gpu_array_ref_group: replace last_shared by depth
[ppcg.git] / gpu_group.c
blob58c87f67165dfd6e5d344bad486f979064841ea0
1 #include <isl/ilp.h>
3 #include "gpu_array_tile.h"
4 #include "gpu_group.h"
5 #include "schedule.h"
7 /* Print the name of the local copy of a given group of array references.
8 */
9 __isl_give isl_printer *gpu_array_ref_group_print_name(
10 struct gpu_array_ref_group *group, __isl_take isl_printer *p)
12 int global = 0;
14 if (group->private_tile)
15 p = isl_printer_print_str(p, "private_");
16 else if (group->shared_tile)
17 p = isl_printer_print_str(p, "shared_");
18 else
19 global = 1;
20 p = isl_printer_print_str(p, group->array->name);
21 if (!global && group->local_array->n_group > 1) {
22 p = isl_printer_print_str(p, "_");
23 p = isl_printer_print_int(p, group->nr);
26 return p;
29 /* Return the union of all read (read = 1) and/or write (write = 1)
30 * access relations in the group.
32 __isl_give isl_union_map *gpu_array_ref_group_access_relation(
33 struct gpu_array_ref_group *group, int read, int write)
35 int i;
36 isl_union_map *access;
38 access = isl_union_map_empty(isl_map_get_space(group->access));
39 for (i = 0; i < group->n_ref; ++i) {
40 isl_map *map_i;
42 if (!((read && group->refs[i]->read) ||
43 (write && group->refs[i]->write)))
44 continue;
45 map_i = isl_map_copy(group->refs[i]->access);
46 access = isl_union_map_union(access,
47 isl_union_map_from_map(map_i));
50 return access;
53 /* Return the effective gpu_array_tile associated to "group" or
54 * NULL if there is no such gpu_array_tile.
55 * If we have computed both a private and a shared tile, then
56 * the private tile is used.
58 struct gpu_array_tile *gpu_array_ref_group_tile(
59 struct gpu_array_ref_group *group)
61 if (group->private_tile)
62 return group->private_tile;
63 if (group->shared_tile)
64 return group->shared_tile;
65 return NULL;
68 /* Does the tile associated to "group" require unrolling of the schedule
69 * dimensions mapped to threads?
70 * Note that this can only happen for private tiles.
72 int gpu_array_ref_group_requires_unroll(struct gpu_array_ref_group *group)
74 struct gpu_array_tile *tile;
76 tile = gpu_array_ref_group_tile(group);
77 if (!tile)
78 return 0;
79 return tile->requires_unroll;
82 /* Given a constraint
84 * a(p,i) + j = g f(e)
86 * or -a(p,i) - j = g f(e) if sign < 0,
87 * store a(p,i) in bound->shift and g (stride) in bound->stride.
88 * a(p,i) is assumed to be an expression in only the parameters
89 * and the input dimensions.
91 static void extract_stride(__isl_keep isl_constraint *c,
92 struct gpu_array_bound *bound, __isl_keep isl_val *stride, int sign)
94 int i;
95 isl_val *v;
96 isl_space *space;
97 unsigned nparam;
98 unsigned nvar;
99 isl_aff *aff;
101 isl_val_free(bound->stride);
102 bound->stride = isl_val_copy(stride);
104 space = isl_constraint_get_space(c);
105 space = isl_space_domain(space);
107 nparam = isl_space_dim(space, isl_dim_param);
108 nvar = isl_space_dim(space, isl_dim_set);
110 v = isl_constraint_get_constant_val(c);
111 if (sign < 0)
112 v = isl_val_neg(v);
113 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
114 aff = isl_aff_set_constant_val(aff, v);
116 for (i = 0; i < nparam; ++i) {
117 if (!isl_constraint_involves_dims(c, isl_dim_param, i, 1))
118 continue;
119 v = isl_constraint_get_coefficient_val(c, isl_dim_param, i);
120 if (sign < 0)
121 v = isl_val_neg(v);
122 aff = isl_aff_add_coefficient_val(aff, isl_dim_param, i, v);
125 for (i = 0; i < nvar; ++i) {
126 if (!isl_constraint_involves_dims(c, isl_dim_in, i, 1))
127 continue;
128 v = isl_constraint_get_coefficient_val(c, isl_dim_in, i);
129 if (sign < 0)
130 v = isl_val_neg(v);
131 aff = isl_aff_add_coefficient_val(aff, isl_dim_in, i, v);
134 bound->shift = aff;
137 /* Given an equality constraint of a map with a single output dimension j,
138 * check if the constraint is of the form
140 * a(p,i) + j = g f(e)
142 * with a(p,i) an expression in the parameters and input dimensions
143 * and f(e) an expression in the existentially quantified variables.
144 * If so, and if g is larger than any such g from a previously considered
145 * constraint, then call extract_stride to record the stride information
146 * in bound.
148 static int check_stride_constraint(__isl_take isl_constraint *c, void *user)
150 int i;
151 isl_ctx *ctx;
152 isl_val *v;
153 unsigned n_div;
154 struct gpu_array_bound *bound = user;
156 ctx = isl_constraint_get_ctx(c);
157 n_div = isl_constraint_dim(c, isl_dim_div);
158 v = isl_constraint_get_coefficient_val(c, isl_dim_out, 0);
160 if (n_div && (isl_val_is_one(v) || isl_val_is_negone(v))) {
161 int s = isl_val_sgn(v);
162 isl_val *stride = isl_val_zero(ctx);
164 isl_val_free(v);
165 for (i = 0; i < n_div; ++i) {
166 v = isl_constraint_get_coefficient_val(c,
167 isl_dim_div, i);
168 stride = isl_val_gcd(stride, v);
170 if (!isl_val_is_zero(stride) &&
171 isl_val_gt(stride, bound->stride))
172 extract_stride(c, bound, stride, s);
174 isl_val_free(stride);
175 } else
176 isl_val_free(v);
178 isl_constraint_free(c);
179 return 0;
182 /* Given contraints on an array index i, check if we can find
183 * a shift a(p) and a stride g such that
185 * a(p) + i = 0 mod g
187 * If so, record the information in bound and apply the mapping
188 * i -> (i + a(p))/g to the array index in bounds and return
189 * the new constraints.
