Update both files for disk io limits.
[qemu-dev-zwu.git] / kvm-all.c
blobcc2c73d1f50c5ad5ff0380714839140007038aef
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
31 /* This check must be after config-host.h is included */
32 #ifdef CONFIG_EVENTFD
33 #include <sys/eventfd.h>
34 #endif
36 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37 #define PAGE_SIZE TARGET_PAGE_SIZE
39 //#define DEBUG_KVM
41 #ifdef DEBUG_KVM
42 #define DPRINTF(fmt, ...) \
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
44 #else
45 #define DPRINTF(fmt, ...) \
46 do { } while (0)
47 #endif
49 typedef struct KVMSlot
51 target_phys_addr_t start_addr;
52 ram_addr_t memory_size;
53 ram_addr_t phys_offset;
54 int slot;
55 int flags;
56 } KVMSlot;
58 typedef struct kvm_dirty_log KVMDirtyLog;
60 struct KVMState
62 KVMSlot slots[32];
63 int fd;
64 int vmfd;
65 int coalesced_mmio;
66 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
67 int broken_set_mem_region;
68 int migration_log;
69 int vcpu_events;
70 int robust_singlestep;
71 int debugregs;
72 #ifdef KVM_CAP_SET_GUEST_DEBUG
73 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
74 #endif
75 int irqchip_in_kernel;
76 int pit_in_kernel;
77 int xsave, xcrs;
78 int many_ioeventfds;
79 int pit_state2;
81 int irqchip_inject_ioctl;
82 #ifdef KVM_CAP_IRQ_ROUTING
83 struct kvm_irq_routing *irq_routes;
84 int nr_allocated_irq_routes;
85 #endif
86 void *used_gsi_bitmap;
87 int max_gsi;
90 KVMState *kvm_state;
92 static const KVMCapabilityInfo kvm_required_capabilites[] = {
93 KVM_CAP_INFO(USER_MEMORY),
94 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
95 KVM_CAP_LAST_INFO
98 static KVMSlot *kvm_alloc_slot(KVMState *s)
100 int i;
102 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
103 if (s->slots[i].memory_size == 0) {
104 return &s->slots[i];
108 fprintf(stderr, "%s: no free slot available\n", __func__);
109 abort();
112 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
113 target_phys_addr_t start_addr,
114 target_phys_addr_t end_addr)
116 int i;
118 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
119 KVMSlot *mem = &s->slots[i];
121 if (start_addr == mem->start_addr &&
122 end_addr == mem->start_addr + mem->memory_size) {
123 return mem;
127 return NULL;
131 * Find overlapping slot with lowest start address
133 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
134 target_phys_addr_t start_addr,
135 target_phys_addr_t end_addr)
137 KVMSlot *found = NULL;
138 int i;
140 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
141 KVMSlot *mem = &s->slots[i];
143 if (mem->memory_size == 0 ||
144 (found && found->start_addr < mem->start_addr)) {
145 continue;
148 if (end_addr > mem->start_addr &&
149 start_addr < mem->start_addr + mem->memory_size) {
150 found = mem;
154 return found;
157 int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
158 target_phys_addr_t *phys_addr)
160 int i;
162 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
163 KVMSlot *mem = &s->slots[i];
165 if (ram_addr >= mem->phys_offset &&
166 ram_addr < mem->phys_offset + mem->memory_size) {
167 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
168 return 1;
172 return 0;
175 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
177 struct kvm_userspace_memory_region mem;
179 mem.slot = slot->slot;
180 mem.guest_phys_addr = slot->start_addr;
181 mem.memory_size = slot->memory_size;
182 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
183 mem.flags = slot->flags;
184 if (s->migration_log) {
185 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
187 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
190 static void kvm_reset_vcpu(void *opaque)
192 CPUState *env = opaque;
194 kvm_arch_reset_vcpu(env);
197 int kvm_irqchip_in_kernel(void)
199 return kvm_state->irqchip_in_kernel;
202 int kvm_pit_in_kernel(void)
204 return kvm_state->pit_in_kernel;
207 int kvm_init_vcpu(CPUState *env)
209 KVMState *s = kvm_state;
210 long mmap_size;
