc_valid = !runstate_is_running();
1159 #ifdef TARGET_X86_64
1160 if (lm_capable_kernel) {
1161 msrs[n++].index = MSR_CSTAR;
1162 msrs[n++].index = MSR_KERNELGSBASE;
1163 msrs[n++].index = MSR_FMASK;
1164 msrs[n++].index = MSR_LSTAR;
1166 #endif
1167 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1168 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1169 if (has_msr_async_pf_en) {
1170 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1173 if (env->mcg_cap) {
1174 msrs[n++].index = MSR_MCG_STATUS;
1175 msrs[n++].index = MSR_MCG_CTL;
1176 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1177 msrs[n++].index = MSR_MC0_CTL + i;
1181 msr_data.info.nmsrs = n;
1182 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1183 if (ret < 0) {
1184 return ret;
1187 for (i = 0; i < ret; i++) {
1188 switch (msrs[i].index) {
1189 case MSR_IA32_SYSENTER_CS:
1190 env->sysenter_cs = msrs[i].data;
1191 break;
1192 case MSR_IA32_SYSENTER_ESP:
1193 env->sysenter_esp = msrs[i].data;
1194 break;
1195 case MSR_IA32_SYSENTER_EIP:
1196 env->sysenter_eip = msrs[i].data;
1197 break;
1198 case MSR_PAT:
1199 env->pat = msrs[i].data;
1200 break;
1201 case MSR_STAR:
1202 env->star = msrs[i].data;
1203 break;
1204 #ifdef TARGET_X86_64
1205 case MSR_CSTAR:
1206 env->cstar = msrs[i].data;
1207 break;
1208 case MSR_KERNELGSBASE:
1209 env->kernelgsbase = msrs[i].data;
1210 break;
1211 case MSR_FMASK:
1212 env->fmask = msrs[i].data;
1213 break;
1214 case MSR_LSTAR:
1215 env->lstar = msrs[i].data;
1216 break;
1217 #endif
1218 case MSR_IA32_TSC:
1219 env->tsc = msrs[i].data;
1220 break;
1221 case MSR_IA32_TSCDEADLINE:
1222 env->tsc_deadline = msrs[i].data;
1223 break;
1224 case MSR_VM_HSAVE_PA:
1225 env->vm_hsave = msrs[i].data;
1226 break;
1227 case MSR_KVM_SYSTEM_TIME:
1228 env->system_time_msr = msrs[i].data;
1229 break;
1230 case MSR_KVM_WALL_CLOCK:
1231 env->wall_clock_msr = msrs[i].data;
1232 break;
1233 case MSR_MCG_STATUS:
1234 env->mcg_status = msrs[i].data;
1235 break;
1236 case MSR_MCG_CTL:
1237 env->mcg_ctl = msrs[i].data;
1238 break;
1239 case MSR_IA32_MISC_ENABLE:
1240 env->msr_ia32_misc_enable = msrs[i].data;
1241 break;
1242 default:
1243 if (msrs[i].index >= MSR_MC0_CTL &&
1244 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1245 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1247 break;
1248 case MSR_KVM_ASYNC_PF_EN:
1249 env->async_pf_en_msr = msrs[i].data;
1250 break;
1254 return 0;
1257 static int kvm_put_mp_state(CPUState *env)
1259 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1261 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1264 static int kvm_get_mp_state(CPUState *env)
1266 struct kvm_mp_state mp_state;
1267 int ret;
1269 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1270 if (ret < 0) {
1271 return ret;
1273 env->mp_state = mp_state.mp_state;
1274 if (kvm_irqchip_in_kernel()) {
1275 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1277 return 0;
1280 static int kvm_put_vcpu_events(CPUState *env, int level)
1282 struct kvm_vcpu_events events;
1284 if (!kvm_has_vcpu_events()) {
1285 return 0;
1288 events.exception.injected = (env->exception_injected >= 0);
1289 events.exception.nr = env->exception_injected;
1290 events.exception.has_error_code = env->has_error_code;
1291 events.exception.error_code = env->error_code;
1293 events.interrupt.injected = (env->interrupt_injected >= 0);
1294 events.interrupt.nr = env->interrupt_injected;
1295 events.interrupt.soft = env->soft_interrupt;
1297 events.nmi.injected = env->nmi_injected;
1298 events.nmi.pending = env->nmi_pending;
1299 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1301 events.sipi_vector = env->sipi_vector;
1303 events.flags = 0;
1304 if (level >= KVM_PUT_RESET_STATE) {
1305 events.flags |=
1306 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1309 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1312 static int kvm_get_vcpu_events(CPUState *env)
1314 struct kvm_vcpu_events events;
1315 int ret;
1317 if (!kvm_has_vcpu_events()) {
1318 return 0;
1321 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1322 if (ret < 0) {
1323 return ret;
1325 env->exception_injected =
1326 events.exception.injected ? events.exception.nr : -1;
1327 env->has_error_code = events.exception.has_error_code;