190 * If not, simply return the original constraints.
192 * If bounds is a subset of the space
194 * D -> i
196 * then the bound recorded in bound->shift is of the form
198 * D -> s(D)
200 * with s(D) equal to a(p) above.
201 * Next, we construct a mapping of the form
203 * [D -> i] -> [D -> (i + S(D))/g]
205 * This mapping is computed as follows.
206 * We first introduce "i" in the domain through precomposition
207 * with [D -> i] -> D obtaining
209 * [D -> i] -> s(D)
211 * Adding [D -> i] -> i produces
213 * [D -> i] -> i + s(D)
215 * and the domain product with [D -> i] -> D yields
217 * [D -> i] -> [D -> i + s(D)]
219 * Composition with [D -> i] -> [D -> i/g] gives the desired result.
221 static __isl_give isl_basic_map *check_stride(struct gpu_array_bound *bound,
222 __isl_take isl_basic_map *bounds)
224 isl_space *space;
225 isl_basic_map *hull;
226 isl_basic_map *shift, *id, *bmap, *scale;
227 isl_basic_set *bset;
228 isl_aff *aff;
230 bound->stride = NULL;
232 hull = isl_basic_map_affine_hull(isl_basic_map_copy(bounds));
234 isl_basic_map_foreach_constraint(hull, &check_stride_constraint, bound);
236 isl_basic_map_free(hull);
238 if (!bound->stride)
239 return bounds;
241 shift = isl_basic_map_from_aff(isl_aff_copy(bound->shift));
242 space = isl_basic_map_get_space(bounds);
243 bmap = isl_basic_map_domain_map(isl_basic_map_universe(space));
244 shift = isl_basic_map_apply_range(bmap, shift);
245 space = isl_basic_map_get_space(bounds);
246 id = isl_basic_map_range_map(isl_basic_map_universe(space));
247 shift = isl_basic_map_sum(id, shift);
248 space = isl_basic_map_get_space(bounds);
249 id = isl_basic_map_domain_map(isl_basic_map_universe(space));
250 shift = isl_basic_map_range_product(id, shift);
252 space = isl_space_domain(isl_basic_map_get_space(bounds));
253 id = isl_basic_map_identity(isl_space_map_from_set(space));
254 space = isl_space_range(isl_basic_map_get_space(bounds));
255 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
256 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
257 aff = isl_aff_scale_down_val(aff, isl_val_copy(bound->stride));
258 scale = isl_basic_map_from_aff(aff);
259 scale = isl_basic_map_product(id, scale);
261 bmap = isl_basic_map_apply_range(shift, scale);
262 bset = isl_basic_set_apply(isl_basic_map_wrap(bounds), bmap);
263 bounds = isl_basic_set_unwrap(bset);
265 return bounds;
268 /* Data used in compute_array_dim_size and compute_size_in_direction.
270 * pos is the position of the variable representing the array index,
271 * i.e., the variable for which want to compute the size. This variable
272 * is also the last variable in the set.
274 struct gpu_size_info {
275 isl_basic_set *bset;
276 struct gpu_array_bound *bound;
277 int pos;
280 /* Given a constraint from the basic set describing the bounds on
281 * an array index, check if it is a lower bound, say m i >= b(x), and,
282 * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
283 * upper bound. If so, and if this bound is smaller than any bound
284 * derived from earlier constraints, set the size to this bound on
285 * the expression and the lower bound to ceil(b(x)/m).
287 static int compute_size_in_direction(__isl_take isl_constraint *c, void *user)
289 struct gpu_size_info *size = user;
290 unsigned nparam;
291 unsigned n_div;
292 isl_val *v;
293 isl_aff *aff;
294 isl_aff *lb;
296 nparam = isl_basic_set_dim(size->bset, isl_dim_param);
297 n_div = isl_constraint_dim(c, isl_dim_div);
299 if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div) ||
300 !isl_constraint_is_lower_bound(c, isl_dim_set, size->pos)) {
301 isl_constraint_free(c);
302 return 0;
305 aff = isl_constraint_get_bound(c, isl_dim_set, size->pos);
306 aff = isl_aff_ceil(aff);
308 lb = isl_aff_copy(aff);
310 aff = isl_aff_neg(aff);
311 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1);
313 v = isl_basic_set_max_val(size->bset, aff);
314 isl_aff_free(aff);
316 if (isl_val_is_int(v)) {
317 v = isl_val_add_ui(v, 1);
318 if (!size->bound->size || isl_val_lt(v, size->bound->size)) {
319 isl_val_free(size->bound->size);
320 size->bound->size = isl_val_copy(v);
321 lb = isl_aff_drop_dims(lb, isl_dim_in, size->pos, 1);
322 isl_aff_free(size->bound->lb);
323 size->bound->lb = isl_aff_copy(lb);
326 isl_val_free(v);
327 isl_aff_free(lb);
329 isl_constraint_free(c);
331 return 0;
334 /* Given a basic map "bounds" that maps parameters and input dimensions
335 * to a single output dimension, look for an expression in the parameters
336 * and input dimensions such that the range of the output dimension shifted
337 * by this expression is a constant.
339 * In particular, we currently only consider lower bounds on the output
340 * dimension as candidate expressions.