211 int ret;
213 DPRINTF("kvm_init_vcpu\n");
215 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
216 if (ret < 0) {
217 DPRINTF("kvm_create_vcpu failed\n");
218 goto err;
221 env->kvm_fd = ret;
222 env->kvm_state = s;
223 env->kvm_vcpu_dirty = 1;
225 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
226 if (mmap_size < 0) {
227 ret = mmap_size;
228 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
229 goto err;
232 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
233 env->kvm_fd, 0);
234 if (env->kvm_run == MAP_FAILED) {
235 ret = -errno;
236 DPRINTF("mmap'ing vcpu state failed\n");
237 goto err;
240 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
241 s->coalesced_mmio_ring =
242 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
245 ret = kvm_arch_init_vcpu(env);
246 if (ret == 0) {
247 qemu_register_reset(kvm_reset_vcpu, env);
248 kvm_arch_reset_vcpu(env);
250 err:
251 return ret;
255 * dirty pages logging control
258 static int kvm_mem_flags(KVMState *s, bool log_dirty)
260 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
263 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
265 KVMState *s = kvm_state;
266 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
267 int old_flags;
269 old_flags = mem->flags;
271 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
272 mem->flags = flags;
274 /* If nothing changed effectively, no need to issue ioctl */
275 if (s->migration_log) {
276 flags |= KVM_MEM_LOG_DIRTY_PAGES;
279 if (flags == old_flags) {
280 return 0;
283 return kvm_set_user_memory_region(s, mem);
286 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
287 ram_addr_t size, bool log_dirty)
289 KVMState *s = kvm_state;
290 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
292 if (mem == NULL) {
293 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
294 TARGET_FMT_plx "\n", __func__, phys_addr,
295 (target_phys_addr_t)(phys_addr + size - 1));
296 return -EINVAL;
298 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
301 static int kvm_log_start(CPUPhysMemoryClient *client,
302 target_phys_addr_t phys_addr, ram_addr_t size)
304 return kvm_dirty_pages_log_change(phys_addr, size, true);
307 static int kvm_log_stop(CPUPhysMemoryClient *client,
308 target_phys_addr_t phys_addr, ram_addr_t size)
310 return kvm_dirty_pages_log_change(phys_addr, size, false);
313 static int kvm_set_migration_log(int enable)
315 KVMState *s = kvm_state;
316 KVMSlot *mem;
317 int i, err;
319 s->migration_log = enable;
321 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
322 mem = &s->slots[i];
324 if (!mem->memory_size) {
325 continue;
327 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
328 continue;
330 err = kvm_set_user_memory_region(s, mem);
331 if (err) {
332 return err;
335 return 0;
338 /* get kvm's dirty pages bitmap and update qemu's */
339 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
340 unsigned long *bitmap,
341 unsigned long offset,
342 unsigned long mem_size)
344 unsigned int i, j;
345 unsigned long page_number, addr, addr1, c;
346 ram_addr_t ram_addr;
347 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
348 HOST_LONG_BITS;
351 * bitmap-traveling is faster than memory-traveling (for addr...)
352 * especially when most of the memory is not dirty.
354 for (i = 0; i < len; i++) {
355 if (bitmap[i] != 0) {
356 c = leul_to_cpu(bitmap[i]);
357 do {
358 j = ffsl(c) - 1;
359 c &= ~(1ul << j);
360 page_number = i * HOST_LONG_BITS + j;
361 addr1 = page_number * TARGET_PAGE_SIZE;
362 addr = offset + addr1;
363 ram_addr = cpu_get_physical_page_desc(addr);
364 cpu_physical_memory_set_dirty(ram_addr);
365 } while (c != 0);
368 return 0;
371 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
374 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
375 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
376 * This means all bits are set to dirty.
378 * @start_add: start of logged region.
379 * @end_addr: end of logged region.