1328 env->error_code = events.exception.error_code;
1330 env->interrupt_injected =
1331 events.interrupt.injected ? events.interrupt.nr : -1;
1332 env->soft_interrupt = events.interrupt.soft;
1334 env->nmi_injected = events.nmi.injected;
1335 env->nmi_pending = events.nmi.pending;
1336 if (events.nmi.masked) {
1337 env->hflags2 |= HF2_NMI_MASK;
1338 } else {
1339 env->hflags2 &= ~HF2_NMI_MASK;
1342 env->sipi_vector = events.sipi_vector;
1344 return 0;
1347 static int kvm_guest_debug_workarounds(CPUState *env)
1349 int ret = 0;
1350 unsigned long reinject_trap = 0;
1352 if (!kvm_has_vcpu_events()) {
1353 if (env->exception_injected == 1) {
1354 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1355 } else if (env->exception_injected == 3) {
1356 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1358 env->exception_injected = -1;
1362 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1363 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1364 * by updating the debug state once again if single-stepping is on.
1365 * Another reason to call kvm_update_guest_debug here is a pending debug
1366 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1367 * reinject them via SET_GUEST_DEBUG.
1369 if (reinject_trap ||
1370 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1371 ret = kvm_update_guest_debug(env, reinject_trap);
1373 return ret;
1376 static int kvm_put_debugregs(CPUState *env)
1378 struct kvm_debugregs dbgregs;
1379 int i;
1381 if (!kvm_has_debugregs()) {
1382 return 0;
1385 for (i = 0; i < 4; i++) {
1386 dbgregs.db[i] = env->dr[i];
1388 dbgregs.dr6 = env->dr[6];
1389 dbgregs.dr7 = env->dr[7];
1390 dbgregs.flags = 0;
1392 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1395 static int kvm_get_debugregs(CPUState *env)
1397 struct kvm_debugregs dbgregs;
1398 int i, ret;
1400 if (!kvm_has_debugregs()) {
1401 return 0;
1404 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1405 if (ret < 0) {
1406 return ret;
1408 for (i = 0; i < 4; i++) {
1409 env->dr[i] = dbgregs.db[i];
1411 env->dr[4] = env->dr[6] = dbgregs.dr6;
1412 env->dr[5] = env->dr[7] = dbgregs.dr7;
1414 return 0;
1417 int kvm_arch_put_registers(CPUState *env, int level)
1419 int ret;
1421 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1423 ret = kvm_getput_regs(env, 1);
1424 if (ret < 0) {
1425 return ret;
1427 ret = kvm_put_xsave(env);
1428 if (ret < 0) {
1429 return ret;
1431 ret = kvm_put_xcrs(env);
1432 if (ret < 0) {
1433 return ret;
1435 ret = kvm_put_sregs(env);
1436 if (ret < 0) {
1437 return ret;
1439 /* must be before kvm_put_msrs */
1440 ret = kvm_inject_mce_oldstyle(env);
1441 if (ret < 0) {
1442 return ret;
1444 ret = kvm_put_msrs(env, level);
1445 if (ret < 0) {
1446 return ret;
1448 if (level >= KVM_PUT_RESET_STATE) {
1449 ret = kvm_put_mp_state(env);
1450 if (ret < 0) {
1451 return ret;
1454 ret = kvm_put_vcpu_events(env, level);
1455 if (ret < 0) {
1456 return ret;
1458 ret = kvm_put_debugregs(env);
1459 if (ret < 0) {
1460 return ret;
1462 /* must be last */
1463 ret = kvm_guest_debug_workarounds(env);
1464 if (ret < 0) {
1465 return ret;
1467 return 0;
1470 int kvm_arch_get_registers(CPUState *env)
1472 int ret;
1474 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1476 ret = kvm_getput_regs(env, 0);
1477 if (ret < 0) {
1478 return ret;
1480 ret = kvm_get_xsave(env);
1481 if (ret < 0) {
1482 return ret;
1484 ret = kvm_get_xcrs(env);
1485 if (ret < 0) {
1486 return ret;
1488 ret = kvm_get_sregs(env);
1489 if (ret < 0) {
1490 return ret;
1492 ret = kvm_get_msrs(env);
1493 if (ret < 0) {
1494 return ret;
1496 ret = kvm_get_mp_state(env);
1497 if (ret < 0) {
1498 return ret;
1500 ret = kvm_get_vcpu_events(env);
1501 if (ret < 0) {
1502 return ret;
1504 ret = kvm_get_debugregs(env);
1505 if (ret < 0) {
1506 return ret;
1508 return 0;
1511 void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1513 int ret;
1515 /* Inject NMI */
1516 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1517 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1518 DPRINTF("injected NMI\n");
1519 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1520 if (ret < 0) {
1521 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1522 strerror(-ret));
1526 if (!kvm_irqchip_in_kernel()) {
1527 /* Force the VCPU out of its inner loop to process the INIT request */