342 static int compute_array_dim_size(struct gpu_array_bound *bound,
343 __isl_take isl_basic_map *bounds)
345 struct gpu_size_info size;
347 bounds = isl_basic_map_detect_equalities(bounds);
348 bounds = check_stride(bound, bounds);
350 bound->size = NULL;
351 bound->lb = NULL;
353 size.bound = bound;
354 size.pos = isl_basic_map_dim(bounds, isl_dim_in);
355 size.bset = isl_basic_map_wrap(bounds);
356 size.bset = isl_basic_set_flatten(size.bset);
357 size.bset = isl_set_simple_hull(isl_basic_set_compute_divs(size.bset));
358 isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction,
359 &size);
360 isl_basic_set_free(size.bset);
362 return bound->size ? 0 : -1;
365 /* Check if we can find a memory tile for the given array
366 * based on the given accesses, and if so, put the results in "tile".
368 * We project the accesses on each index in turn and look for a parametric
369 * offset such that the size is constant.
371 static int can_tile(__isl_keep isl_map *access, struct gpu_array_tile *tile)
373 int i;
375 for (i = 0; i < tile->n; ++i) {
376 isl_map *access_i;
377 isl_basic_map *hull;
379 access_i = isl_map_copy(access);
380 access_i = isl_map_project_out(access_i, isl_dim_out, 0, i);
381 access_i = isl_map_project_out(access_i, isl_dim_out,
382 1, tile->n - (i + 1));
383 access_i = isl_map_compute_divs(access_i);
384 hull = isl_map_simple_hull(access_i);
385 if (compute_array_dim_size(&tile->bound[i], hull) < 0)
386 return 0;
389 return 1;
392 /* Construct a map from domain_dim to domain_dim that increments
393 * the dimension at position "pos" and leaves all other dimensions
394 * constant.
396 static __isl_give isl_map *next(__isl_take isl_space *domain_dim, int pos)
398 int i;
399 int len = isl_space_dim(domain_dim, isl_dim_set);
400 isl_space *dim;
401 isl_basic_map *next;
402 isl_local_space *ls;
404 dim = isl_space_map_from_set(domain_dim);
405 next = isl_basic_map_universe(isl_space_copy(dim));
406 ls = isl_local_space_from_space(dim);
408 for (i = 0; i < len; ++i) {
409 isl_constraint *c;
411 c = isl_equality_alloc(isl_local_space_copy(ls));
412 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, 1);
413 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
414 if (i == pos)
415 c = isl_constraint_set_constant_si(c, 1);
416 next = isl_basic_map_add_constraint(next, c);
419 isl_local_space_free(ls);
421 return isl_map_from_basic_map(next);
424 /* Check if the given access is coalesced.
425 * That is, check whether incrementing the dimension that will get
426 * wrapped over the last thread index results in incrementing
427 * the last array index.
429 * This function is only called for access relations without reuse and
430 * kernels with at least one block dimension.
432 static int access_is_coalesced(struct gpu_gen *gen,
433 __isl_keep isl_union_map *access)
435 isl_space *dim;
436 isl_map *access_map;
437 isl_map *next_thread_x;
438 isl_map *next_element;
439 isl_map *map;
440 int coalesced;
442 access = isl_union_map_copy(access);
443 access = isl_union_map_apply_domain(access,
444 isl_union_map_copy(gen->tiled_sched));
445 access_map = isl_map_from_union_map(access);
447 dim = isl_map_get_space(access_map);
448 dim = isl_space_domain(dim);
449 next_thread_x = next(dim, gen->shared_len + gen->kernel->n_block - 1);
451 dim = isl_map_get_space(access_map);
452 dim = isl_space_range(dim);
453 next_element = next(dim, isl_space_dim(dim, isl_dim_set) - 1);
455 map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map));
456 map = isl_map_apply_range(map, access_map);
458 coalesced = isl_map_is_subset(map, next_element);
460 isl_map_free(next_element);
461 isl_map_free(map);
463 return coalesced;
466 /* Given an access relation in terms of at least gen->shared_len initial
467 * dimensions of the computed schedule, check if it is bijective for
468 * fixed values of the first gen->shared_len dimensions.
469 * We perform this check by equating these dimensions to parameters.
471 static int access_is_bijective(struct gpu_gen *gen, __isl_keep isl_map *access)
473 int res;
474 int dim;
475 isl_set *par;
476 isl_space *space;
477 isl_id_list *ids;
479 access = isl_map_copy(access);
480 space = isl_space_params(isl_map_get_space(access));
481 ids = ppcg_scop_generate_names(gen->prog->scop, gen->shared_len, "s");
482 dim = isl_map_dim(access, isl_dim_in);
483 par = parametrization(space, dim, 0, ids);
484 isl_id_list_free(ids);
485 access = isl_map_intersect_domain(access, par);
486 res = isl_map_is_bijective(access);
487 isl_map_free(access);
489 return res;
492 /* Compute the number of outer schedule tile dimensions that affect
493 * the offset of "tile".
494 * If there is no such dimension, then return the index
495 * of the first shared tile loop, i.e., gen->tile_first.
497 static int compute_tile_depth(struct gpu_gen *gen,
498 struct gpu_array_tile *tile)
500 int i, j;
502 for (j = gen->shared_len - 1; j >= gen->tile_first; --j) {
503 for (i = 0; i < tile->n; ++i) {
504 isl_aff *lb;
505 isl_aff *shift;
507 lb = tile->bound[i].lb;
508 if (isl_aff_involves_dims(lb, isl_dim_in, j, 1))
509 break;
511 shift = tile->bound[i].shift;
512 if (!shift)
513 continue;
514 if (isl_aff_involves_dims(shift, isl_dim_in, j, 1))
515 break;
517 if (i < tile->n)
518 break;
521 return ++j;
524 /* Determine the number of schedule dimensions that affect the offset of the
525 * shared or private tile and store the result in group->depth, with
526 * a lower bound of gen->tile_first.