381 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
382 target_phys_addr_t end_addr)
384 KVMState *s = kvm_state;
385 unsigned long size, allocated_size = 0;
386 KVMDirtyLog d;
387 KVMSlot *mem;
388 int ret = 0;
390 d.dirty_bitmap = NULL;
391 while (start_addr < end_addr) {
392 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
393 if (mem == NULL) {
394 break;
397 /* XXX bad kernel interface alert
398 * For dirty bitmap, kernel allocates array of size aligned to
399 * bits-per-long. But for case when the kernel is 64bits and
400 * the userspace is 32bits, userspace can't align to the same
401 * bits-per-long, since sizeof(long) is different between kernel
402 * and user space. This way, userspace will provide buffer which
403 * may be 4 bytes less than the kernel will use, resulting in
404 * userspace memory corruption (which is not detectable by valgrind
405 * too, in most cases).
406 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
407 * a hope that sizeof(long) wont become >8 any time soon.
409 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
410 /*HOST_LONG_BITS*/ 64) / 8;
411 if (!d.dirty_bitmap) {
412 d.dirty_bitmap = qemu_malloc(size);
413 } else if (size > allocated_size) {
414 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
416 allocated_size = size;
417 memset(d.dirty_bitmap, 0, allocated_size);
419 d.slot = mem->slot;
421 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
422 DPRINTF("ioctl failed %d\n", errno);
423 ret = -1;
424 break;
427 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
428 mem->start_addr, mem->memory_size);
429 start_addr = mem->start_addr + mem->memory_size;
431 qemu_free(d.dirty_bitmap);
433 return ret;
436 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
438 int ret = -ENOSYS;
439 KVMState *s = kvm_state;
441 if (s->coalesced_mmio) {
442 struct kvm_coalesced_mmio_zone zone;
444 zone.addr = start;
445 zone.size = size;
447 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
450 return ret;
453 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
455 int ret = -ENOSYS;
456 KVMState *s = kvm_state;
458 if (s->coalesced_mmio) {
459 struct kvm_coalesced_mmio_zone zone;
461 zone.addr = start;
462 zone.size = size;
464 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
467 return ret;
470 int kvm_check_extension(KVMState *s, unsigned int extension)
472 int ret;
474 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
475 if (ret < 0) {
476 ret = 0;
479 return ret;
482 static int kvm_check_many_ioeventfds(void)
484 /* Userspace can use ioeventfd for io notification. This requires a host
485 * that supports eventfd(2) and an I/O thread; since eventfd does not
486 * support SIGIO it cannot interrupt the vcpu.
488 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
489 * can avoid creating too many ioeventfds.
491 #if defined(CONFIG_EVENTFD) && defined(CONFIG_IOTHREAD)
492 int ioeventfds[7];
493 int i, ret = 0;
494 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
495 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
496 if (ioeventfds[i] < 0) {
497 break;
499 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
500 if (ret < 0) {
501 close(ioeventfds[i]);
502 break;
506 /* Decide whether many devices are supported or not */
507 ret = i == ARRAY_SIZE(ioeventfds);
509 while (i-- > 0) {
510 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
511 close(ioeventfds[i]);
513 return ret;
514 #else
515 return 0;
516 #endif
519 static const KVMCapabilityInfo *
520 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
522 while (list->name) {
523 if (!kvm_check_extension(s, list->value)) {
524 return list;
526 list++;
528 return NULL;
531 static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
532 ram_addr_t phys_offset, bool log_dirty)
534 KVMState *s = kvm_state;
535 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
536 KVMSlot *mem, old;
537 int err;
539 /* kvm works in page size chunks, but the function may be called
540 with sub-page size and unaligned start address. */
541 size = TARGET_PAGE_ALIGN(size);
542 start_addr = TARGET_PAGE_ALIGN(start_addr);
544 /* KVM does not support read-only slots */
545 phys_offset &= ~IO_MEM_ROM;
547 while (1) {
548 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
549 if (!mem) {
550 break;
553 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
554 (start_addr + size <= mem->start_addr + mem->memory_size) &&
555 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
556 /* The new slot fits into the existing one and comes with
557 * identical parameters - update flags and done. */
558 kvm_slot_dirty_pages_log_change(mem, log_dirty);
559 return;
562 old = *mem;
564 /* unregister the overlapping slot */
565 mem->memory_size = 0;
566 err = kvm_set_user_memory_region(s, mem);
567 if (err) {
568 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
569 __func__, strerror(-err));
570 abort();
573 /* Workaround for older KVM versions: we can't join slots, even not by
574 * unregistering the previous ones and then registering the larger
575 * slot. We have to maintain the existing fragmentation. Sigh.