1528 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1529 env->exit_request = 1;
1532 /* Try to inject an interrupt if the guest can accept it */
1533 if (run->ready_for_interrupt_injection &&
1534 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1535 (env->eflags & IF_MASK)) {
1536 int irq;
1538 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1539 irq = cpu_get_pic_interrupt(env);
1540 if (irq >= 0) {
1541 struct kvm_interrupt intr;
1543 intr.irq = irq;
1544 DPRINTF("injected interrupt %d\n", irq);
1545 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1546 if (ret < 0) {
1547 fprintf(stderr,
1548 "KVM: injection failed, interrupt lost (%s)\n",
1549 strerror(-ret));
1554 /* If we have an interrupt but the guest is not ready to receive an
1555 * interrupt, request an interrupt window exit. This will
1556 * cause a return to userspace as soon as the guest is ready to
1557 * receive interrupts. */
1558 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1559 run->request_interrupt_window = 1;
1560 } else {
1561 run->request_interrupt_window = 0;
1564 DPRINTF("setting tpr\n");
1565 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1569 void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1571 if (run->if_flag) {
1572 env->eflags |= IF_MASK;
1573 } else {
1574 env->eflags &= ~IF_MASK;
1576 cpu_set_apic_tpr(env->apic_state, run->cr8);
1577 cpu_set_apic_base(env->apic_state, run->apic_base);
1580 int kvm_arch_process_async_events(CPUState *env)
1582 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1583 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1584 assert(env->mcg_cap);
1586 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1588 kvm_cpu_synchronize_state(env);
1590 if (env->exception_injected == EXCP08_DBLE) {
1591 /* this means triple fault */
1592 qemu_system_reset_request();
1593 env->exit_request = 1;
1594 return 0;
1596 env->exception_injected = EXCP12_MCHK;
1597 env->has_error_code = 0;
1599 env->halted = 0;
1600 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1601 env->mp_state = KVM_MP_STATE_RUNNABLE;
1605 if (kvm_irqchip_in_kernel()) {
1606 return 0;
1609 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1610 (env->eflags & IF_MASK)) ||
1611 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1612 env->halted = 0;
1614 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1615 kvm_cpu_synchronize_state(env);
1616 do_cpu_init(env);
1618 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1619 kvm_cpu_synchronize_state(env);
1620 do_cpu_sipi(env);
1623 return env->halted;
1626 static int kvm_handle_halt(CPUState *env)
1628 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1629 (env->eflags & IF_MASK)) &&
1630 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1631 env->halted = 1;
1632 return EXCP_HLT;
1635 return 0;
1638 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1640 static const uint8_t int3 = 0xcc;
1642 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1643 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1644 return -EINVAL;
1646 return 0;
1649 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1651 uint8_t int3;
1653 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1654 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1655 return -EINVAL;
1657 return 0;
1660 static struct {
1661 target_ulong addr;
1662 int len;
1663 int type;
1664 } hw_breakpoint[4];
1666 static int nb_hw_breakpoint;
1668 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1670 int n;
1672 for (n = 0; n < nb_hw_breakpoint; n++) {
1673 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1674 (hw_breakpoint[n].len == len || len == -1)) {
1675 return n;
1678 return -1;
1681 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1682 target_ulong len, int type)
1684 switch (type) {
1685 case GDB_BREAKPOINT_HW:
1686 len = 1;
1687 break;
1688 case GDB_WATCHPOINT_WRITE:
1689 case GDB_WATCHPOINT_ACCESS:
1690 switch (len) {
1691 case 1:
1692 break;
1693 case 2:
1694 case 4:
1695 case 8:
1696 if (addr & (len - 1)) {
1697 return -EINVAL;
1699 break;
1700 default:
1701 return -EINVAL;
1703 break;
1704 default:
1705 return -ENOSYS;
1708 if (nb_hw_breakpoint == 4) {
1709 return -ENOBUFS;
1711 if (find_hw_breakpoint(addr, len, type) >= 0) {