527 * If there is no tile defined on the array reference group,
528 * then set group->depth to gen->shared_len.
530 static void set_depth(struct gpu_gen *gen,
531 struct gpu_array_ref_group *group)
533 struct gpu_array_tile *tile;
535 group->depth = gen->shared_len;
537 tile = gpu_array_ref_group_tile(group);
538 if (!tile)
539 return;
541 group->depth = compute_tile_depth(gen, tile);
544 /* Fill up the groups array with singleton groups, i.e., one group
545 * per reference, initializing the array, access, write, n_ref and refs fields.
546 * In particular the access field is initialized to the scheduled
547 * access relation of the array reference.
549 * Return the number of elements initialized, i.e., the number of
550 * active references in the current kernel.
552 static int populate_array_references(struct gpu_local_array_info *local,
553 __isl_keep isl_union_map *sched, struct gpu_array_ref_group **groups)
555 int i;
556 int n;
557 isl_ctx *ctx = isl_union_map_get_ctx(sched);
559 n = 0;
560 for (i = 0; i < local->array->n_ref; ++i) {
561 isl_union_map *umap;
562 isl_map *map;
563 struct gpu_array_ref_group *group;
564 struct gpu_stmt_access *access = local->array->refs[i];
566 map = isl_map_copy(access->access);
567 umap = isl_union_map_from_map(map);
568 umap = isl_union_map_apply_domain(umap,
569 isl_union_map_copy(sched));
571 if (isl_union_map_is_empty(umap)) {
572 isl_union_map_free(umap);
573 continue;
576 map = isl_map_from_union_map(umap);
577 map = isl_map_detect_equalities(map);
579 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
580 if (!group)
581 return -1;
582 group->local_array = local;
583 group->array = local->array;
584 group->access = map;
585 group->write = access->write;
586 group->exact_write = access->exact_write;
587 group->slice = access->n_index < local->array->n_index;
588 group->refs = &local->array->refs[i];
589 group->n_ref = 1;
591 groups[n++] = group;
594 return n;
597 /* If group->n_ref == 1, then group->refs was set by
598 * populate_array_references to point directly into
599 * group->array->refs and should not be freed.
600 * If group->n_ref > 1, then group->refs was set by join_groups
601 * to point to a newly allocated array.
603 struct gpu_array_ref_group *gpu_array_ref_group_free(
604 struct gpu_array_ref_group *group)
606 if (!group)
607 return NULL;
608 gpu_array_tile_free(group->shared_tile);
609 gpu_array_tile_free(group->private_tile);
610 isl_map_free(group->access);
611 if (group->n_ref > 1)
612 free(group->refs);
613 free(group);
614 return NULL;
617 /* Given a map where the input dimensions represent the tile loops,
618 * eliminate the innermost of those that have a fixed value
619 * until we reach one that does not (obviously) have a fixed value.
621 static __isl_give isl_map *eliminate_fixed_inner_loops(
622 __isl_take isl_map *access)
624 int i, n;
626 n = isl_map_dim(access, isl_dim_in);
628 for (i = n - 1; i >= 0; --i) {
629 if (!map_plain_is_fixed(access, isl_dim_in, i))
630 break;
631 access = isl_map_eliminate(access, isl_dim_in, i, 1);
633 return access;
636 /* Check if the access relations of group1 and group2 overlap within
637 * the innermost loop. In particular, ignore any inner dimension
638 * with a fixed value.
639 * The copying to and from shared memory will be performed within
640 * the innermost actual loop so we are only allowed to consider
641 * the dimensions up to that innermost loop while checking whether
642 * two access relations overlap.
644 static int accesses_overlap(struct gpu_array_ref_group *group1,
645 struct gpu_array_ref_group *group2)
647 int empty;
648 isl_map *access1, *access2;
650 access1 = isl_map_copy(group1->access);
651 access1 = eliminate_fixed_inner_loops(access1);
652 access2 = isl_map_copy(group2->access);
653 access2 = eliminate_fixed_inner_loops(access2);
654 access1 = isl_map_intersect(access1, access2);
655 empty = isl_map_is_empty(access1);
656 isl_map_free(access1);
658 return !empty;
661 /* Combine the given two groups into a single group, containing
662 * the references of both groups.
664 static struct gpu_array_ref_group *join_groups(
665 struct gpu_array_ref_group *group1,
666 struct gpu_array_ref_group *group2)
668 int i;
669 isl_ctx *ctx;
670 struct gpu_array_ref_group *group;
672 ctx = isl_map_get_ctx(group1->access);
673 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
674 if (!group)
675 return NULL;
676 group->local_array = group1->local_array;
677 group->array = group1->array;
678 group->access = isl_map_union(isl_map_copy(group1->access),
679 isl_map_copy(group2->access));
680 group->write = group1->write || group2->write;
681 group->exact_write = group1->exact_write && group2->exact_write;
682 group->slice = group1->slice || group2->slice;
683 group->n_ref = group1->n_ref + group2->n_ref;
684 group->refs = isl_alloc_array(ctx, struct gpu_stmt_access *,
685 group->n_ref);
686 if (!group->refs)
687 return gpu_array_ref_group_free(group);
688 for (i = 0; i < group1->n_ref; ++i)
689 group->refs[i] = group1->refs[i];
690 for (i = 0; i < group2->n_ref; ++i)
691 group->refs[group1->n_ref + i] = group2->refs[i];
693 return group;
696 /* Combine the given two groups into a single group and free
697 * the original two groups.
699 static struct gpu_array_ref_group *join_groups_and_free(
700 struct gpu_array_ref_group *group1,
701 struct gpu_array_ref_group *group2)
703 struct gpu_array_ref_group *group;
705 group = join_groups(group1, group2);
706 gpu_array_ref_group_free(group1);
707 gpu_array_ref_group_free(group2);
708 return group;
711 /* Report that the array reference group with the given access relation
712 * is not mapped to shared memory in the given kernel because
713 * it does not exhibit any reuse and is considered to be coalesced.