577 * This workaround assumes that the new slot starts at the same
578 * address as the first existing one. If not or if some overlapping
579 * slot comes around later, we will fail (not seen in practice so far)
580 * - and actually require a recent KVM version. */
581 if (s->broken_set_mem_region &&
582 old.start_addr == start_addr && old.memory_size < size &&
583 flags < IO_MEM_UNASSIGNED) {
584 mem = kvm_alloc_slot(s);
585 mem->memory_size = old.memory_size;
586 mem->start_addr = old.start_addr;
587 mem->phys_offset = old.phys_offset;
588 mem->flags = kvm_mem_flags(s, log_dirty);
590 err = kvm_set_user_memory_region(s, mem);
591 if (err) {
592 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
593 strerror(-err));
594 abort();
597 start_addr += old.memory_size;
598 phys_offset += old.memory_size;
599 size -= old.memory_size;
600 continue;
603 /* register prefix slot */
604 if (old.start_addr < start_addr) {
605 mem = kvm_alloc_slot(s);
606 mem->memory_size = start_addr - old.start_addr;
607 mem->start_addr = old.start_addr;
608 mem->phys_offset = old.phys_offset;
609 mem->flags = kvm_mem_flags(s, log_dirty);
611 err = kvm_set_user_memory_region(s, mem);
612 if (err) {
613 fprintf(stderr, "%s: error registering prefix slot: %s\n",
614 __func__, strerror(-err));
615 #ifdef TARGET_PPC
616 fprintf(stderr, "%s: This is probably because your kernel's " \
617 "PAGE_SIZE is too big. Please try to use 4k " \
618 "PAGE_SIZE!\n", __func__);
619 #endif
620 abort();
624 /* register suffix slot */
625 if (old.start_addr + old.memory_size > start_addr + size) {
626 ram_addr_t size_delta;
628 mem = kvm_alloc_slot(s);
629 mem->start_addr = start_addr + size;
630 size_delta = mem->start_addr - old.start_addr;
631 mem->memory_size = old.memory_size - size_delta;
632 mem->phys_offset = old.phys_offset + size_delta;
633 mem->flags = kvm_mem_flags(s, log_dirty);
635 err = kvm_set_user_memory_region(s, mem);
636 if (err) {
637 fprintf(stderr, "%s: error registering suffix slot: %s\n",
638 __func__, strerror(-err));
639 abort();
644 /* in case the KVM bug workaround already "consumed" the new slot */
645 if (!size) {
646 return;
648 /* KVM does not need to know about this memory */
649 if (flags >= IO_MEM_UNASSIGNED) {
650 return;
652 mem = kvm_alloc_slot(s);
653 mem->memory_size = size;
654 mem->start_addr = start_addr;
655 mem->phys_offset = phys_offset;
656 mem->flags = kvm_mem_flags(s, log_dirty);
658 err = kvm_set_user_memory_region(s, mem);
659 if (err) {
660 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
661 strerror(-err));
662 abort();
666 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
667 target_phys_addr_t start_addr,
668 ram_addr_t size, ram_addr_t phys_offset,
669 bool log_dirty)
671 kvm_set_phys_mem(start_addr, size, phys_offset, log_dirty);
674 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
675 target_phys_addr_t start_addr,
676 target_phys_addr_t end_addr)
678 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
681 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
682 int enable)
684 return kvm_set_migration_log(enable);
687 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
688 .set_memory = kvm_client_set_memory,
689 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
690 .migration_log = kvm_client_migration_log,
691 .log_start = kvm_log_start,
692 .log_stop = kvm_log_stop,
695 static void kvm_handle_interrupt(CPUState *env, int mask)
697 env->interrupt_request |= mask;
699 if (!qemu_cpu_is_self(env)) {
700 qemu_cpu_kick(env);
704 int kvm_init(void)
706 static const char upgrade_note[] =
707 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
708 "(see http://sourceforge.net/projects/kvm).\n";
709 KVMState *s;
710 const KVMCapabilityInfo *missing_cap;
711 int ret;
712 int i;
714 s = qemu_mallocz(sizeof(KVMState));
716 #ifdef KVM_CAP_SET_GUEST_DEBUG
717 QTAILQ_INIT(&s->kvm_sw_breakpoints);
718 #endif
719 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