1712 return -EEXIST;
1714 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1715 hw_breakpoint[nb_hw_breakpoint].len = len;
1716 hw_breakpoint[nb_hw_breakpoint].type = type;
1717 nb_hw_breakpoint++;
1719 return 0;
1722 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1723 target_ulong len, int type)
1725 int n;
1727 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1728 if (n < 0) {
1729 return -ENOENT;
1731 nb_hw_breakpoint--;
1732 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1734 return 0;
1737 void kvm_arch_remove_all_hw_breakpoints(void)
1739 nb_hw_breakpoint = 0;
1742 static CPUWatchpoint hw_watchpoint;
1744 static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
1746 int ret = 0;
1747 int n;
1749 if (arch_info->exception == 1) {
1750 if (arch_info->dr6 & (1 << 14)) {
1751 if (cpu_single_env->singlestep_enabled) {
1752 ret = EXCP_DEBUG;
1754 } else {
1755 for (n = 0; n < 4; n++) {
1756 if (arch_info->dr6 & (1 << n)) {
1757 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1758 case 0x0:
1759 ret = EXCP_DEBUG;
1760 break;
1761 case 0x1:
1762 ret = EXCP_DEBUG;
1763 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1764 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1765 hw_watchpoint.flags = BP_MEM_WRITE;
1766 break;
1767 case 0x3:
1768 ret = EXCP_DEBUG;
1769 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1770 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1771 hw_watchpoint.flags = BP_MEM_ACCESS;
1772 break;
1777 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1778 ret = EXCP_DEBUG;
1780 if (ret == 0) {
1781 cpu_synchronize_state(cpu_single_env);
1782 assert(cpu_single_env->exception_injected == -1);
1784 /* pass to guest */
1785 cpu_single_env->exception_injected = arch_info->exception;
1786 cpu_single_env->has_error_code = 0;
1789 return ret;
1792 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1794 const uint8_t type_code[] = {
1795 [GDB_BREAKPOINT_HW] = 0x0,
1796 [GDB_WATCHPOINT_WRITE] = 0x1,
1797 [GDB_WATCHPOINT_ACCESS] = 0x3
1799 const uint8_t len_code[] = {
1800 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1802 int n;
1804 if (kvm_sw_breakpoints_active(env)) {
1805 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1807 if (nb_hw_breakpoint > 0) {
1808 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1809 dbg->arch.debugreg[7] = 0x0600;
1810 for (n = 0; n < nb_hw_breakpoint; n++) {
1811 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1812 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1813 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1814 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1819 static bool host_supports_vmx(void)
1821 uint32_t ecx, unused;
1823 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1824 return ecx & CPUID_EXT_VMX;
1827 #define VMX_INVALID_GUEST_STATE 0x80000021
1829 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1831 uint64_t code;
1832 int ret;
1834 switch (run->exit_reason) {
1835 case KVM_EXIT_HLT:
1836 DPRINTF("handle_hlt\n");
1837 ret = kvm_handle_halt(env);
1838 break;
1839 case KVM_EXIT_SET_TPR:
1840 ret = 0;
1841 break;
1842 case KVM_EXIT_FAIL_ENTRY:
1843 code = run->fail_entry.hardware_entry_failure_reason;
1844 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1845 code);
1846 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1847 fprintf(stderr,
1848 "\nIf you're runnning a guest on an Intel machine without "
1849 "unrestricted mode\n"
1850 "support, the failure can be most likely due to the guest "
1851 "entering an invalid\n"
1852 "state for Intel VT. For example, the guest maybe running "
1853 "in big real mode\n"
1854 "which is not supported on less recent Intel processors."
1855 "\n\n");
1857 ret = -1;
1858 break;
1859 case KVM_EXIT_EXCEPTION:
1860 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1861 run->ex.exception, run->ex.error_code);
1862 ret = -1;
1863 break;
1864 case KVM_EXIT_DEBUG:
1865 DPRINTF("kvm_exit_debug\n");
1866 ret = kvm_handle_debug(&run->debug.arch);
1867 break;
1868 default:
1869 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1870 ret = -1;
1871 break;
1874 return ret;
1877 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1879 return !(env->cr[0] & CR0_PE_MASK) ||
1880 ((env->segs[R_CS].selector & 3) != 3);