715 static void report_no_reuse_and_coalesced(struct ppcg_kernel *kernel,
716 __isl_keep isl_union_map *access)
718 isl_ctx *ctx;
719 isl_printer *p;
721 ctx = isl_union_map_get_ctx(access);
722 p = isl_printer_to_file(ctx, stdout);
723 p = isl_printer_print_str(p, "Array reference group ");
724 p = isl_printer_print_union_map(p, access);
725 p = isl_printer_print_str(p,
726 " not considered for mapping to shared memory in kernel");
727 p = isl_printer_print_int(p, kernel->id);
728 p = isl_printer_print_str(p,
729 " because it exhibits no reuse and is considered to be coalesced");
730 p = isl_printer_end_line(p);
731 isl_printer_free(p);
734 /* Given an access relation in terms of the gen->shared_len initial
735 * dimensions of the computed schedule and the thread identifiers
736 * (as parameters), check if the use of the corresponding private tile
737 * requires unrolling.
739 * If we are creating a private tile because we are forced to,
740 * then no unrolling is required.
741 * Otherwise we check if "access" is bijective and unrolling
742 * is required if it is not. Note that the access relation
743 * has already been determined to be bijective before the introduction
744 * of the thread identifiers and the removal of the schedule dimensions
745 * that are mapped to these threads. If the access relation is no longer
746 * bijective, then this means that more than one value of one of those
747 * schedule dimensions is mapped to the same thread and therefore
748 * unrolling is required.
750 static int check_requires_unroll(struct gpu_gen *gen,
751 __isl_keep isl_map *access, int force_private)
753 int bijective;
755 if (force_private)
756 return 0;
757 bijective = access_is_bijective(gen, access);
758 if (bijective < 0)
759 return -1;
760 return !bijective;
763 /* Compute the private and/or shared memory tiles for the array
764 * reference group "group" of array "array".
765 * Return 0 on success and -1 on error.
767 * If the array is a read-only scalar or if the user requested
768 * not to use shared or private memory, then we do not need to do anything.
770 * If any reference in the reference group accesses more than one element,
771 * then we would have to make sure that the layout in shared memory
772 * is the same as that in global memory. Since we do not handle this yet
773 * (and it may not even be possible), we refuse to map to private or
774 * shared memory in such cases.
776 * If the array group involves any may writes (that are not must writes),
777 * then we would have to make sure that we load the data into shared/private
778 * memory first in case the data is not written by the kernel
779 * (but still written back out to global memory).
780 * Since we don't have any such mechanism at the moment, we don't
781 * compute shared/private tiles for groups involving may writes.
783 * We only try to compute a shared memory tile if there is any reuse
784 * or if the access is not coalesced.
786 * For computing a private memory tile, we also require that there is
787 * some reuse. Moreover, we require that the access is private
788 * to the thread. That is, we check that any given array element
789 * is only accessed by a single thread.
790 * We compute an access relation that maps the shared tile loop iterators
791 * and the shared point loop iterators that will be wrapped over the
792 * threads to the array elements.
793 * We actually check that those iterators that will be wrapped
794 * partition the array space. This check is stricter than necessary
795 * since several iterations may be mapped onto the same thread
796 * and then they could be allowed to access the same memory elements,
797 * but our check does not allow this situation.
799 * We also check that the index expression only depends on parallel
800 * loops. That way, we can move those loops innermost and unroll them.
801 * Again, we use a test that is stricter than necessary.
802 * We actually check whether the index expression only depends
803 * on the iterators that are wrapped over the threads.
804 * These are necessarily parallel, but there may be more parallel loops.
806 * Combining the injectivity of the first test with the single-valuedness
807 * of the second test, we simply test for bijectivity.
809 * If the use of the private tile requires unrolling, but some
810 * of the other arrays are forcibly mapped to private memory,
811 * then we do not allow the use of this private tile since
812 * we cannot move the schedule dimensions that need to be unrolled down
813 * without performing some kind of expansion on those arrays
814 * that are forcibly mapped to private memory.
816 * If the array is marked force_private, then we bypass all checks
817 * and assume we can (and should) use registers.
819 * If it turns out we can (or have to) use registers, we compute
820 * the private memory tile size using can_tile, after introducing a dependence
821 * on the thread indices.