720 s->slots[i].slot = i;
722 s->vmfd = -1;
723 s->fd = qemu_open("/dev/kvm", O_RDWR);
724 if (s->fd == -1) {
725 fprintf(stderr, "Could not access KVM kernel module: %m\n");
726 ret = -errno;
727 goto err;
730 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
731 if (ret < KVM_API_VERSION) {
732 if (ret > 0) {
733 ret = -EINVAL;
735 fprintf(stderr, "kvm version too old\n");
736 goto err;
739 if (ret > KVM_API_VERSION) {
740 ret = -EINVAL;
741 fprintf(stderr, "kvm version not supported\n");
742 goto err;
745 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
746 if (s->vmfd < 0) {
747 #ifdef TARGET_S390X
748 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
749 "your host kernel command line\n");
750 #endif
751 goto err;
754 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
755 if (!missing_cap) {
756 missing_cap =
757 kvm_check_extension_list(s, kvm_arch_required_capabilities);
759 if (missing_cap) {
760 ret = -EINVAL;
761 fprintf(stderr, "kvm does not support %s\n%s",
762 missing_cap->name, upgrade_note);
763 goto err;
766 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
768 s->broken_set_mem_region = 1;
769 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
770 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
771 if (ret > 0) {
772 s->broken_set_mem_region = 0;
774 #endif
776 s->vcpu_events = 0;
777 #ifdef KVM_CAP_VCPU_EVENTS
778 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
779 #endif
781 s->robust_singlestep = 0;
782 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
783 s->robust_singlestep =
784 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
785 #endif
787 s->debugregs = 0;
788 #ifdef KVM_CAP_DEBUGREGS
789 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
790 #endif
792 s->xsave = 0;
793 #ifdef KVM_CAP_XSAVE
794 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
795 #endif
797 s->xcrs = 0;
798 #ifdef KVM_CAP_XCRS
799 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
800 #endif
802 s->pit_state2 = 0;
803 #ifdef KVM_CAP_PIT_STATE2
804 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
805 #endif
807 s->pit_in_kernel = kvm_pit;
809 ret = kvm_arch_init(s);
810 if (ret < 0) {
811 goto err;
814 kvm_state = s;
815 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
817 s->many_ioeventfds = kvm_check_many_ioeventfds();
819 ret = kvm_create_irqchip(s);
820 if (ret < 0) {
821 return ret;
824 cpu_interrupt_handler = kvm_handle_interrupt;
826 return 0;
828 err:
829 if (s) {
830 if (s->vmfd != -1) {
831 close(s->vmfd);
833 if (s->fd != -1) {
834 close(s->fd);
837 qemu_free(s);
839 return ret;
842 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
843 uint32_t count)
845 int i;
846 uint8_t *ptr = data;
848 for (i = 0; i < count; i++) {
849 if (direction == KVM_EXIT_IO_IN) {
850 switch (size) {
851 case 1:
852 stb_p(ptr, cpu_inb(port));
853 break;
854 case 2:
855 stw_p(ptr, cpu_inw(port));
856 break;
857 case 4:
858 stl_p(ptr, cpu_inl(port));
859 break;
861 } else {
862 switch (size) {
863 case 1:
864 cpu_outb(port, ldub_p(ptr));
865 break;
866 case 2:
867 cpu_outw(port, lduw_p(ptr));
868 break;
869 case 4:
870 cpu_outl(port, ldl_p(ptr));
871 break;
875 ptr += size;
879 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
880 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
882 fprintf(stderr, "KVM internal error.");
883 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
884 int i;
886 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
887 for (i = 0; i < run->internal.ndata; ++i) {
888 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
889 i, (uint64_t)run->internal.data[i]);
891 } else {
892 fprintf(stderr, "\n");
894 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
895 fprintf(stderr, "emulation failure\n");
896 if (!kvm_arch_stop_on_emulation_error(env)) {
897 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
898 return EXCP_INTERRUPT;
901 /* FIXME: Should trigger a qmp message to let management know
902 * something went wrong.
904 return -1;
906 #endif
908 void kvm_flush_coalesced_mmio_buffer(void)
910 KVMState *s = kvm_state;
911 if (s->coalesced_mmio_ring) {
912 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
913 while (ring->first != ring->last) {
914 struct kvm_coalesced_mmio *ent;
916 ent = &ring->coalesced_mmio[ring->first];
918 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
919 smp_wmb();
920 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
925 static void do_kvm_cpu_synchronize_state(void *_env)
927 CPUState *env = _env;
929 if (!env->kvm_vcpu_dirty) {
930 kvm_arch_get_registers(env);
931 env->kvm_vcpu_dirty = 1;
935 void kvm_cpu_synchronize_state(CPUState *env)
937 if (!env->kvm_vcpu_dirty) {
938 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
942 void kvm_cpu_synchronize_post_reset(CPUState *env)
944 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
945 env->kvm_vcpu_dirty = 0;
948 void kvm_cpu_synchronize_post_init(CPUState *env)
950 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
951 env->kvm_vcpu_dirty = 0;
954 int kvm_cpu_exec(CPUState *env)
956 struct kvm_run *run = env->kvm_run;
957 int ret, run_ret;
959 DPRINTF("kvm_cpu_exec()\n");
961 if (kvm_arch_process_async_events(env)) {
962 env->exit_request = 0;
963 return EXCP_HLT;
966 cpu_single_env = env;
968 do {
969 if (env->kvm_vcpu_dirty) {
970 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
971 env->kvm_vcpu_dirty = 0;
974 kvm_arch_pre_run(env, run);
975 if (env->exit_request) {
976 DPRINTF("interrupt exit requested\n");
978 * KVM requires us to reenter the kernel after IO exits to complete
979 * instruction emulation. This self-signal will ensure that we
980 * leave ASAP again.
982 qemu_cpu_kick_self();
984 cpu_single_env = NULL;
985 qemu_mutex_unlock_iothread();
987 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
989 qemu_mutex_lock_iothread();
990 cpu_single_env = env;
991 kvm_arch_post_run(env, run);
993 kvm_flush_coalesced_mmio_buffer();
995 if (run_ret < 0) {
996 if (run_ret == -EINTR || run_ret == -EAGAIN) {
997 DPRINTF("io window exit\n");
998 ret = EXCP_INTERRUPT;
999 break;
1001 DPRINTF("kvm run failed %s\n", strerror(-run_ret));
1002 abort();
1005 switch (run->exit_reason) {
1006 case KVM_EXIT_IO:
1007 DPRINTF("handle_io\n");
1008 kvm_handle_io(run->io.port,
1009 (uint8_t *)run + run->io.data_offset,
1010 run->io.direction,
1011 run->io.size,
1012 run->io.count);
1013 ret = 0;
1014 break;
1015 case KVM_EXIT_MMIO:
1016 DPRINTF("handle_mmio\n");
1017 cpu_physical_memory_rw(run->mmio.phys_addr,
1018 run->mmio.data,
1019 run->mmio.len,
1020 run->mmio.is_write);
1021 ret = 0;
1022 break;
1023 case KVM_EXIT_IRQ_WINDOW_OPEN:
1024 DPRINTF("irq_window_open\n");
1025 ret = EXCP_INTERRUPT;
1026 break;
1027 case KVM_EXIT_SHUTDOWN:
1028 DPRINTF("shutdown\n");
1029 qemu_system_reset_request();
1030 ret = EXCP_INTERRUPT;
1031 break;
1032 case KVM_EXIT_UNKNOWN:
1033 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1034 (uint64_t)run->hw.hardware_exit_reason);
1035 ret = -1;
1036 break;
1037 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
1038 case KVM_EXIT_INTERNAL_ERROR:
1039 ret = kvm_handle_internal_error(env, run);
1040 break;
1041 #endif
1042 default:
1043 DPRINTF("kvm_arch_handle_exit\n");
1044 ret = kvm_arch_handle_exit(env, run);
1045 break;
1047 } while (ret == 0);
1049 if (ret < 0) {
1050 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1051 vm_stop(VMSTOP_PANIC);
1054 env->exit_request = 0;
1055 cpu_single_env = NULL;
1056 return ret;
1059 int kvm_ioctl(KVMState *s, int type, ...)