823 static int compute_group_bounds_core(struct gpu_gen *gen,
824 struct gpu_array_ref_group *group)
826 isl_ctx *ctx = isl_space_get_ctx(group->array->space);
827 isl_union_map *access;
828 int n_index = group->array->n_index;
829 int no_reuse, coalesced;
830 isl_map *acc;
831 int force_private = group->local_array->force_private;
832 int use_shared = gen->options->use_shared_memory &&
833 gen->kernel->n_block > 0;
834 int use_private = force_private || gen->options->use_private_memory;
835 int r = 0;
836 int requires_unroll;
838 if (!use_shared && !use_private)
839 return 0;
840 if (gpu_array_is_read_only_scalar(group->array))
841 return 0;
842 if (!force_private && !group->exact_write)
843 return 0;
844 if (group->slice)
845 return 0;
847 access = gpu_array_ref_group_access_relation(group, 1, 1);
848 no_reuse = isl_union_map_is_injective(access);
849 if (no_reuse < 0)
850 r = -1;
851 if (use_shared && no_reuse)
852 coalesced = access_is_coalesced(gen, access);
854 if (r >= 0 && gen->options->debug->verbose &&
855 use_shared && no_reuse && coalesced)
856 report_no_reuse_and_coalesced(gen->kernel, access);
858 if (use_shared && (!no_reuse || !coalesced)) {
859 group->shared_tile = gpu_array_tile_create(ctx,
860 group->array->n_index);
861 if (!group->shared_tile)
862 r = -1;
863 else if (!can_tile(group->access, group->shared_tile))
864 group->shared_tile =
865 gpu_array_tile_free(group->shared_tile);
868 if (r < 0 || (!force_private && (!use_private || no_reuse))) {
869 isl_union_map_free(access);
870 return r;
873 access = isl_union_map_apply_domain(access,
874 isl_union_map_copy(gen->shared_sched));
876 acc = isl_map_from_union_map(access);
878 if (!force_private && !access_is_bijective(gen, acc)) {
879 isl_map_free(acc);
880 return 0;
883 acc = isl_map_apply_domain(acc, isl_map_copy(gen->privatization));
884 requires_unroll = check_requires_unroll(gen, acc, force_private);
885 if (requires_unroll < 0 ||
886 (requires_unroll && gen->kernel->any_force_private)) {
887 isl_map_free(acc);
888 return requires_unroll < 0 ? -1 : 0;
891 group->private_tile = gpu_array_tile_create(gen->ctx, n_index);
892 if (!group->private_tile) {
893 isl_map_free(acc);
894 return -1;
896 group->private_tile->requires_unroll = requires_unroll;
897 if (!can_tile(acc, group->private_tile))
898 group->private_tile = gpu_array_tile_free(group->private_tile);
900 isl_map_free(acc);
902 if (force_private && !group->private_tile)
903 isl_die(ctx, isl_error_internal,
904 "unable to map array reference group to registers",
905 return -1);
907 return 0;
910 /* Compute the private and/or shared memory tiles for the array
911 * reference group "group" of array "array" and set the tile depth.
912 * Return 0 on success and -1 on error.
914 static int compute_group_bounds(struct gpu_gen *gen,
915 struct gpu_array_ref_group *group)
917 if (!group)
918 return -1;
919 if (compute_group_bounds_core(gen, group) < 0)
920 return -1;
921 set_depth(gen, group);
923 return 0;
926 /* If two groups have overlapping access relations (as determined by
927 * the "overlap" function) and if one of them involves a write,
928 * then merge the two groups into one.
929 * If "compute_bounds" is set, then call compute_group_bounds
930 * on the merged groups.
932 * Return the updated number of groups.
933 * Return -1 on error.
935 static int group_writes(struct gpu_gen *gen,
936 int n, struct gpu_array_ref_group **groups,
937 int (*overlap)(struct gpu_array_ref_group *group1,
938 struct gpu_array_ref_group *group2), int compute_bounds)
940 int i, j;
942 for (i = 0; i < n; ++i) {
943 for (j = n - 1; j > i; --j) {
944 if (!groups[i]->write && !groups[j]->write)
945 continue;
947 if (!overlap(groups[i], groups[j]))
948 continue;
950 groups[i] = join_groups_and_free(groups[i], groups[j]);
951 if (j != n - 1)
952 groups[j] = groups[n - 1];
953 groups[n - 1] = NULL;
954 n--;
956 if (!groups[i])
957 return -1;
958 if (compute_bounds &&
959 compute_group_bounds(gen, groups[i]) < 0)
960 return -1;
964 return n;
967 /* If two groups have overlapping access relations (within the innermost
968 * loop) and if one of them involves a write, then merge the two groups
969 * into one.
971 * Return the updated number of groups.
973 static int group_overlapping_writes(struct gpu_gen *gen,
974 int n, struct gpu_array_ref_group **groups)
976 return group_writes(gen, n, groups, &accesses_overlap, 0);
979 /* Check if the access relations of group1 and group2 overlap within
980 * the outermost min(group1->depth, group2->depth) loops.
982 static int depth_accesses_overlap(struct gpu_array_ref_group *group1,
983 struct gpu_array_ref_group *group2)
985 int depth;
986 int dim;
987 int empty;
988 isl_map *map_i, *map_j, *map;
990 depth = group1->depth;
991 if (group2->depth < depth)
992 depth = group2->depth;
993 map_i = isl_map_copy(group1->access);
994 dim = isl_map_dim(map_i, isl_dim_in);
995 map_i = isl_map_eliminate(map_i, isl_dim_in, depth, dim - depth);
996 map_j = isl_map_copy(group2->access);
997 map_j = isl_map_eliminate(map_j, isl_dim_in, depth, dim - depth);
998 map = isl_map_intersect(map_i, map_j);
999 empty = isl_map_is_empty(map);
1000 isl_map_free(map);
1002 return !empty;
1005 /* If two groups have overlapping access relations (within the outer
1006 * depth loops) and if one of them involves a write,
1007 * then merge the two groups into one.
1009 * Return the updated number of groups.
1011 static int group_depth_overlapping_writes(struct gpu_gen *gen, int n,
1012 struct gpu_array_ref_group **groups)
1014 return group_writes(gen, n, groups, &depth_accesses_overlap, 1);
1017 /* Is the size of the tile specified by "tile" smaller than the sum of
1018 * the sizes of the tiles specified by "tile1" and "tile2"?
1020 static int smaller_tile(struct gpu_array_tile *tile,
1021 struct gpu_array_tile *tile1, struct gpu_array_tile *tile2)
1023 int smaller;
1024 isl_val *size, *size1, *size2;
1026 size = gpu_array_tile_size(tile);
1027 size1 = gpu_array_tile_size(tile1);
1028 size2 = gpu_array_tile_size(tile2);
1030 size = isl_val_sub(size, size1);
1031 size = isl_val_sub(size, size2);
1032 smaller = isl_val_is_neg(size);
1034 isl_val_free(size);
1036 return smaller;
1039 /* Given an initial grouping of array references and shared memory tiles
1040 * for each group that allows for a shared memory tile, merge two groups
1041 * if both have a shared memory tile, the merged group also has
1042 * a shared memory tile and the size of the tile for the merge group
1043 * is smaller than the sum of the tile sizes of the individual groups.