1061 int ret;
1062 void *arg;
1063 va_list ap;
1065 va_start(ap, type);
1066 arg = va_arg(ap, void *);
1067 va_end(ap);
1069 ret = ioctl(s->fd, type, arg);
1070 if (ret == -1) {
1071 ret = -errno;
1073 return ret;
1076 int kvm_vm_ioctl(KVMState *s, int type, ...)
1078 int ret;
1079 void *arg;
1080 va_list ap;
1082 va_start(ap, type);
1083 arg = va_arg(ap, void *);
1084 va_end(ap);
1086 ret = ioctl(s->vmfd, type, arg);
1087 if (ret == -1) {
1088 ret = -errno;
1090 return ret;
1093 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1095 int ret;
1096 void *arg;
1097 va_list ap;
1099 va_start(ap, type);
1100 arg = va_arg(ap, void *);
1101 va_end(ap);
1103 ret = ioctl(env->kvm_fd, type, arg);
1104 if (ret == -1) {
1105 ret = -errno;
1107 return ret;
1110 int kvm_has_sync_mmu(void)
1112 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1115 int kvm_has_vcpu_events(void)
1117 return kvm_state->vcpu_events;
1120 int kvm_has_robust_singlestep(void)
1122 return kvm_state->robust_singlestep;
1125 int kvm_has_debugregs(void)
1127 return kvm_state->debugregs;
1130 int kvm_has_xsave(void)
1132 return kvm_state->xsave;
1135 int kvm_has_xcrs(void)
1137 return kvm_state->xcrs;
1140 int kvm_has_pit_state2(void)
1142 return kvm_state->pit_state2;
1145 int kvm_has_many_ioeventfds(void)
1147 if (!kvm_enabled()) {
1148 return 0;
1150 return kvm_state->many_ioeventfds;
1153 int kvm_allows_irq0_override(void)
1155 return !kvm_enabled() || !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
1158 void kvm_setup_guest_memory(void *start, size_t size)
1160 if (!kvm_has_sync_mmu()) {
1161 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1163 if (ret) {
1164 perror("qemu_madvise");
1165 fprintf(stderr,
1166 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1167 exit(1);
1172 #ifdef KVM_CAP_SET_GUEST_DEBUG
1173 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1174 target_ulong pc)
1176 struct kvm_sw_breakpoint *bp;
1178 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1179 if (bp->pc == pc) {
1180 return bp;
1183 return NULL;
1186 int kvm_sw_breakpoints_active(CPUState *env)
1188 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1191 struct kvm_set_guest_debug_data {
1192 struct kvm_guest_debug dbg;
1193 CPUState *env;
1194 int err;
1197 static void kvm_invoke_set_guest_debug(void *data)
1199 struct kvm_set_guest_debug_data *dbg_data = data;
1200 CPUState *env = dbg_data->env;
1202 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1205 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1207 struct kvm_set_guest_debug_data data;
1209 data.dbg.control = reinject_trap;
1211 if (env->singlestep_enabled) {
1212 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1214 kvm_arch_update_guest_debug(env, &data.dbg);
1215 data.env = env;
1217 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1218 return data.err;
1221 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1222 target_ulong len, int type)
1224 struct kvm_sw_breakpoint *bp;
1225 CPUState *env;
1226 int err;
1228 if (type == GDB_BREAKPOINT_SW) {
1229 bp = kvm_find_sw_breakpoint(current_env, addr);
1230 if (bp) {
1231 bp->use_count++;
1232 return 0;
1235 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1236 if (!bp) {
1237 return -ENOMEM;
1240 bp->pc = addr;
1241 bp->use_count = 1;
1242 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1243 if (err) {
1244 qemu_free(bp);
1245 return err;
1248 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1249 bp, entry);
1250 } else {
1251 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1252 if (err) {
1253 return err;
1257 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1258 err = kvm_update_guest_debug(env, 0);
1259 if (err) {
1260 return err;
1263 return 0;
1266 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1267 target_ulong len, int type)
1269 struct kvm_sw_breakpoint *bp;
1270 CPUState *env;
1271 int err;