1045 * If merging two groups decreases the depth of the tile of
1046 * one or both of the two groups, then we need to check for overlapping
1047 * writes again.
1049 * Return the number of groups after merging.
1050 * Return -1 on error.
1052 static int group_common_shared_memory_tile(struct gpu_gen *gen,
1053 struct gpu_array_info *array, int n,
1054 struct gpu_array_ref_group **groups)
1056 int i, j;
1057 int recompute_overlap = 0;
1058 isl_ctx *ctx = isl_space_get_ctx(array->space);
1060 for (i = 0; i < n; ++i) {
1061 if (!groups[i]->shared_tile)
1062 continue;
1063 for (j = n - 1; j > i; --j) {
1064 isl_map *map;
1065 int empty;
1066 struct gpu_array_ref_group *group;
1068 if (!groups[j]->shared_tile)
1069 continue;
1071 map = isl_map_intersect(isl_map_copy(groups[i]->access),
1072 isl_map_copy(groups[j]->access));
1073 empty = isl_map_is_empty(map);
1074 isl_map_free(map);
1076 if (empty)
1077 continue;
1079 group = join_groups(groups[i], groups[j]);
1080 if (compute_group_bounds(gen, group) < 0) {
1081 gpu_array_ref_group_free(group);
1082 return -1;
1084 if (!group->shared_tile ||
1085 !smaller_tile(group->shared_tile,
1086 groups[i]->shared_tile,
1087 groups[j]->shared_tile)) {
1088 gpu_array_ref_group_free(group);
1089 continue;
1092 if (group->depth < groups[i]->depth ||
1093 group->depth < groups[j]->depth)
1094 recompute_overlap = 1;
1095 gpu_array_ref_group_free(groups[i]);
1096 gpu_array_ref_group_free(groups[j]);
1097 groups[i] = group;
1098 if (j != n - 1)
1099 groups[j] = groups[n - 1];
1100 n--;
1104 if (recompute_overlap)
1105 n = group_depth_overlapping_writes(gen, n, groups);
1106 return n;
1109 /* Set array->n_group and array->groups to n and groups.
1111 * Additionally, set the "nr" field of each group.
1113 static void set_array_groups(struct gpu_local_array_info *array,
1114 int n, struct gpu_array_ref_group **groups)
1116 int i, j;
1118 array->n_group = n;
1119 array->groups = groups;
1121 for (i = 0; i < n; ++i)
1122 groups[i]->nr = i;
1125 /* Group array references that should be considered together when
1126 * deciding whether to access them from private, shared or global memory.
1127 * Return -1 on error.
1129 * In particular, if two array references overlap and if one of them
1130 * is a write, then the two references are grouped together.
1131 * We first perform an initial grouping based only on the access relation.
1132 * After computing shared and private memory tiles, we check for
1133 * overlapping writes again, but this time taking into account
1134 * the depth of the effective tile.
1136 * Furthermore, if two groups admit a shared memory tile and if the
1137 * combination of the two also admits a shared memory tile, we merge
1138 * the two groups.
1140 * If the array contains structures, then there is no need to compute
1141 * reference groups since we do not map such arrays to private or shared
1142 * memory.
1144 static int group_array_references(struct gpu_gen *gen,
1145 struct gpu_local_array_info *local, __isl_keep isl_union_map *sched)
1147 int i;
1148 int n;
1149 isl_ctx *ctx = isl_union_map_get_ctx(sched);
1150 struct gpu_array_ref_group **groups;
1152 if (local->array->has_compound_element)
1153 return 0;
1155 groups = isl_calloc_array(ctx, struct gpu_array_ref_group *,
1156 local->array->n_ref);
1157 if (!groups)
1158 return -1;
1160 n = populate_array_references(local, sched, groups);
1162 n = group_overlapping_writes(gen, n, groups);
1164 for (i = 0; i < n; ++i)
1165 if (compute_group_bounds(gen, groups[i]) < 0)
1166 n = -1;
1168 n = group_depth_overlapping_writes(gen, n, groups);
1170 n = group_common_shared_memory_tile(gen, local->array, n, groups);
1172 set_array_groups(local, n, groups);
1174 if (n >= 0)
1175 return 0;
1177 for (i = 0; i < local->array->n_ref; ++i)
1178 gpu_array_ref_group_free(groups[i]);
1179 return -1;
1182 /* For each scalar in the input program, check if there are any
1183 * order dependences active inside the current kernel, within
1184 * the same iteration of the host schedule.
1185 * If so, mark the scalar as force_private so that it will be
1186 * mapped to a register.
1188 static void check_scalar_live_ranges(struct gpu_gen *gen)
1190 int i;
1191 isl_map *proj;
1192 isl_union_map *sched;
1193 isl_union_set *domain;
1194 isl_union_map *same_host_iteration;
1196 gen->kernel->any_force_private = 0;
1198 if (!gen->options->live_range_reordering)
1199 return;
1201 sched = gen->shared_sched;
1202 sched = isl_union_map_universe(isl_union_map_copy(sched));
1203 domain = isl_union_map_domain(sched);
1205 sched = isl_union_map_copy(gen->sched);
1206 proj = projection(isl_union_map_get_space(sched),
1207 gen->untiled_len, gen->tile_first);
1208 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
1209 same_host_iteration = isl_union_map_apply_range(sched,
1210 isl_union_map_reverse(isl_union_map_copy(sched)));
1212 for (i = 0; i < gen->kernel->n_array; ++i) {
1213 struct gpu_local_array_info *local = &gen->kernel->array[i];
1214 isl_union_map *order;
1216 local->force_private = 0;
1217 if (local->array->n_index != 0)
1218 continue;
1219 order = isl_union_map_copy(local->array->dep_order);
1220 order = isl_union_map_intersect_domain(order,
1221 isl_union_set_copy(domain));
1222 order = isl_union_map_intersect_range(order,
1223 isl_union_set_copy(domain));
1224 order = isl_union_map_intersect(order,
1225 isl_union_map_copy(same_host_iteration));
1226 if (!isl_union_map_is_empty(order)) {
1227 local->force_private = 1;
1228 gen->kernel->any_force_private = 1;
1230 isl_union_map_free(order);
1233 isl_union_map_free(same_host_iteration);
1234 isl_union_set_free(domain);
1237 /* Group references of all arrays in the current kernel.
1239 int gpu_group_references(struct gpu_gen *gen)
1241 int i;
1242 int r = 0;
1243 isl_union_map *sched;
1245 check_scalar_live_ranges(gen);
1247 sched = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
1248 isl_union_map_copy(gen->shared_proj));
1250 for (i = 0; i < gen->kernel->n_array; ++i) {
1251 r = group_array_references(gen, &gen->kernel->array[i], sched);
1252 if (r < 0)
1253 break;
1256 isl_union_map_free(sched);
1258 return r;
1261 /* Given a description of an array tile "tile" and the "space"
1263 * { D -> A }
1265 * where D represents the first shared_len schedule dimensions
1266 * and A represents the array, construct an isl_multi_aff
1268 * { [D[i] -> A[a]] -> A'[a'] }
1270 * with A' a scaled down copy of A according to the shifts and strides
1271 * in "tile". In particular,
1273 * a' = (a + shift(i))/stride
1275 * "insert_array" represents
1277 * { [D -> A] -> D }
1279 * and is used to insert A into the domain of functions that only
1280 * reference D.
1282 static __isl_give isl_multi_aff *strided_tile(
1283 struct gpu_array_tile *tile, __isl_keep isl_space *space,
1284 __isl_keep isl_multi_aff *insert_array)
1286 int i;
1287 isl_ctx *ctx;
1288 isl_multi_aff *shift;
1289 isl_multi_val *stride;
1290 isl_space *space2;
1291 isl_local_space *ls;
1292 isl_multi_aff *tiling;
1294 ctx = isl_space_get_ctx(space);
1295 space2 = isl_space_domain(isl_space_copy(space));
1296 ls = isl_local_space_from_space(space2);
1297 space2 = isl_space_range(isl_space_copy(space));
1298 stride = isl_multi_val_zero(space2);
1299 shift = isl_multi_aff_zero(isl_space_copy(space));
1301 for (i = 0; i < tile->n; ++i) {
1302 struct gpu_array_bound *bound = &tile->bound[i];
1303 isl_val *stride_i;
1304 isl_aff *shift_i;
1306 if (tile->bound[i].shift) {
1307 stride_i = isl_val_copy(bound->stride);
1308 shift_i = isl_aff_copy(bound->shift);
1309 } else {
1310 stride_i = isl_val_one(ctx);
1311 shift_i = isl_aff_zero_on_domain(
1312 isl_local_space_copy(ls));
1315 stride = isl_multi_val_set_val(stride, i, stride_i);
1316 shift = isl_multi_aff_set_aff(shift, i, shift_i);
1318 isl_local_space_free(ls);
1320 shift = isl_multi_aff_pullback_multi_aff(shift,
1321 isl_multi_aff_copy(insert_array));
1323 tiling = isl_multi_aff_range_map(isl_space_copy(space));
1324 tiling = isl_multi_aff_add(tiling, shift);
1325 tiling = isl_multi_aff_scale_down_multi_val(tiling, stride);
1327 return tiling;
1330 /* Compute a tiling for the array reference group "group".
1332 * The tiling is of the form
1334 * { [D[i] -> A[a]] -> T[t] }
1336 * where D represents the first shared_len schedule dimensions,
1337 * A represents the global array and T represents the shared or
1338 * private memory tile. The name of T is the name of the local
1339 * array.
1341 * If there is any stride in the accesses, then the mapping is
1343 * t = (a + shift(i))/stride - lb(i)
1345 * otherwise, it is simply
1347 * t = a - lb(i)
1349 void gpu_array_ref_group_compute_tiling(struct gpu_array_ref_group *group)
1351 int i;
1352 struct gpu_array_tile *tile;
1353 struct gpu_array_info *array = group->array;
1354 isl_space *space;
1355 isl_multi_aff *tiling, *lb, *insert_array;
1356 isl_printer *p;
1357 char *local_name;
1359 tile = group->private_tile;
1360 if (!tile)
1361 tile = group->shared_tile;
1362 if (!tile)
1363 return;
1365 space = isl_map_get_space(group->access);
1366 insert_array = isl_multi_aff_domain_map(isl_space_copy(space));
1368 for (i = 0; i < tile->n; ++i)
1369 if (tile->bound[i].shift)
1370 break;
1372 if (i < tile->n)
1373 tiling = strided_tile(tile, space, insert_array);
1374 else
1375 tiling = isl_multi_aff_range_map(isl_space_copy(space));
1377 lb = isl_multi_aff_zero(space);
1378 for (i = 0; i < tile->n; ++i) {
1379 isl_aff *lb_i = isl_aff_copy(tile->bound[i].lb);
1380 lb = isl_multi_aff_set_aff(lb, i, lb_i);
1382 lb = isl_multi_aff_pullback_multi_aff(lb, insert_array);
1384 tiling = isl_multi_aff_sub(tiling, lb);
1386 p = isl_printer_to_str(isl_multi_aff_get_ctx(tiling));
1387 p = gpu_array_ref_group_print_name(group, p);
1388 local_name = isl_printer_get_str(p);
1389 isl_printer_free(p);
1390 tiling = isl_multi_aff_set_tuple_name(tiling, isl_dim_out, local_name);
1391 free(local_name);
1393 tile->tiling = tiling;