1273 if (type == GDB_BREAKPOINT_SW) {
1274 bp = kvm_find_sw_breakpoint(current_env, addr);
1275 if (!bp) {
1276 return -ENOENT;
1279 if (bp->use_count > 1) {
1280 bp->use_count--;
1281 return 0;
1284 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1285 if (err) {
1286 return err;
1289 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1290 qemu_free(bp);
1291 } else {
1292 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1293 if (err) {
1294 return err;
1298 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1299 err = kvm_update_guest_debug(env, 0);
1300 if (err) {
1301 return err;
1304 return 0;
1307 void kvm_remove_all_breakpoints(CPUState *current_env)
1309 struct kvm_sw_breakpoint *bp, *next;
1310 KVMState *s = current_env->kvm_state;
1311 CPUState *env;
1313 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1314 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1315 /* Try harder to find a CPU that currently sees the breakpoint. */
1316 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1317 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1318 break;
1323 kvm_arch_remove_all_hw_breakpoints();
1325 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1326 kvm_update_guest_debug(env, 0);
1330 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1332 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1334 return -EINVAL;
1337 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1338 target_ulong len, int type)
1340 return -EINVAL;
1343 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1344 target_ulong len, int type)
1346 return -EINVAL;
1349 void kvm_remove_all_breakpoints(CPUState *current_env)
1352 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1354 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1356 struct kvm_signal_mask *sigmask;
1357 int r;
1359 if (!sigset) {
1360 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1363 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1365 sigmask->len = 8;
1366 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1367 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1368 qemu_free(sigmask);
1370 return r;
1373 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1375 #ifdef KVM_IOEVENTFD
1376 int ret;
1377 struct kvm_ioeventfd iofd;
1379 iofd.datamatch = val;
1380 iofd.addr = addr;
1381 iofd.len = 4;
1382 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1383 iofd.fd = fd;
1385 if (!kvm_enabled()) {
1386 return -ENOSYS;
1389 if (!assign) {
1390 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1393 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1395 if (ret < 0) {
1396 return -errno;
1399 return 0;
1400 #else
1401 return -ENOSYS;
1402 #endif
1405 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1407 #ifdef KVM_IOEVENTFD
1408 struct kvm_ioeventfd kick = {
1409 .datamatch = val,
1410 .addr = addr,
1411 .len = 2,
1412 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1413 .fd = fd,
1415 int r;
1416 if (!kvm_enabled()) {
1417 return -ENOSYS;
1419 if (!assign) {
1420 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1422 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1423 if (r < 0) {
1424 return r;
1426 return 0;
1427 #else
1428 return -ENOSYS;
1429 #endif
1432 #if defined(KVM_IRQFD)
1433 int kvm_set_irqfd(int gsi, int fd, bool assigned)
1435 struct kvm_irqfd irqfd = {
1436 .fd = fd,
1437 .gsi = gsi,
1438 .flags = assigned ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1440 int r;
1441 if (!kvm_enabled() || !kvm_irqchip_in_kernel())
1442 return -ENOSYS;
1444 r = kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd);
1445 if (r < 0)
1446 return r;
1447 return 0;
1449 #endif
1451 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1453 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1456 int kvm_on_sigbus(int code, void *addr)
1458 return kvm_arch_on_sigbus(code, addr);
1461 #undef PAGE_SIZE
1462 #include "qemu-kvm.c"